IV. BASIC CONCEPTS AND
DEFINITIONS
(AND SOME PHILOSOPHY)

We need to understand the similarities and
differences between the stochastic-process
approach and the non-stochastic time-series
approach to conceptualizing and
defining/modeling

stationary (S),
cyclostationary (CS), and

polycyclostationary (PCS)

signals.

CS = one period
PCS = multiple periods
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AESTHETICS AND UTILITY

The nonstochastic time-series approach to this
subject

1) has been criticized by some mathematicians
(e.g., information theorists and probabilists)
for its lack of mathematical rigor*,

2) has been both criticized and praised by
engineers and scientists for its disregard for
the orthodox, or conventional, or just
popular.

The aim in developing this approach has been
to bring the aesthetics of mathematics and the
utility of engineering together to produce
“elegant problem solving”.

* ] do not believe this is an inherent weakness
in the approach, but rather a result of
insufficient mathematical effort.
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" This lecture today aims at the same target: the
focusing of attention on important concepts for:

1) mathematicians who care about the
applicability of the mathematics of (poly)
cyclostationary processes, and

2) engineers who seek more than a superficial
understanding of not only the “how” but
also the “why” of (poly) cyclostationary

~ signal processing.
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STOCHASTIC PROCESSES

Let X(t) be a “well-behaved” stochastic process
(with measure U on the probability space ).
Consider the event indicator

A (L X()<x
I[X(t) — x] 2 {
0, X(t)=x.

The expected value of this event indicator is the
probability distribution (PD) function

Fy(X) £ Prob {X(t) < x} = B{I[X(t) - x]}

where
E{h} & J h(o) du(w).

Theretore, the joint PD function for the set

X(t) 2 {X(t+t),..., X(t+t)]}

1s given by the expectation

Frp®) = E{jl_I=1 [[X(t+t)<x;]}
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and the joint probability density (Pd) function is

an
x0® = 5 o Te®

1 n

FUNDAMENTAL THEOREM OF
EXPECTATION

For any g(-) for which E{g[X(t)]} exists, we
have

E{elXOT]} £ [y £y, dy

= [ 8(®) £y, (x) dx



TIME-SERIES

Let x(t) be a “well-defined” time-series (on the

real line — <t < ). Consider the event
indicator

1, t)<
I[x(t)—x] _é_{ X(t) <X

0, x(t)=x.
The time-average of this event indicator is the
fraction-of-time (FOT) PD
/\O A\ A\
Fap(x) £ Prob{x(t) < x} = EO{I[x(t) - ]}
where

A .1 .22 |
E°h(O} & 1im = h(t+t) dt’ .
() 2 Jim ~ [0 h(t+1)

Therefore the joint FOT PD is given by

AO o AO n
Fo® = E {jEIlI[X(t+tj)<Xj]}

and the joint FOT Pd is

an 20
xox xw®

1 n

AO B
f&(t) (%) =



FUNDAMENTAL THEOREM OF
TIME-AVERAGING

For every g(-) for which ﬁo{g[g(t)]} exists, we
have '

Z/2

- 1
Eelx(O]} & lim = x(t+t")] dt’
{elx® = Jim - [ glx(t+1)
_ £0
= Jg®)f, ) dx
ﬁO{.} = constant component extractor

= temporal expectation



DUALITY

We can see that there is a duality between the
probability-space theory of stochastic
processes and the time-space theory of time-
series.

Wold [1948] tried to formalize this in an
isomorphism based on the mapping

X(t+0) > X(t, ®(0))

where X(t, ®) is a sample path of the stochastic
process. That is, the ensemble members of X(t)
correspond to translates of x(t) in this
isomorphism.

While this isomorphism is conceptually useful,
a mathematically rigorous study of it has not (to
my knowledge) been performed (existence of
stochastic process?).



1)

2)

3)
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VIABILITY OF TIME-SPACE THEORY

Do “well-behaved” time-series models exist?

Yes; consider any typical sample path of
any ergodic stochastic process.

Can we construct useful time-series models?

Yes, in the same way we do for stochastic-

process models, except we specify Isg(t)(zg)
instead of FX(t)(g).

Does this reliance, of existence, on
stochastic processes detract from the
conceptual simplicity of working with time-
series rather than stochastic processes?

In my opinion, no.

- Let us trace the paths for both stochastic
processes and time-series so that we can see
specifically where they are parallel and where
they diverge.



STOCHASTIC PROCESSES

Probability-Space Definitions (for order n)
Stationary (S) process:

Fxp(X) is independent of t

Cyclostationary (CS) process with period T:

Fx©X) 1s periodic in t with period T

Polycyclostationary (PCS) process with
periods {T} =Ty, Ty, Ts,... :

Fx &) is polyperiodic in t with periods
{T} (which is a sum of periodic functions with
single periods Ty, Ty, Ts,...)



STOCHASTIC PROCESSES
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STOCHASTIC PROCESSES

Polyperiodic PD
= 12mot
Fy®) = ZF x(0)(X)€ ZF (t)(X)

where
1 Z/2 —i1270t 4.7
Fro® = Jim 7 1 e 07
_ =0 —12Tot
=E {F;«o(x)e }
A Za
= E {Fxm(—)}

RO () A EO (e izmoty

sine-wave component extractor



TIME-SERIES

Before we can give the dual time-space
definitions of S, CS, and PCS, we need to

generalize the temporal expectation E°{-}.

>

S B

ae{o}

ﬁ{a}{.}

multiple sine-wave
component extractor

polyperiodic component
extractor

SV B B
O’S = harmonics o Tl,Tz,T3,

IV-15



TIME-SERIES

Polyperiodic FOT PD:

FLO(‘})(X) = E{a}{Hll[x(t-i—t) HiE
| J=

Polyperiodic FOT Pd:

n
2 {o} _ J m{a}
Bo®) = OX. ... Ox Fxp®

1 n

FUNDAMENTAL THEOREM OF

POLYPERIODIC-COMPONENT
EXTRACTION

For every g(-) for which ]/::,{O‘}{g[g(t)]} exists,

we have
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E@ex(O]} & 3 lim = j g[(x(t+t’)]e"izmt, d’

oc">°°

= g 1% %) dx
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TIME-SERIES
Time-Space Definitions (for order n)

Stationary (S) time-series:

F ig)} (x) exists and # O and is independent

of t ({o} = {0})

Cyclostationary (CS) time-series with
period T:

Igig)} (x) exists and # 0 and is periodic in t

with period T ({o} = harmonics of 1/T)

Polycyclostationary (PCS) time-series with
periods {T} =T, T,, Ts, ...

F ig)} (x) exists and # 0 and is polyperiodic
in t with periods {T})



TIME-SERIES
( g
PCS ~
CS 4 ™
S
\_ \_ jj)




54 TIME-SERIES

This represents a modification of
previous terminology

Previous:

stationary (Wold, 1940s)—

1/5 g(t)(g) exists and # 0

purely stationary (Gardner, 1980s)—

stationary and F g(t)(zi_) =0foroa#0

cyclostationary (T) (Gardner)—

‘P"iff)} (x) exists and # O for some {a} =

{harmonics of 1/T}

purely cyclostationary (T) (Gardner)—

- cyclostationary and ﬁig)} (x) =0 for
o ¢ {harmonics of 1/T}



PREVIOUS SUBCLASSES

Time-Series

d purely S R
S ( purely CS -
cs [ h
PCS
N L =)

Inverted Nesting

purely S = S-CS

purely CS = CS - PCS
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STOCHASTIC PROCESSES
Cycloergodicity

X(t) 1s ergodic (E) iff: for every g(-) for
which E{g[X(t)]} exists, we have

EO(E(g[X®]}} = BO{g[X®]} wp. 1.

For a stationary process, I%O{E{-}} = E{-}.
X(t) 1s cycloergodic (CE) with period T iff:

for every g(-) for which E{g[X(t)]} exists, we
have (with {a} = {harmonics of 1/T}

EHE{g[X®]}} = B {gX®]} wp. 1.

For a CS process, ﬁ{o‘}{E{-}} = E{-}.

X(t) is polycycloergodic (PCE) with periods
{T} iff it is cycloergodic with period T, for
k=1,2,3,... . |
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STOCHASTIC PROCESSES

Hidden cyclostationarity in
stochastic-process models

If X(t) is S and PCE with all periods, then its
sample paths are stationary time-series

(w.p. 1).

If X(t) is S (and possibly E) but not CE, its
sample paths can be CS (w.p. 1).

If X(t) is CS and PCE with all periods, then its
sample paths are CS time-series (w.p. 1).

If X(t) is CS (and possibly CE), but not PCE, its
sample paths can be PCS (w.p. 1).

Such non-CE and non-PCE models typically
result from the (explicit or implicit) inclusion
of random-phase variables in the stochastic
process model.
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STOCHASTIC PROCESSES
Refined probability-space definitions

If X(t) is S and PCE with all periods, then it is
defined to be purely stationary, and its
sample paths are stationary time-series

(w.p. 1): there is no hidden CS.

If X(t) is CS and PCE with all periods, then it is
defined to be purely CS, and its sample paths
are purely CS time-series

(w.p. 1): there is no hidden PCS.
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EXAMPLE
Let

X(t) = A(t) + B(t) cos(m,t + 0,)
+ C(t) cos(w,t + 0,),

where A(t), B(t), and C(t) are purely stationary
ergodic processes.

STOCHASTIC PROCESSES

If 6, and 0, are non-random, then X(t) is PCS
and PCE.

If 0, and/or 6, is random, then (depending on
their PDs) X(t) can be PCS (with periods T, and
T,), or it can be CS (with period T, or T,), or it
can be S, and X(t) is not PCE.

TIME-SERIES

With probability one, the sample paths of X(t)
are PCS time-series.



SUMMARY OF SUBCLASSES
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PHASE RANDOMIZATION

Even if 91 and 92 are both nonrandom, we can
introduce 6 into X(t) to obtain

Y(t) = X(t+6)

which can be changed from PCS to CS or to S
by choice of the distribution for 0.
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NONUNIQUENESS OF MODELS
Stochastic Processes:

We can change the stochastic process from
PCS - CS — S

by phase-randomization with a single phase
variable:

X(t) = X(t+0)

Stochastic Processes (and Time-Series):

We can change the PD function from
polyperiodic — periodic — constant

by time averaging; e.g.,

~o D {a) ~0
E%Fyp) = Fxo

Both time-averaging and phase randomization
result in hidden cyclostationarity.
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PITFALLS OF NONUNIQUE MODELS
Hidden Statistical Dependence

Let SI = Statistical Independence
(e.g., of two variables)

1) STin CS model = SIin S model
2) SIin S model = SI in CS model
Proof of 1)

f =f_f
X (0:X,(1) X, © X, (1)

=0 _ 5o =0
- E {le(t),Xz(t)} =E {le(t)} E {sz(t)}
Proof of 2) — by example
X)) =2Z(t)=1id. £1
X5(t) = Z(t)cos(t)

E°E{X? () xT()} = B°E{x 1)} E°E{XT (1)}
for all n, m, but

E{X](HX5 (0} # EX] ()} E{XT' (1)}
for n and m odd.
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TAKING STOCK

One Conclusion:

When a process is not PCE, the hidden CS
or hidden PCS can result in single-sample-path
behavior (w.p. 1) that cannot be predicted from
probabilistic analysis (unless the hidden CS can
be revealed by conditioning on certain random
phase variables).

An Important Fact:

The theory of PCE is mostly nonexistent
and appears to require nontrivial extensions/
generalizations of the theory of E and the
incomplete theory of CE.
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Another Important Fact:

The commonplace approach, to deriving ad
hoc signal-processing algorithms, of replacing
expectation operations E{-} in analytical
expressions with time-average operations EO{ -},
or (when both operations are present in the
analytical expression) of deleting the
expectation operation, cannot be justified (and
will often fail to produce the desired results)

when the stochastic-process model used is not
PCE.

A Related Important Fact:

The “optimum” solutions to inference and
decision problems (e.g., for signal estimation
and detection) that are based on S and E, but
not CE, (or based on CS and CE, but not PCE),
process models can be highly inferior to
inference and decision rules that exploit the

hidden CS (or hidden PCS).



EXAMPLES
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1)
Time-Invariant
&» Nonlinear
Transformation

Y(t)

X(t) 1s S and E, but not CE, with no spectral

lines.

Y (t) is S and E but, because of the hidden CS in
X(t), contains spectral lines. The presence of

these spectral lines cannot be explained except
by virtue of the hidden CS in X(t).
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2) X(t) 1s S and E, but not CE, and admits an
exact AR model (with white residuals).

But the sample paths of the residuals are
still partially predictable (w.p. 1) using
periodic predictors derived from the
sample-path statistics.

Furthermore, the sample paths of X(t) can
also admit periodic AR (PAR) models with
asymptotically white residuals (w.p. 1) that
are unpredictable (w.p. 1) and with periodic
order that at times within the period can be
less than that of the AR model.
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3) X(t) and Y(t) are jointly S and E, but not
CE, and, according to the usual definition
of causality, there is no causal
relationship of X(t) to Y(t). That is, no
linear or nonlinear time-invariant
operation on X(t) and its past has any
prediction capability for Y(t) and its future.

Yet, each sample path of Y(t) can
possibly be perfectly cyclically caused
by the corresponding sample path of X(t).
That is, a periodic operation on X(t) can
possibly perfectly predict Y (t).

EXAMPLE
X(t) =7Z(t) = %1
Y (t) = Z(t — T) cos(t + 0); 0 uniform on [0,27]
E{X"(t- Y"1} = E{X"(t— W}E{Y™ (1)}
for all L.

But
Y(t) = X(t — 1) cos(t + 0)
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4) Z(t) = X(t) + Y(t), where X(t) and Y(t) are
statistically independent, S, and E, but not
CE, processes that have identical spectral
densities. The Wiener filter for extracting
X(t) from Z(t) (separating X(t) and Y(t)) 1S
essentially useless.

Yet the sample paths of X(t) and Y(t) can
possibly be perfectly separated with a
- periodic filter.

Examples include communication signals
such as

digital QAM
AM

PSK

ASK

PAM

SPECIFIC EXAMPLE:
N spectrally coincident digital QAM

signals with excess bandwidth
2 (N - 1)100% can be perfectly separated



IV-36

5) X(t) = {X(t), X,(t)} is purely S with a
probabilistic model that is very similar to
that of Y(t) = {Y(t), Y,(t)}, which is CS
(e.g., X(t) and Y (t) are both Gaussian
processes and the PSDs of X(t) equal those
of the stationarized Y (t)). The Cramér-Rao
bounds of the same parameters in each of
X(t) and Y(t) (e.g., the TDOA) can be
drastically different.

This has been demonstrated for TDOA at
two reception platforms and for AOA at a
SEensor array.

Moreover, even the Cramér-Rao bound of
the stationarized Y (t) can be drastically
different from that of the purely S X(t).
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6) X(t) and Y(t) are independent, S, and E, but
not CE, and

under hypothesis 1: Z(t) = X(t) + Y(t)

under hypothesis 2: Z(t) = Y(t)

The “optimum” (e.g., max posterior prob.)
detector for the presence of X(t) in Z(t) can
be greatly outperformed by detectors that
exploit the hidden CS in X(t) and/or Y(t)
(e.g., joint max posterior prob. detector and
phase estimator).
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ONE APPROACH TO THIS SITUATION

(For Mathematicians)

Take PATH 1: Develop the needed theory of
PCE.

Current status:
Substantial progress has been made for:

1) CE w.p. 1 for discrete-time CS and
Gaussian continuous-time CS;

2) PCE in m.s. for finite-order moments of
discrete- and continuous-time PCS.

Little or no progress has been made for:

1) PCE w.p. 1 for discrete-time PCS;

2) CE w.p. 1 for non-Gaussian continuous-
time CS and PCS, and

3) PCE w.p. 1 for continuous-time CS and
PCS.
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A CHALLENGE TO MATHEMATICIANS

The only paper to address PCE w.p. 1 [Boyles
and Gardner, 1983] suggests that a substantial
breakthrough will be required (even for the
much less technical case of discrete time):
conventional approaches and ideas apparently
lead to dead ends.

I see a challenge not unlike that Birkhoff faced
around 1930 when he formulated and proved
the fundamental ergodic theorem to replace
the very unsatisfying “ergodic hypothesis”.

We need a fundamental polycycloergodic
theorem that elegantly formalizes our
informal notion of a PCE process in terms of a
necessary and sufficient condition on the
associated probability measure.



A PROPOSITION

The most useful concept we have for
applications is the following unproved
proposition:

A PCS process constructed from stable
(decaying-memory) nonrandom

polyperiodic transformations of purely
stationary ergodic processes are PCE.

Stochastic-process models for many, if not
most, communication signals can be
constructed in this way.



1)

2)
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ADVANTAGES OF THE
STOCHASTIC-PROCESS APPROACH

It 1s the orthodox approach to modeling and
studying evolutionary random phenomena
and it is, therefore, attractive to those
already familiar with it.

Mathematicians do know how, in principle,
to construct stochastic process models from
elementary mathematical constructs (Borel
fields, sigma algebras, probability
measures, etc.)

Therefore, there is a greater likelihood of
success in constructing a mathematical
theory of PCS and PCE processes from a
few basic axioms.
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3)

4)
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It is possible, in principle, to exploit the
hidden CS in a non-CE process within the
conventional framework of stochastic
processes.

But, this requires that one have a model of
the hidden CS that is explicitly
dependent on a random phase variable 0
that 1s responsible for the lack of CE so that
one can calculate probability densities and

expectations conditioned on 0.

Development of the theory of PCE will
pave the way for making the time-space
theory mathematically rigorous.



£
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AN ALTERNATIVE APPROACH

(For Pragmatic Engineers)
Per}spective:

The probability-space approach based on
expectation introduces abstractions that, in
many applications (e.g., many problems for
which single-sample-path signal-processing is
of interest), have no redeeming practical
value.

Some of these abstractions can be properly
dealt with only with a theory of PCE that is
presently nonexistent. Regressing back to pre-
1930 and adopting a “PCE hypothesis™ is very

unappealing (because the hypothesis can be
false).

Response: Take PATH 2—

Adopt the time-space approach whose theory
1s in many ways dual to that of the probability-
space approach, but without the practical
drawbacks associated with cycloergodicity and
the distracting abstraction associated with
expectation over ensembles.




THE ESSENCE OF
CYCLOSTATIONARITY

The essence of cyclostationarity is the fact that
sinewaves can be generated from random data
by applying certain nonlinear transformations.

The time-space theory of cyclostationarity
arises naturally out of the fundamental
theorem of sine-wave component extraction

usingﬁ{o‘} :

The expectation E that gives rise to the
probability-space theory has little to do with the
essence of cyclostationarity.




Iv-45

BUT, CAN WE CONSTRUCT
TIME-SERIES MODELS?

Yes. Time-series models for many, if not
most, communication signals can be
constructed by subjecting one or more
elementary time-series (e.g., purely stationary
“white”) to elementary transformations such as
filters, periodic modulators, multiplexors, etc.

Defining Properties of a Discrete-Time
Purely Stationary White Time-Series

1) Whiteness: /fg(t)(g)

/\O ’\0
= Tt (Xp) fx(t+t (X)) o Fxerey(Xp)

for unequal t;, t,, ..., t,.

2) Pure stationarity: £ x(t) (x) = X(t)(x)
for all {o}.

3) Existence: sample path of i.i.d. stochastic
process.
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CAN WE DO PROBABILISTIC ANALYSIS
USING TIME-SPACE THEORY?

Yes. Performance measures such as bias,
variance, Cramér-Rao bounds, confidence
intervals, probabilities of decision-errors, etc.,
can be calculated using time-space theory just
as well as they can using probability-space
theory.
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A CURRENT ASSESSMENT

1) Considerable progress in the development
and application of the time-space (or
temporal-probability, or fraction-of-
time probability) theory of CS and PCS
time-series has been made since its adoption
by the UCD group in 1985. This includes:

a) Temporal and spectral second-order-
moment theory (cyclic autocorrelation
and cyclic spectra, or spectral
correlation functions)

b) Temporal and spectral higher-order-
moment and cumulant theory (cyclic
cumulants and cyclic polyspectra, or
spectral cumulants)

¢) The rudiments of fraction-of-time
probability distribution theory

d) A wide variety of applications of the
theory to signal processing and
communications problems



1)

2)
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FURTHER SUPPORT FOR PATH 2

The temporal-probability approach, which
1S centered on the concrete sine-wave
extraction operation, has led naturally to a
derivation of the cumulant as the solution

to a fundamental problem in characterizing
higher-order CS and PCS.

It is doubtful that this derivation would have
have been discovered within the stochastic-
process framework, which is centered on
the abstract expectation operation.

This derivation will be discussed by Chad
Spooner tomorrow afternoon.

The conceptual gap between the existing
time-space theory and its application is
perceived by its current users (at UCD) to
be much narrower than it is for the dual
probability-space theory.
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CONJECTURE

For every theorem that can be proved for a PCE
PCS process, a dual theorem can be proved for
a PCS time-series—and vice-versa.

(Generalization of Wold’s isomorphism from S
to PCS)
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EXISTENCE

There does remain a fundamental question that
is not yet always answerable:

Given 13_){53)} for all n does there exist a

corresponding x(t)?

We have sufficient conditions on f?){(g)} that

guarantee existence of x(t): they are identical
to the conditions that guarantee that Fy, is

PCE (mixing conditions).

But we do not yet have a necessary and
sufficient condition. (Another challenge for
mathematicians)



1)

2)

3)
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CONCLUSIONS

The more abstract theory of PCS stochastic
processes will undoubtedly be found to be
of considerable value as it is developed, and
those who are so inclined are encouraged to
pursue this approach.

The less abstract theory of cyclostationary
time-series is more accessible to the
engineer interested in theory as a
conceptual aid for solving practical
problems. 1t should be the preferred
approach (not only at UCD).

The practical value of this approach is
amply demonstrated for parametric and
nonparametric spectral analysis of S as well
as CS and PCS time-series in my 1987
book.

Both theories present important challenges
to mathematicians.



