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History and Equivalence
of Two Methods of
Spectral Analysis

he purpose of this article is to pre-
Tsent a brief history of two methods
of spectral analysis and to present, in a
tutorial fashion, the derivation of the
deterministic relationship that exists be-
tween these two methods.

History

Two of the oldest and currently most popu-
lar methods of measuring statistical (aver-
age) power spectral densities (PSD’s) are
the frequency smoothing method (FSM)
and the time averaging method (TAM).
The FSM was thought to have originated
in 1930 with Norbert Wiener’s work on
generalized harmonic analysis [1], and to
have been rediscovered in 1946 by Percy
John Daniell [2]. But, it was discovered
only a few years ago (cf. [3]) that Albert
Einstein had introduced the method in
1914 [4]. The currently popular method of
deriving the FSM begins by showing that
adjacent frequency bins in the periodogram
have approximately the same correct mean
values and the same large variances, and
are approximately uncorrelated with each
other. Then, it is observed that averaging
these bins together retains the correct mean
value, while reducing the variance.
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The TAM is often attributed to a
1967 paper by P.D. Welch in the /EEE
Transactions on Audio and Electroa-
coustics [5], but in fact the earliest
known proposal of the TAM was by
Maurice Stevenson Bartlett in 1948 [6].
The reasoning behind the TAM is simi-
lar to that for the FSM: the perio-
dograms on adjacent segments of a data
record have approximately the same
correct mean values and the same large
variances, and they are approximately
uncorrelated with each other. There-
fore, averaging them together will re-
tain the correct mean value, while
reducing the variance. (A more detailed
historical account of the FSM, TAM,
and other methods is given in [7].)

Essentially, every spectral analysis
software package available today in-
cludes either the FSM or the TAM, or
both, often in addition to others. These
other methods include, for example, the
Fourier transformed tapered autocorrela-
tion method, attributed to Ralph Beebe
Blackman and John Wilder Tukey [8]
(but used as early as 1898 by Albert A.
Michelson [9]); and various model fitting
methods that grew out of pioneering work
by George Udny Yule in 1927 [10] and
Gilbert Walker in 1931 [11].

It is well known that both the FSM
and the TAM yield PSD estimates that
can be made to converge to the exact
PSD in some probabilistic sense, like in
mean square as the length of the data
record processed approaches infinity,
However, it is much less commonly
known that these two methods are much
more directly related to each other. The
pioneering methods due to Michelson,
Einstein, Wiener, Yule, and Walker
were all introduced without knowledge
of the concept of a stochastic process.
But starting in the 1950s (based on the
work of mathematicians such as
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Khinchin, Wold, Kolmogorov, and
Cramér in the 1930s and 1940s), the
stochastic-process point of view essen-
tially took over. It appears as though
this mathematical formalism, in which
analysts focus on calculating means and
variances and other probabilistic meas-
ures of performance, delayed the dis-
covery of the deterministic relationship
between the FSM and TAM for about
40 years. That is, apparently it was not
until the non-stochastic approach to un-
derstanding statistical (averaged) spec-
tral analysis was revived and more fully
developed in [7] that a deterministic
relationship between these two funda-
mental methods was derived.

The next section presents, in a tutorial
fashion, the derivation of the determinis-
tic relationship between the FSM and
TAM, but generalized from frequency-
smoothed and time-averaged versions of
the periodogram to same for the biperio-
dogram (also called the cyclic perio-
dogram [7]). This deterministic
relationship is actually an approximation
of the time-averaged biperiodogram
(TAB) by the frequency-smoothed bipe-
riodogram (FSB) and, of course, vice-
versa. For evidence of the limited extent
to which this deterministic relationship is
known, the reader is referred to letters that
have appeared in the SP Forum section of
this magazine in the October 1994, Janu-
ary 1995, March 1995, and November
1995 issues.

Equivalence

Definitions

Let a(t) be a data-tapering window sat-
isfying a(r) = 0 for Itl > T/2, let rq(T) be
its autocorrelation

T2
r(1)= ja(r+t/2)a(r-—t/2)dl

T2
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and let A(f) be its Fourier transform

TI2 i2
Af)= [ a(t)e ™ dt
-T2

Let Xq(t, f ) be the sliding (in time 1)
complex spectrum of data x(f) seen
through window a,

T2 i2nf (14 w)
X, ()= [ atw)xt+w)e 27" dy
-T2

Similarly, let (1) be a rectangular win-
dow of width V, centered at the origin,
and let Xp(t, f) be the corresponding
sliding complex spectrum (without ta-
pering). Also, let RY(1,7) be the sliding

1 vz
. j R:,‘(f~ll.1')dllER;,'(I.T)r"(t)
-Vi2

for It = T, becomes more accurate as
the inequality V >> T grows in strength
(assuming that there are no outliers in
the data near the edges of the V-length
segment, cf. exercise 1 in [7, Chapt. 3],
exercise 4b in [7, Chapt. 5], and Section
B in [7, Chapt. 11]). For example, if the
data is bounded by M, Ix(/)I<M, and a(r)
=(), then it can be shown that the error
in this approxrmahon is worst-case
bounded by ra(7) M 77V. The first and
last equalities above are simply applica-
tions of the cyclic-periodogram/cyclic-
correlogram relation first established in

cyclic correlogram for the tapered data 1[4 Chapter 11] together with the convo-

(T-Ith/2
Jav+t/2)x(t+[v+1/2])-
—~(T-It1)/2

a(v—1/2)x(t +[v—"1/2])e 2y

R} (1,71)=

and let Ry (1,t) be the sliding cyclic
correlogram without tapering
(V-Ith/2

[x(t+[v+1/2])
—(V-lt)/2

x(t+[v—=1/2])e

Ry (1,7)=—-

—i21m(r+r)dv

To complete the definitions, let Sa(7; /1,
) and Su(t; f1, f2) be the sliding biperi-
odograms (or cyclic periodograms) for
the data x(r),

! 1 g
S, (t:fi, f2)= % X, (t, )X, (1, f5)
i) .
S,,(t:f1._/2)=—‘7X,,(r./,)x,,(r.f2)
Derivation
It can be shown (using a = f1 — f2) that
(cf. [7, Chapter 11])
1 vi2
= [S,(t—ufy, fo)du
-Vi2
vi2 T
B [ JR*(t—u,v)du e ™ /2" dndu
V _vie-r

7

j-‘17 [ RO(t —u,v)du e ™ N2y
Vv

T

= [RE(t, D), (v)e "N gy
-T

= IS

(fi-8fo- g)[—IA(g)IZ]

The above approximation, namely
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lution theorem (which is used in the last
equality).

Interpretation

The left-most member of the above
string of equalities (and an approxima-
tion) is a biperiodogram of tapered data
seen through a sliding window of length
T and time-averaged over a window of
length V. If this average is discretized,
then we are averaging a finite number
of biperiodograms of overlapping sub-
segments over the V-length data record.
(It is fairly well known that little is
gained—although nothing but compu-
tational efficiency is lost—by overlap-
ping segments more than about 50
percent.) The right-most member of the
above string is a biperiodogram of un-
tapered data seen through a window of
length Vand frequency-smoothed along
the anti-diagonal g = (f1 +/2)/2, uqmg a
smoothing window (1/7) IA(g)I for
each fixed diagonal « = fi — f2. There-
fore, given a V-length segment of data,
one obtains approximately the same re-
sult, whether one averages biperio-
dograms on subsegments (TAM) or
frequency smoothes one biperiodogram
on the undivided segment (FSM).
Given V, the choice of 7' determines
both the width of the frequency smooth-
ing windows in FSM and the length of
the subsegments in TAM. Given V and
choosing 7 << V, one can choose either
of these two methods and obtain ap-
proximately the same result (barring
outliers within 7 of the edges of the data
segment of length V). By choosing f1 =
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2 Ge, o=

0), we see the biperio-
dograms reduce to the more common
periodograms, and the equivalence then
applies to methods of estimation of
power spectral densities, rather than
bispectra. Bispectra are also called cy-
clic spectral densities and spectral cor-
relation functions [7]. As first proved in
|71, the FSM and TAM spectral corre-
lation measurements converge to ex-
actly the same quantity, namely, the
limit spectral correlation function
(when it exists), in the limit as V
— oo and T— co , in this order. Fur-
ther, this limit spectral correlation func-
tion, also called the limit cyclic spectral
density, is equal to the Fourier trans-
form of the limit cyclic autocorrelation,
as first proved in [7], where this relation
is called the cyclic Wiener relation be-
cause it generalizes the Wiener relation
between the PSD and autocorrelation
froma=0toa # O:

SU(f)= JRE(v)e 2 dr

where
A
R_?(r): Iim RY(1,7)

s (f)—hm llm-— IS (t—u fy, fo)du

S Ve |V

with a=f1 - f2.

In the special circumstance where 7'
<< V cannot be satisfied because of the
degree of spectral resolution (smallness
of 1/T) that is required, there is no
known general and provable argument
that either method is superior to the
other. It has been argued that, since the
TAM involves time averaging, it is less
appropriate than the FSM for nonsta-
tionary data. The results presented here,
however, show that, for 7 << V, neither
the TAM nor the FSM is more appropri-
ate than the other for nonstationary data.
And, when T << V is not satisfied, there
is no known evidence that favors either
method for nonstationary data.

The derivation of the approximation
between the FSM and TAM presented
here uses a continuous-time model.
However, a completely analogous deri-
vation of an approximation between the
discrete-time FSM and TAM is easily
constructed. When the spectral correla-
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tion function is being measured for
many values of the frequency-separa-
tion parameter, « , the TAM, modified
to what is called the FFT accumulation
method (FAM), is much more compu-
tationally efficient than the FSM imple-
mented with an FFT [12].

—William A. Gardner

Professor, Department of Electrical
and Computer Engineering
University of California,

Davis, CA.
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