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In this issue ...

Guest Editor William A.
Gardner composed a magnificent
issue on the important topic of
cyclostationarity.Professor
Gardner’s research group at the
University of California at Davis,
and colleagues in government and
industry, are internationally recog-
nized for their work on this subject.
His guest editorial to follow will in-
troduce the issue and survey the
papers.

Jack Deller
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Exploitation of Spectral Redundancy in

Cyclostationary Signals

he Signal Processing Group at the

University of California, Davis, in
collaboration with colleagues ‘in
government and industrial research
and development laboratories, has
been developing and promoting a type
of signal processing that exploits a
commonly occurring but often un-
recognized property of manmade sig-
nals. This property, called spectral
redundancy or more specifically
spectral correlation, is a direct result
of periodic (cyclic) structure present
in otherwise stationary random sig-
nals. These cyclostationary signals
are encountered in many signal
processing systems including espe-
cially communications and telemetry,
but also control, radar, sonar, and
others. By designing signal proces-
sors that intentionally exploit spectral
redundancy, new levels of perfor-
mance can be achieved. This is par-
ticularly so for signal processing
tasks such as detection and estima-
tion of highly corrupted signals, that
is, signals subjected to temporally
and spectrally overlapping inter-
ference, or relatively strong noise, or
severe distortion.

This special issue of the IEEE Sig-
nal Processing Magazine contains two
articles. The first and longer of the
two provides the reader with a con-
cise introduction to the concept and
theory of spectral redundancy, and
a brief survey of some of its applica-
tions in signal processing. The
second article introduces the reader
to the problem of designing computa-
tonally efficient algorithms and ar-
chitectures for digital measurement
of spectral correlation. Although
some of the applications of spectral
redundancy described in the first ar-
ticle do not require actual measure-
ment of spectral correlation, or

require relatively modest measure-
ment (e.g., equivalent to the meas-
urement of a power spectrum),
other applications require exhaus-
tive spectral-correlation analysis. It
is this latter situation that is ad-
dressed in the second article.

It is our hope that this special
issue will attract the attention of
those uninitiated in spectral redun-
dancy and will assist them in deter-
mining if exploitation of spectral
redundancy holds some promise for
their signal processing problems.

A few words about the first article
are in order here. The subject is in-
herently statistical and many of the
concepts are, relatively speaking, ad-
vanced. Many engineers do not learn
about the basic theory of random
signals in their undergraduate train-
ing, and quite a few engineers with the
M.S. degree, who are working in sig-
nal processing, have not had a formal
course in random signals. Conse-
quently, this article, which treats a
subject that extends and generalizes
concepts, theory, and methods that
some readers have not yet learned
about, except perhaps at a superficial
level, is destined to be only partially
understood by many. The only way
this could be avoided would be to
expand the article into a full-blown
treatise that would be far too long for
publication in this magazine. As a
result of this situation I have had to
strike a balance in the first article
between the use of detailed low-level
explanations with plenty of pictures,
more technical explanations with
more equations and fewer pictures,
and the use of references for more
expansive discussions and more
results on the implementation and
performance of specific signal
processing methods. The required
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compromise here is reflected in the
contradictory suggestions from the
reviewers of this article. One
reviewer wanted more equations
and more technical and/or mathe-
matical detail, while another
reviewer wanted more lightweight
discussion and fewer equations. I
sympathized with both of these
reviewers, but it was impossible to
completely satisfy both of them with
the limited number of pages avail-
able, given the broad scope of the
article. In fact, the problems stem-
ming from the inherently technical
nature of the subject are exacer-
bated by the broad scope of the
article. Unlike typical articles on
technical subjects in this magazine,
this article attempts to introduce the
reader to a broad area of study that
incorporates numerous topics (any
one of which could easily occupy the
entire article), such as signal detec-
tion, modulation recognition, signal
parameter estimation, direction find-
ing, time-difference estimation, inter-
ference suppression, distortion
reduction, and linear prediction, as
well as the underlying theory which
generalizes the theory of autocorrela-
tion and power spectral density from
stationary random signals to cyclos-
tationary random signals.

Nevertheless, I am optimistic that
the article, in spite of its un-
avoidable drawbacks, will serve its
purpose of introducing readers to a
valuable new area of study, motivat-
ing them to learn more about the
subject, and providing them with a
bibliography that will help them to
learn more.

William A. Gardner
University of California, Davis
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s - < Exploitation of

Spectral
Redundancy in
Cyclostationary
Signals

WILLIAM A. GARDNER

any conventional statistical signal processing

methods treat random signals as if they were sta-

tistically stationary, in which case the parameters
of the underlying physical mechanism that generates the
signal would not vary with time. But for most manmade
signals encountered in communication, telemetry, radar,
and sonar systems, some parameters do vary periodically
with time. In some cases even multiple incommensurate
(not harmonically related) periodicities are involved. Ex-
amples include sinusoidal carriers in amplitude, phase,
and frequency modulation systems, periodic keying of the
amplitude, phase, or frequency in digital modulation sys-
tems, and periodic scanning in television, facsimile, and
some radar systems. Although in some cases these peri-
odicities can be ignored by signal processors, such as re-
ceivers which must detect the presence of signals of in-
terest, estimate their parameters, and/or extract their
messages, in many cases there can be much to gain in
terms of improvements in performance of these signal
processors by recognizing and exploiting underlying pe-
riodicity. This typically requires that the random signal
be modeled as cyclostationary, in which case the statis-
tical parameters vary in time with single or multiple pe-
riodicities.

This article explains that the cyclostationarity attri-
bute, as it is reflected in the periodicities of (second-order)
moments of the signal, can be interpreted in terms of the
property that enables generation of spectral lines from the

This material is based upon work supported by the National Science
Foundation under Grant No. MIP-88-12902.
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signal by putting it through a (quadratic) nonlinear trans-
formation. It also explains the fundamental link between
the spectral-line generation property and the statistical
property called spectral correlation, which corresponds
to the correlation that exists between the random fluc-
tuations of components of the signal residing in distinct
spectral bands. The article goes on to explain the effects
on the spectral-correlation characteristics of some basic
signal processing operations, such as filtering, product
modulation, and time sampling. It is shown how to use
these results to derive the spectral-correlation character-
istics for various types of manmade signals.

Some examples of signals that can be appropriately
modeled as cyclostationary can be interpreted as the re-
sponse of a linear or nonlinear system with some period-
ically varying parameters to stationary random excita-
tion. Specific examples include stationary random
modulation of the amplitude, phase, or frequency of a
sinewave; stationary random modulation of the ampli-
tudes, widths, or positions of pulses in an otherwise pe-
riodic pulse train; periodically varying Doppler effect on
a stationary random wave; and periodic sampling, mul-
tiplexing, or coding of stationary random data. In addi-
tion to these examples of manmade signals, some natural
signals also exhibit cyclostationarity due, for example, to
seasonal effects in time-series data sets obtained in me-
teorology, climatology, atmospheric science, oceanogra-
phy, and hydrology, as well as astronomy. Numerous ex-
amples and references are given in [1, Chapters 12 and
14], [2, Chapter 12].

Finally, and most importantly, this article describes
some ways of exploiting the inherent spectral redun-
dancy associated with spectral correlation to perform
various signal processing tasks. These include detecting
the presence of signals buried in noise and/or severely
masked by interference; recognizing such corrupted sig-
nals according to modulation type; estimating parame-
ters such as time-difference-of-arrival at two reception
platforms and direction of arrival at a reception array on
a single platform; blind-adaptive spatial filtering of sig-
nals impinging on a reception array; reduction of signal
corruption due to cochannel interference and/or channel
fading for single-receiver systems; linear periodically
time-variant prediction; and identification of linear and
nonlinear systems from input and output measurements.
The descriptions include brief explanations of how and
why the signal processors that exploit spectral redun-
dancy can outperform their more conventional counter-
parts that ignore spectral redundancy or, equivalently,
ignore cyclostationarity.

In the next section, the possibility of generating spectral
lines by simply squaring the signal is illustrated for two
types of signals: the random-amplitude modulated sine
wave and the random-amplitude modulated periodic
pulse train. Then it is explained that the property that
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enables spectral-line generation with some type of
quadratic time-invariant transformation is called
cyclostationarity and is characterized by the cyclic
autocorrelation function, which is a generalization of the
conventional autocorrelation function. Following this,
it is shown that a signal exhibits cyclostationarity ifand
only if the signal is correlated with certain frequency-
shifted versions of itself.

In the third section, the correlation of frequency-
shifted versions of a signal is localized in the frequency
domain and this leads to the definition of a spectral-
correlation density function (SCD). It is then ex-
plained that this function is the Fourier transform of
the cyclic autocorrelation function. This Fourier-
transform relation between these two functions in-
cludes as a special case the well-known Wiener rela-
tion between the power spectral density function and
the conventional autocorrelation function. A normal-
ization of the spectral-correlation density function that
converts it into a spectral correlation coefficient, whose
magnitude is between zero and unity, is then intro-
duced as a convenient measure of the degree of spec-
tral redundancy in a signal.

Continuing in this SCD section, the effects on the
spectral-correlation density function of several signal
processing operations are described. These include fil-
tering and waveform multiplication, which in turn in-
clude the special cases of time delay and multipath
propagation, bandlimiting, frequency conversion, and
time sampling. These results are used to derive the
spectral-correlation density function for the random-
amplitude modulated sine wave, the random-ampli-
tude modulated pulse train, and the binary phase-shift
keyed sine wave. The spectral-correlation density
functions for some other types of phase-shift keyed
signals are also described graphically. Finally in this
section, the measurement of (estimation of the ideal)
spectral-correlation density function is briefly dis-
cussed and illustrated with a simulation of a phase-
shift keyed signal.

The fourth section of this article contains the payoff
for working through the preceding two sections. It pro-
vides explanations of how the spectral redundancy
that is inherent in signals that exhibit cyclostationar-
ity can be exploited in a variety of statistical signal
processing tasks. The spectral redundancy can gen-
erally be exploited to enhance the accuracy and reli-
ability of information gleaned from measurements of
corrupted signals. Such information includes the fol-
lowing:

1) A decision as to the presence or absence of a ran-
dom signal with a particular modulation type in a
background of noise and other modulated signals,

2) A classification of multiple received signals in
noise according to their modulation types,

3) An estimate of a signal parameter, such as carrier
phase, pulse timing, or direction of arrival, or of
the number of signals being received simulta-
neously, based on noise-and-interference-cor-
rupted measurements,

4) An estimate of a message being communicated by
a signal over a channel corrupted by noise, inter-
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ference, and distortion,

5) A prediction of a future value of a random signal,
and

6) An estimate of the input-output relation of a linear
or nonlinear system based on measurements of
the system’s response to random excitation.

The article concludes with a brief section indicating
how the theory of second-order cyclostationarity sur-
veyed in the preceding sections can be generalized to
higher-order cyclostationarity, which corresponds to
the property that enables spectral-line generation
using higher-order nonlinearities, such as cubic, quar-
tic, and so on. References to more in-depth treatments
of the theory and its applications are given throughout
the article.

CYCLOSTATIONARITY

A signal x(t) contains a finite-strength additive sine-
wave component (an ac component) with frequency «,
say

a cos 2mwat + 0) with @ # 0 1)
if the Fourier coefficient
Mg - (x(t)e—i27ral> (2)

is not zero, in which case (1) gives

In (2), the operation (‘) is the time-averaging opera-
tion

T2
A .
SR el S ;
S TLHZOT —T/z()dt
In this case, the power spectral density (PSD) of x{t)
includes a spectral line at frequency f= o and its image
Jf=-o. (The PSD is defined in the next section.) That is,
the PSD contains the additive term!

IMIPI6(f — @) + 8(f + )] 3)

where §(+) is the Dirac delta, or impulse, function. For
convenience in the sequel, it is said that such a signal
exhibits first-order periodicity, with frequency «.

Let x(t) be decomposed into the sum of its finite-
strength sine-wave component, with frequency «, and
its residual, say n(t),

x(f) = a cos Qmat + ) + n() 4)

where n(t) is defined to be that which is left after sub-
traction of (1) from x(t). It is assumed that n(t) is ran-
dom. Here, the term random is used to denote nothing

'The strength of the spectral line is [M|? as indicated in (3) if and
only if the limit (2) exists in the temporal mean square sense with
respect to the time parameter u obtained by replacing t with ¢t + u in
(2) [1, Chapter 15, exc. 6].
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more than the vague notion of erratic or unpredictable
behavior. If the sine wave is weak relative to the ran-
dom residual, it might not be evident from visual in-
spection of the signal that x(t) contains a periodic com-
ponent. Hence, it is said to contain hidden periodicity.
However, because of the associated spectral lines, hid-
den periodicity can be detected and in some applica-
tions exploited through techniques of spectral analy-
sis.

This article is concerned with signals that contain
more subtle types of hidden periodicity that, unlike
first-order periodicity, do not give rise to spectral lines
in the PSD, but that can be converted into first-order
periodicity by a nonlinear time-invariant transforma-
tion of the signal. In particular, we shall focus on the
type of hidden periodicity that can be converted by a
quadratic transformation to yield spectral lines in the
PSD.

(a) Salf)

f
fo
(c) Sp(f)
2B f
(A 5y(1)
f
0 2fg

Fig. 1. a) Power spectral density (PSD) of a lowpass
signal. b) PSD of an amplitude-modulated (AM) sig-
nal. ¢) PSD of a squared lowpass signal. d) PSD of a
squared AM signal.
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The discussion begins with a couple of examples.

Example 1: AM. Let a(t) be a random lowpass signal
(say lowpass filtered thermal noise) with the PSD S,( f)
shown in Fig. 1a, which contains no spectral lines. If
al(t) is used to modulate the amplitude of a sine wave,
we obtain the amplitude modulated (AM) signal

x() = a(t) cos 2wfyt) 5)

whose PSD S,( f) is given by [1, Chapter 3, Sec. D]

Sx(f) = %Sa(f it ﬁ)) e %Sa(f e ﬁ)) (6)

as shown in Fig. 1b. Although the PSD is centered
about f = fp and f = —f,, there is no spectral line at f,
or —fo. The reason for this is that, as shown in Fig. 1a,
there is no spectral line in S,( f) at f = 0. This means
that the dc component

MY & (a()) @)

is zero, since the strength of any spectral line at f = O
is |M2)2.
Let us now square x(t) to obtain

y(t) = x*(t) = d*(f) cos®> 2ufy?)

[b(t) + b(?) cos (4mfyt)] (8)

il
2
where

b(t) = a*() )

Since b(t) is nonnegative, its dc value must be positive:
M9 > 0. Consequently, the PSD of b(t) contains a spec-
tral line at f = O, as shown in Fig. 1c. The PSD for y(t)
is given by

S,(f) = 1 [S(f) + 3 S(f + 2f0) + 1 S(f = 2fp] (10)

and, as shown in Fig. 1d, it contains spectral lines at f
= +2foas well as at f = 0. Thus, by putting x(t) through
a quadratic transformation (a squarer in this case) we
have converted the hidden periodicity resulting from
the sine-wave factor cos (27f,t) in (5) into first-order
periodicity with associated spectral lines. This is par-
ticularly easy to see if a(t) is the asynchronous random
telegraph signal, which switches back and forth at
random times between +1 and —1, because then b(t)
= 1 and y(t) in (8) is therefore a periodic signal

y() =3 + 1 cos @nfyr)

Example 2: PAM. As another example, we consider
the pulse-amplitude modulated (PAM) signal

X0 = 2 aTop@ — nTy (an

where the pulse p(t) is confined within the interval
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Fig. 2. A pulse-amplitude-modulated (PAM) signal
with pulse width less than interpulse time.

(=To/2, To/2) so that the pulse translates do not over-
lap, as shown in Fig. 2. The PSD of x(t) is given by [1,
Chapter 3, Sec. D]

S =7 POP B Sf-mly a2

where S,(f) is shown in Fig. la, which contains no
spectral lines, and where P( f) is the Fourier transform
of p(t). Since there are no spectral lines in S,(f) (or
P(f) since p(t) has finite duration), there are none in
S,(f), as shown in Fig. 3a, regardless of the periodic
repetition of pulses in x(t). But, let us look at the square
of x(t):

Y0 =% = X bTyq(t — nTy) (13

where

b(nTy) = a*(nTy) (14a)

(a) Sx(f)

0 2B 1. 2 3
To To To

Fig. 3. a) Power spectral density (PSD) of a pulse-am-
plitude-modulated (PAM) signal with 67 % duty-cycle
pulses. b) PSD of the squared PAM signal.
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and
g0 = p*(0) (14b)

The PSD for y(t) is given by
1 =)
S = 710N 2 Si(f = m/Ty (15)

where Q( f) is the Fourier transform of q(t). Because of
the spectral line at f = O in S,(f), which is shown in
Figure lc, we have spectral lines in S ( f) at the har-
monics m/T, (for some integer values of m) of the pulse
rate 1/Ty, as shown in Fig. 3b. Thus, again, we have
converted the hidden periodicity in x(t) into first-order
periodicity with associated spectral lines by using a
quadratic transformation. This is particularly easy to
see if a(nT,) is a random binary sequence with values
+1, because then b(nTy) = 1 and y(t) in (13) is there-
fore a periodic signal

oo

YO = X gt = n/Ty (16)

The cyclic autocorrelation function

Although the squaring transformation works in these
examples, a different quadratic transformation involv-
ing delays can be required in some cases. For example,
if a(nTy) is again binary, but p(t) is flat with height 1
and width Ty, as shown in Fig. 4, then y(t) = x%(t) = 1,
which is a constant for all t. Thus, we have a spectral
line at f = O but none at the harmonics of the pulse
rate. Nevertheless, if we use the quadratic transfor-
mation

Y@ = x()x@ — 7) 17

for any of a number of nonzero delays 7, we will indeed
obtain spectral lines at f = m/T,. That is,

M;z 2 (y(t)e -i21r0(1>
= (x@Ox(t — T)e 1y % 0 (18)

for o = m/T, for some integers m.

Fig. 4. A binary pulse-amplitude-modulated (PAM)
signal with full duty-cycle pulses.
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The most general time-invariant quadratic transfor-
mation is simply a linear combination of delay prod-
ucts of the form (17), viz.,

¥ = S h(x(Ox(@t — 7) dr

for some weighting function h(7) that is analogous to
the impulse-response function for a linear transfor-
mation. This motivates us to define the property of
second-order periodicity as follows: The signal x(t)
contains second-order periodicity if and only if the PSD
of the delay-product signal (17) for some delays 7 con-
tains spectral lines at some nonzero frequencies o #
0, that is, if and only if (18) is satisfied.

In developing the theory of second-order periodicity
it is more convenient to work with the symmetric de-
lay product

;) = x(t + 72)x*¢ — 7/2) (19)

(The complex conjugate * is introduced here for gen-
erality to accommodate complex-valued signals, but it
is mentioned that for some complex-valued signals, the
quadratic transformation without the conjugate can
also be useful [1, Chapter 10, Sec. C].) Thus, the fun-
damental parameter (18) of second-order periodicity
becomes

Rg("') é <X(t + T/Z)x*(t A 7'/2)e -i21rar> (20)

which is the Fourier coefficient My, of the additive sine-
wave component with frequency « contained in the de-
lay-product signal y,(t).

The notation R%(7) is introduced for this Fourier coef-
ficient because, for « = 0, (20) reduces to the conven-
tional autocorrelation function

RYU7) = (x(t + 7/2)x*(¢t — 7/2)) 21)

for which the notation R,(7) is commonly used. Fur-
thermore, since R%(7) is a generalization of the auto-
correlation function, in which a cyclic (sinusoidal)
weighting factor e "™ is included before the time av-
eraging is carried out, R¥(7) is called the cyclic auto-
correlation function.> Thus, we have two distinct
interpretations of R¥(r) = Mj,. In fact, we have yet a
third distinct interpretation, which can be obtained by
simply factoring e™*2™ in order to reexpress (20) as

Rg(T) s ([x(t o T/Z)e —imra(t + 7/2)] [x(t Lok 7/2)6 +iTa(t — 1'/2)]*)
22

That is, R(7) is actually a conventional crosscorrela-
tion function

R.(7) & (u(t + 1/2)v*(t — 7/2)) = R%(7) (23)

2Although some readers will recognize the similarity between the
cyclic autocorrelation function and the radar ambiguity function, the
relationship between these two functions is only superficial. The con-
cepts and theory underlying the cyclic autocorrelation function, as
summarized in this article, have little in common with the concepts
and theory of radar ambiguity (cf. [1, Chapter 10, Sec. C]).
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where

u(t) = x(t)e ™ (24a)

and

v(t) = x(t)e ™™ (24b)

Recall that multiplying a signal by e*™" shifts the
spectral content of the signal by +a«/2. For example,
the Fourier transforms of u(t) and v(¢) (if they exist) are

U(f) = X(f + a/2) (252)
and

V(f) = X(f — a/2) (25b)
Similarly, their PSDs are

Su(f) = Sr(f + 01/2) (268)
and

Su(f) o Sx(f — al2) (26b)

It follows from (23)—-(24) that x(t) exhibits second-order
periodicity ((20) is not identically zero as a function of
7 for some a # 0) if and only if frequency translates
(frequency-shifted versions) of x(t) (namely u(t) and
v(t)) are correlated with each other ((23) is not identi-
cally zero as a function of 7 for some a # O in (24)).
This third interpretation of R%(r) suggests an appro-
priate way to normalize R%(7) as explained next.

As long as the mean values of the frequency trans-
lates u(t) and v(t) are zero (which means that x(t) does
not contain finite-strength® additive sine-wave com-
ponents at frequencies +o/2 and, therefore, that S,( f)
has no spectral lines at f = +a/2), the crosscorrelation
R,,(1) = R¥(7) is actually a temporal crosscovariance
K, (7). That is,

1>

K. (1) & ([u(t + 1/2) — <u@t + 7/2))]

slulte= 7/2)= vt = a/2N%D
= (u(t + 72)v*@t — 7/2)) = R,,(7) 27)

An appropriate normalization for the temporal cross-
covariance is the geometric mean of the two corre-
sponding temporal variances. This yields a temporal
correlation coefficient, the magnitude of which is up-
per bounded by unity. It follows from (24) that the two
variances are given by

K,0) = R,0) = <|u(®)|*y = R(0) (28a)

and

K,(0) = R,0) = <|v®|*» = R(0) (28b)

Therefore, the temporal correlation coefficient for fre-
quency translates is given by

Ki(7)
[K(0)K,0)]"

2 R3(7) A
R(0)

Y:(7) 29

3It does contain infinitesimal sine-wave components.
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Hence, the appropriate normalization factor for R(7) is
simply 1/R,(0).

This is a good point at which to introduce some more
terminology. A signal x(t) for which the autocorrela-
tion R,(7) exists (e.g., remains finite as the averaging
time T goes to infinity) and is not identically zero (as
it is for transient signals) is commonly said to be sta-
tionary (in the wide sense or of second order). But we
need to refine the terminology to distinguish between
those stationary signals that exhibit second-order pe-
riodicity (R%(7) # O for some « # 0) and those station-
ary signals that do not (R¥(r) = O for all « # 0). Con-
sequently, we shall call the latter for which R¥7) = O
purely stationary (of second order) and the former for
which R¥(7) # O cyclostationary (of second order). We
shall also call any nonzero value of the frequency pa-
rameter « for which R¥(7) # 0 a cycle frequency. The
case a = O can be considered to be a degenerate cycle
frequency, since € = ¢® =1 is a degenerate sinu-
soid. Thus, some stationary signals are also cyclosta-
tionary or exhibit cyclostationarity; only stationary
signals that do not exhibit cyclostationarity are purely
stationary. The discrete set of cycle frequencies is
called the cycle spectrum. For example, if a signal ex-
hibits only one fundamental period of second-order pe-
riodicity, the cycle spectrum contains only harmonics
(integer multiples) of the fundamental cycle fre-
quency, which is the reciprocal of the fundamental pe-
riod. But if there are multiple incommensurate pe-
riods, then the cycle spectrum contains harmonics of
each of the incommensurate fundamental cycle fre-
quencies.

We conclude this section by reconsidering the AM ex-
ample and determining the cyclic autocorrelation
function for the AM signal.

Example 1 continued: AM. Let a(t) be a real random
purely stationary signal with zero mean:

Ca(®)) =0 (30a)
Ca(t + 7/2)a*(t — 7/2)) # 0 (30b)
a(t + 1/2)a*(t — 1/2)e >™y = Oforalla # 0  (30c)
Equation (30c) guarantees that
(a(f)e ™'y = 0 forall @ # 0 (30d)
We consider the amplitude-modulated sinewave

x(t) = a(t) cos Rnfyt + 0)

%a(t) [ei(27rﬁ)l+6) ot e—i(21rfot+6)] (31)

Because of (30d), a(t) contains no finite-strength addi-
tive sine-wave components and, therefore (together
with (30a)), x(t) contains no finite-strength additive
sine-wave components. This means that its power
spectral density contains no spectral lines. However,
the quadratic transformation

YA = x(t + 1/2)x*(1t — 7/2)
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gk r/2)at(E o r2) L [e BT I e T
i ei(47rﬁ)l+20) s e*i(47rﬁ)l+20)] (32)
does contain finite-strength additive sine-wave com-
ponents with frequencies a« = +2f,, since (30b) ren-
ders one or the other of the last two terms in the quan-
tity
(y (e ™2™y = L™ a(t + 7/2)a*(t — 7/2)e 2™y
Hatel R ICaGrE TN = T De )

e e R T G T R Gl

e alt + 1/2)a*@t — 1/2)e ~i2mat2fony
(33)

+

ENE

nonzero for « = +2f,. That these are the only two cycle
frequencies o # O follows from the fact that (30c) ren-
ders (33) equal to zero for all « except « = 0 and « =
+2fo. Thus, the cycle spectrum consists of only the two
cycle frequencies o = +2f, and the degenerate cycle
frequency a = O.

Hence, the versions u(t) and v(t) of x(t) obtained by
frequency shifting x(t) up and down by «/2 = f, are
correlated. This is not surprising since (31) reveals that
x(t) is obtained from af(t) by frequency shifting up and
down by f; and then adding. In conclusion, from (33) we
have the cyclic autocorrelation function

Le* ™R (1) for o = +2f
RY(1) = 1 R, (7) cos 2mfy7) fora =0 (34)
0 otherwise

from which it follows that the temporal correlation
coefficient is given by

Le*yr)  fora = +2f
Yi(r) = : (35a)
otherwise
Thus, the strength of correlation between

x(t + 7/2)e T2 gnd x(t — 7/2)e™ -7 which is
given by

Iy = 1 |y (35b)

can be substantial for this amplitude-modulated sig-
nal, e.g., |[y%0)| = +

As an especially simple specific example of a(t), we
consider as before a stationary random telegraph wave,
which switches back and forth between +1 and —1 at
random (Poisson distributed) switching times [2,
Chapter 6, exc. 12]. If we consider 7 = O in (32), we
obtain

I

Yo = |x(0)|* = |a@)|* cos® @rfyt + 6)

1

3 + 1 cos (4mfyr + 20)
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which clearly contains finite-strength additive sine-
wave components with frequencies o = +2f,. In fact,
in this very special case, there is no random compo-
nent in yo(t). On the other hand, for 7 # 0, y,(t) con-
tains both a sine-wave component and a random
component. |

Other examples of cyclostationary signals can be
similarly viewed as mixtures of stationarity and peri-
odicity. Examples are cited in the introductory Sec-
tion. Typical cycle spectra include harmonics of pulse
rates, keying rates, spreading-code chipping rates, fre-
quency hopping rates, code repetition rates, doubled
carrier frequencies, and sums and differences of these
[1, Chapter 12].

THE SPECTRAL-CORRELATION
DENSITY FUNCTION

Definition of the SCD

In the same way that it is beneficial for some pur-
poses to localize in the frequency domain the average
power {|x(t)|?>) = R,(0) in a stationary random signal,
it can be very helpful to localize in frequency the cor-
relation (u(t)v*(t)) = (|x(t)|? ™2™y = R%(0) of fre-
quency-shifted signals u(t) and v(t) for a cyclostation-
ary random signal x(t). In the former case of localizing
the power, we simply pass the signal of interest x(t)
through a narrowband bandpass filter and then mea-
sure the average power at the output of the filter. By
doing this with many filters whose center frequencies
are separated by the bandwidth of the filters, we can
partition any spectral band of interest into a set of con-
tiguous narrow disjoint bands. In the limit as the
bandwidths approach zero, the corresponding set of
measurements of average power, normalized by the
bandwidth, constitute the power spectral density (PSD)
function. That is, at any particular frequency f, the
PSD for x(t) is given by

S.() & lim = (K0 © 20 (36)
B0 B

where ® denotes convolution and h’;(t) is the impulse
response of a one-sided bandpass filter with center fre-
quency f, bandwidth B, and unity gain at the band
center, Fig. 5.

Center Frequency = f

=3
=
=
=
n
w
<
—
-
=

Bandwidth = B
Fig. 5. One channel of a spectrum analyzer for mea-
suring the power spectral density (PSD). (The symbol
= indicates that the output only approximates the
ideal function S,/( f) for finite T and B.)

In the latter case of localizing the correlation, we sim-
ply pass both of the two frequency translates u(t) and
v(t) of x(t) through the same set of bandpass filters as
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are used for the PSD and then measure the temporal
correlation of the filtered signals to obtain

Sl = ;‘f(l) % ([P5() ® u@)] [h® ® v@)]*)  (37)

which is called the spectral-correlation density (SCD)
function, Fig. 6. This yields the spectral density of cor-
relation in u(t) and v(t) at frequency f, which is iden-
tical to the spectral density of correlation in x(t) at fre-

exp(—imot)

Center Frequency =f
Bandwidth = B

> V()

exp(+imot)

Fig. 6. One channel-pair of a spectral-correlation
analyzer (or a cyclic-spectrum analyzer) for measur-
ing the spectral-correlation density (or cyclic spectral
density).

quencies f + o/2 and f — «/2, Fig. 7. That is, S%(7) is
the bandwidth-normalized (i.e., divided by B) correla-
tion of the amplitude and phase fluctuations of the

X (V)

A%

o
+2f

Fig. 7. Illustration of spectral bands used in the
measurement of the spectral-correlation density
S f). (v is a dummy frequency variable; the light and
dark bands are the bands selected by the BPFs.)
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narrowband spectral components in x(t) centered at
frequencies f + o/2 and f — o/2, in the limit as the
bandwidth B of these narrowband components ap-
proaches zero.

It is well known (see, for example, [1, Chapter 3, Sec.
C] for a proof) that the PSD obtained from (36) is equal
to the Fourier transform of the autocorrelation func-
tion,

=3

S:(f) = S R.(ne """ dr (38

Similarly, it can be shown [1, Chapter 11, Sec. C] that
the SCD obtained from (37) is the Fourier transform of
the cyclic autocorrelation function,

oo

SI(f) = S Ri(pyer*adr (39)

Relation (38) is known as the Wiener relation (see, for
example [1, Chapter 3, Sec. C]), and (39) is therefore
called the cyclic Wiener relation [1, Chapter 11, Sec.
C]. The cyclic Wiener relation includes the Wiener re-
lation as the special case of @ = 0. (In the probabilistic
framework of stochastic processes, which is based on
expected values [ensemble averages| instead of time
averages, the probabilistic counterpart of (38) is known
as the Wiener-Khinchin relation, and therefore the
probabilistic counterpart of (39) is called the cyclic
Wiener-Khinchin relation [2, Chapter 12, Sec. 12.2].)
Because of the relation (39), the SCD is also called the
cyclic spectral density (CSD) function [1, Chapter 10,
Sec. B]. Unlike the PSD which is real valued, the SCD
is in general complex valued.

It follows from (39) and the interpretation (23) of
R %(7) as R, (7) that the SCD is the Fourier transform
of the crosscorrelation function R,,,(7) and is therefore
identical to the cross-spectral density function for the
frequency translates u(t) and v(t):

83 () = Suw(f) (40)

where S,,,( f) is defined by the right hand side of (37)
for arbitrary u(t) and v(t). This is to be expected since
the cross-spectral density S,,(f) is known (cf. [1,
Chapter 7, Sec. A]) to be the spectral-correlation den-
sity for spectral components in u(t) and v(t) at fre-
quency f, and u(t) and v(t) are frequency-shifted ver-
sions of x(t). The identity (40) suggests an appropriate
normalization for S%( f): as long as the PSDs of u(t) and
v(t) contain no spectral lines at frequency f, which
means that the PSD of x(t) contains no spectral lines
at either of the frequencies f + o/2, then the correla-
tion of the spectral components (40) is actually a co-
variance since the means of the spectral components
are zero [1, Chapter 11, Sec. C]. When normalized by
the geometric mean of the corresponding variances,
which are given by

Su(f) = 8:(f + a/2) (41a)

and
SuCR= Si (e al2) (41b)
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the covariance becomes a correlation coefficient:

= S () e
T e e (@))
(42)

Suo ()
[S.()S, (O

Since |p%( f)| is bounded to the interval [0, 1], it is a con-
venient measure of the degree of local spectral redun-
dancy that results from spectral correlation. For ex-
ample, for [p%(f)] = 1, we have complete spectral
redundancy at f + o/2 and f — o/2.

Let us now return to the AM example considered in
the preceding Section. )

Example 1 continued: AM. By Fourier transforming
(34) and invoking the cyclic Wiener relation (39), we
obtain the following SCD function for the amplitude-
modulated signal (31):

Le*™s,(f) for a = +2f,
S50 = Taedallft F)+ 1800 = ) fora =0
0 otherwise
43)

— +2f,

~f, fo
Fig. 8. Magnitude of the spectral-correlation density

Junction for an AM signal graphed as a height above
the bifrequency plane with coordinates fand a.

The magnitude of this SCD is graphed in Fig. 8 as the
height of a surface above the bifrequency plane with
coordinates fand «. For purposes of illustration, a(t) is
assumed to have an arbitrary low-pass PSD for this
graph. Observe that, although the argument f of the
SCD is continuous, as it always will be for a random
signal, the argument « is discrete, as it always will be
since it represents the harmonic frequencies of peri-
odicities underlying the random process (the sine-wave
carrier in this example).

It follows from (43) that the spectral correlation coef-
ficient is given by

Sa(f)ei-iZG
{[S.(f +2£,) + S.(OIS(f) + So(f — 25132

for o = +2f, (44a)

o (f) =

Thus, the strength of correlation between spectral
component in x(t) at frequencies f + o/2 and f — /2 is
unity:

(44b)

log(f)] =1  for|f] <f, and a = +2f,
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provided that a(t) is bandlimited to | f| < fo.

Sif)i=0 for|f| =1 45)
This is not surprising since the two spectral compo-
nents in x(t) at frequencies f + o/2 = f + f, are obtained
from the single spectral component in a(t) at fre-
quency f simply by shifting and scaling. Thus, they
are perfectly correlated. That is, the upper (lower) side-
band for f > O carries exactly the same information as
the lower (upper) sideband for f < 0. Techniques for
exploiting this spectral redundancy are described in a
later section. |

Before considering other examples of the SCD, let us
first gain an understanding of the effects of some basic
signal processing operations on the SCD. This greatly
facilitates the determination of the SCD for commonly
encountered manmade signals.

Filtering

When a signal x(t) undergoes a linear time-invariant
(LTI transformation, (i.e., a convolution or a filtering
operation),

oo

2(0) = h() ® x(t) & S‘ h(u)x(t — u) (46)

the spectral components in x(t) are simply scaled by
the complex-valued transfer function H(f), which is
the Fourier transform

o

H(f) = S h(r)e > dt @7

of the impulse-response function h(t) of the transfor-
mation. As a result, the PSD gets scaled by the squared
magnitude of H( f) (see, for example, [1, Chapter 3, Sec.
C] or [2, Chapter 10, Sec. 10.1])

S.(f) = [H)IS:(f) 48)

Equation (48) can be derived from the definition (36)
of the PSD. Similarly, because the spectral compo-
nents of x(t) at frequencies f + o/2 are scaled by
H(f + o/2), the SCD gets scaled by the product
H(f + o/2)H*(f — o/2):

S:(f) = H(f + o/ H*(f — o/ S (f) 49)
This result, called the input-output SCD relation for
filtering, which can be derived from the definition (37)
of the SCD, includes (48) as the special case of a = O.

Observe that it follows from (49) and the definition (42)
that

o (O] = oz () (50)

That is, the magnitude of the spectral correlation coef-
ficient is unaffected by filtering (if H( f + «/2) # 0).
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Example 3: Time Delay. As our first example of (49),
we consider a filter that simply delays the input by t,;
then h(t) = §(t — t,) and H(f) = e 2V, Therefore, for
z(t) = x(t — t,), we obtain from the input-output SCD
relation (49)

ST(F) = SI(fHe ™ (1)

which indicates that, unlike the PSD, the SCD of a cy-
clostationary signal is sensitive to the timing or phase
of the signal.

Example 4: Multipath Propagation. As a second ex-
ample of (49), if x(t) undergoes multipath propagation
during transmission to yield a received signal

2t) = 2 a,x(t — t,)

where a, and t,, are the attenuation factor and delay
of the nth propagation path, we have

H(f) = 2 a,e” > (52)

and therefore (49) yields
S:(f) = Si(f) 2 a,a

- exp {—i27[f(t, — tn) + at, + t)/2]}  (53)

Example 5: Bandpass Signals. As a third example
of the utility of the relation (49), let us determine the
support region in the ( f, «) plane for a bandpass signal
with lowest frequency b and highest frequency B. To
enforce such a spectrum, we can simply put any signal
x(t) through an ideal bandpass filter with transfer
function

1 forb < |f| <B

0 otherwise

H(f) = {

It then follows directly from the input-output SCD re-
lation (49) that the SCD for the output of this filter can
be nonzero only for || f| — |«|/2| > band | f| + |«|/2
<Bs

SN
_{0 for ||f| — |«|/2| = b or |f| + |«|/2 =B
SE() otherwise (54)

This shows that the support region in the (f, o) plane
for a bandpass signal is the four diamonds located at
the vertices of a larger diamond, depicted in Fig. 9a.
By letting b — O, we obtain the support region for a
lowpass signal, and by letting B = o, we obtain the
support region for a highpass signal. This is shown in
Figs. 9b and 9c.
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Fig. 9. a) Support region in the bifrequency plane for
the spectral-correlation density function of a band-
pass signal. b) Support region for a lowpass signal. c)
Support region for a highpass signal.

Waveform multiplication

When finite segments of two signals are multiplied
together, we know from the convolution theorem that
their Fourier transforms get convolved. From this, we
expect some sort of convolution relation to hold for the
SCDs of signals passing through a product modulator.
In fact, it can be shown [1, Chapter 11, Sec. CJ, [2,
Chapter 12, exc. 41] that if x(t) is obtained by multi-
plying together two statistically independent? time-se-
ries r(t) and s(t),

x(®) = r®)s@) (55)

then the cyclic autocorrelation of x(t) is given by the
discrete convolution in cycle frequency of the cyclic
autocorrelations of r(t) and s(t):

RY(7) = % RE(DR2F(7) (56)

where, for each «, 8 ranges over all values for which
Rf(7) # 0. By Fourier transforming (56), we obtain the
input-output SCD relation for waveform multiplica-
tion:

3}

SAGHI— S ;s,ﬁ.(v)s?-ﬂ(f— v) dv (57)

which is a double convolution that is continuous in the
variable f and discrete in the variable .

Example 6: Frequency Conversion. As an example
of (57), if s(t) is simply a sinusoid,

“Time-series are statistically independent if their joint fraction-of-time
probability densities factor into products of individual fraction-of-time
probability densities, as explained in [1, Chapter 15, Sec. Al.
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s(t) = cos 2nf,t + 0)

the product modulator becomes a frequency converter
when followed by a filter to select either the up-con-
verted version or the down-converted version of r(t).
By applying first the input-output SCD relation (57) for
the product modulator (which applies since a sinusoid
is statistically independent of all time-series [1, Chap-
ter 15, Sec. A]), and then (49) for the filter, we can de-
termine the up-converted or down-converted SCD. To
illustrate, we first determine the SCD for the sinusoid
s(t). By substituting the sinusoid s(t) into the definition
of the cyclic autocorrelation, we obtain

1cos @nf,r)  fora =0
R(1) = L et for @ = +2f, (58)
0 otherwise

Fourier transforming then yields the SCD

adlf =yt Lo(FE )0 fora =0
SE(f) =4 Ler?o(f) fora = +2f, (59)
0 otherwise

which is illustrated in Fig. 10a. Using (57), we con-
volve this SCD with that of a stationary signal r(t), for
which

3fo

_41,/3 4o/3

— 426,

~f, fo

Fig. 10. a) Magnitude of the spectral-correlation den-
sity (SCD) for a sine wave of frequency f,. b) SCD for
a lowpass stationary signal. ¢) SCD magnitude for the
product of signals corresponding to a) and b), ob-
tained by convolving the SCDs in a) and b).
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STEf) fora =0

S = 60
r(f) {O fora # 0 ey

which is illustrated in Fig. 10b. The result is that the
SCD of the stationary signal simply gets replicated and
scaled at the four locations of the impulses in the SCD
of the sinusoid, as illustrated in Fig. 10c.

Example 7: Time Sampling. Another important sig-
nal processing operation is periodic time sampling. It
is known that for a purely stationary signal x(t), the
PSD S, ( f) of the sequence of samples {x(nTs): n = 0,
+1, +2, - - - } is related to the PSD S,(f) of the
waveform by the aliasing formula [1, Chapter 3, Sec.
E], [2, Chapter 11, Sec. 11.1]

S(h== % sx<f - ﬁ) 61)

ol
Tv Lo Ts

It is shown in [1, Chapter 11, Sec. C], [2, Chapter 12,
Sec. 12.4] that this aliasing formula generalizes for the
SCD to

o

1 +miT; L U
= army( o 2 L 62
il m,n§~m SX f 24 T, ()

e

We also can obtain essentially the same result (except
for an additional factor of 1/73) by applying the input-
output SCD relation for waveform multiplication (57)
to an impulse sampler, which is a product modulator
with one input equal to a periodic train of impulses,

s@) = 2 8¢ — nTy) (63)

n=—oo

This élternative approach can be carried out (cf. [,
Chapter 11, Sec. C]) by formally expanding (63) into
the Fourier series

™M s

ei21rmr/T_,» (64)

©

() =

L
Z} m=

|

Observe that, when x(t) is not purely stationary (i.e.,

when S¢(f) # O for « = m/Ts for some nonzero inte-

gers m), the conventional PSD aliasing formula (61)

must be corrected according to (62) evaluated at a =
(0F

=72 mS’x"’T"<f— : —ﬁ> (65)

1
T; mn=— 2T, T,

This reflects the fact that, when aliased overlapping
spectral components add together, their PSD values
add only if they are uncorrelated. When they are cor-
related, as in a cyclostationary signal, the PSD value
of the sum of overlapping aliased components depends
on the particular magnitudes and phases of their cor-
relations. The SCD aliasing formula (62) is illustrated
graphically in Fig. 11, where the support regions for
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the SCD S¢( f) for the sequence of samples {x(nTs)} is
depicted in terms of the single diamond support region
for a lowpass waveform x(t), which is shown in Fig. 9b.

a

Fig. 11. Illustration of support regions in the bifre-
quency plane for the spectral-correlation densities
that are aliased by periodic time-sampling.

Discrete time

Before leaving the topic of time sampling, it is ex-
plained that the discrete-time counterpart of the sym-
metric definition of the cyclic autocorrelation function
(20), which uses delays of +7/2 and —7/2, is not appro-
priate since time samples midway between the given
samples {x(nT,)} are not available. Therefore, the
asymmetric definition

RE(KT,) & (x(nT, + kT)x*(nT,)e 2™y 7™ (66)

(where (-) denotes discrete-time averaging over n),
which uses delays of 7 and O and which includes the
correction factor e™™ for 7 = kT, that makes the
asymmetric definition agree with the symmetric defi-
nition, has been adopted [1, Chapter 11, Sec. C], [2,
Chapter 12, Sec. 12.4].

The discrete-time counterpart of the SCD can be de-
fined just as is done at the beginning of this Section
(but with a discrete-time bandpass filter instead of the
continuous-time filter used there). The SCD can then
be shown to be the discrete-time Fourier transform of
the cyclic autocorrelation [1, Chapter 11, Sec. C], [2,
Chapter 12, Sec. 12.4]:
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St(f) = 20 REET ) e (67)

k= —o0

Periodically time-variant filtering

Many signal processing devices such as pulse and
carrier modulators, multiplexers, samplers, and scan-
ners, can be modeled as periodically time-variant fil-
ters, especially if multiple incommensurate periodici-
ties (i.e., periodicities that are not harmonically related)
are included in the model. By expanding the periodi-
cally time-variant impulse-response function in a Fou-
rier series as explained shortly, any such system can
be represented by a parallel bank of sinusoidal product
modulators followed by time-invariant filters. Conse-
quently, the effect of any such system on the SCD of
its input can be determined by using the SCD relations
for filters and product modulators. In particular, it can
be shown [1, Chapter 11, Sec. D] that the SCD of the
output z(t) of a multiply-periodic system with input x(t)
is given by

S:(f) = MZEA Go(f + d2)G* (f — /2)

: Sf.‘_5+7<f-— é%) (68)

where Gg( f) are the transfer functions of the filters and
A is the set of sinusoid frequencies associated with the
product modulators in the system representation.
More specifically, for the input-output equation

oo

(1) = Si h(t, u)x(u) du (69)

the multiply-periodic impulse-response function h(t, u)
can be expanded in the Fourier series

ht + 7,0 = BZ gs(1) ™ (70)
€A

where the Fourier coefficients (for each 7) are given by
gs(1) = (h(t + 1, e 2™y (71)

It follows from (69)-(70) that the filter output can be
expressed as

20 = EA [x() €™ ® g5(2) (72)

where gg(t) are the impulse-response functions of the
filters with corresponding transfer functions Gg(f).
Thus, periodically time-variant filters perform time-in-
variant filtering on frequency-shifted versions
x(t)e'?>™" of the input. This results in summing scaled,
frequency-shifted, cycle-frequency-shifted versions of
the SCD for the input x(t) to obtain the SCD for the
output z(t), as indicated in (68).

Let us now consider a couple of additional examples
of modulation types, making use of the results ob-
tained in the preceding paragraphs to determine SCDs.
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Example 2 continued: PAM. Let {a,} be a purely sta-

tionary random sequence, and let us interpret these
random variables as the time-samples of a random
waveform, a,, = a(nT,), with PSD S,( f). We consider
the PAM signal

X0 = 2 ap(t - nT, + ¢ (73)

where p(t) is a deterministic finite-energy pulse and ¢
is a fixed pulse-timing phase parameter. To determine
the SCD of x(t), we can recognize that x(t) is the output
of a periodically time-variant linear system with input
a(t), and impulse response

ht,u) = 2 p(t — nT, + €)du — nT))

i fogtad

We can then use the input-output SCD relation (68).
Or we can recognize that this particular periodically
time-variant system is composed of a product modu-
lar, that implements an impulse sampler, followed by
a linear time-invariant pulse-shaping filter with im-
pulse-response function h(t) = p(t), as shown in Fig.
12. We can then use the input-output SCD relation
(57), as it applies to impulse sampling, together with
the relation (49) for filtering. The result is

p(t)
Filter

s(t) =3 8(t-nTy)
n

1 ... m
=2, = exp(ian—=—t
%TO p( TETO)

Fig. 12. Interpretation of PAM signal generator as the
cascade of an impulse sampler and a pulse-shaping
filter.

SY(f) = %P(f+ a/ 2)P*(f — al/2)

14

s a+ml/T, i i o _ﬁ i2Tae
BRI <f i 2n,> e @
Using the SCD aliasing formula (62) for a(t) we can re-
express (74) as

1
S}X(f)=7

14

P(f + a/2P*(f — /2)SE(f)e>™ (75

where S&(f) is the SCD for the pulse-amplitude se-
quence {a,}. Having assumed that {a,} is purely sta-
tionary, and using the periodicity property (exhibited
by all SCDs for discrete time-series [1, Chapter 11, Sec.
Cl
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S.(f+ al2) fora =kT,

i (76)
0 otherwise

§a() = [

fork =0, +1, £2, - + -, we can express (75) as
S3(f) =

TLP(f—i- o/ P*(f — a/2)S,(f + al2)e?™  for o = kIT,

4

0 otherwise
a7
A graph of the magnitude of this SCD for the full-duty-
cycle rectangular pulse

185 for|lhi=eT 2
p = [ (78)

0  otherwise
and a white-noise amplitude sequence with PSD
iS00 =1 (79)

is shown in Fig. 13.

It follows from (77) that for all « = k/T, for which
Sa(f + a/2) # 0 and P(f + a/2)P*(f — o/2) # O, the
spectral correlation coefficient p%( f) is unity in mag-
nitude:

loS(H) =1 (80)

Thus, all spectral components outside the band | f| <
1/2 T, are completely redundant with respect to those
inside this band. Techniques for exploiting this spec-
tral redundancy are described in the next section.

Fig. 13. Magnitude of the spectral-correlation den-
sity for a PAM signal with full duty-cycle rectangular
pulses.

By inverse Fourier transforming the SCD (77), we ob-
tain the cyclic autocorrelation function

3

% R,(nT)ry(r — nT)e™™

ik for o = k/T,
Rf:(T) = To"=_
0

otherwise
(81)

where

= S PO Dpt el 2)es Tadt — 7 N(8)
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For a white-noise amplitude-sequence as in (79), (81)
reduces to

Ri(r) = Ti re(n e for a = kT, (83)

o

and, for a rectangular pulse as in (78), this yields the
temporal correlation coefficient

sin [1a(Ty = [7D] izrac

for|7| = T, (84a)
T,

yi(r) =

which peaks for o = 1/T, at 7 = T,/2, where it takes
on the value

ly&(T,/2)| = Ur fora = 1/T, (84b)

That is, the strongest possible spectral line that can be
regenerated in a delay-product signal (cf. remark made
following (20)) for this particular PAM signal occurs
when the delay equals half the pulse period. In con-
trast to this, when the more bandwidth-efficient pulse
whose transform is a raised cosine is used, the optimal
delay for sine-wave regeneration is zero.

An especially simple example of a sequence of pulse
amplitudes {a,} is a binary sequence with values +1.
If we consider 7 = O in the delay-product signal, then
we obtain

oo

YO = kP = 2 aa,p@ - nT, + opt — mT, + ¢

If the pulses do not overlap (i.e., if p(t) = O for |t| =
T,/2), this reduces to

> aﬁpz(t —nT, + ¢€)

n=—o

Yo(®) =

= 2 pz(t — nT, + ¢€)

n=—o

which is periodic with period T, and therefore contains
finite-strength additive sine-wave components with
frequencies k/T, (except when p(t) is flat as in (78)). In
this very special case where {a,} is binary and the
pulses do not overlap, there is no random component
in yo(t); but, for 7 # 0, y,(t) contains both sine-wave
components and random components (even when p(t)
is flat).

Example 8: ASK and PSK. By combining the ampli-
tude-modulated sine wave and the digital amplitude-
modulated pulse train, we obtain the amplitude-shift-
keyed (ASK) signal

x(t) = a(t) cos 2wf,t + 0) (85a)

where

at) = X apt = nT, + ¢ (85b)

and {a,} are digital amplitudes. By using the SCD re-
lation (57) for waveform multiplication and the result
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(77) for the SCD of a(t), we can obtain the SCD for the
signal (85) by simply convolving the SCD functions
shown in Figs. 10a and 13. The result is shown in Fig.
14a, where the cycle frequencies shown are o = +2f,
+ m/T, and o = m/T, for integers m, and f, = 3.3/T,.

10/T,

10/To

-5/To

-5/To

Fig. 14. Magnitude of spectral-correlation densities.
a) BPSK, b) QPSK, and c) SQPSK. (Each signal has a
rectangular keying envelope.)

For a binary sequence with a,, = +1, this amplitude-
shift keyed signal, with the pulse (78), is identical to
the binary phase-shift keyed (BPSK) signal

x(f) = sin {2@;: ol g 2 apt - nT(,)} (86)

since shifting the phase of a sine wave by +/2 is the
same as shifting it by #/2 and multiplying its ampli-
tude by 4+ 1. Other commonly used types of phase-shift-
keyed signals include quaternary phase-shift keying
(@PSK) and staggered QPSK (SQPSK). The details of
these signal types are available in the literature (see,
for example [1, Chapter 12, Sec. EJ, [2, Chapter 12, Sec.
12.5]). Only their SCD-magnitude surfaces are shown
here in Figs. 14b and 14c, where again f, = 3.3/T,,.

It is emphasized that the three signals BPSK, QPSK,
and SQPSK differ only in their carrier phase shifts and
pulse timing and, as a result, they have identical PSDs,
as shown in Fig. 14 (consider « = 0). However, as also
shown in Fig. 14, these differences in phase and tim-
ing result in substantially different SCDs (consider «
# 0). That is, the phase-quadrature component pres-
ent in QPSK but absent in BPSK results in cancellation
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of the SCD at cycle frequencies associated with the
carrier frequency (viz., « = +2f, + m/T, for all integers
m) in QPSK. Similarly, the pulse staggering by T,/2
(between the in-phase and quadrature components)
present in SQPSK but absent in QPSK results in the
SCDs being cancelled at o = +2f, + m/T, only for even
integers m, and at o = m/T, only for odd integers m in
S@QPSK. This again illustrates the fact that the SCD
contains phase and timing information not available
in the PSD. In fact, as formulas (43) and (77) reveal,
the carrier phase 0 in (31) and the pulse timing e in (73)
are contained explicitly in the SCDs for these carrier-
and pulse-modulated signals.

The ideal SCD function (37) is derived by idealizing
the practical spectral correlation measurement de-
picted in Fig. 6, by letting the averaging time T in the
correlation measurement approach infinity and then
letting the spectral resolving bandwidth B .approach
zero. Consequently, the practical measurement with
finite parameters T and B can be interpreted as an es-
timate of the ideal SCD. This estimate will be statisti-
cally reliable only if TB >> 1. Numerous alternative
implementations of this practical measurement are
described in [1, Chapter 13], and computationally ef-
ficient digital architectures for some of these, which
are developed in [3] and [4], are presented in this issue
in [B]. The statistical behavior (bias and variance) of

10/To

-5/To

10/To

-5/To

Fig. 15. Magnitude of measured spectral-correlation
density (SCD) estimated from a finite data record for
the QPSK signal whose ideal SCD is shown in Fig.
14b. a) Record length is 128 time samples, and four
adjacent frequency ( f) bins are averaged together. b)
Record length is 32,768 and 1,024 adjacent fre-
quency (f) bins are averaged together. (The sam-
pling rate in both a) and b) is 10/T,, where 1/T, is the
keying rate of the QPSK signal.)
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such estimates is analyzed in detail in [1, Chapter 15,
Sec. B]. For the purpose of making the applications de-
scribed in the next section more concrete, it suffices
here to simply point out that because the SCD S%( f)
is equivalent to a particular case of the conventional
cross spectral density S,,(f) (cf. (40)), one can envi-
sion any of the conventional methods of cross spectral
analysis as being used in the applications.

Example 9: QPSK. As an example, the result of using
the Wiener-Daniell method [1], based on frequency
smoothing of the cross-periodogram of u(t) and v(t) (the
conjugate product of their FFTs), is illustrated in Fig.
15 for a QPSK signal with carrier frequency f, = 1/4 T
and keying rate 1/T, = 1/8Ts, where 1/T is the sam-
pling rate. An FFT of length 128 (T = 128T,) was used
in Fig. 15a, and only four frequency bins were aver-
aged together (B = 4/T), whereas in Fig. 15b, the FFT
length used was 32,768 (T = 32,768 T) and 1,024 bins
were averaged together (B = 1,024/T). It is easily seen
by comparing with the ideal SCD in Fig. 14b that un-
less TB >> 1, the variability of the SCD estimate can
be very large.

®,

EXPLOITATION OF
PECTRAL REDUNDANCY

" m

The existence of correlation between widely sepa-
rated spectral components (separation equal to o) can
be interpreted as spectral redundancy. The meaning
of the term redundancy that is intended here is essen-
tially the same as that used in the field of information
theory and coding. Specifically, multiple randomly
fluctuating quantities (random variables) are redun-
dant if they are statistically dependent, for example,
correlated. In coding, undesired redundancy is re-
moved from data to increase the efficiency with which
it represents information, and redundancy is intro-
duced in a controlled manner to increase the reliability
of storage and transmission of information in the pres-
ence of noise by enabling error detection and correc-
tion.

Here, redundancy is to be exploited to enhance the
accuracy and reliability of information gleaned from
the measurements of corrupted signals, but the term
information is interpreted in a broad sense. For in-
stance, it includes the six examples outlined in the in-
troductory section. In all these examples, the perfor-
mance of the signal processors that make the decisions
and/or produce the estimates can be substantially im-
proved by suitably exploiting spectral redundancy.
The degree of improvement relative to the perfor-
mance of more commonly used signal processors that
ignore spectral redundancy depends on both the se-
verity of the signal corruption (noise, interference, dis-
tortion) and the degree of redundancy in the signal x(t),
as measured by the magnitude of the spectral corre-
lation coefficient |p%( f)| defined in the preceding sec-
tion.

The primary feature of spectral redundancy that en-
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ables it to be readily exploited is its distinctive char-
acter. That is, most manmade signals exhibit spectral
redundancy, but most noise (all noise that is not cy-
clostationary) does not. Furthermore, in many practi-
cal situations where multiple signals of interest, as well
as signals not of interest (interference), overlap in both
time and frequency, their spectral redundancy func-
tions are nonoverlapping because their cycle frequen-
cies o are distinct. This is a result of signals having
distinct carrier frequencies and/or pulse rates or key-
ing rates, even when occupying the same spectral
band.

The distinctive character of spectral redundancy
makes signal selectivity possible. Specifically, for the
received signal

L,

x(0) = 2 (@) + n( 87)

where the {s,(t)}¥ include both signals of interest and
interference—all of which are statistically indepen-
dent of each other—and where n(t) is background
noise, we have the SCD

SH(f) = Z SE(f) + SL(f) (88)

But if the only signal with the particular cycle fre-
quency ay is s (t), then (for measurement time T — o)
we have

S:(f) = 850 (89)

regardless of the temporal or spectral overlap among
{s(t)}} and also n(t).

Example 10: BPSK Signal in Multiple AM Interfer-
ence and Noise. To illustrate the concept of signal se-
lectivity, let us consider the situation in which a
broadband BPSK signal of interest is received in the
presence of white noise and five interfering AM signals
with narrower bandwidths that together cover the en-
tire band of the BPSK signal. The noise and each of the
five interfering signals have equal average power.
Therefore, the total signal-to-interference-and-noise
rate (SINR) is approximately —8 dB. The BPSK signal
has carrier frequency f, = 0.25/Ts and keying rate «,
= 0.0625/Ts. It has full-duty-cycle half-cosine enve-
lope, which results in an approximate bandwidth of B,
= 0.1875/Ts. The five AM signals have carrier frequen-
cies fi = 0.156/Ts, fo = 0.203/Ts, f3 = 0.266/Ts, fu =
0.318/Ts, f5 = 0.375/T,, and bandwidths B; = 0.04/T,
B, = 0.05/Ts, B3 = 0.045/T;, By = 0.04/Ts, Bs =
0.08/Ts. With the use of the same measurement pa-
rameters (FFT length = 32,768) as in the preceding
Example 9 for the measurement of the SCD of the QPSK,
the SCD for these six signals in noise was measured.
The resultant SCD magnitude is shown in Fig. 16a.
Also shown in Figs. 16b and 16¢ are the SCD magni-
tudes for the BPSK signal alone and for the five AM
interferences plus noise alone. Although all six signals
exhibit strong spectral redundancy (|o%(f)| = 1), the
cycle frequencies « at which this redundancy exists
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Fig. 16. Magnitudes of estimated spectral-correla-
tion densities (SCDs). a) SCD magnitude for a BPSK
signal corrupted by white noise and five AM interfer-
ences. b) SCD magnitude for the BPSK signal alone.
¢) SCD magnitude for the white noise and five AM in-
terferences. (The power levels, center frequencies,
and bandwidths for the signals and noise are speci-
fied in the text; the record length used is 32,768 time-
samples and 1,024 adjacent frequency (f) bins are
averaged together.)

are distinct because the carrier frequencies are all dis-
tinct. Thus, an accurate estimate of the SCD for the
BPSK signal is easily extracted from the SCD for the
corrupted measurements. Similarly, accurate esti-
mates of the SCDs for each of the five AM signals can
be extracted. Consequently, any information con-
tained in these SCDs can be reliably extracted.

In connection with this example, let us briefly con-
sider some of the signal processing tasks outlined in
the introductory section.
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We can see from Fig. 16 that knowing the particular
pattern of the SCDs for BPSK and AM signals (see Figs.
8 and 14) enables us to detect the presence of six sig-
nals and to classify them according to modulation
type. This would be impossible if only PSD (SCD at o
= 0) measurements were used. One approach to ex-
ploiting the spectral redundancy of a signal to detect
its presence is to generate a spectral line at one of its
cycle frequencies and then detect the presence of the
spectral line (cf. the earlier section on SCD). It has been
shown that the maximum-SNR spectral-line generator
for a signal s(t) is additive Gaussian noise and interfer-
ence with PSD S, ( f) produces the detection statistic
[1, Chapter 14, Sec. E]

Ss(H*

2 S_m S () S,(f + a/2)S,(f — a/2) 9f 2430

for comparison to a threshold. In (90), Si[f) is a crude
estimate of S§( f) obtained by deleting the time-aver-
aging operation ( - ) and the limiting operation from
(37) and choosing B equal to the reciprocal of the rec-
ord length of x(t). It can be shown that (90) is equiva-
lent to whitening the noise and interference using a
filter with transfer function 1/[S,( f)]*2, and then cor-
relating the measured SCD for the noise-and-interfer-
ence-whitened data with the ideal SCD of the signal
(transformed by the whitener) to be detected [1, Chap-
ter 14, Sec. E].

A detailed study of both optimum (e.g., maximum-
likelihood and maximum-SNR) and more practical sub-
optimum detection on the basis of SCD measurement
is reported in [6], and receiver operating characteris-
tics for these detectors obtained by simulation are pre-
sented in [7].

Once the six signals have been detected and classi-
fied, their carrier frequencies and phases and the key-
ing rate and phase of the BPSK signal can—with suf-
ficiently long signal duration—be accurately estimated
from the magnitude and phase of the SCD (cf., f,, 6 in
(43) and T,, € in (77)). It is clear from the theory dis-
cussed in preceding sections that SCD measurement
is intimately related to the measurement of the ampli-
tudes and phases of sine waves generated by quadratic
transformations of the data. Thus, the fact that an SCD
feature occurs at a = 2f, for each carrier frequency f,
is a direct result of the fact that a sine wave (spectral
line) with frequency o = 2f, and phase 26 can be gen-
erated by putting the data through a quadratic trans-
formation. Similarly, for the SCD feature at a = 1/T,,
where 1/T, is the keying rate, a spectral line with fre-
quency a = 1/T, and phase e can be quadratically gen-
erated. Consequently, SCD measurement is useful
either directly or indirectly for estimation of synchro-
nization parameters (frequencies and phases) required
for the operation of synchronized receivers. The link
between synchronization problems and spectral re-
dundancy is pursued in [8].
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The cross SCD S¢&,.( f) for two signals x(t) and w(t) is
defined in a way that is analogous to the definition (37)
and (24) of the auto SCD S%( f). That is, x(t) in (24a) is
simply replaced with w(t). If we were to compute the
cross SCD for two sets of corrupted measurements ob-
tained from two reception platforms, then the cross

' SCD magnitude would look very similar to that in Fig.
16 (except that the low flat feature at « = O, which rep-
resents the PSD of the receiver noise, would be ab-
sent), but the phase of the cross SCD would contain a
term linear in f at each value of o where the auto SCD
of one of the six signals is nonzero. The slope of this
linear phase equals the time-difference-of-arrival
(TDOA) of the wavefront at the two platforms for the
particular signal with that feature. That is, for x(t) from
one platform given by (87) and w(t) from the other
platform given by

L
we) = 2 si(t = 1) +m® 1)

where {t,} are the TDOAs, we have
S5 G = SeA) e ! 92)

provided that s,(t) is the only signal with cycle fre-
quency «. Consequently, accurate estimates of the
TDOAs of each of these signals can be obtained from
the cross SCD measurement, regardless of temporal
and spectral overlap or of the closeness of the individ-
ual TDOAs. In other words, the signal selectivity in the
« domain eliminates the problem of resolving TDOAs
of overlapping signals. Detailed studies of signal-selec-
tive TDOA estimation are reported in [9] and [10],
where various algorithms are introduced and their
mean-squared-error performance is evaluated.

Continuing in the same vein, we consider receiving
these same six signals in noise with an antenna array.
Then we can use the signal selectivity in « to blindly
(without any training information other than knowl-
edge of the cycle frequencies « of the signals) adapt a
linear combiner of the outputs from the elements in
the array to perform spatial filtering. Specifically, by
directing the linear combiner to enhance or restore
spectral redundancy in its output at a particular cycle
frequency «, the combiner will adapt to null out all
other signals (if there are enough elements in the array
to make this nulling possible). This behavior of the
combiner can be seen from the fact that the spectral
correlation coefficient for x(t) in (87) is (from (89))

Sa(f)
[S{(f + /) S(f — /2]

pE(h). = 93)

and, similarly, the temporal correlation coefficient for
the frequency-shifted versions of x(t) is
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R
V(1) = R.0) (94)

Thus, nulling signals other than s,(t) in the output x(t)
of the linear combiner reduces the denominators in
(93) and (94) but not the numerators. Hence, o )
and |y%(7)| can be increased by nulling any of the sig-
nals other than s,(t). Moreover, the linear combiner
needs no knowledge of the reception characteristics of
the array (no calibration) to accomplish this nulling. A
thorough study of spectral-coherence-restoral algo-
rithms that perform this blind adaptive spatial filter-
ing is reported in [11].

We can take this approach one step further if we do
indeed have calibration data for the reception charac-
teristics of an antenna array because we can then also
exploit signal selectivity in « to perform high-resolu-
tion direction finding (DF) without some of the draw-
backs (described below) of conventional methods for
high-resolution DF, such as subspace fitting methods
[12], that do not exploit spectral redundancy. In par-
ticular, let us consider the narrowband model

L
x(1) = ;Zl a(®) s;(® + n(® (95)

for the analytic signal (or complex envelope) x(t) of the
received data vector of dimension r, where a(f) is the
direction vector associated with the f-th received sig-
nal s, (t), and the function a(-) is specified by the cali-
bration data for the array. Then, by working with the
magnitude and phase information contained in the r
X 1 cyclic correlation matrix

Ri(r) = R3(r) = a(6) R(7) a'(®)) (96)

for some fixed 7 (where t denotes conjugate trans-
pose), instead of working with the information con-
tained in the conventional correlation matrix

L L
RO = X R, (0) + R,0) = 2 a0 R,(0) a'6) + RO
@7

we can avoid the need for advance knowledge of the
correlation properties of the noise R,(0) and interfer-
ence Rg(0) for ¢ # k, and we can avoid the constraint
imposed by conventional methods that the number of
elements in the array exceed the total number L of sig-
nals impinging on the array. Also, by resolving signals
in «, we need not resolve them in direction of arrival.
Consequently, superior effective spatial resolution is
another advantage available through the exploitation
of spectral redundancy. As an example of a cyclic DF
method, we can exploit the fact that the r X r matrix
in (96) has a rank of unity and the (r — 1)-dimensional
null space of this matrix is orthogonal to a(fy). There-
fore, we can choose as our estimate of ) that value 0sc
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which renders a(f,) most nearly orthogonal to the null
space of an estimate of the matrix R §(7) obtained from
finite-time averaging. A thorough study of this ap-
proach to signal-selective DF is reported in [13], where
various algorithms are introduced and their perfor-
mances are evaluated.

In the preceding paragraphs of this section, the sig-
nal processing tasks (with the exception of spatial fil-
tering) involve decisions or parameter estimation, but
do not involve estimating (or extracting) an entire sig-
nal or an information-bearing message carried by the
signal. Nevertheless, for the signal-extraction prob-
lem, the utility of spectral redundancy is just as ap-
parent, as explained in the following paragraphs.

Spectrally redundant signals that are corrupted by
other interfering signals can be more effectively ex-
tracted in some applications by exploiting spectral
correlation through the use of periodic or multiply-pe-
riodic linear time-variant filters, instead of the more
conventional time-invariant filters. These time-variant
filters enable spectral redundancy to be exploited for
signal extraction, because such filters perform fre-
quency-shifting operations (cf. (72)) as well as the fre-
quency-dependent magnitude-weighting and phase-
shifting operations performed by time-invariant fil-
ters. The utility of this is easily seen for the simple ex-
ample in which interference in some portions of the
spectral band of the signal is so strong that it over-
powers the signal in those partial bands. In this case,
a time-invariant filter can only reject both the signal
and the interference in those highly corrupted bands,
whereas a time-variant filter can replace the rejected
spectral components of the signal of interest with
spectral components from other uncorrupted (or less
corrupted) bands that are highly correlated with the
rejected components from the signal.

AM is an obvious example of this because of the com-
plete redundancy that exists between its upper side-
band (above the carrier frequency) and its lower side-
band (below the carrier frequency). Although this
redundancy is exploited in the conventional double
sideband demodulator to obtain a 3 dB gain in SNR
performance, it is seldom exploited properly when par-
tial-band interference is present. The proper exploita-
tion in this case is illustrated in Fig. 17. Figure 17a
shows the spectral content (Fourier transform magni-
tude of a finite segment of data) for an AM signal with
partial-band interference in the upper sideband. Fig-
ure 17b shows the spectral content after the interfer-
ence has been rejected by time-invariant filtering. The
signal distortion caused by rejection of the signal com-
ponents along with the interference can be completely
removed by simply shifting replicas of perfectly cor-
related components from the lower sideband into the
upper sideband, and then properly adjusting their
magnitudes and phases, as suggested in Fig. 17c. A
less easily explained example involves two spectrally
overlapping linearly modulated signals such as AM,
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Fig. 17. Illustration of power spectral densities
(PSDs) for cochannel-interference removal with min-
imal signal distortion. a) PSD for AM signal plus in-
terference. b) PSD after interference removal by time-
invariant filtering. c) PSD after distortion removal by
Jfrequency-shifting.

PAM, ASK, PSK, or digital QAM (quadrature AM). It
can be shown that, regardless of the degree of spectral
and temporal overlap, each of the two interfering sig-
nals can be perfectly extracted by using frequency
shifting and complex weighting, provided only that
they have either different carrier frequencies or phases
(AM, ASK, BPSK) or different keying rates or phases
(PAM, ASK, PSK, digital QAM) and at least 100% ex-
cess bandwidth (bandwidth in excess of the minimum
Nyquist bandwidth for zero intersymbol interference).
In addition, when the excess bandwidth is (L — 1)
100%. L spectrally overlapping signals can be sepa-
rated if they have the same keying rate but different
keying phases or carrier frequencies. Also, when
broadband noise is present, extraction of each of the
signals can in many cases be accomplished without
substantial noise amplification.

To illustrate how spectrally overlapping signals can
be separated, we consider the case of two QPSK sig-
nals with unequal carrier frequencies and unequal
keying rates and 100% excess bandwidth. The graphs
in Fig. 18 show the overlapping spectra for these two
signals. Starting from the top of this figure, each pair
of graphs illustrates the result of one filtering and fre-
quency-shifting stage. The sub-band shaded with a
single set of parallel lines represents spectral compo-
nents from one signal that are not corrupted by the
other signal. These components are selected and com-
plex-weighted by a filter and then frequency-shifted to
cancel the components in another sub-band, which is
identified by crosshatched shading. The result of this
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cancellation is shown in the second graph (which con-
tains no shading) of each pair. After five such stages,
a full sideband of each of the two QPSK signals has
been completely separated. In each stage the complex
spectral redundancy between components separated
by the keying rate is being exploited, and this same
spectral redundancy can be used to reconstruct the
entire QPSK from either one of its sidebands.
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Fig. 18. Illustration of power spectral densities for
cochannel-QPSK-signal separation. The keying rates
of the two signals are different and the carrier fre-
quencies also are different. Each QPSK signal has a

positive-frequency bandwidth equal to twice its key-
ing rate.

The five cascaded stages of filtering, frequency-shift-
ing, and adding operations can be converted into one
parallel connection of frequency-shifters, each fol-
lowed by a filter, simply by using standard system-
transformations to move all frequency shifters to the
input.

A final example involves the reduction of the signal
distortion due to frequency-selective fading caused by

APRIL1991

multipath propagation. Straightforward amplification
in faded portions of the spectrum using a time-invari-
ant filter suffers from the resultant amplification of
noise. In contrast to this, a periodically time-variant
filter can replace the faded spectral components with
stronger highly correlated components from other
bands. If these correlated spectral components are
weaker than the original components before fading
there will be some noise enhancement when they are
amplified. But the amount of noise enhancement can
be much less than that which would result from the
time-invariant filter, which can only amplify the very
weak faded components.

Detailed studies of the principles of operation and the
mean-squared-error performance of both optimum and
adaptive frequency-shift filters are reported in [1,
Chapter 14, Secs. A, BJ, [2, Chapter 12, Sec. 12.8], [3],
[14]-[17].

If a signal is correlated with time-shifted versions of
itself (i.e., if it is not a white-noise signal), then its past
can be used to predict its future. The higher the degree
of temporal coherence |’y2(7) , the better the prediction.
A signal that exhibits cyclostationarity is also corre-
lated with frequency-shifted versions of itself. Conse-
quently, its future can be better predicted if frequency-
shifted versions of its past are also used, so that its
spectral coherence as well as its temporal coherence
can be exploited. For example, if x(nTy) has cycle fre-
quencies {a;, * * * , ay-1} then we can estimate the
future value x[(n + k) T for some k > O using a linear
combination of the pasts of the N signals

x,(nT) = x(nT) e>™"" forg =0, ,N—1 (99

That is, the predicted value is given by

M—-1N-1
£+ WT] = B 2 b o) xl(n = mT] (99

where M is the memory-length of the predictor. The set
of MN prediction coefficients that minimize the time-
averaged (over n) squared magnitude of the prediction
error xX[(n + k)Ts] — x[(n + k)Ts] can be shown to be
fully specified by the cyclic correlation functions for
the N cycle frequencies. Specifically, the set of MN
coefficients {hy(m)} is the solution to the set of MN
simultaneous linear equations

M+k—-1 N—1

> 2 hym) R~ *[(n — m)T}] = R;*(nT)

m=k q=0

(100)

for nz=slk bt SMEE s lan dip =0t ¢ L N G=El
Also, the percent accuracy of prediction is determined
solely by the temporal coherence functions for the fre-
quency translates, which are the discrete-time ana-
logues of (29). It can be shown that for each cycle fre-
quency o4 exploited, there is a corresponding increase
in the percent accuracy of the prediction.
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In the same way that time-invariant autoregressive
model-fitting of stationary time-series data is mathe-
matically equivalent to time-invariant linear predic-
tion [1, Chapter 9, Sec. B], it can be shown that
frequency-shift (or multiply-periodic time-variant) au-
toregressive model-fitting is mathematically equiva-
lent to frequency-shift linear prediction. Studies of this
problem are reported in [18]-[24].

HIGHER-ORDER CYCLOSTATIONARITY

Some types of modulated signals like QPSK and dig-
ital QAM (quadrature AM) exhibit second-order cyclo-
stationarity associated with the carrier only after the
signal has gone through a nonlinear transformation,
like a signal squarer or signal quadrupler. In other
words, fourth-order (or higher-order) time-delay prod-
ucts, such as (for real x(t))

Vo on® ExC+ 1) XC + )X + 1) x@ + 75 (101)
exhibit a spectral line at the fourth (or higher) har-
monic « of the carrier frequency,

(7 ey =0 (102)

even though the second order time-delay product

Yrnl®) £ Xt + 1) X + 1) (103)
(which includes y,(t) & x(t + 7/2) x(t — 7/2) from the
earlier section headed ‘‘CYCLOSTATIONARITY'’ as a spe-
cial case) does not exhibit a spectral line at the second
harmonic,

et =0 (104)
As aresult, such signals exhibit nonzero nth order mo-
ments of spectral components only for n = 4; that is,
the fourth-order (or higher-order) spectral moment
function

iR & EH}) (50 ® 1017 [0 ® x0)]

< [Hh0) ® x;(017 W) ® x,0]7) (105)
where
200 S X0 ST fory = 122,13, 4 (106)
and
a=()A+ (LT ()BT (A -(107)

can be nonzero for some o # O, even though the sec-
ond order spectral moment function

SIA(F) & lim ¢ [R0) @ x (0] (W) ® M1y (108)
B—0
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(which includes S§( f) in the earlier section on SCD, by
choosing x;(t) = u(t) and x,(t) = v(t), as a special case)
iszeroforalla = (=) f; + (=) fo # 0. (In (105) (*) de-
notes independent optional conjugation and in (107)
(—) denotes corresponding independent optional mi-
nus sign. That is, depending on the particular spectral
moment of interest, one can either include or exclude
any of the optional conjugations and corresponding
minus signs.)

The same is true for cyclostationarity and spectral
moments associated with pulse and keying rates of
some severely bandlimited digital signals such as par-
tial-response-coded digital PAM with positive-fre-
quency pulse-bandwidth less than half the pulse rate.

For such signals, exploitation of the higher-order cy-
clostationarity or spectral redundancy is, in principle,
possible, but little progress has yet been made. A not-
able exception is the long established work on syn-
chronization of communication receivers, where
higher-order nonlinearities are commonly used to gen-
erate sine waves at harmonics of carrier frequencies to
be used to synchronize local oscillators for demod-
ulation of received signals. Recent progress on this
problem is reported in [25].

A much more recent application of higher-order cy-
clostationarity is reported in [26], where new methods
for identifying the input-output relations of nonlinear
systems with memory are developed. These methods
make use of second-order, third-order, fourth-order,
and so on, cyclostationary inputs to identify the sec-
ond-order (quadratic), third-order (cubic), fourth-order
(quartic), etc., nonlinear components of the overall
nonlinear system.

The foundation for developing the generalization of
the spectral redundancy theory of cylcostationarity
from the second order [1, Chapter 10-14], [2, Chapter
12] to higher orders is presented in [27] and [28]. Also,
the foundation for the strict sense theory of cyclosta-
tionarity, based on fraction-of-time probability (or tem-
poral probability), in contrast to the wide-sense theory
described in this article, which is based on temporal
moments, is developed in [1, Chapter 15] and [29].

CONCLUSION AND FURTHER
READING

Spectral correlation and more general spectral re-
dundancy associated with higher-order spectral mo-
ments are common in manmade signals. Almost all
types of modulated signals encountered in communi-
cations and telemetry systems and also in some con-
trol, radar, and sonar systems exhibit spectral redun-
dancy as a direct result of underlying periodicity
associated with the modulation. With the substantial
increase in the sophistication of signal processors that
can be built by using modern digital technology, newly
developing techniques for exploiting spectral redun-
dancy promise significant improvements in the capa-
bility of signal processors for extracting information
from corrupted signals for such purposes as detection
and estimation.

This article provides a concise introduction to the rel-
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atively new spectral-correlation theory of modulated
signals and briefly illustrates the utility of this theory
for a variety of signal processing problems.

Readers interested in more technical but still concise
introductions to this theory and its applications are re-
ferred to [30] and [31]. A comprehensive treatment of
the theory is given in [1, Part II], and some of its prob-
abilistic counterpart formulated in terms of stochastic
processes is given in [2, Chapter 12]. Details on the
various types of modulated signals and the applica-
tions briefly described in this paper and additional as-
sociated theoretical development can be found in [1,
Part II], [2, Chapter 12], and [3]-[31] and references
cited therein. Much more work is needed for develop-
ment of algorithms to exploit spectral redundancy, for
evaluation of the performance of such algorithms, and
for further development of the theory of higher-order
spectral redundancy.
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Glossary of Acronyms and Statistical Terms
Numbers in parentheses following a term listed
below are keyed to Equation numbers within this
article, and indicate where that term is defined
or discussed.

AM - Amplitude modulation - (5)

ASK - Amplitude-shift keying - (85)
Autocorrelation - (21)

BPSK - Binary phase-shift keying - ff. (86)
Cycle frequency - ff. (29)
Cycle spectrum - ff. (29)
Cyclic autocorrelation - (20)

CSD - Cyclic spectral density - ff. (39)
Cyclostationarity - ff. (29)
Periodicity, first-order - ff. (3)
Periodicity, second-order - ff. (18)

PSK - Phase-shift keying - ff. (86)

PSD - Power spectral density - (36)

PAM - Pulse-amplitude modulation - (11)
Pure stationarity - ff. (29)

QAM - Quadrature amplitude modulation - ff. (97)

QPSK -  Quaternary phase-shift keying. - ff. (86)
Spectral-correlation coefficient - (42)

SCD - Spectral-correlation density - (37)

SQPSK - Staggered quaternary

phase-shift keying - ff. (86)
Stationarity - ff. (29)
Temporal correlation coefficient of
frequency-translates - (29)




Computationally Efficient
Algorithms for
Cyclic Spectral Analysis

RANDY S. ROBERTS, WILLIAM A. BROWN,
and HERSCHEL H. LOOMIS, JR.

spectral analysis algorithms becomes increas-

ingly evident as cyclic spectral analysis grows in
importance as a signal analysis tool [1]. For many signal
analysis problems the computational complexity of
cyclic spectral analysis far exceeds that of conventional
spectral analysis. The reason for the computational
complexity of cyclic spectral analysis lies in the nature
of the estimation problem. Essentially, cyclic spectral
analysis algorithms estimate the correlation between
spectral components of signals. In the simplest case the
spectral components of a real-valued signal are corre-
lated, whereas in the most general case spectral com-
ponents of two complex-valued signals are correlated.
It is the potentially large number of correlation com-
putations, rather than computing the spectral com-
ponents, that makes cyclic spectral analysis
computationally complex. Over the last six years several
computationally efficient cyclic spectral analysis algo-
rithms have evolved from the
original methods introduced
in [2] and [3]. The objective of
this paper is to present these

The need for computationally efficient cyclic
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algorithms and describe their signal processing, com-
putational, and structural properties.

Cyclic spectral analysis algorithms generally fall into
two classes: those that average in frequency (frequency
smoothing) and those that average in time (time
smoothing). Although both classes of algorithms
produce similar approximations to the cyclic spectrum,
time smoothing algorithms are considered to be more
computationally efficient for general cyclic spectral
analysis. Frequency smoothing algorithms can be com-
putationally superior to time smoothing algorithms in
certain restricted cases, e.g., for estimating the cyclic
spectrum for a few values of cycle frequency or estimat-
ing the cyclic spectrum for small time-frequency resolu-
tion product [8]. With computational efficiency for
general cyclic spectral analysis as our primary motiva-
tion, we focus our attention in this paper on time
smoothing algorithms.

Our discussion of time smoothing algorithms begins
by describing an algorithm
based on the time smoothed
cyclic cross periodogram. This
algorithm is considered to be
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the most fundamental time smoothing algorithm and
serves to illustrate the general characteristics of time
smoothing algorithms. A mathematical description of
the basic algorithm that lends itself to the study of
algorithm attributes such as frequency and cycle fre-
quency resolution, and also computational complexity,
is developed. The mathematical description is quite
general and we apply it to other algorithms as well. From
there we develop successively more sophisticated (and
substantially less computationally complex) algorithms
by refining the basic algorithm. After several intermedi-
ate algorithms we arrive at two computationally efficient
algorithms: the FFT Accumulation Method (FAM) and
the Strip Spectral Correlation Algorithm (SSCA).

In order to fully examine the algorithms we consider
the problem of estimating the cyclic cross spectrum of two
complex-valued sequences. This problem is the most
general and computauonally demanding problem of digi-
tal cyclic spectral analysis. Slmphfxcauon of the resulting
expressions to special cases of the cross cyclic spectrum
of two complex-valued sequences, such as the cyclic
spectrum of a single real-valued sequence, are easily
found by replacing references to y(n) with x{n) where
needed. Computational and structural simplifications
arising from the specialization are described.

BASIC TIME SMOOTHING
ALGORITHMS

An implementation of the time
smoothed cyclic cross periodogram

All time smoothing algorithms are based on the time
smoothed cyclic cross periodogram [2]:

Sy 3 (Xelnfro2) Y g-oi) (M)

! Complete cyclic spectral analysis of two complex sequences
x(n) and y(n) requires the estimation of both S(f) and Sq

APRILT991

The time smoothed cyclic cross periodogram has the
physical interpretation of correlating spectral compo-
nents of x(n) with spectral components of y(n) over a
time span of At seconds. The spectral components
Xr(nf+o/2) and Yrnjfo/2), also called complex
demodulates, are the complex envelopes of narrow-
band, bandpass components of a signal. Figure 1 il-
lustrates the processing for a special case of Equation
(1), namely, the time smoothed cyclic periodogram of a
real signal. A data tapering window of length T seconds
slides over the data for a time span of At seconds. At
each instant the complex demodulates of the data
within the window are computed. (Details of computing
the complex demodulates are considered later. For now,
note that the demodulates are lowpass sequences and
have bandwidths on the order of the reciprocal of the
data tapering window, i.e., Af = 1/T Hz.) After the
complex demodulates have been computed, they are

sy -

X0

f

At=1/Ac,

time

“ “/ WA
e

T Af= T frequency

-— o —>

Fig. 1. Estimating the time smoothed cyclic periodogram of a
single real-valued signal.

This work was supported in part by a grant from ESL Inc.
with partial matching support from the California State
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Fig. 2. Implementation of the time smoothed cyclic cross
periodogram.

correlated by time averaging their conjugate product
over an interval of At seconds to produce estimates of
the cyclic spectrum. To estimate the cyclic spectrum at
the point (fo, ao), demodulates separated in frequency
by an amount op and centered about a midpoint of fo
are correlated. The quantities At and Af are referred to
as the time and frequency resolutions of the point
estimate.

A system based on Equation (1) is illustrated in Fig. 2
(for now let the time decimation parameter L = 1 ). In
this approach the complex demodulates are obtained
by filtering the input sequences with one-sided
bandpass filters and frequency shifting the filter out-
puts to baseband. To compute the point estimate at (fo,
a0), the center frequencies of the filters are set to f1 = fo
+00 / 2 and f2 = fo - 0p/2. Following the notation in [4],
the input filters in Fig. 2 have memory lengths of T =
N’ Ts seconds and therefore bandwidths on the order
of 1/T=fs/N 'Hz. (Ts is the sampling interval and fs is
the sampling frequency.) Mathematically, computation
of the complex demodulates is expressed as

N/fa

Xnnfi=Y a(rx(n-r)e 20T )
=N/

where a(r) is a data tapering window of length
T= N'Ts seconds. For convenience, the quantity Aa is
defined to be the bandwidth of the input filters; hence,
for this system the bandwidth of the input filters is also
the frequency resolution of the estimate:
Af=Aa=fs/N’.

After the complex demodulates have been computed
they are correlated over a time span of At seconds. In
Fig. 2 the correlation operation is performed by a com-
plex multiplier followed by a lowpass filter. The lowpass
filter has a memory length of At = NTs seconds and a
bandwidth on the order of 1/At = fs/N Hz. The correla-
tion operation is expressed as

Sid(n, fo)at= Y Xr (1, fi)YT (1, fo) g(n—T) (3)

where g(n) is a data tapering window of width At = NTs
seconds. The resulting output sequence S,f;. (1, fo)at is

40 EEE SP MAGAZINE

the spectral cross correlation estimate at (fo,00) and is
composed of a bias (if spectral correlation is present)
whose magnitude indicates the degree of spectral cor-
relation, and a random component that can be inter-
preted as measurement noise. For a reliable estimate it
is necessary to have At)) T, or equivalently, to have the
time-frequency resolution product be much greater
than unity: AtAf)) 1. It is shown in [2] that the time
smoothed cyclic cross periodogram converges to the
cyclic cross spectrum in the limit, as At — - followed by
Af —0, if the time windows a(n) and g(n) are properly

normalized. Therefore, ifz a2(n) = Z g(n) =1 we have
n n

lim lim Suo(nfy) \=Sed(fy) @
ATEED) Sy, o i

where the cyclic cross spectrum S (fo) is defined by
o o O AT
Se(f)= 3, Rey(k)e "0

=—00

®)
and the cyclic cross correlation Rg(k)is defined by

ReX(k)= lim (x(nTs+KTo)y* (nT)e 2k DTs)

At—>o0

(6)

At

See [2] and [5] for further details on the above
relationships.

An interesting representation of the basic system is
found by combining expressions for the complex
demodulates with Equation (3) to get [4]

—i2moynTs

S (nf)ar O ., m@x(n-q)y*(n-re ™)
q r

Equation (7) is a quadratic transformation of the input
sequences with the kernel m(g,r). By manipulating
Equations (2), (3), and (7), the kernel for the basic
system is found to be

m(gr)= Y, 8(p)a(g-pa(r—p)e o s T
p

®)

In general, most cyclic spectral analysis algorithms
can be mathematically described in the form of Equa-
tion (8), that is, as a quadratic transformation of the
input sequences with a kernel that depends on the
system parameters fo, 0o, Af, and At [2], [5]. The inter-
esting feature of this representation is that the system
parameters are contained solely within m(q,r). Hence,
Equation (8) describes how system parameters in-
fluence estimation of the cyclic cross spectrum. Al-
though the system kernel provides a compact
mathematical representation of cyclic spectral analysis
algorithms, a transformed version of this representation
provides greater insight into the algorithms.

In terms of the rotated Fourier Series Transform (FST)
of the kernel m(q,r )

M(o,f)= Z Z m(g,r) o120 0U2)qT's 12 (f~ oU2)rTs )
q

the output is expressed as [4]
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512

M(B.v)SE (v)dy 2" P00 Ts

e (nfo)a=Ts +R(n)10)

RJ_fn

where the Ix -indicated summation is over the region
-fs/2 < B - a0 < fs/2, and R(n) is a random component
that can be interpreted as measurement noise. Note
that Equation (10) also describes how system
parameters (represented by M(o.f ) ) influence the

estimation of Sqy(f), the underlying cyclic cross

spectrum. Cycle features of S,4(f) that are within the
domain of Mo, f) are summed in cycle frequency and
integrated in frequency to produce the output value of
the estimate. Cycle features outside the domain of
M(o.,f) are suppressed. Thus, by understanding the
properties of M(a,f) we can understand how system
parameters affect the estimate. As a general rule, if
AtAf)) 1 then the kernel transform M(a., f) can often be
approximated by the separable form [2]
M(0f)=Gja0=0)H (o) 1)

The components of the kernel, Gi/a ¢ (o) and Hi/r (f),
are frequency windows that are simply related to the
FSTs of data tapering windows used in the algorithm
under consideration, and have approximate
bandwidths of 1/At and 1/T Hz respectively. Typically,
Mo, f) is a two dimensional pulse-like function sur-
rounded by sidelobes. The sidelobes of M(a,f) are
generally small compared to the mainlobe but can be
troublesome in some measurements. The region of sup-
port of the main lobe of M(a, f) is called a Cyclic
Spectrum Analyzer (CSA) cell. Equation (11) indicates
that a CSA cell has a width on the order of 1/ Atin cycle
frequency and a length on the order of 1/Tin frequency.

As described by Equation (10), features of Sx(f) within
a CSA cell are transmitted to the output while features
outside of the region are suppressed. Thus, the width
of a CSA cell determines the cycle frequency resolution
Ao and the length of the cell determines the frequency
resolution Af. Figure 3 depicts an idealized (i.e., no
sidelobes or skirts) CSA cell located at (fo, o). For a
proper measurement the cycle frequency resolution
must be small enough to resolve the cycle features of

S«qy(f) and the frequency resolution must be small
enough to resolve S(f) in frequency. Note that cycle

Region of support

o
of Sxy(f) f
Aa = Af
Ao = 1/At

'fs

Fig. 3. A Cyclic Spectrum Analyzer (CSA) cell in the
bifrequency plane.

features exterior to a CSA cell but within the sidelobes

of M(o., f) can contribute to the estimate of S,g(f). This
undesirable effect is called cycle leakage and is mini-
mized by designing M(o.f ) to have sufficiently low
sidelobes.

The kernel transform is a useful means for studying
the frequency resolution and cycle frequency resolution
of an algorithm. As an example, the kernel transform
for the basic system is

=0

a2
5 f-fo—T (12)

where A(f) and G(o) are the FSTs of a(n) and g(n ).
(Note that the bandwidth of A(f) is on the order of Aa =
1/T and that of G(a) on the order of 1/At.) Since f1 = fo
+0/2 and f2 = fo - 00 /2, the transform kernel can also
be expressed as

M(OC,f)=G(oc—a0)A(f_fl i %) A*( e %)

Examination of Equations (12) or (13) reveals that
most of the energy in M(a.,f) is indeed confined to the

M(oa,f)zG(oc—ocO)A[f—fo+

(13)

TABLE I
BASIC TIME SMOOTHING

: Number of Complex Multiplications
Computation Cyclic Cross Spectrum of Two Cyclic Spectrum of
Section Complex Signals a Single Real Signal
Filtering 2 N2/ NN
Frequency Shift 2 N? N2
Correlate N°N’ N’N'/4

Computational complexity of the basic time smoothing algorithm in terms of the number of complex multiplications. Note that
complete coverage of the bifrequency plane requires N N’ point estimates.
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Fig. 4. The region of support of M(o., f) for the basic time
smoothing algorithm.

region |f-fol<Aa/2 and lo—apl < 1/2At (cf. Fig. 3).
Hence, the frequency resolution of this algorithm is
again seen to be Af=Aa=fs/N’, and cycle frequency
resolution is Ao = 1 /At = fs/N. Finally, the time-frequen-
cy resolution product is AtAf= N/N".

In addition to determining the resolutions of a cyclic
spectral analysis algorithm the CSA cell concept is
useful for determining the computational complexity of
an algorithm. Consider the problem of estimating the
cyclic cross spectrum of two complex signals
everywhere in the bifrequency plane at a given time
instant. To perform the estimation approximately NN ’
point estimates must be calculated (this is the area of

the region of support of S,g(f) divided by the area of a
CSA cell). All of the input data can be filtered with two
banks of N one-sided bandpass filters for a total of

N?N’ complex multiplications and the complex
demodulates calculated with an additional 2N? com-

plex multiplications. Additionally, N 2N’ complex mul-
tiplications are needed to compute the spectral
correlations for all point estimates (assuming that g(n)
is a rectangular window with unity height). Table I
summarizes the computational complexity of the algo-
rithm in terms of the number of complex multiplications
required to compute estimates of the cyclic cross spectrum
of two complex signals and the cyclic spectrum of a single
real signal.

To put these numbers into perspective a numerical
example is considered. Say that we want to estimate the
cyclic cross spectrum of two complex sequences for Af
=1/8 (Ts = 1) and At Af= 16384. For these values, N'=8
and N=131072. If the computations are performed on a
uniprocessor computer (i.e., one ALU) capable of
producing one complex product every 150 ns, then the
computation would take approximately 18.6 hrs. For
the case of estimating the cyclic spectrum of a real

signal the symmetry relations S = Sx“(f) and
SN = S imply that S¥(f) need only be estimated

42 IEEE SP MAGAZINE

in one quadrant of the bifrequency plane. Thus, the
previous estimation problem with a single real signal
would require approximately 7.9 hrs of computation.
This example serves to illustrate the “brute force” ap-
proach to digital cyclic spectral analysis. Algorithms
that are considerably more efficient are presented in the
remainder of this paper.

Time smoothing with decimation

The computational efficiency of the previous algo-
rithm can be improved by decimating the outputs of the
bandpass filters by a suitable factor. Equivalently, data
is shifted into the filters in blocks of L samples where
L<N’; thus, only N/L samples are processed for each
point estimate and the overall computational com-
plexity of the algorithm is reduced by the factor L. Since
the filter outputs are over sampled by a factor of N’ the
sampling rate can be reduced to fs/L, L< N’ before
aliasing occurs. However, if the sampling rate is reduced
by the maximum factor L = N, then the effects of cycle
leakage can be substantial. With decimation in effect
the estimate by Equation (3) is modified to

SO Lfa= Y, XLV HLEgcn—r)  (14)

Equation (10) still applies except that M(c., f) now also
accounts for decimation. Shifting the input sequences
into the system in blocks has the effect of mutating the
lowpass filter G() in Equations (12) and (13) into the
comb filter [2]

Ge(@)=2, gcl)e ™ (15)
= ; G(a+ 5’?) (16)

where G(o) consists of one period of Ge(o),

fs
0 otherwise

Consequentially, the kernel transform is now ex-
pressed as (cf. Equation (13))

M(a,f):En, G(a—a0+”fﬁ)A(f—f1+%)A*(f—f2—%‘) 17)

It is convenient to consider Equation (17) as consisting
of two components: the product of frequency shifted
channelizer transfer functions

myoun=a(+ 2 Ja (- 2) 1®)
and the comb filter
Gelo-0g)= G(oc—ozo+nffs) 19)

The bandwidth of A(f) is on the order of Aa and Gc(o)
has teeth with bandwidths on the order of 1/A t spaced
fs/L Hz apart in cycle frequency. The approximate
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regions of support of Mi(a, f) and Gclo - ag) are il-
lustrated in Fig. 4.

The diamond shaped region in Fig. 4 is called a
channel-pair region, and it is the idealized (no sidelobes
or skirts) region of support of Mi(o., f). A channel-pair
region is approximately diamond shaped with length
and width on the order of 2Aa and Aa respectively. The
intersection of a channel-pair region with the region of
support of the n=0 tooth of Gc(o. - o) at (fo,ao) defines a
CSA cell. Using the fixed ratio P = N /L we can express
the cycle frequency resolution of the decimated algo-
rithm as Aa = fs/PL. Note that the frequency resolution
of the algorithm remains the same as before: Af=fs/N".
Although the boundaries of the CSA cell and channel--
pair region in Fig. 4 are depicted as well defined, this is
generally not the case. Both Mi(a, f) and Gclo - a) can
have significant skirts and sidelobes beyond the regions
indicated in Fig. 4. Figure 5a illustrates the magnitude
of Mi(a., f) for a(n) a rectangular data tapering window
and Fig. 5b shows Mi(«, f) for a(n) a Hamming window.
Contour plots of Figs. 5a and 5b are shown in Figs. 5¢
and 5d respectively.

Abs value of Kernel, Rectangular, T=8

/

////// "","‘“\ Recall that cycle leakage occurs if the sidelobes of
%’”I)"’"‘O‘O‘: Mlo.,f) are large enough to admit nearby cycle features.
'!"l'"'l/"lf’fgz&‘} In the decimated algorithm, cycle leakage can also occur

if teeth of G¢(o - 0p) other than the one at o intersect
the channel-pair region. Overlap of a channel-pair
region with n # O teeth of G¢lo - o) occurs if L is too
small or if the channel-pair region is larger than indi-
cated in Fig. 4. An additional effect, known as cycle
aliasing, occurs if the frequencies of leaked cycle fea-
tures exceed the decimated sampling rate. We postpone
determination of appropriate values for L until the
discussion of the FAM.

0.5
041
0.3F
0.2

0.1p

=)
T

FFT BASED TIME SMOOTHING
ALGORITHMS

Time smoothing with a Fourier transform

Consider frequency shifting the product sequence in
Fig. 2 by an amount ¢ from aoto oo +¢ (see Fig. 6 for a

-.1,-5,-10,-15,-20 dB Contours, Hamming

0s block diagram of the processing). In this case, the
oAl | output of the system is given by
e ] Oote v — i2merTs
dal 7 : Seor (foa= D, Xe(rfi) Yi{(rsy) g(n—re (20)
01t 4
s 0 ] Following some manipulations the kernel transform is
01+ 7 found to be
-02} \
S : M(0,/)=G(0-0g—E)A(F—f +W2)A (F-fr—ov2)  (21)
-0.4 -
-0.5 |
R e A oo R ST e el The region of support for the kernel transform is
d) depicted in Fig. 7. It is seen that M(o.f) is a pulse
centered at (fo, co + €) with a width of Aa= 1/A t and
Fig. 5 Channelizer transfer function for a) a rectangular length of Af=Aa - lel, where lel<Aa. If several values
window and b) a Hamming window. Corresponding of £ are desired, evaluation of the sum in Equation (20)
contour plots are c) rectangular and d) Hamming. can be simplified by discretizing the values of € to be ¢
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= gAo. In this case the output of the algorithm is expressed as

o +qAc

(LF)a= D, Xr SOV fp)gn—r) e 2wl (22)

in which the sum in Equation (22) can be evaluated with
an N-point FFT. Thus, point estimates with constant
cycle frequency can be computed in blocks by Fourier
transforming the product sequence instead of averaging
the product sequences individually as in Equation (1).

For complete coverage of the bifrequency plane a
bank of bandpass filters is required to produce the
necessary complex demodulates. An efficient method
for producing the required complex demodulates is
based on a sliding FFT [6]. In this approach the frequen-
cies of the filter bank are discretized to
Jie=k(fs/N'),k=-N"/2...(N’/2)-1. The channel-pair
regions associated with all pairs of complex demodu-
lates are located at (fj, o) where the frequency coor-
dinates are

fieth

o &
k+l fs)
— e 24
AV (24)
and the cycle frequency coordinates are
o= (25)
=(k-D f—s,) (26)

Figure 8 shows the pattern of channel-pair regions for
N’ = 8. The ordered pair associated with each channel-
pair region in Fig. 8 is the coordinate of the region
written in terms of indices: (fj, oi) — (j,9. For an N ’-point
channelizer there are (N ’)2 possible combinations of

channelizer streams; hence, there are at most (IV ’)2
channel-pair regions. Due to symmetry, estimation of
the cyclic spectrum of a single real signal requires only

(N /4 channel-pair regions (one quadrant of the bifre-
quency plane).

A troubling aspect of this'approach is the nonuniform
frequency resolution of the point estimates (recall that
Af=Aa- lel). Near the top and bottom of a channel-
pair region the frequency resolution approaches zero,
and as Af - 0 so does the time-frequency resolution
product. As a result, point estimates at the ends of
channel-pair regions become increasingly unreliable
(i.e., the estimates have high variability). Several
methods have been developed to deal with this problem.
One approach, developed in [7], combines estimates in
adjacent channel-pair regions to obtain new estimates

o o, o : ,
Sy (fiyt€1/2) A=(Suyp (o) art Syt sign(€ 2Nz )2 (27)

The estimates in this method have a frequency resolu-
tion of Af = Aa provided that A(f) is rectangular. Another
method, emphasized here, is to retain only those es-
timates within +Aa/2 of the center of the channel-pair
region [4], [5]. Although this approach is simple to
implement, the frequency resolution and time-frequen-
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cy resolution product still vary within a channel-pair
region. Furthermore, discarding estimates in this man-
ner leaves coverage gaps in the bifrequency plane.
However, if the input signals are resolvable with Af= Aa
then loss of coverage is not detrimental since cycle
features extend to at least one channel-pair region. See
[5] for other ways to eliminate coverage gaps.

The FFT accumulation method

The FFT Accumulation Method (FAM) incorporates
all of the ideas so far discussed [4], [5]. Channelization
is performed by an N ’-point FFT that is hopped over the
data in blocks of L samples. The outputs of the FFT are
frequency shifted to baseband to obtain decimated
complex demodulate sequences. After the complex
demodulates are computed, product sequences

X(nL, fi) YI(nL, fi) are formed and Fourier transformed
with a P -point FFT. (Recall that P=N/L where N is the
total number of samples in the input sequences.) The
output of the FAM is therefore

o +gAa.
S xyT

(ML f)pm Z XL f)YHr L f)gc(n—r)e 2%a/P (28)

and the kernel transform is given by Equation (17)
with fo = fj and oo = 04 + qAo. The cycle frequency
resolution of the FAM is identical to that of the
decimated algorithm described above (see “Time
smoothing with decimation”); thus, Aa=_fs/PL. The fre-
quency resolution of the FAM is identical to that of the
Fourier transform smoothing algorithm of the preceding
Section; thus, Afigq) = Aa - |1 gl Ao and since Aa=fs/N’

sa{1-g 25 9)

Likewise, the time-frequency resolution product is
variable and is given as

AtAf=AH(Aa- | g | Ay

v
N/

(30)

~lql 31

The time-frequency resolution product of the FAM is

Fourier
Transformer

g(n) forL=1;
go(n) forL =1

1/At

0l0+€
- SoyreL, o),

Fig. 6. The basic time smoothing algorithm with Fourier
transformer output.
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Channel-Pair
Region

Fig. 7. The region of support of M(o., f) for the FFT Accumula-
tion Method.

typically referenced to the center of a channel-pair
region (gq=0) so that AtAf= N/N’ = PL/N’}. To minimize
the variability of point estimates near the top and
bottom of the channel-pair regions we can retain only
those estimates within £Aa/2 of the center of the region
and discard all others. In terms of the index parameter
g, only estimates within the range

Aa Aa
——<gAo<— 39
il (32)
or
By SPL
i (< i S
N N (33)

in Equation (28) are retained.

Both cycle leakage and cycle aliasing can be mini-
mized by restricting the amount of overlap of the n#0
teeth of Gela - ao) with the channel-pair region.
Diminishing the overlap is accomplished in two ways.
First, L must be selected to ensure that the passbands
of Gc(o. - o) are sufficiently removed from the channel-
pair region. In practice, a decimation factor of L=N "/4
has been found to be a good compromise between
maintaining computational efficiency and minimizing
cycle leakage and cycle aliasing [4]. Second, cycle
leakage can be reduced by minimizing the skirts and
sidelobes of Mi(o,f) and Gc(o). From Equation (18) it is
evident that a channelizer with steep transition bands
and low sidelobes produces low skirts and low sidelobes
in the channel-pair region. Thus, a data tapering win-
dow whose Fourier transform has low skirts and low
sidelobes (e.g., the Hamming window) is desirable. A
data tapering window for the output lowpass filter is not
as crucial as a data tapering window for the input
bandpass filters. For simplicity gc(p ) is often taken to
be a rectangular window.

The computational complexity of the FAM, in terms
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of the number of complex multiplications required to
compute estimates of the cyclic cross spectrum of two
complex signals and the cyclic spectrum of a single real
signal, is given in Table II. In order to give some feel for
the magnitude of calculations typically encountered
when estimating the cyclic cross spectrum with the
FAM, a numerical example is given. Consider the pre-
vious problem of estimating the cyclic cross spectrum
of two complex signals where a time-frequency resolu-
tion product of AtA f= 16384 and a frequency resolution
of Af =1/8 is desired. Channelization for this problem
requires approximately 2 x 10° complex multiplications;
computing and Fourier transforming all product se-
quences requires approximately 4 x 10° and 67 x 10°
complex multiplications respectively. If a complex mul-
tiplication is performed every 150 ns, this computation
would take approximately 11 seconds to perform. Es-
timating the cyclic spectrum of a real signal with the
same processing parameters would take on the order of
2.75 seconds.

A close look at the FAM reveals that the algorithm
has a high degree of parallelism [8]. The parallelism in
the FAM is a direct result of the independence of the
product sequences XT{po;JY*T{ij for each k and 1
during and after their computation. A convenient way
to describe the parallelism in the FAM is through a
series of time-sequenced signal flow graphs (SFGs). The
time sequencing of the signal flow graphs indicates the
ordering of computations in the algorithm, that is, the
output of SFG(i) is the input to SFG(i+1). The ordered

Fig. 8. Tiling the bifrequency plane with the FFT Accumulation
Method for N’'=8
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TABLE II
FFT ACCUMULATION METHOD

Number of Complex Multiplications
Computation Cyclic Cross Spectrum Cyclic Spectrum of
Section of Two Complex Signals a Single Real Signal
Channelizer:
Data Tapering 2 N'P t
N’-point FFT PN'logoN’ P(N’/2)logaN’
Frequency Shift 2 NP NP
o’ 2 r 2
Cross Multiply P(N) PIN)71/4
FFT Product Sequences (N)*(P/2)logoP [(N')?/4](P/2)logzP

Computational complexity of the FAM in terms of the number of complex multiplications. + Note that N'P real multiplications are

required for data tapering.

signal flow graph description also has the advantage of
easy translation into digital architectures. For the FAM
the signal flow graphs are:

SFG(1) Computation of the Complex Demodulates
SFG(2) Cross Multiplication, Complex Demodulates
SFG(3) P -point FFT array (including 1/0 buffers)

These three signal flow graphs are shown in Fig. 9.2 For
clarity the FFT signal flow graphs in SFG(1) and SFG(3)
are shown as blocks. Additionally, only one node of
SFG(3) is shown.

Operationally, data is input to SFG(1) in blocks of L
samples and output in N’-point blocks. Each block of
data contains Xr(- fiJand Y 7 (- fi), -N'/2<k < (N’'/2)-1.
As illustrated in Fig. 9, data from SFG(1) is input to
SFG(2). SFG(2), which cross multiplies all complex

2 Note that the structure illustrated in Fig. 9 can be used to com-
plete other quadratic surfaces, e.g. the cross ambiguity func-
tion, by modifying the pre- and post- quadratic tranform blocks
(blocks (a) and (c) in Fig. 9).

demodulates, is detailed in Fig. 10 for N’ = 8. The nodes
of SFG(2) in Fig. 10 are labeled according to channel--
pair regions associated with the node (cf. Fig. 8). In
general, SFG(2) consists of 2N’ complex data paths and

(N"? complex multiplier nodes configured in an
N’xN’ array. Complex demodulate streams flow
through a node of SFG(2), are cross multiplied and fed
into nodes of SFG(3). SFG(3) Fourier transforms the
output product sequence streams of SFG(2). For each
node in SFG(2) there is a corresponding node in SFG(3).
The array structure of SFG(3) is similar to that of SFG(2)
except that nodes of SFG(3) are not connected to one
another — due to the independence of the product
sequences. Each node of SFG(3) consists of an input
buffer and a P-point FFT processor. The buffers convert
the product sequence streams output from SFG(2) into
P-point blocks suitable for Fourier transforming by the
FFT processors.

The parallel description of the FAM can be used as a
guide to mapping the FAM calculation onto a multiproc-
essor computer, or for designing application-specific
architectures. In either case the
algorithm is easily partitioned.

Serial to Block
Conversion

The most natural partition for
the FAM is by channel-pair
region. If processing elements
compute and Fourier transform
all product sequences concur-
rently, then the amount of time
required to estimate the cyclic
cross spectrum decreases by a
factor of (IV ’)2. Such an im-
plementation significantly
decreases the time required to
perform the FAM computation
since computing and Fourier
transforming the product se-
quences represent the bulk of
the computations. Whatever the
implementation, it is important

i +qAO(.
SO;yT L, fj)At

Fig. 9. Interconnection of signal flow graphs in the FFT Accumulation Method.
a) N’- point FFT channelizers.b) SFG(2) for cross multiplication of complex demodulates.

¢) P-point FFT processors.
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to maintain a smooth flow of
data between the signal flow
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Fig. 10. SFG(2) in the FFT Accumulation Method for N ‘=8

graphs, i.e., to computationally balance the realization.
As an example, in [8] it is shown that architectures
based explicitly on the parallel description of the FAM
contain redundant arithmetic units. However, by com-
putationally balancing designs based explicitly on the
parallel description, efficient architectures can be realized.

The strip spectral correlation algorithm

The second FFT-based time smoothing algorithm is
the Strip Spectral Correlation Algorithm (SSCA) [4], [5].

In the SSCA the complex demodulates Xt (n.fi) directly

multiply y*(n). As a result, the point estimates produced
by the SSCA lie along the frequency-skewed family of
lines o= 2fic - 2f (see Fig. 11). A strip of point estimates
is computed using the formula

ka’f‘le‘( T Aoc)
Xy My =
At

(Recall that fic= k(fs/N’), -N’/2 < k< (N’'/2) - 1). The
SSCA uses an N-point FFT to compute the sum in

=Y Xy fOy (Dg(n-r)e 2N (34)

I3

XT(n,f_4)_>*®_> e —
XT(n,f_3) _7®_> g};?roim e
X, (0,f,) ——»:/®——> EI;PFOi"‘ —
X (n,f) —_.®__> gl;groim S
XT(n, fy —;: gl:_%oint [l
XT(n, f) —ﬂ—» g};pToim =
XT(n,f2) —;i gl;groim ik e
XT(n,f3)—;@_> lI;II:_?roint B
B

Fig. 11. Tiling the bifrequency plane with the Strip Spectral
Correlation Algorithm for N’ = 8. A single CSA cell is shown..
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Fig. 12. Signal Flow Graphs for the Strip Spectral Correlation
Algorithm excluding SFG(1) (the channelizer for x(n)).
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TABLE III
STRIP SPECTRAL CORRELATION ALGORITHM

Number of Complex Multiplications
Computation
Section Cylic Cross Spectrum Cyclic Spectrum of
of Two Complex Signals a Single Real Signal
Channelizer:
Data Tapering NN’ t
N’-point FFT N(N’/2)logeN’ N(N’/2)logoN’
Frequency Shift NN’ NN’/2
Compute Product Sequences NN NN'/2
FFTs Product Sequences N'(N/2)logeN (N/2)(N/2)logaN

Computational complexity of the SSCA in terms of the number of complex multiplications. f Note that N N’ real multiplications

are required for data tapering.

Equation (34). Note that the sampling rate of Xn(n, fiJ
cannot be decimated; in order for Xr(n, fiJ to properly
multiply y*(n) both sequences must be sampled at the
same rate.

The properties of the SSCA are determined by study-
ing the CSA cells produced by the algorithm. The SSCA
kernel transform for a CSA cell located at (fo,00) is [4]

0—0t
M(of)=G(o—ag)A| ffot—— (35)
where the allowable values of fo and oo are
fr  Aa
Joid 5 (36)
o=f+gAa (37)

In Equation (35), G(o) and A(f) are the FSTs of g(n) and
a(n ). From Equations (35) — (37), the region of support
of A(f- fo + (0 - 00)/2) is found to be a strip approximately
Aawide along the line o = 2fi - 2f. Thus, CSA cells in the
SSCA have a constant length of Aa which implies that
the SSCA has a constant frequency resolution of Af =
Aa. The uniform frequency resolution of the SSCA is in
marked contrast to the nonuniform frequency resolu-
tion of the FAM. The width of a CSA cell, determined by
the bandwidth of G(0), is gleaned from Equation (35) to
be 1/At = fs/N. Hence, the cycle frequency resolution of
the SSCA is Ao = 1/At = fs/N. The time-frequency
resolution product of the SSCA is therefore AtAf=N/N .
Figure 11 shows the bifrequency plane tiled with strips
of A(). In all, there are N’ strips in the cyclic cross
spectrum .estimate and N’/2 in the cyclic spectrum
estimate.

Table III summarizes the computational complexity
of the SSCA in terms of the number of complex
multiplications required to estimate the cyclic cross
spectrum of two complex signals and the cyclic
spectrum of a single real signal. As an example of the
computational complexity, the previous problem where
Af=1/8 and AtA f=16348 which corresponds to N’ =8
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and N = 131072, would require approximately two
seconds to execute. Estimating the cyclic spectrum of a
single real signal with the same parameters would take
approximately one second.

Like the FAM, the SSCA is a highly parallel algorithm
and the parallel description of the SSCA is similar to the
parallel description of the FAM but less complex [8]. The
parallel description of the SSCA consists of three time-
sequenced signal flow graphs:

SFG(1) Computation of Complex Demodulates
SFG(2) Computation of Product Sequences
SFG(3) N-point FFT (including 1/0 buffers)

SFG(1) is identical to that of SFG(1) in the FAM parallel
description except that no sample rate decimation oc-
curs (L=1). SFG(2) is composed of N’ complex multiplier
nodes configured in a linear array. Figure 12 shows the
SSCA signal flow graphs, excluding SFG(1), for N’ = 8.
Complex demodulate streams from SFG(1) enter SFG(2)
on the left and product sequence streams exit SFG(2)
on the right for SFG(3). The array structure of SFG(3)
follows directly from the array structure of SFG(2).
Additionally, the nodes of SFG(3) are identical to nodes
of SFG(3) in the FAM parallel description (except N
-point FFTs are used instead of P-point FFTs). The prior
comments on the use of the parallel description to
implement the FAM are also applicable to the SSCA.

SUMMARY

We began the discussion with a simple algorithm
based on a direct implementation of the time smoothed
cyclic cross periodogram. Although this algorithm is not
computationally attractive for estimating the cyclic
(cross) spectrum over the entire bifrequency plane, it
illustrates the essence of time smoothing algorithms.
Several representations of the basic time smoothing
algorithm were developed next. The transformed kernel
representation is perhaps the most important charac-
terization of cyclic spectral analysis algorithms due to
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its generality and conceptual utility. From this repre-
sentation the signal processing attributes of an algo-
rithm, such as frequency and cycle frequency
resolution, and phenomena such as cycle leakage can
be studied. Additionally, the computational complexity
of cyclic spectral analysis algorithms is readily deter-
mined using this representation. From the basic time
smoothing algorithm several improved algorithms were
developed. Modifications to reduce the computational
complexity of the basic algorithm included decimating
the complex demodulates prior to forming product se-
quences and time averaging the frequency shifted
product sequences with FFTs. With the addition of an
FFT based input channelizer, we arrived at the com-
putationally efficient FFT Accumulation Method. A
second computationally efficient algorithm, the Strip
Spectral Correlation Algorithm was developed as an
alternative to the FAM. Both of these algorithms have
highly parallel structures and are readily implemented
on general purpose computers or, if execution time is
critical, specialized multiprocessor signal analyzers.
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The spectral-correlation theory
of cyclostationary time-series is
applied to the signal-selective
direction-finding problem, in
which desired signals, undesired
signals or interference, and noise
are received by an array of sen-
sors, but the directions of arrival
of only the desired signals are to
be estimated. Several new direc-
tion-finding methods (including
Cyclic MUSIC) that exploit spectral
correlation to discriminate against
the undesired signals or inter-
ference and noise are developed
and analyzed. The performance of
these methods is evaluated for
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finite numbers of data samples in an
extensive set of Monte Carlo simula-
tions, where it is shown that the new
methods can greatly outperform
conventional super-resolution
methods, such as MUSIC and maxi-
mum likelihood, in some environ-
ments. Also, the Cramer-Rao Lower
Bound (CRLB) for the directions of
arrival (and other parameters) of
Gaussian cyclostationary signals is
developed and evaluated for several
specific signal environments, where
it is shown to differ substantially
from the CRLB for Gaussian sta-
tionary signals.
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