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Search-Efficient Methods of 
Detection of Cyclostationary Signals 

Grace K. Yeung and William A. Gardner, Fellow, IEEE 

Abstract-Conventional signal processing methods that exploit 
cyclostationarity for the detection of weak signals in noise require 
fine resolution in cycle frequency for long integration time. Hence, 
in cases of weak-signal detection and broadband search, problems 
in implementation, such as excessive computational complexity 
and storage and search arise. This paper introduces two new 
search-efficient methods of cycle detection, namely the autocor- 
related cyclic autocorrelation (ACA) and the autocorrelated cyclic 
periodogram (ACP) methods. For a given level of performance 
reliability, the ACA and ACP methods allow much larger resolu- 
tion width in cycle frequency to be used in their implementations, 
compared to the conventional methods of cyclic spectral analysis. 
Thus, the amount of storage and search can be substantially 
reduced. Analyses of the two methods, performance comparison, 
and computer simulation results are presented. 

I. INTRODUCTION 
HE PROBLEM of searching for weak radio communi- 
cations and telemetry signals buried in noise arises in 

many areas of engineering and science. The common approach 
to the detection of these signals is based on radiometry, 
which is measurement of received energy in selected time 
and frequency intervals. However, the presence of variable 
background noise and interference that overlap in time and 
frequency with the signal of interest (SOI) makes the task 
of detecting weak signals using these conventional energy- 
detection methods difficult and, in some cases, impossible 
[l]. Therefore, new detection schemes as well as methods for 
improving the performance of existing schemes are continually 
being sought. 

Meanwhile, continuing research efforts in the area of cyclo- 
stationarity and growing applications of this signal property, 
which is inherent in many man-made signals such as com- 
munications signals, have made evident the fact that methods 
exploiting cyclostationarity have many advantages over con- 
ventional radiometric methods for purposes of signal inter- 
ception [ I]. The detection of cyclostationary signals involves 
cyclic spectral analysis (or, equivalently, spectral correlation 
analysis) of the received data. Conventional methods of cyclic 
spectral analysis are based on or are equivalent to quadratically 
transforming the data to generate additive sine waves and then 
applying Fourier analysis in order to detect the resulting cyclic 

Manuscript received June 4, 1994; revised November 6, 1995. This work 
was supported in part by the National Science Foundation under Grant MIP- 
91-12800. The associate editor coordinating the review of this work and 
approving it for publication was Dr. Zhi Ding. 

G. K. Yeung is with Mission Research Corporation, Monterey, CA 93940 
USA (e-mail: yeung@mrcmry.com). 

W. A. Gardner is with the Department of Electrical Engineering, University 
of California, Davis, CA 95616 USA. 

Publisher Item Identifier S 1053-587X(96)03066-8. 

features in the frequency domain. These methods require fine 
resolution in cycle frequency (frequency of a generated sine 
wave) when long integration time (data record length used 
in the Fourier analysis) is used [2]. Therefore, in cases of 
weak-signal detection, where long integration time is needed, 
and in general search applications, where a search for an un- 
known signal throughout a wide frequency band is necessary, 
problems arise in implementation, such as high computational 
complexity and large amounts of storage and search arise. 

This paper introduces two new search-efficient methods 
of cyclic feature detection, namely the autoconelated cyclic 
autocorrelation (ACA) and the autocorrelated cyclic peri- 
odogram (ACP). For a given level of detection reliability 
and computational complexity, implementations of these two 
methods yield less stringent requirements on resolution in 
cycle frequency than that of conventional methods of cyclic 
spectral analysis because the cycle frequency resolution width 
of these new methods is inherently larger than that of the 
conventional methods. Therefore, for the detection of weak 
signals buried in noise within a broad band, the amount of 
storage and search can be substantially reduced. Once the 
presence of a cyclic feature is detected and its frequency 
is estimated using these new methods, a conventional cyclic 
spectrum analyzer can be used at (and in the vicinity of) this 
cycle frequency for a finer search and analysis over a much 
narrower band. 

A brief review of cyclic spectral analysis and two con- 
ventional methods of cycle detection is given in Section 
11. The derivation and analysis of the new methods are 
presented in Section 111. A performance comparison of the 
new and conventional methods is given in Section IV, with 
computer simulation results being reported in Section V. 
Finally, concluding remarks are drawn in Section VI. 

11. REVIEW OF CYCLIC SPECTRAL ANALYSIS 
It has been recognized that many random time series en- 

countered in the field of signal processing are more appropri- 
ately modeled as cyclostationary, rather than stationary, due 
to the underlying periodicities in these signals. An attribute 
of these cyclostationary time series is that generation of sine 
waves can be accomplished by subjecting the time series to a 
stable quadratic time-invariant transformation. The frequencies 
of these generated sine waves are related to the underlying 
periodicities and are known as cycle frequencies of the signal. 
Many useful characteristics of cyclostationary signals such 
as carrier phase, baud timing, information about modulation 
indices, bandwidth efficiencies, modulation types and, more 
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generally, degree of spectral redundancy, are reflected in the 
cyclic autocorrelation function and the spectral correlation 
function, which form the basis for cyclic spectral analysis. 

The cyclic autocorrelation of a complex-valued time series 
z ( t )  is defined by 

which can be interpreted as the Fourier coefficient of any 
additive sine wave component with frequency Q that might 
be contained in the delay product (a quadratic transformation) 

The spectral correlation function (defined by (5)-(8)), which 
is also known as the cyclic spectrum, can be obtained by 
Fourier transforming the cyclic autocorrelation 

of x(t) .  

ou 

SZ( f )  = F{RZ(r)}  = 1 R ; ( r ) e P K f T  d r .  (2) 

This is the cyclic Wiener relation [3]. In the degenerate 
case of a = 0, the left members of (1) and (2) become 
the conventional autocorrelation function and power spectral 
density, respectively. 

The measurement of the two functions (1) and (2) in signal 
analysis constitutes what is referred to as cyclic spectral 
analysis. A comprehensive theoretical treatment of this subject 
is available in Part I1 of [3], and design and analysis of 
digital implementations of conventional methods is surveyed 
in [4]. Here, we review two of the conventional measure- 
ment methods, namely the time-variant finite-average cyclic 
autocorrelation, (CA), and the temporally smoothed cyclic 
periodogram, (SCP). The CA and SCP are the conventional 
counterparts of the new cycle detection methods ACA and 
ACP, respectively. 

-ou 

The CA of x ( t )  is defined by 

a 
R:(t, .)At 

Jt-atlz %(U + r/2)x*(u - ~ / 2 ) e - ' ~ * ~ ~  du, 171 5 At 
171 > At 

(3) 

and, for most useful signal and noise models, yields a reli- 
able estimate of the cyclic autocorrelation given in (1) for 
sufficiently long integration time At [3]: 

io:  tiat12 

lim R,N(t,r)~t = R,"(r). (4) 
A t i m  

As a pointwise limit (in t and r) ,  (4) is simply definition (1). 
Reliability means (4) holds also as a limit in temporal ( t )  
mean square [3]. 

The SCP of ~ ( t )  is given by 

the integrand of which is the cyclic periodogram of 
defined by 

where 

is the sliding finite-time Fourier transform of x ( t ) .  By defi- 
nition [3] 

and it can be shown [2]-[4] that reliable measurement of the 
spectral correlation function of ic(t), SF(f) ,  using the SCP, 
can be obtained for AtAf >, 1, where Af = 1/T, and 
that accurate measurement requires small A f for adequate 
resolution. 

One of the important characteristics of these measurement 
methods is related to their cycle resolution width, denoted by 
Aa. It can be shown [2] that Aa of the CA and SCP is 
on the order of the reciprocal of the total integration time: 
Act 2 l /At.  That is, cycle frequencies that are closer to each 
other than An = l /At  cannot be resolved. Consequently, 
for weak-signal detection, where At needs to be large, and 
for general search purposes, where a search over a large 
range of frequencies is required, the processing of many cycle 
frequency points is necessary in order not to miss any part 
of the cyclic spectrum or cyclic autocorrelation. The resulting 
demand for large search and storage capacities has prompted 
the need for new methods that would alleviate some of these 
problems in implementation. 

111. DERIVATION AND ANALYSIS 
The two new methods of cycle detection presented here are 

both built, as their names imply, on conventional methods. 
Specifically, the ACA is obtained by forming the autocorre- 
lation of the time-variant finite-average cyclic autocorrelation 
and the ACP is obtained by forming the autocorrelation of 
the time-variant cyclic periodogram. In both methods, the 
autocorrelation is formed over a total time interval of At. 
However, the finite-average cyclic autocorrelation, and the 
cyclic periodogram used in these autocorrelations are obtained 
over a shorter segment of data with length T. The window that 
selects this segment slides along in time to cover the total time 
interval of A t  for the autocorrelation operation. 

It is shown in [5] and explained in this paper in Section 111-A 
that these new methods have cycle resolution width Aa E 1/T 
instead of Acu E l /At.  Since T can be chosen to be much 
smaller than At for a given level of reliability, AQ of the 
new methods can be much larger than that of the conventional 
methods. Therefore, the density of cycle frequency samples 
needed in implementing these new methods is reduced by a 
factor of y = At/T,  and a reduction by this factor in the 
amount of storage for the estirnates and the amount of search 
for cyclic features is achieved. 

For the derivation and analysis of the ACA and ACP 
methods, we shall consider the time series model 

A 

(9)  
where s ( t )  is the signal of interest (SOI) that exhibits cyclo- 
stationarity and n( t )  is purely stationary noise [3]. Since s ( t )  

n 
x ( t )  = s ( t )  + n(t)  
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is assumed to exhibit cyclostationarity, then by definition the 
lag product 

Forming the correlation of (12) with itself over a total time 
interval of At yields the ACA function 

y(t) x ( t  + T / 2 ) Z * ( t  - ./a) (10) RR(7. a :  z. U ) a t  = - R;(t - U, T ) T R z ( t ,  T ) ;  d t  

(13) 

n 

for a continuum of values of lag 7 contains finite strength 
additive sine-wave components and can, therefore, be modeled 
as 

n 

where the residual is simply the part of y(t) that does not 
contain sine waves. It follows from definition (10) and model 
(1 1) that 

a,  G RZn(r) G R;"(T). 

The problem of detecting the presence of cyclostationarity is 
therefore the problem of detecting the presence of a family of 
sine waves indexed by T in the lag-product waveforms y ( t ) ,  
and the magnitudes and phases of such sine waves are given 

It can be shown [1] that this detection is equivalent to the 
by R;(T). 

detection of a dc component in the spectral products 

where U is the lag parameter in this autocorrelation and z is 
the segment index indicating the time location of the segment 
of data with length At  + T E At (for At >> T )  that is being 
analyzed. 

Without loss of generality, we model y ( t )  as a sum of sine- 
wave components plus a residual, as in (1 I), where the { a,} 
are the Fourier coefficients of the sine waves generated by the 
quadratic transformation in (lo), the {a,} are the frequencies 
of the generated sine waves, and m(t) is the residual that does 
not contain any finite-strength additive sine waves. Using (1 1) 
in (12) and substituting (12) into (13), we show in Appendix 
A that, in the limit as A t  i 00, 

R ~ ( T .  C Y :  C J )  = n lim RR(T, a ;  z, U ) A ~  
At-m 

1 
p ( t )  = ,XT(t, f + a/a)X;(t. f - a/2)  

for a continuum of values of f and a discrete set of values 
of a (which is {a,}). It follows from definitions (5)-(8) that 
this dc value is given by 

where 

sin ( TPT) 
TOT G(P) = ~ (15) 

R l I ( U )  = lim - at 
lim - p(u) d u  = lim S&.(t. f ) A t  (16) 

at-m At t - 4 t / 2  A i m  

and 
t+T/2 and in the limit, as T 3 00, this dc value equals 5'; ( f ) .  Hence, 

the problem of detecting cyclostationarity is the problem .WT(t.ol) = / m(v)e-"Tav  d v  . (17) 
of detecting the presence of dc components in a family of . t -T /2  

spectral correlation products indexed by frequency f ,  for 
some unknown set of frequency separations a designated by 
{a,}, and the magnitudes and phases of such complex-valued 
dc components are given by S g ( f ) ,  which is the Fourier 
transform of R," ( T )  . 

The problem tackled in this paper is that of finding alterna- 
tives to the conventional methods for computation of estimates 
of the families R: ( T )  and 5'; ( f  ) of Fourier coefficients and dc 
values, indexed by ( a ,  T )  and ( a ,  f ) ,  respectively, of quadratic 

The sinc window (15) is a result of using a rectangular lag- 
product tapering window in (12). More generally, G(. )  is the 
Fourier transform of whatever tapering window is used. 

Since the cyclic autocorrelation of z ( t )  can be interpreted as 
a Fourier coefficient of a sine wave generated by quadratically 
transforming x ( t )  according to (IO), we have the equivalence 
aTL = Rjtn(7). Consequently, the limit ACA (with At  + 00) 
can be rewritten as 

transformations, y ( t )  and p ( t ) ,  of the received data ~ ( t ) .  The 
objective is to find alternatives that are more efficient from a 

RR(T. 0: U )  
= IR ; - (T)G(~,  - ~ ) / ~ e ~ ~ ~ ~ ( ~ n - ~ ) ~  

storage and search standpoint, since the size of these families 
can be extremely large due primarily to the size of the index 

n 
1 

set for a. +-Rh f (U)  T2 (18) 

where a ,  is the nth cycle frequency of the SO1 and a is the 
parameter that is varied in the search. 

AS a simple example, we assume that the SO1 has only one 
nonzero cycle frequency a1 and we set the search variable a 
equal to al .  Then, there are only two terms in the sum in (18): 
01, = 0 and a, = 011. If the segment length T is chosen to be 
sufficiently large so that the sinc window G(.) ,  whose width 

A. The ACA 

Using the notation (10) for the delay-product time series, 
as the CA of x ( t )  for a segment length Of can be 

t+T/2 

R,"(t,T)T = ~ / y(v)e-t2rav dv. 171 5 T.  (12) 
t p T / 2  
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is on the order of 1/T, will not pass contributions from the 
term in the summation with an = 0, then from (18) we have 

R ~ ( 7 , a i ; U )  IRY'('T)12 f F R M ( U )  (19) 

since RF1(r) = RF1(r). If an appropriate value of U is 
chosen to render the residual term in (19) small compared 
to the first term, an estimate of the magnitude-squared cyclic 
autocorrelation of s ( t )  at 01 is obtained. Hence, similar to 
the CA function, the ACA function can also be plotted as a 
surface over the r--Q plane for the detection of cyclic features 
for a single value of U .  

A slight modification of the ACA that is used throughout 
the rest of the analysis is introduced here. This modification 
involves the subtraction of the dc component of y( t )  in 
order to remove the large dc term R:(.r) in (18). Since 
all signals. including noise, contribute to R:(r), its removal 
reduces the dynamic range of the ACA surface and eliminates 
contributions of cycle leakage and noise bias in the ACA 
measurement [3]. 

We proceed by defining %(t)  as the time series obtained by 
subtracting an estimate of the dc term of y(t) from itself 

1 

As a result, (1 1) is modified as follows: 

g ( t )  e uneL2"fint + m(t) (21) 
1, 

where 

(22) 
a, R,:n(r) =I?;+), a, # 0 

n , 5  0, a,  = 0 

and m(t) is the resulting residual in g ( t )  that does not contain 
additive sine waves. The modified ACA becomes 

1 
At R,(T, a ;  2 ;  U ) &  = - 

R:(t - U,  r )~R;( t .  7); d t  

(23) 
z-At/Z x Jz'At12 

where 

As At 4 ca, we have 

Rfi(r, a;  U )  = (Rzn(r)G(a,  - ct)(2e-z2?r(an-a)u 
a n f o  

1 
T2 + -R,(U) (25) 

in which n(t) does not make contributions to the first term of 
(25) because it does not exhibit cyclostationarity R : n ( ~ )  = 
RF- (r) .  

It can be shown [5] that the temporal mean, defined for a 
function f ( t )  as 

of the ACA function in (23) is given by the right-hand side of 
(25), the second term of which becomes negligibly small under 
the weak-signal assumption ( ~ ( t )  % n( t ) )  for / U \  > T + ro 
and T >> 'TO, where ro is the width of the covariance function 
for 7 1 ( t ) .  Therefore, the ACA method can be rendered free of 
noise bias. Furthermore, the temporal variance, defined for a 
function f ( t )  as 

lim 1 
Z-+m z -z/2 

[ i f ($)  - $Tm 1 / w 1 2  w/2 f (u)du12]  ds 

(27) 
of the ACA function in (23) under the weak-signal assumption 
( ~ ( t )  E n( t ) )  is shown in Appendix B to be 

when a complex Gaussian bandlimited white-noise model with 
bandwidth B, 

is used and At >> T >> TO is assumed. In (28), ' u B ( ~ )  is the 
triangular window 

At a = l3, (28) vanishes because the estimate itself is zero. 
This is a result of the fact that the quadratic transformation 
of n(t)  does not contain spectral components with frequencies 
beyond l? (cf. (10) and (12)). 

It is also shown [5]  that the cycle resolution width, Ace, of 
the ACA function (given by (13), (18), (23), or (25)) is on the 
order of 1/T. An intuitive way of seeing that this is so is to 
examine (25). Since R,(a, U )  can be interpreted as a discrete 
convolution, in a, of RF(r) with G(a) ,  the width of G(.), 
which is on the order of 1/T, determines the resolution width 
of R,(a, U )  in a. Therefore, to obtain the desired feature at 
a,  it is required that there be only one value of an for which 
la, - Q I  < 1/2T. In other words, cyclic features that are closer 
than 1/T apart cannot be resolved by the ACA function. 

For the case where all the cycle frequencies are farther than 
l / T  apart such that, for each a,  there is only one significant 
term in the summation in the first term of (25), the value 
of the true cycle frequency a, can be determined from the 
phase 27r(a, - ce)U. However, unambiguous recovery of a,, 
from the phase requires the condition la, - a1 < l/2jUi. 
Therefore, with la, - cy1 < 1/2T, we have the resulting 
condition IUI 5 T .  On the other hand, since the noise bias term 
in (25) becomes negligible for IUI > T + ro and T >> 'TO, to 
determine the value of a, unambiguously from measurement 
of the ACA, U = T is used because it comes closest to 
satisfying /U1 > T + TO. 

Finally, with SNR defined to be the squared magnitude of 
the mean of the measurement with signal present, normalized 
by the variance with signal absent, (25) and (28), which are 
expressions for the mean and variance, respectively, can be 
used to obtain an expression for the SNR of the ACA method. 
Specifically, for a = a,,, usang U = T with T >> ro and 
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assuming that only one cyclic feature exists within f1/2T 
of a and that n( t )  is complex stationary bandlimited white 
Gaussian noise, the SNR of the ACA method is given by 

which is used in the performance analysis of the ACA that 
is presented in Section IV. At 01 = B, the numerator of (31) 
also vanishes because the signal s ( t )  does not contain spectral 
components with frequencies beyond B/2, which is a basis for 
the choice of bandwidth for the bandlimited white-noise n(t) .  

B. The ACP 
The ACP of x ( t )  is given by 

(32) 
where S&(tl  f )  is the cyclic periodogram given by (6). 
Without loss of generality, p ( t )  = S& ( t .  f )  can be modeled 
as follows: 

n 

(33) 
n 

where the { b,  } are the Fourier coefficients of the additive sine 
waves contained in p ( t ) ,  the {Pn} are the frequencies of these 
sine waves, and q ( t )  is the residual that does not contain any 
finite-strength additive sine waves. It is shown [5] that the 
coefficients b, are given by 

bn = %+On ( f )  8 Bon ( f )  (34) 

where 

and A 1 / T ( f )  is the Fourier transform of the data tapering 
window a T ( t )  (which is just a rectangular window in the 
simplest case illustrated by (7)). We see from (34) that 
Q + ,& = cy, is the nth cycle frequency of z ( t ) .  

In the limit as At  + oc, we have 

R s ( f ,  a ;  U )  = lim Rs(,f,  a ;  x. U)at n 
at im 

= c 1s;. ( f )  8 H N , _ N ( f ) / 2 e L 2 x ( " - ~ ) ~ -  
n 

+ R4(U).  (36) 

As a result, similar to the SCP, the ACP function can be plotted 
as a surface over the f - Q  plane (for a single value of U )  for 
the detection of cyclic features. 

To remove the large dc term Sz(f), the sine-wave compo- 
nent with frequency /IrL = -CY, in p ( t )  is subtracted. Therefore, 
we define 

such that the resulting ACP 
t+At/2 

Rs( f .  C Y :  Z .  U ) a t  zx - / p ( t ) p * ( t -  U ) &  (38) at z-At/Z 

approaches, in the limit as At + 00, 

Rs( f .  C Y :  U )  = ISF7%(f) @J HNn-,(f)12eZ2K(an-a)U 
% # O  

+ R&J) (39) 

where n(t) does not have contributions to the first term of 
(39) because S ; - ( f )  = Spn(f) .  

It is shown in [5] that the temporal mean of the ACP func- 
tion in (38)  is given by the right-hand side of (39), the second 
term of which becomes negligibly small for / U /  > T and 
n(t)  consisting of stationary complex Gaussian noise, thereby 
rendering the ACP method free of noise bias. Furthermore, the 
temporal variance of the ACP method under the weak-signal 
assumption ( z ( t )  E n( t ) )  is shown, in a fashion similar that 
used to obtain (28), to be 

for At >> T >> ro and n(t) consisting of stationary complex 
Gaussian noise. Finally, similar to the ACA method, the 
cycle resolution width of the ACP method is shown in [5] 
to be 1/T. Consequently, choosing U = T for both minimal 
noise bias and unambiguous recovery of a, from the phase, 
setting N = a,, and assuming that n(t) is stationary complex 
Gaussian noise and that only one cyclic feature exists within 
f1/2T of 01, (39) and (40) can be used to obtain the following 
SNR expression for the ACP method: 

5At 
SNR-,i,cp S - 8 Z1/T(S)14, At 2+ T >> 70 

(41) 
where 

is a result of using a rectangular data-tapering aperture in (7). 
More general expressions for (42) are obtained using (35) with 
p = 0. 

IV. PERFORMANCE COMPARISON 

Computational counts, search savings, and output SNR ex- 
pressions are used in this section to compare performances of 
the ACA, CA, ACP, and SCP methods. Without constraining 
the total amount of data processed by each method to be the 
same, (31) and (41) together with results from [6] yield, for 
a = an and n( t )  stationary complex Gaussian, 
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Fig. 1. 
dB (Case 2). (a) 17.4 versus 1 0 g , ( T f , ~ ) .  (b) 7.4 versus log,(Tf,). 

Equal-output-SNR performance comparison of the ACA and CA methods for S N R O ~ T  = 10 dB and = -15 dB (Case I), PA = -30 

and 

where 

and 

(47) 

(48) 

2, If1 e 1/T 
1, otherwise. KP = { 

Both the ACA and ACP methods yield output SNR's that 
are proportional to their corresponding input SNR ( p )  raised to 
the fourth power, whereas those of the CA and SCP methods 
are proportional to only the square of the input SNR. This 
illustrates the fact that, for very low input SNR ( p  < l), 
output SNR degrades as the order of nonlinear transformation 
of the data increases. Despite this fact, the ACA method 
is shown, both theoretically and experimentally, to be more 
promising than the ACP method and to have performance 
that is comparable to that of the CA and SCP methods. 
Recall that methods for measuring the CA yield processing 
gain proportional to the integration time, whereas those for 
measuring the cyclic periodogram do not [3]; hence, the ACA 
has a processing gain of AtTB2, whereas the ACP has a 
processing gain of only At/T (cf. (43)-(46)). As a result, the 
ACA method yields an extra processing gain factor of T B  
compared to the CA method and an extra processing gain 
factor of (TB)2 compared to the ACP and SCP methods. For 
narrowband signals, this extra processing gain compensates 
for the smaller values of PA compared with pp  (cf. (47) and 
(48)) as a result of the fact that Sa(f )  for narrowband signals 
has relatively higher peaks than does R: (7). 

The two measures of performance comparison used here are 
based on the constraints of equal-output-SNR and equal-search 
requirements. For equal output SNR, performance comparison 
of the ACA and CA methods in terms of computational cost 
ratio ( q ~ )  and search savings factor (TA) can be obtained by 
equating (43) and (44) to obtain a relationship between AtAcA 
and AtcA (the amounts of data processed by the ACA and CA 
methods) and substituting this relationship into the formulas 

and 

where q~ is defined to be the ratio of the number of real 
multiplications used to obtain the ACA to that used to obtain 
the CA, search savings factor TA is defined to be the ratio 
of the cycle resolution widths of the ACA and CA methods, 
and f s  is the sampling frequency used in the digital system 
[5]. Fig. 1 shows V A  and versus T f s  for an equal-output- 
SNR of 10 dB, a = 0.25fs, 7- = 0, and l? = fs for the two 
cases: P A  = -15 dB and = -30 dB. Although search 
savings is gained at the expense of computational efficiency, 
by choosing an appropriate value of T ,  search savings can still 
be obtained without an increase in computation compared to 
the conventional method in these cases of very low input SNR. 

Similarly, equating (45) and (46) for equal-output-SNR and 
substituting the resultant relationship between A ~ A C P  and 
Atscp into the formulas 

and 

(53) 

(54) 

where qp is defined to be the ratio of the number of real 
multiplications used to obtain the ACP to that used to obtain 
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the SCP, and yp is the search savings factor for the ACP 
over the SCP, we observe that for a given input SNR and 
desired output SNR, yp is constant, whereas qp varies with 
T .  For example, for an equal-output-SNR of 10 dB with f = 0. 
B = f,, and T f ,  = 213, yp 2 80 and q p  S 0.9 for p p  = -3 
dB, and yp = 2000 and rip 2 23 for p p  = -10 dB. Search 
savings increases with decreasing input SNR due to the fact 
that a larger At/T ratio is required to obtain a certain level of 
output SNR when input SNR is decreased. On the other hand, 
as the input SNR decreases, computational cost qp increases 
for the ACP to achieve the same SNR performance as the 
conventional method. 

The second measure of performance considered is based on 

for cyclic features in both the new and conventional methods 
is constrained to be the same by averaging measurements 
over y = At/T adjacent cycle frequency samples in the 
conventional method, then the output SNR of the conventional F1e Ma@tude Of the for SNRIN = dB, riffs = 81927 

method is reduced by a factor of y. Therefore, the resulting 
SNR is given by 

0.443 

0.496 

the constraint of equal search-performance. If the search size 0. 

32. 

= 256 '  fb = 2'f5' and = '' 
I 

(55) 
, n SNR SNR =-. 

7 
Defining GA to be the gain in output SNR due to using the 
ACA method, we have 

where GA is guaranteed to be greater than one for SNR/,, 
larger than two. Therefore, the ACA method provides a better 
solution for reduction of search by yielding a higher output 
SNR than the method of averaging adjacent measurements. 

Similarly, for the ACP method, we have 

0.5 

which increases with a t A C P / T  for a given input SNR, Hence, F1e ' Ma@tude Of the CA for SNRTN = dB, n t f S  = 8192, 
fb = 0 25fs. and fs = 1 

G p  can be made greater than one by choosing At l C p / T  large. 

V. COMPUTER SIMULATIONS 

For the computer simulations presented in this section, the 
SO1 is a random binary pulse-amplitude-modulated (PAM) 
time series with 100% excess-bandwidth Nyquist-shaped 
pulses and n(t) is a complex random time series with Gaussian 
probability distributions. A baud-rate of f b  = 0.25 f ,  is used in 
the illustration of surfaces and f b  = f , 9 / 3  is used in obtaining 
the receiver operating characteristics. A sampling frequency 
of f, = 1 is used in all simulations. 

Magnitude surfaces of the ACA and the CA of z ( t )  with 
SNRIN = 0 dB (SNRIN = ratio of signal power to noise 
power), Atg = 8192, and T f ,  = 256 (for the ACA) are 
shown in Figs. 2 and 3, respectively. Baud-rate features at 
cli = 10 .25  can be easily identified in both plots. Magnitude 
surfaces of the ACP and the SCP of x ( t )  with SNRIN = 0 dB, 
Atfs  = 65536, and T f ,  = 64 are shown in Figs. 4 and 5, 
respectively. The phenomenon of cycle leakage is especially 
evident in the case of the ACP surface. This can be explained 

by examining (18) and (36),  in which the rates of decay in /? 
of the window functions (15) and (35) determine the amount 
of cycle leakage in the corresponding methods. Since the rate 
of decay in of (35) for a rectangular data-tapering window 
is smaller than that of (15), the contribution of cycle leakage 
is larger for the ACP method. In addition, for the parameters 
( f b .  B. T) used in this simulation, a longer data collect time, 
compared to that used in the ACA and CA methods, is needed 
for both the ACP and SCP methods to yield surfaces of the 
quality shown. This agrees with the results in [6] of comparing 
f-based and 7-based cyclic spectral analysis methods. In 
general, the relative superiority of 7-based methods and f -  
based methods depends on the parameters f b ,  B, and T ,  as 
can be seen in (43)-(48). (In some instances, the collect time 
needed for the CA can be longer than that needed for the SCP.) 

Detection performance of the ACA method is compared to 
that of the CA and SCP methods by means of the receiver 
operating characteristic (ROC), which is a graph of probabil- 
ity of detection versus probability of false alarm. Detection 
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Fig. 4. Magnitude of the ACP for SNRrN = () dB, At fs  = 65536, 
Tfs = 64, f h  = 0.25 . f ,9 ,  and fs  = 1. 

Fig. 6. 
and f b  = fils. 

ROC’S for SNRm = -13 dB, Atf ,  = 131072. Tf,5 = 16384, 

6.42 , 

0. 
-0.5 
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0 
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performance of the ACP method is not evaluated due to its 
inferiority relative to the ACA method. For the PAM signal 
considered in these simulations, it is known that the baud-rate 
features peak at T = 0 for the ACA and CA, and at f = 0 
for the ACP and SCP. Therefore, the detection procedure 
used here involves searches over cycle frequency ai at only 
r = 0 for the ACA and CA, and only f = 0 for the SCP. 
The detection statistic is the magnitude of the corresponding 
surface. Note that n = k / T ,  where k is an integer, is used in 
the new methods and a = m/At, where m is an integer, is 
used in the conventional methods. Therefore, for f b  f , / 3 ,  
none of the cycle frequency samples used in obtaining the 
ROC’S fall exactly on an = ,fb. On the other hand, cv = a, 
is used in the expressions for output SNR in Section IV. 
Hence, the ROC performance presented here is not meant to 
be compared directly with the SNR expressions. Fig. 6 shows 
ROC’S of the ACA and CA methods for SNRIN = -13 

dB, At.f, = 131072, and T f s  = 16384 (for the ACA). 
Detection performance of both methods are comparable in this 
weak-signal environment, while searchhtorage requirements 
for the ACA are reduced by a factor of eight relative to the 
requirements for the CA. For S N R ~ N  = -5 dB, Atfs = 
4,096, and T f ,  = 256, both the ACA and CA methods are 
superior to the SCP as shown in Fig. 7. For SNRIN =O dB, 
all three methods perform very well with Atf,? = 4096 and 
T f ,  = 256 as shown in Fig. 8. 

VI. CONCLUSION 

The analyses and simulations of the ACA and ACP methods 
show that their SNR performance can be comparable to 
that of their conventional counterparts while a considerable 
amount of search and storage savings is achieved, or, for 
equal searchlstorage performance, considerable gains in output 
SNR can be achieved. Moreover, the ACA method performs 
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where G(P)  and M T ( ~ .  a )  are given by (15) and (17), respec- 
tively. Substituting (58) into (13) and interchanging summa- 
tions and integrations together with some change of variables, 
we obtain the following expression for the ACA: 

R R ( ~ .  01: z .  U)at  = Terml + Term2 + Term3 + Term4 (59) 

where 

Terml = a,ahG(a, - a)G(am - a )  
n m  

a )es2rr(or-cY,,)Ue22rr(orm -a,)z x wl/a t (an  - m 

(60) 
1 

Term2 = ~ a,G(a, - a )  AtT , 
T / 2  

M*  ( 2  + 21, 0 1 ~ ) ~ ~ ~ ~ ( ~ - ~ n ) ( ~ + ~ )  dV L2 at PROBABILITY OF FALSE ALARM 

(61) 
Fig 8 ROC'S for SNRJN = 0 dB, Atfs  = 4096 T f s  = 236 and 

1 
Term3 = ~ 

AtT 

x lT/2 M A ~ ( x  + v - U ,  ~ m ) ~ ~ 2 . r r ( c Y - o r m ) ( u ~ w )  dv 

(62) 

f b  = f S P  

aLG(a, - a )  
better than the ACP method in weak-signal environments due 

smaller amount of cycle leakage exhibited. Therefore, the 
ACA method proves to be superior to the ACP method in 

cations, where a search throughout a large range of cycle Term4 = - 1 
than the conventional methods with regard to search sav- 
ings. 

Besides attaining the goal of reduction in search for a 
given level of performance reliability, the new methods also 

to the extra processing gain provided by the ACA and the T / 2  

weak-signal detection even though for general search appli- z + A t / 2  

MT(t - U,  a)M;(t ,  a )  d t  (63) 
frequencies is required, the ACP is still a better solution AtT2 z - A t / 2  

and 

(64) 
sin( 7rpAt) 

W l / A t ( P )  = npAt . 
provide information on the true cycle frequency. Frequency 
location and phase of the detected feature can be used to 
obtain an estimate of on. To balance the various advantages, 
there are two limitations associated with the new methods. 
First, multiple sine waves that are less than 1/T apart cannot 
be resolved without using a conventional method for finer 
local resolution after detection has been accomplished with 
one of the new methods. Second, for a given amount of 
data and very low input SNR, measurements obtained from 
higher order nonlinear transformation degrade compared to 
measurements of equivalent lower order transformation. For 
the ACP method, longer integration time is required to main- 
tain the same level of performance reliability as input SNR 
decreases, thereby increasing computational cost. For the ACA 
method, due to the extra processing gain, search savings can 
still be obtained without an increase in computational cost 
compared to the conventional method even in the case of 
P A  = -30 dB. Therefore, the ACA method proves to be 
promising in search-efficient detection of weak cyclostationary 
signals. 

APPENDIX A 
DERIVATION OF THE LIMIT ACA FUNCTION IN (14) 

Using (11) in (12), we arrive at 

In the limit as At  + 30, the second and third terms go to zero 
because the residual m(t) in Mat(t ,  a )  is uncorrelated with 
all sine waves. Hence, we arrive at the limit ACA function 
given by (14). 

APPENDIX B 
DERIVATION OF THE VARIANCE OF THE ACA FUNCTION 

IN (23) FOR THE WEAK-SIGNAL MODEL: x ( t )  = n( t )  

It can be shown that for the weak-signal model, g ( t )  (given 
by (20) and (21)) equals f i ( t ) .  Therefore, using (17) and (24) 
in (23), the ACA in (23) becomes 

Replacing f ( s )  in (27), the definition for the variance of f ( s ) ,  
with (65), assuming that n( t )  is purely stationary of all orders 
such that the residual m(t) does not contain any second order 
periodicity, and using a Gaussian approximation to the time 
series & f ~ ( t .  a )  (which is a good approximation under the 
condition that T >> TO), we arrive at the expression for the 
variance of the ACA [5] as follows: 
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where vat(.)  is the triangular window given by (30), with B 
replaced by At, and R,(s) can be expressed as 

using definitions (16) and (17). 
By using Isserlis’ formula for the fourth-order joint moment 

of a Gaussian time series, the autocorrelation function of the 
residual m(t) can be expressed in terms of the autocorrelation 
of the noise n(t) as follows: 

for T >> TO. Substituting (68) into (67) and the result into (66) 
using Fourier transform relations, and evaluating the integral 
assuming At >> T >> To, we obtain 

n 

Since Rn,-(u) z 0 for complex Gaussian noise, the second 
term of (68) vanishes and the final expression of the variance 
of the ACA becomes, using (68) in (69), the following: 

for At >> T >> TO and complex Gaussian bandlimited white- 
noise with bandwidth B and power spectral density NO. 
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