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Editor’s Introduction

Many conventicnal statistical signal-processing methods treat tandom signals
as if they were statistically stationary, that is, as if the parameters of the underly-
ing physical mechanisms that generate the signals do not vary with time. But for
most man-made signals encountered in cornmunication, telemetry, radar, and sonar
systems, some parameters do vary periodically with time. In some cases even multi-
ple incommensurate (not harmonically related) periodicities are involved. Examples
include sinusoidal carriers in amplitude, phase, and frequency modulation systems,
periodic keying of the amplitude, phase, or frequency in digital modulation systems,
periodic scanning in television, facsimile, and some radar systems, and periodic
motion in rotating machinery. Although in some cases these periodicities can be
ignored by signal processors, such as receivers that must detect the presence of sig-
nals of interest, estimate their parameters, and/or extract their messages, in many
cases there can be much to gain in terms of improvements in performance of these
signal processors by recognizing and exploiting underlying periodicity. This typically
requires that the random signal be modeled as cyclostationary or, for multiple period-
icities, polycyclostationary, in which case the statistical parameters vary in time with
single or multiple periods. Cyclostationarity also arises in signals of natural origins,
because of the presence of thythmic, seasonal, or other cyclic behavior. Examples in-
clude time-series data encountered in meteorology, climatology, atmospheric science,
oceanology, astronomy, hydrology, biomedicine, and economics.

Important work on cyclostationary processes and time-series dates back over
three decades, but only recently has the number of published papers in this area
grown exponentially. Fueled by recent advances in applications to communications,
signal processing, and time-series analysis that demonstrate substantial advantages of
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exploiting cyclostationarity in both design and analysis, the appetite for learning about
cyclostationarity exhibited by research and development communities in areas such as
wireless and cable communications, signals intelligence and covert communications,
and modeling and prediction for natural systems (hydrology, climatology, meteo-
rology, oceanology, biology/medicine, economics, etc.) has outgrown the available
tutorial literature. This edited book is intended to help fill this void by presenting indi-
vidual tutorial treatments of the major subtopics of cyclostationarity and by featuring
selected articles that survey the latest developments in various specific areas.

The book is composed of two parts. PartI consists of six chapters, the first four of
which are adapted from the four plenary lectures at the Workshop on Cyclostationary
Signals, which was held August 16-18, 1992, at the Napa Valley Lodge in Yountville,
California. Part II consists of seven articles. Part I is strongly tutorial and provides
in-depth surveys of major areas of work. Similarly, Part II, which focuses on more
specific topics, also has a tutorial survey flavor. Each of these two parts treats both
thecry and application.

Chapter 1 provides a historical perspective on cyclostationarity and discusses in
detail both the practical and mathematical motives for studying cyclostationarity. It
also treats the philosophy of aesthetics and utility that underlies alternative concep-
tual/mathematical frameworks within which theory and method can be developed.
The latter half of the chapter surveys the theory and application of wide-sense cyclo-
stationarity, touching on the problems of detection, modulation recognition, source-
location, and extraction of highly corrupted signals, and the roles that the spectral-line
generation and spectral-redundancy properties of cyclostationarity play in tackling
these and other problems. This chapter provides an introduction to cyclostationary
signals that serves as a foundation for the remainder of the book.

Chapter 2 provides an overview of the recently formulated theory of higher-order
temporal and spectral moments and cumulants of cyclostationary time-series. It is
shown that the nth-order polyperiodic cumulant of a polycyclostationary time-series
is the solution to the problem of characterizing the strengths of all sine waves that
are produced by multiplying » delayed versions of the time-series together, with the
parts of those sine waves that result from products of sine waves that are present in
‘lower-order factors of the nth-order preduct removed, Thus, the study of higher-order
cumulants is motivated by a practical problem that arises in signal processing. The
chapter also discusses other motivations for studying the moments and cumulants
and provides a historical account of cumulants and their uses. The properties of these
statistical functions that render them useful in signal processing are discussed and
compared to the properties of similar statistical functions for stationary time-series.
Applications of the unique signal-selectivity property of the polyperiodic cumulants
to the tasks of weak-signal detection and source location are briefly described.

Chapter 3 provides an overview of sensor array processing for cyclostation-
ary signals, focusing on adaptive spatial filtering and direction-of-arrival estimation,
and presenting some new results on blind equalization and channel identification. It
briefly describes many recently introduced methods and highlights their advantages
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and disadvantages relative to each other and to more conventional techniques that
ignore cyclostationarity. Applications of cyclostationarity-exploiting methods to ex-
isting problems in array processing and to the design of new wireless communication
systems are suggested.

Chapter 4 supplements the material on cyclostationary processes by reviewing
the basic theory of periodically and polyperiodically time-varying linear systems.
Such systems are extensively employed as filters for processing and modeling cyclo-
stationary signals. Varicus input-output and state-variable descriptions together with
filter structures that are appropriate for implementing the desired response charac-
teristics in both continuous- and discrete-time are discussed. The chapter concludes
with a brief discussion and some examples of polyperiodic filtering for waveform
extraction.

Chapter 5 provides an overview of the state-space theory of cyclostationary
processes in discrete time. The three alternative descriptions, (/) jointly periodic
autocovariance functions, (if) state-space stochastic models (Markovian representa-
tions), and (ii{) autoregressive moving average models with periodic coefficients, are
investigated, and connections among them are explained. Innovations representa-
tions, linear prediction, spectral factorization, and model identification are all studied
and the current state of knowledge on these topics is summarized.

Chapter 6 provides areview of the spectral theory of cyclostationary (periodically
and almost periodically correlated) random processes and of existing results on the
consistent estimation of the Fourier coefficients of the autocorrelation function and
their Fourier transforms, the spectral correlation densities. The representation of
these processes in terms of sets of jointly stationary processes and in terms of unitary
operators also is reviewed.

Article 1 in Part IT addresses the joint transmitter/receiver optimization prob-
lem for multiuser communications and presents a coherent view of system design
approaches that include different but related multiinput/multioutput models on the
basis of analytical optimization. The present state of knowledge in this area is summa-
rized, and the potential for suppression of cochannel interference that is
afforded by the cyclostationarity of the signals is emphasized. The results demonstrate
analytically that greatly improved cross-talk rejection is achievable when the spectral
correlation property of the cyclostationary signals is properly exploited.

In Article 2 the objective is to provide insight into the nature of the self-noise
that is present in the timing wave produced by a square-law synchronizer acting
on a cyclostationary pulse-amplitude modulated signal and to provide a quantitative
analysis of the mean square phase jitter in the timing wave. The results cbtained show
explicitly how the design and performance analysis of the square-law synchronizer
is characterized by the spectral correlation function and the fourth-order spectral-
moment function of the signal.

Article 3 provides a tutorial review of recent methods for multipath channel
identification using known test signals. By expleiting the signal-selectivity proper-
ties of the cyclic autocorrelation function or the associated spectral correlation func-
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tion, these methods can perform well in severely corruptive noise and interference
environments. Several such identification methods are compared in terms of their
performance characteristics by analysis and simulation.

Article 4 provides a brief overview of the various approaches to blind chan-
nel equalization and identification that have been reported in the literature and then
explains the potential advantages to be gained by exploiting the cyclostationarity
of digital-quadrature-amplitude-modulated signals. The theoretical possibility of
accomplishing blind identification with the use of only second-order statistics
is explained, and a frequency-domain approach is described.

The fifth article presents a time-domain approach to the blind channel equaliza-
tion and identification problem. The results of simulations presented therein suggest
that exploitation of second-order cyclostationarity can be an effective alternative to
methods that ignore it in favor of higher-than-second-order statistics. A connection
between the frequency-domain and time-domain approaches also is explained.

Article 6 reviews the theory and implementation of digital spectral correlation
analysis. The performance characteristics and computational requirements of various
algerithms based on either time smoothing or frequency smoothing are compared
analytically, and two specific implementation studies are briefly presented.

Article 7 briefly reviews recent developments in the theory of prediction for
cyclostationary processes. The fundamental role in the theory played by multivariate
stationary representations of univariate cyclostationary processes is explained, and
both discrete-time and continuous-time processes are considered.

The chapters in Part I and articles in Part II collectively cover a wide range of
topics in the theory and application of cyclostationarity. We hope that the tutorial
style of these contributions coupled with the broad survey and comprehensive refer-
ence lists they provide will make this volume instrumental in furthering progress in
understanding and using cyclostationarity not only in the fields of communications
and signal processing, but in all fields where cyclostationary data arises.
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Chapter |

An Introduction
to Cyclostationary Signals

William A. Gardner
Statistical Signal Processing, Inc.
www.sspi-tech.com
1909 Jefferson Street
Napa, CA 94559

This introductory chapter has five objectives. The first is to give a broad but thorough
view of the status of the development of the theory and application of cyclostationary
signals. This entails discussing and answering the following questions: What is
cyclostationarity? How is it useful? Why publish a book on cyclostationarity? What
are some of the seminal contributions to the study of cyclostationarity? and What
are some of the specific motivations—both practical and mathematical—for studying
cyclostationarity?

The second objective is to explain the philosophies behind the two alternative
approaches to the subject: the orthodox approach based on stochastic processes and
ensemble averaging and the more recently developed approach based on nonstochas-
tic time-series and time averaging. Since some controversy regarding these two
approaches is said to exist (it is more misunderstanding than it is controversy), the

Thischapter is adapted from the opening plenary lecture at the Workshop on Cyclostationary Signals,
held August 16-18, 1992 in Yountville, CA. The reference style (author(s), date(s}) is used in this chapter
to help the reader put the contributions surveyed into historical perspective. In the remainder of the book,
references are identified by number according to the order listed at the end of each chapter and article.

1



2 Gardner

discussion here is intended to be particularly thorough, including both pragmatic and
mathematical arguments and illuminating both strengths and weaknesses of each ap-
proach. The goal is to provide a sound basis for choice for everyone interested in
studying cyclostationarity.

The third objective is to provide a comprehensive introduction to the principles of
second-order cyclostationarity, which involve only second-order statistical moments
of signals in the time and frequency domains. This treatment considers primarily
discrete-time signals, and in this way it complements previous treatments by this
author, which focus on continuous-time signals.

The fourth objective of this chapter is to survey applications of second-order
cyclostationarity in the areas of communications and signal processing. The focus
here is on exploiting the spectral redundancy and sine-wave generation properties of
cyclostationary signals to perform difficult signal-processing tasks.

The fifth objective is to provide a reasonably comprehensive bibliography of
work on the theory and application of cyclostationarity (which is complemented by
the more focused bibliographies in subsequent chapters and articles).

Altogether, this chapter provides a foundation for the rest of the book that will
help the reader to put each individual contribution into perspective and to integrate
the parts into a whole reference source that not only will chart the past, but also will
serve as a primary vehicle for taking us into the future,

1 BACKGROUND
1.1 What Is Cyclostationarity?

Let us begin with the most obvious question: “What is a cyclostationary signal?”!
One answer is thata signal is cyclostationary of order » (in the wide sense) if and onlyif
we can find some nth-order nonlinear transformation of the signal that will generate
finite-strength additive sine-wave components, which result in spectral lines. For
example, for n = 2, a quadratic transformation (like the squared signal or the product
of the signal with a delayed version of itself, or the weighted sum of such products)
will generate spectral lines. Forn = 3 or n = 4, cubic or quartic transformations
(i.e., sums of weighted products of 3 or 4 delayed versions of the signal) will generate
spectral lines. In contrast, for stationary signals, only a spectral line at frequency zero
can be generated.

Another answer to this question, which is completely equivalent to the first an-
swer but does not appear to be so upon first encounter, is that a signal is cyclostationary
of order  (in the wide sense) if and only if the time fluctuations in » spectral bands
with center frequencies that sum to certain discrete nonzero values are statistically
dependent in the sense that their joint #th-order moment (the infinite time average of
their product in which each factor is shifted in frequency to have a center frequency of

!For the moment, it is not important o be specific about whether or not we conceive of a signal as a
member of the ensemble of some stochastic process. This issue is addressed later. Similarly the modifier
wide sense is also explained later, in footnote 12.
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zero) is nonzero. In contrast, for stationary signals, only those bands whose center
frequencies sum to zero can exhibit statistical dependence. .

In fact, for a cyclostationary signal, each sum of center frequencies for which
the nth-order spectral moment is nonzero is identical to the frequency of a sine wave
that can be generated by putting the signal through an appropriate #th-order nonlinear
transformation.

For the simplest nontrivial case, which is n = 2, this means that a signal x(t)
is cyclostationary with cycle frequency o if and only if at least some of its delay-
product waveforms, y() = x(t — t)x(t) or z(¢) = x(r — T)x*(t) (where (-')“ denotes
conjugation) for some delays 7, exhibit a spectral line at frequency ¢, and if and only
if the time Auctuations in at least some pairs of spectral bands of x(#), whose two
center frequencies sum (for the case of y(¢)) or difference (for the case of z(z)) to &,
are correlated.

If not all cycle frequencies e for which a signal is cyclostationary are multi.ples
of a sirigle fundamental frequency (equal to the reciprocal of a fundamental pgrlod),
then the signal is said to be polycyclostationary (although the term cyclostatlonar'y
also can be used in this more general case when the distinction is not important). This
means that there is more than one statistical periodicity present in the signal.

1.2 Is Cyclostationarity Useful?

Perhaps the second most obvious question an engineer would ask is, “Is the plropel.'ty
of cyclostationarity useful?” The answer is emphatically “Yes!” Cyclo.statlona.lrlty
can generally be exploited to enhance the accuracy and reliability _of information
gleaned from data sets such as measurements of corrupted signals. This enhancement
is relative to the accuracy and reliability of information that can be gleaned from
stationary data sets or from cyclostationary data sets that are treated as if they were
stationary. Such information includes the following:

1. A decision as to the presence or absence of a random signal, or about the
number of random signals present, with a particular modulation type in a
data set that also contains background noise and other modulated signals,

2. A classification of multiple received signals present in a noisy data set ac-
cording to their modulation types,

3. An estimate of a signal parameter, such as carrier phase, pulse timing, or
direction of arrival, based on a noise-and-interference-corrupted data set,

4. An estimate of an analog or digital message being communicated by a signal
over a channel corrupted by noise, interference, and distortion,

5. A prediction of a future value of a random signal,

6. Anestimate of the input-output relation of a linear or nonlinear system based
on measurements of the system’s response to random excitation,

7. An estimate of the degree of causality between two data sets, and

8. An estimate of the parameters of a model for a data set.
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1.3 Why Publish a Book on Cyclostationarity?

The next question we should consider is “Why publish a book on cyclostationarity?”
Some of the primary reasons are

1. There is a growing awareness in signal processing and communications
communities that the cyclostationarity inherent in many man-made random
signals and some signals of natural origins {that were previously modeled as
stationary) must be properly recognized and modeled if analyses of systems
involving such signals are to properly reflect actual behavior;

2. Thereis a growing awareness of the potential for considerable enhancement
of performance of signal-processing aigorithms by recognizing and exploit-
ing cyclostationarity in the design process rather than ignoring it by treating
signals as if they were stationary;

3. There is a growing awareness by theoreticians that cyclostationary processes
are, in marty ways, much more than a trivial variation on stationary processes
and do, therefore, merit their attention to further develop and refine the theory
of these processes;

4. There is a perception by engineers and scientists that cyclostationary pro-
cesses are much more than a trivial variation on stationary processes and
do, therefore, merit their effort to retrain—to expand their theoretical back-
ground (their analytical/conceptual “tool boxes™) from stationary to cyclo-
stationary processes; and

5. Technological advances, which enable the implementation of increasingly
sophisticated signal-processing algorithms, have made the exploitation of
cyclostationarity more viable in practice.

We have important work on cyclostationary processes dating back twenty to
thirty years (Bennett, 1958; Gladyshev, 1961; Brelsford, 1967; Franks, 1969; Hurd,
1969; Gardner, 1972) and the author’s research group at the University of California,
Davis, has contributed for the last twenty years. Also, there have been relatively
isolated contributions from many others to the development of this subject over the
last twenty years. However, the growth in the number of research papers has re-
cently accelerated, and it is only in the last five years that research groups, journal
editors, and program directors at funding agencies have shown real interest. The
accelerated growth in research activity is illustrated by the histogram of the num-
ber of papers on cyclostationarity published per two-year period that is shown in
Fig. 1.2

2The statistics in this graph were compiled by the author using a comprehensive bibliography that
he has created over the last five years using his personal files, computerized literature searches, and the
assistance of colleagues and students, most notably L. Paura, C. M. Spooner, and K. Vokurka.
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Figure 1: Histogram of papers on cyclostationarity.

Considering the following indicators, it appears that a “critical mass” of in-
terest has been reached and, as a result, that research activity will undergo explosive
growth:

1. Acceleration in production of research papers on cyclestationarity;

2. Interest of the National Science Foundation, Army Rescarch Office, Air
Force Office of Scientific Research, and Office of Naval Research in sup-
porting the recent workshop on cyclostaticnarity;

3. Interest demonstrated by the participants of the recent workshop on cyclo-
stationarity; .

4. Recent increases in both industrial and government funding of research on
cyclostationarity.
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. Thus, the time is right for publishing a book that provides comprehensive tu-
torial treatments of the major subtopics of cyclostationarity and surveys the latest
developments in various specific areas.

1.4 What Are Some of the Seminal Contributions
to the Study of Cyclostationarity?

To expand our perspective on this subject, let us consider the following brief his-
torical survey of some of the seminal contributions to the theory and application of
cyclostationarity:3

{Bennett, 1958; Franks, 1969): Establishment of cyclostationary processes as
appropriate models for many communications signals,

(Jacobs, 1958; Gladyshev, 1963, Gardner, 1978): First studies of cyclostation-
ary processes with multiple periods.

(Gudzenko, 1959): First study of consistency of nonparametric estimates of the
Fourier coefficients of periodic avtocorrelations.

(Gladyshev, 1961 and 1963): Discovery of equivalences among a cyclostationary

- process (with one period) and several vector-valued stationary processes. Initial work
on spectral representatiorl.

(Brelsford, 1967). Seminal work on pericdic autoregressive modeling and
periodic linear prediction.

(Hurd, 1969, 1989a; Gardner, 1986¢, 1987a; Brown 1987): First studies of con-
sistency of nenparametric estimates of spectral moments of cyclostationary processes
with one period (Hurd) and with multiple periods (Gardner and Brown).

(Gardner, 1972; Gardner and Franks, 1975): First development and application
of several series representations of continuous-time cyclostationary processes in terms
of jointly stationary processes for optimum periodically time-variant linear filtering
of cyclostationary processes. First characterization of Fourier coefficients of periodic
autocorrelations and periodic spectra (the cyclic autocorrelations and cyclic spectra)
as crosscorrelations and cross-spectra of frequency-shifted versions of the process.

(Rootenberg and Ghozati, 1977, 1978; Bittanti 1987; Bittanti and DeNicolao,
1993): First efforts to develop the Gauss-Markov theory of cyclostationary processes;
formulation and partial solution of the cyclospectral factorization problem.

(Pagana,.l 978): Development of equivalence between univariate periodic AR
modeling and multivariate constant AR modeling.

(Miamee and Salehi, 1980): Extension—from stationary to cyclostationary
processes—of the Wold-Cramér decomposition of a process (and its spectrum) into
regular (continuous) and singular {discrete) components.

(Nedoma, 1963; Boyles and Gardner, 1983): First formulation and development

of cycloergodicity for cyclostationary processes with single (Nedoma) and multiple
(Boyles and Gardner) periods.

) 3Contributions from the untranslated Russian literature are not included here, but it is men-
tioned that several Russian authors, most notably Ya, P. Dragan, have published a substantial armount
on cyclostationarity.

An Introduction to Cyclostationary Signals 7

{Gardner, 1985): First general treatise on cyclostationary processes and their
applications 1o signal processing and communications {1 book chapter).

{Gardner, 1986b, 1987a): First formulation and development of the nonstochas-
tic statistical theory of cyclostationary time-series and its applications to signal pro-

cessing and communications (6 book chapters).

(Gardner, 1957a; Brown, 1987, Chen, 1989; Agee et al., 1990, Schell, 1990;
Spooner, 1992): First studies of the exploitability of the separability of individual-
signal contributions to cyclic temporal and spectral moments {of second order) of
multiple interfering signals for the problems of detection, modulation recognition,
timé-delay estimation, blind-adaptive spatial filtering, and high-resolution direction
finding. Discovery that spectrally overlapping signals can be separated with linear
temporal processing by exploiting spectral redundancy.

(Gardner and Spooner, 1992b; Spooner and Gardner, 1992a, b; Spooner, 1992).
First formulation and development of the temporal and spectral moment and cumulant
theory of cyclostationary time of order series n > 2.

1.5 What about Terminology?

A few words about terminology are in order. The first term given to this class of pro-
cesses is the term cyclostationary, which was introduced by Bennett (1958), who also
introduced the term cycloergedic. Other terms used include periodically stationary,
periodically nonstationary, and periodically correlated. This last term is appropri-
ate only for second-order (wide-sense) cyclostationarity, whereas the preceding three
terms admit the modifiers wide-sense, nth-order, and strict-sense, and are, therefore,
more general. The most commonly used term is cyclostationary. When multiple
periodicities exist, this term is modified to polycyclostationary, although the terms
almast cyclostationary and almost periodically correlated are used also.

1.6 What Are Some of the Specific Motivations
for Studying Cyclostationarity?

There is a great deal of motivation for studying cyclostationarity. Let us consider
first some of the practical motives and then some of the mathematical motives and,
while we are at it, we can recognize many of the existing contributions to the study of
cyclostationarity. The practical motives cited here are specified in terms of a series
of facts.

Fact 1: Cyclostationary models, such as PAR (periodic autoregressive), PMA
(periodic moving average), and PARMA (periodic autoregressive moving average),
can be more parsimonious—better fit with fewer parameters—than stationary models
(AR, MA, and ARMA) are. This has been illustrated with real data from

s climatology/meteorology (Brelsford, 1967; Hasselmann and Barnett, 1981;
Barnett, 1983; Barnett et al., 1984; Johnson et al., 1985)

e hydrology (Salas, 1972; Salas and Smith, 1980; Vecchia, 1983, 1985; Thomp-
stone et al., 1985; Obeysckera and Salas, 1986; McLeod et al., 1987; Bartolini
et al., 1988)
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» medicine/biology (Newton, 1982)
e oceanology (Dragan and Yavorskii, 1982; Dragan et al., 1984, 1987)
¢ economics (Parzen and Pagano, 1979).

Fact2: Periodic prediction of cyclostationary processes can be done (and peri-
odic causality between cyclostationary processes can be found) when time-invariant
prediction is not possible or is inferior (and time-invariant causality is not found or is
weaker). Examples are given in Section 2.

Fact 3: Spectrally overlapping cyclostationary signals can never be separated
using time-invariant linear filters (e.g., optimum filters of the Wiener and Kalman
type for stationary models of the cyclostationary signals). But they can possibly be
separated using periodic filters that exploit spectral redundancy. This has been demon-
strated for PAM (pulse-amplitude modulation), digital QAM (quadrature-amplitude
meodulation), AM (amplitude modulation), ASK {amplitude-shift-keying), and PSK
(phase-shift-keying) signals (Brown, 1987; Gardner, 1987a; Gardner and Brown,
1989; Gardner and Venkataraman, 1990; Reed and Hsia, 1990; Petersen, 1992; Gard-
ner, 1993).

Fact4: Thebiases and variances of parameter estimators {e.g., for TDOA (time-
difference-of-arrival), FDOA (frequency-difference-of-arrival), and AOA (angle-of-
arrival) of propagating waves) can be much lower, especially for multiple interfering
signals, when algerithms that exploit the signal selectivity associated with cyclosta-
tionarity (rather than ignore it by treating the signals as if they were stationary)
are used. This has been demonstrated for various types of communications signals
(Gardner, 1987a, 1988a, 1990a; Gardner and Chen, 1988, 1992; Chen 1989; Chen and
Gardner, 1992; Schell and Gardner 1989, 1990a,b.c, 1991, 1992, 1993a; Schell, 1990;
Gardner and Spooner, 1993; Izzo et al., 1989, 1990, 1992; Xu and Kailath, 1992).

Fact 5: For the design and analysis of systems that synchronize {ocal digi-
tal clocks and sine-wave generators to the frequencies and phases of periodicities
embedded in received communications and telemetry signals, the property of cyclo-
stationarity is crucial (Franks, 1980; Franks and Bubrouski, 1974; Moeneclaey, 1982,
1983, 1984; Gardner 1986a).

Fact 6: For the design of algorithms that blindly adapt sensor arrays to perform
spatial filtering (for beam/null steering and/or mitigation of multipath fading effects),
exploitation of signal selectivity associated with cyclostationarity has proven to be
extremely powerful (Agee et al., 1987, 1988, 1990: Schell and Gardner, 1990a;
Gardner 1990a) and application to multiuser wireless communications appears to be
promising (Gardner et al., 1992; Schell et al., 1993).

Fact 7@ For the design of algorithms that adapt channel equalizers to remove
intersymbol interference in digital communication systems, exploitation of the phase
information contained in second-order cyclostationary statistics of the channel output
enables blind adaptation without the use of higher-order statistics (cf. Chapter 3 and
Articles 4 and 5 in this volume).
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Fact 8: For radio-signal analysis, including detection, classification, modu-
lation recognition, source location, ete., the cyclic spectrum analyzer and related
algorithms that exploit cyclostationarity have proven to be ideally suited (Gardner,
1985, 1986b,c, 1987a,b, 1988b,c, 1990a,c, 1991a; Gardner et al., 1987; Brown, 1987
Roberts, 1989; Roberts et al., 1991; Brown and Loomis, 1992; Spooner and Gardner,
1991, 1992a,b; Gardner and Spooner, 1990, 1992a; Spooner, 1952).

Fact 9: For the design and analysis of communications systems that accom-
modate unintentional nonlinearities that inadvertently generate spectral lines from
modulated message signals, the property of cyclostationarity is crucial (Campbell et
al., 1983; Albuquerque et al., 1984).

Fact10: For acoustic-neise analysis for rotating machinery, the cyclic spectrum
analyzer holds promise for improved diagnosis of machine wear (e.g., in ground, air,
and water vehicles, and hydroelectric plants) and for detection, classificaticn, and
location of cyclostationary noise sources (e.g., submarines) (Sherman, 1992).

Fact 11: Many statistical inference and decision problems involving multi-
ple interfering cyclostationary signals in noise can exploit the cyclostationarity to
great advantage because of the inherent noise-tolerance and separability of the cyclic
features in the signals (Gardner, 1987a, 1990z, 1991a, 1992).

Let us now consider some of the mathematical motives for studying cyclosta-
tionarity. Cyclostationary processes (including one or more periods), as a subclass of
nonstationary processes, have more in common with stationary processes than do other
subclasses of nonstationary processes. The commonstructure shared by cyclostation-
ary processes suggests (and in some ways this has already been proven) that important
theorems and special theories for stationary processes can be extended and/or gen-
eralized, and that important theorems for generally nonstationary processes can be
specialized, to cyclostationary processes. This potential for mathematical progress,
coupled with the increasingly recognized importance of cyclostationarity to practical
problems, provides strong motivation for mathematicians to study these processes.

A few examples of important theorems/theories for stationary (or nonstationary)
processes that should be—or have been—extended/generalized (or specialized) are
given here (consult the key given below?),

Topic 1: {1 Wiener-Khinchin and Shiryaev-Kolmogorov theorems relating
temporal and spectral moments and cumulants (Gardner 1986b, 1987a, 1990¢; Gard-
ner and Spooner, 1990; Spooner and Gardner, 1992a; Spooner, 1992; Chapter 2 in
this volume)

Topic 2: | Spectral representation theory (e.g., for harmonizable processes)
(Gladyshev, 1963; Hurd, 1974a, 1989b, 1991; Honda, 1982; Rao and Chang, 1988;
Chapter 6 in this volume)

4+ Some progress has been made for cyclostationary processes with one period,
1 Substantial progress has been made for cyclostationary processes with one period.
** Some progress has been made for polycyclostationary processes with multiple periods.
1 Substantial progress has been made for polycyclostationary processes with multiple periods.
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Topic 3:  Wold-Cramér theorem on decomposition of a process into sin-
gular and regular components and decomposition of its spectrum into discrete and
continuous components (Miamee and Salehi, 1980; article 7 in this volume)

Topic 4: *x Wiener and Kalman smoothing, filtering, and prediction theory
(Gardner, 1972; Gardner and Franks, 1975; Gardner 1985, 1987a, 1993; Brown,
1987; Gardner and Brown, 1989; Chapter 5 and Article 1 in this volume)

Topic 5: x Theory of AR, MA, and ARMA models, linear prediction, and
paramerric spectral estimation (Brelsford, 1967, Pagano, 1978; Miamee and Salehi,
1980; Tiao and Grupe, 1980; Sakai, 1982, 1983, 1990, 1991; Pourahmadi and Salehi,
1983; Vecchia, 1985; Obeysekera and Salas, 1986; Li and Hui, 1988; Anderson and
Vecchia, 1992; Chapter 5 and Article 7 in this volume)

Topic 6: * Theory of fust algorithms for linear prediction and filtering (Sakai,
1982, 1983)

Topic 7: * Markov theory of state-space representations (Rootenberg and
Ghozati, 1977, 1978, Bittanti, 1987; Bittanti and DeNicolao, 1993; Chapter 5 in this
volume)

Topic8: * BirkhoffErgodic Theorem and associated ergodic theory (Nedoma,
1963; Blum and Hansen, 1966; Boyles and Gardner, 1983; Honda, 1990)

Topic9: *x Theory of consistent nonparametric estimation of temporal and
speciral moments and cumulants (Gudzenko, 1959; Hurd, 1969, 1989a; Alekseey,
1988, 1991; Gardner, 1985, 1986c, 1987a, 1991b; Dehay, 1991; Spooner, 1992;
Spooner and Gardner, 1991, 1992¢; Genossar et al., 1993; Hurd and Leskow, 1992a,
1992b; Chapter 2 in this volume)

Topic10: 1t Theory ofhigher-order statistics (temporal and spectral moments
and cumulants) (Gardner, 1990c; Gardner and Spooner, 1990, 1992b; Spooner and
Gardner, 1992a,b; Spooner, 1992; Chapter 2 in this volume)

2 FUNDAMENTAL CONCEPTS, PHILOSOPHY,
AND DEFINITIONS

What do we need to accomplish here? We need a general description of the types of
signals that motivate the work being done under the name of cyclostationarity; we need
a generally useful definition of the signal property called cyclostationarity, and we
need to understand what mathematical/conceptual frameworks are particularly useful
for formulating and selving practical problems involving cyclostationary signals,
particularly those arising in communication system design and analysis and more
general signal processing.

We shall see that an empirically motivated approach to accomplishing these
things leads naturally to a probabilistic conceptual framework. However, this frame-
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work is distinct from that of stochastic processes in that it does not involve the concept
of an ensemble of random samples.

2.1 Signal Types

The types of signals of primary interest here are those normally encountered in com-
munication systems. These signals are typically unpredictable and occur over long
periods of time. That is, they are in some sense random (this does not necessarily
mean stochastic) and they are persistent rather than transient. These signals also typ-
ically originate from physical sources with parameters that are either time-invariant,
periodic, or polypericdic. Thus, the characteristics of the physical signal-generating
mechanism vary polyperiodically with time (this includes as special cases periodic
variation and time invariance). In some cases the signal-generating mechanism can
be decomposed into more elementary signal generators whose outputs are mixed to-
gether to form the signal of interest. Some of these more elementary signal generators
can have characteristics all of which are time-invariant, thereby giving rise to station-
ary random signals. Other elementary signals can be simply periodic or polyperiodic
functions of time. Thus, the signals of interest often consist of combinations—
additive, multiplicative, and other types—of stationary and polyperiodic signals, and
are called polycyclostationary signals.

2.2 Operational Definition of Polycyclostationarity

What physical evidence in a signal reveals that there is polyperiodic time variation
present in its generating mechanism? Fortunately, there is a unique unambiguous an-
swer to this question that appears to be adequate for the general purpose of designing
and analyzing signal-processing algorithms that exploit or in some way involve the
underlying polyperiodic time variation: We shall say that polyperiodic time variation
exists in the generating mechanism of a signal if and only® if it is possible to gener-
ate finite-amplitude additive polyperiodic components from the signal by passing it
through some appropriate nonlinear transformation that is time-invariant and stable.
‘We can take this as an operational definition of polycyclostationarity.

2.3 Operational Origin of Probabilistic Models

There are two particularly interesting ways to characterize an adequately large class of
all nonlinear transformations that could potentially generate polyperiodic components
from polycyclostationary signals. One way is to require that all transformations of
interest be Tepresentable in a generalized® Volterra series (which is a multivariate
Taylor series with a continuum of variables indexed by time). Thus, for a signal x

5One can conceive of polyperiodic variation in a signal generatar that is unobservable in the signal.
This is analogous to the concept of unobservability in system theory. Since the focus here is on modeling
signals in which there is physical evidence of underlying polyperiodic variation, we are not interested in
unobservable polyperiodic variation.

5“Generalized” in the sense that the transformations are not constrained to be causal.



12 Gardner

and a transformation g{:), we have

gx) =Yy f ke (T) L (2, o) AT,

n T

where L, (¢, 7,)y is the nth-order delay product

Let,mn =] [5G + 7.
J=1

and k, (1;,) is the nth-order Volterra kernel. For example, all transformations g(-) that
are continuous and have finite memory admit a convergent Volterra series represen-
tation.

Another way is to require that all transformations be representable as a convo-
lution with a finite product of Dirac deltas:

g(x)=/g(yn,yz,...,yn)nﬁ[yj—x(“rrj)]dyj
L
=glx(t+ 1), x(r + r;), con x( )],

which can be reexpressed as a Riemann-Sticltjes integral

g(x)=fg(y,,)d"1:(f,7m_)’n)n

where .
Lz, Tn:yn)n é ]_[I [J{] - xj(t + rf)]
j=I

and I(-) is the indicator function

I, 20
I(z)={ 0 720

for which'd [ (z) = 8(z)dz. For example, all continuous transformations with finite
discrete memory admit this representation. Although this representation of g{-) in
terms of itself appears to accomplish nothing, we shall see that it is very useful for
our purpose here.

The operation, denoted by P{-}, for extracting the additive polyperiodic com-
penent of a signal is linear (as explained subsequently). Therefore, the polyperiodic
component of a weighted sum of signals is the weighted sum of polyperiodic com-
ponents. Consequently, the polyperiodic component of the first type of transformed
signal is given by

Plg@) =X [ k(mP (L)) dr,

n Ta
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and that of the second type of transformed signal is given by

P{g(x)} =f80’,,)d"P{Ix(t.1'n.y,,)n}-

As explained later on, the function P{L,(¢, 7,),) is mathematically equivalent to
the joint #th-order moment of 7 random variables X; = x(t + 7;), f=1,2,...,n,
and the function P{I (¢, T». ¥,)x} is mathematically equivalent to the joint nth-order
probability distribution for the same N random variables, and these equivalences
reveal that the polyperiodic component exiraction operation P{-} is mathematically
equivalent to the probabilistic expectation operation. In fact, choosing

g(x) = Lx(t- Tn)n

in the preceding equation yields

P{L.(¢, Tu)n} =f [ Hyj] d" P{L:(t, T, Yada)

j=1

which is the standard formula from probability theory for the nth-order moment in
terms of the nth-order probability distribution.

We see, then, that the physical evidence in a signal of polyperiodic time-variation
in the generating mechanism of the signal is completely characterized by the signal’s
temporal moment functions or its temporal probability distribution functions. That is,
the polyperiodic component of the delay product of the signal is a temporal moment
function and the polypericdic component of the indicator product is a temporal prob-
ability distribution. Hence, we are led naturally by a practically motivated inquiry
into the problem of mathematically characterizing physical evidence of polyperiodic
time-variation in an unpredictable signal, to a probabilistic description of the signal.
Moreover, as explained later on, these moments and distributions are identical to those
corresponding to a polycyclostationary stochastic process with appropriate ergodic
properties (called cycloergodicity), in which case the signal x(¢) can be interpreted
as a sample path (one ensemble member) of the stochastic process. However, in spite
of this equivalence between the mathematical model of polyperiodic time variation
underlying a signal and a corresponding stochastic process model, the conceptual
framework of a stochastic process and its associated ensemble is fundamentally dif-
ferent from the conceptual framework of a single signal that is characterized by all
the polyperiodic components that can be generated from it using nonlinear trans-
formations. It is the latter conceptual framework, not the former, that is motivated
by the desire to design and analyze signal processors that exploit the generatable
polyperiodic components.

2.4 Stochastic vs. Nonstochastic Operational Models

‘We need to understand the similarities and differences between the stochastic-process
approach and the nonstochastic signal {(or time-series) approach to conceptualizing,
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defining, and modeling stationary (8), cyclestationary (CS), and polycyclostationary
(PCS) signals, and to developing theory—like the classical theory of statistical infer-
ence and decisicn—to guide the practice of designing and analyzing signal-processing
algorithms.

The nenstochastic time-series approach to this subject has not gained the wide
level of acceptance that the stochastic-process approach enjoys, particularly for sta-
tionary processes. This is believed to be primarily a result of the limited exposure
that the time-series approach has received. The aim in recent work (Gardner, 1987a)
on developing the time-series approach has been to bring the aesthetics of mathemat-
ics and the utility of engineering pragmatism together to preduce elegant problem
solving.” The treatment presented here aims at the same target: the focusing of
attention on important concepts for mathematicians who care about the applicabil-
ity of the mathernatics of polycyclostationary signals and for engineers who seek
more than a superficial understanding of not only the “how™ but also the “why” of
polycyclostationary signal processing.

However, before embarking on a discussion of specific mathematical defini-
tions and properties, questions of mathematical existence, and unsolved mathematical
problems, a brief summary of the essence of the differences and similarities, from an
operational standpoint, of the two alternative approaches is presented.

When properly restricted to appropriate domains of definition (i.e., requiring
stochastic process models to exhibit certain ergodic properties and requiring time-
series models to exhibit certain regularity propertics that guarantee the existence of
infinitely long time averages), either approach can be used to obtain the same results
in deriving signal-processing algorithrns and analyzing their performances (Gardner,
1990a). However, it is not guaranteed that any particular user will in fact obtain
the same resuits regardless of the approach used, because each approach has its
own unique cenceptual attributes. Thus, it is argued here that the most proficient
problem solvers need to understand how to use both approaches.? Some problems
may naturally fit one approach or the other, and some other problems may benefit
from application of both approaches. For example, sometimes it is easier to see how
to carry out a particular mathematical calculation using one or the other approach
(the stochastic-process approach seems to be favored here), and sometimes it is easier

TThe title of the book {Gardner, 1987a), which seems to have sparked some controversy, Staiistical
Spectral Analysis: A Nonprobabilistic Theory, can be misleading since it is shown in this book that an
empirically motivated inquiry into the problem of quantifying the average behavior of spectral measure-
ments leads naturally to a probabilistic theory. Since this probabilistic theory is nonstochastic (it involves
only time averages, not ensemble averages), the title could have been Statistical Spectral Analysis: A
Nonstochastic Theory. Nevertheless, the majority of the concepts and methods developed in the book are
not only nonstochastic, they are indeed nenprobabilistic, and a primary goal of the book is to show that
in an empirically motivated development of the fundamental concepts and methods of statistical spectral
analysis, probability does not play a seminal role. It does play an important role in the mechanics of quan-
tifying average behavior, but it plays no role in conceptualizing the objectives and methods (parameiric
and nonparametric) of statistical spectral analysis of single time-series. )

®1t is curious that some followers of the stochastic-process approach insist that the alternative
approach is of no value or, worse yet, has negative value. Perhaps the stochastic process faith should be
formally recognized as a religion.
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to relate the mathematics to the real-world problem at hand using one or the other
approach (the nonstochastic time-series approach seems to be favored here with regard
to many of the applications discussed in this book®).

Mathematicians have, for the most part, chosen the stochastic-process frame-
work for their work because it is apparently more amenable to deep mathematical
treatment. Statisticians have, for the most part, chosen the approach to statistical
inference and decision that is based on stochastic processes because it does naturally
fit the problem of making inferences about a total population on the basis of limited
“random™ samples from the population, which is the statistician’s classical problem.
The concept of a population, or ensemble, also naturally fits a number of situations in
communications engineering and signal processing or time-series analysis for engi-
neering purposes; however, there are many other engineering (and science) problems
involving time-series data where the ensemble concept is fictitious, irrelevant, or oth-
erwise inappropriate. In these cases, users often force an application of the theory
of stochastic processes onto their real-world problem because they have not learned
that there is a viable alternative for statistical inference and decision. This can lead
to substantial confusion and less effective engineering.

2.5 Nonstochastic Statistical Inference and Decision

Let us briefly consider how a theory of statistical inference and decision can be based
on the concept of a single time-series without reference to an ensemble. Many—but
by no means all—real-world problems in engineering and science involve time-series
data for which no population exists; that is, for which replication of the “experiment™
is impossible or impractical. However, many of these time-series arise from physical
phenomena that can be considered to be unchanging in their basic nature for a very
long time. In such cases, conceptually idealizing this time-invariance by extending
the length of time without bound enables us to conceive of a model that is derivable
from the data in the limit as the amount of data used for measuring the parameters of
the model approaches infinity. This leads us to the concept of a fraction-of-time (FOT)
probability model that is free from the abstract concept of a population. For example,
the FOT probability that a time-series exceeds some specified level is defined to be
the fraction of time that this event occurs over the life of the time-series.

Once we have accepted the idea of an infinitely long time-series with an FOT
probability model, we can develop a theory of statistical inference and decision that is
isomorphic to the theory for stationary stochastic processes. This was briefly pointed
out in (Wold, 1948), developed in (Hofstetter, 1964), and extended from stationary
to cyclostationary and polycyclostationary time-series in (Gardner, 1987a), {Gardner
and Brown, 1991). But cne might ask what it is that motivates the development of
such a FOT probability theory. One of the answers to this question is analogous to
that which motivates the theory that is based on the concept of a population: We want
to make inferences about the physical phenomenon that gave rise to the observed

9 A compelling example of this is the novel derivation of the cumulant in the study of higher-order
cyclostationarity presented in Chapter 2.
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time-series. To the extent that this phenomenon is characterized by the FOT model
for the time-series x (¢), (i.¢., the set of joint FOT probability distributions for all finite
sets of time translates {x{(t +&) : i = I, ..., n} for all » translations ; and all natural
numbers 1), we can interpret our objective as that of making inferences about the
infinitely long time-series or its generating mechanism on the basis of finite-length
observations. We can use the FOT probability model to calculate bias, variance,
and confidence intervals for parameter estimates, and we can calculate probabilities
of correct and incorrect decisions. We also can formulate and solve optimization
problems.

2.6 A Historical Perspective

The stochastic-process approach (to the exclusion of the nonstochastic time-series
approach) is currently the orthodox approach because this is the approach that dom-
inated for sixty years in mathematics and statistics and it is, therefore, the approach
in terms of which the theory of statistical inference and decision has been formulated
and is taught. It does not follow that the stochastic-process appreach is orthodox
because it is always the superior approach. This last point can be illustrated with a
brief history of statistical inference and decision in communications engineering.

Why have communications engineers focused on using theoretical measures of
performance that average over an ensemble of signals and/or noises? Because they
have wanted to design systems that would perform well on the average over the
ensemble, and because mathematicians and statisticians had develeped a powerful
theory of statistical inference and decision that was based on ensemble averages,
and because probability theory itself is an immensely powerful conceptual tool, and
few engineers have realized that probability theory can be based entirely on time-
averages. But why then have communications engineers focused almost exclusively
on measuring system performance in practice by averaging over time for a single
system? Because of economics (the high cost of making measurements on many
systems) and because they also want each system to perform well on the average over
time.

In order to match the theory based on ensembles of data to the practice based on
a single record of data, they invoked the concept of ergodicity. That is, they agreed
to use stationary stochastic-process models that were ergodic so that the mathemati-
cally calculated expected values (ensemble averages) would equal the measured time
averages (in the limit as averaging time approaches infinity).

Unfortunately, however, the logic seems to have stopped at this point. It ap-
parently was not recognized (except by too few to make a difference) that once con-
sideration was restricted to ergedic stationary models, the stochastic process and its
associated ensemble could be dispensed with because a completely equivalent theory
of statistical inference and decision that was based entirely on time-averages over a
single record of data could be used (Hofstetter, 1964). Any calculations made using
a model based on the time-average theory could be applied to any one member of an
ensemble if one so desired because the arguments that justify the ergodic stochastic-

An Introduction to Cyclostationary Signals 17

process model also guarantee that the time-average for one ensemble member will be
the same (with probability one) as the time-average for any other ensemble member.

Because the time-average framework is more conceptually straightforward for
application to problems where time-average performance is of primary concern, it
is a more natural choice; but because of history and inertia, it may never gain its
rightful place in engineering. This is even more likely to be the case when the utility
of nonergodic stochastic processes is taken into account. For example, whenever
transient behavior is of interest, ergodic models are ruled out, because all transient
behavior is lost in an infinitely long time-average. Thus, to counter the conceptual
simplicity and realism offered by the time-average approach, the stochastic-process
approach offers the advantage of more general applicability.

Nevertheless, there is a special class of signals that includes more than just those
that can be modeled as stationary ergodic processes, for which there is a compelling
argument, which has only recently surfaced, to adopt an alternative nonstochastic
approach. And these are the signals that are appropriately modeled as polycyclo-
stationary time-series. As explained earlier here, the use of time-averages to extract
additive polyperiodic components from nonlinear transformations of these signals
leads naturally to a probability theory based entirely on time averaging. Let us now
consider in some detail these two alternative approaches to conceptualizing, defining,
and modeling signals.

2.7 Dual Theoretical Frameworks

The concepts and definitions presented here apply equally well to continuous-time
and discrete-time signals. We need only choose either the continuous-time-averaging
operation

A L. 1f2
3= lim — Ydt
(y= fim > _z()

or its discrete-time counterpart

A 1 Z
32 im —— ;
0= Jim szt 2O

‘We consider first stochastic processes, and then we consider nonstochastic time-
series. Let X{¢) be a real-valued stochastic process on the real line —o0 < ¢ < co,
with measure 1 on the probability space £2. Consider the event indicator

I, X)) <x

Ilx — Xx(n)] £ { 0 X0 > s

The expected value of this event indicator is the probability distribution (PD) function
for the random variable X(¢),

Fxay(x) & Prob{X(t) < x} = E{I[x — X()]}
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where the expectation operation E{-} is defined by
£ 2 [ H)duto)
Q

for any random variable H defined on 2. Thercfore, the joint PD function for the set
of random variables

X(0) 2 {X¢ + ). ..., Xt +1)},
where ¢ is the time-translation parameter, is given by the expectation
n
Fypn(x)=E [HI [x — Xt +tj)]] )
j=1

and the joint probability density (Pd} function is

"

Jrin(x) = 3 Fyy(x),

X|...0x,

which contains Dirac deltas when the PD contains step discontinuities. We have the
following theorem from probability theory.

Fundamental Theorem of Expectation

For any nonrandom function g(-) for which E{g[X ()]} exists, we have
BeX® 2 [ 3w dy

- f £ Froo () dx

That is, the Pd for g[X(¢)] need not be found from the Pd of X(¢) in order to
evaluate the expected value of this random variable. This theorem can be used to
verify that the PD is indeed equal to the expected value of the event indicator by
letting

glX@) =1 [1[x - Xt +1))
J=1

to cbtain

slexon = [ T]10y - 5] fro@dz
j=1

= f Jxin (@ dz

= Fy(x).
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Let us now consider time-series. Let x(¢) be a well-behaved'? real-valued time-
series {a nonstochastic real-valued function) on the real line —oo < f < oo. Consider

the event indicator
Al L x()<x
flx —x(] =
0, x(»)=x.

The time-average of this event indicator is the fraction-of-time (FOT) PD

£ (x) 2 Probix(t) < x} = E°(7Tx — x(®)])

where the time-average operation J °{-} is defined by
Efr) 2 1 L f* R+ 1Y dE
= jm gz ) T

for any time function 4. (The superscript 0 will be explained subsequently.) Therefore
the joint FOT PD for the set of variables x(¢) 2 [x(+11),....x(& +1,)) is given by

ﬁf(,)(x) = E° [H I[xj —x(t +t_,-)]]
Jj=1

and the joint FOT Pd is

1

.. 0x FAB(” ().

2 a
0
Jxy @ = axy .

We have the following theorem,.
Fundamental Theorem of Time-Averaging

For every time-invariant function g(-) for which Eo[g[x(t)]} exists, we have
Beeon & Jim L [ g+ r1ar
glx(O = fim o7 | 8+
= [ g(x) f3, (x) dx.

This theorem motivates us to call the time-average operation }3"0{-} the temporal-
expectation operation. To illustrate the validity of this theorem, we can substitute the
definition of the FOT PD into the definition of the FOT Pd, which can be substituted
into the result of this theorem to obtain

10we mean “well-behaved” in the sense that x(t) exhibits the regularity required for all time averages
of interest Lo exist.
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aﬂ
f 800 foy (®) dx = f 805 Feo ) dx

_ LAY ) s ST _
—fg(x)axl...ax,,E lgf[x, x(r+:,)]] dx
=fg(x)E°[]—[3[xj—x(r+rj)]} dx

=1
= f° [fg(x)na[xj—x(t+tj)]] dx

i=1

= E%glx(1),

where we have used the sampling property of the Dirac delta 8, which is the derivative
of the unit-step function 7 (-). )
For any function #(¢) for which E%{#{)} exists, we have

h(ty=c+r(r)

wherec = £ ®[R(¢)}is a constant (independent of £} and r(¢) = h(t) — ¢ is the residual
for which £%(r (1)} = 0. Consequently, the temporal expectation operation can also
be called the constant-component extractor.

‘We can see from these two theorems that there is a duality between the probability-
space theory of stochastic processes based on the operation E{-} and what we shall
call the time-space theory of time-series based on £%{-). Wold (Wold, 1948) tried to
formalize this duality in terms of an isomorphism based on the mapping

x(t+o0) > X, w(o))

where X(f, @) is a sample path of the stochastic process X(#) corresponding to the
sample point w = w{o), indexed by o, in §. That is, the ensemble members of
X(t) correspond to translates of x(¢) in this isomorphism. While this isomorphism is
conceptually useful, a mathematically rigorous study of it has not (to my knowledge)
been performed. (For example, does such a stochastic process corresponding to a
given time-series actually exist?}

We can justifiably ask, “Just how viable is the time-space theory?—do ‘well-
behaved’ time-series models exist?” The answer to the latter question is “Yes™;
examples are provided by typical sample paths of ergodic stochastic processes. But,
“Can we construct useful time-series models?” The answer, again, is “Yes™: We can
construct models in the same way we do for stochastic processes, except we specify
Py (x) instead of Fy, (x).

Regarding the answer to the first question, we might ask “Does this apparent
reliance, of existence of time-series, on stochastic processes detract from the concep-
tual simplicity of working with time-series rather than stochastic processes?” The
answer, in my opinion, is “No.”
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Let us trace the conceptual paths for both stochastic processes and time-series
so that we can see specifically where they are parallel and where they diverge. As
before, we begin with stochastic processes by giving the definitions of the classes of
processes of interest in the study of cyclostationarity, namely, processes that are S,
CS8, or PCS of order » (in the strict sense).

2.8 Stochastic-Process Definitions

Definition 1: X(r) is a S process if and only if Fy((x) is independent of the
time-translation parameter ¢.

Definition 2: X(¢) is a CS process with period T if and only if Fy (%) is
periodic in ¢ with period T'.

Definition 3: X(f) is a PCS process with periods {T} =T, 15, 73, .. . if and
only if Fx(x) is polyperiodic in ¢ with periods {T} (which is a sum of periodic
functions with single periods T}, T, 75, .. .).

The relationships among the class of generally nonstationary (NS) processes and
the three classes S, CS, and PCS can be described with the Venn diagram shown in
Fig. 2.

( )
NS N
PCS p N
cs [
S
L \ S = 2/ )

Figure2: Venndiagram of classes of stochastic processes. With the class NS omitted,
also the Venn diagram of classes of time-series,

It is useful to expand the polyperiodic PD functicn in a Fourier series:
Fxn(®) =Y P @) ™™ =" F, (),
o @

where Ff(o) (x) are the Fourier-coefficients, and where the sinusoidal-component func-
tions are given by
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For any function k(¢) for which E"’{h (#)} exists, we have
h() = ce™ 4 r (1)

where ¢ is a constant, ce™ = E*(h(n)}, and r (1) = h(f) — ce’ is the residual
for which £ {r(#)} = 0. Consequently, we call the operation

E‘“ {3 a E‘U [(_)e—Eerar} gl

the sine-wave-component extractor. It can be thought of as the limit, as bandwidth
goes to zero, of a bandpass filter with center frequency « and unity gain at . For
o = 0, it reduces to the constant-component extractor E°(.].

2.9 Time-Series Definitions

Now let us tum from stochastic processes to time-series. Before we can give the
dual time-space definitions of S, CS, and PCS time-series, we need to generalize the
temporal expectation operation E®{). The appropriate generalization is simply the
sum of sine-wave-component extractors

LR E DI

eela}l

for all sine-wave frequencies in some set {2} of interest. Thus, £'@}{.} is called the
multiple-sine-wave-component extractor or, equivalently, the polyperiodic-component
extractor. (Itis identical to the operator P{-} discussed in Section 2.3.) The sine-wave
frequencies « are the harmonics of the reciprocals of the periods 1/77, 1/ 15, 1/ 73, ...
of interest.

In terms of the generalized temporal expectation operation, we can define the
polyperiodic FOT PD:

n
F) (x) = ') []_[ I[x;—x(t +1)] ]
j=1
and the polyperiodic FOT Pd:
@ = g b
x{£) - axl ] x(1) .
It is not obvious that Fy) (x) is indeed a valid probability distribution function,

but this proposition is proved in (Gardner and Brown, 1991). We have the following
theorem.
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Fundamental Theorem of Polyperiodic-Component Extraction

For every time-invariant function g(-) for which £1%{g[x(1)]} exists, we have
N 1 7 —_
{er) A 3 _ r —i2rat :
E¥ {glx(D]} = E,, zlg]go 77 j: glx(t +1)]e dr

= f g0 /% (xy dx

The validity of this theorem can be illustrated in the same way the validity of
the fundamental theorem of constant-component extraction is illustrated. Also, this
theorem is valid more generally if g(-) = g(¢, -) is polyperiodic in time ¢.

We are now in a position to define the classes of 8, CS, and PCS of order » (in
the strict-sense) time-series. Let {o} be the set of all o for which FAL‘E’,}) # 0.

Definition 4: x(¢) is a S time-series if and only if F,(c"(',)(x) exists and 3 0 and
is independent of the time-translation parameter # (that is, {e} = {0}).

Definition 5: x(¢) is a CS time-series with period T if and only if F{) (x)
exists and # 0 and is periodic in ¢ with period T (that is, {o} = {harmonics of 1/T}).

Deﬁmtlon 6: x(¢) is a PCS time-series with periods {7} = 71, I, T3, ... if
and only if FI(,)(:c) exists and 2 0 and is polyperiodic in ¢ with periods {T'}).

The relationships among these three classes of time-series can be described
with the Venn diagram shown in Fig. 2 except that for time-series, unlike stochastic
processes, the superclass NS does not exist. Generally nonstationary FOT PDs cannot
be defined (although locally S FOT PDs, which are NS, can be defined by limiting
the time-averaging interval used in E%{-} to one of finite length Z).

These definitions of S, CS, and PCS time-series represent a modification of
previous terminglogy. Wold (Wold, 1948) defined a stationary ($') time-series to be .
one for which Fom(x) exists and # 0. To refine this definition, (Gardner, 1987a})
defined a purely S’ time-series to be a S’ time-series for which F°' n(x) = 0forall
a #£ 0. Following Wold, (Gardner, 1987a) also defined a cyclostatlonary (CS") time-
series with period T to be one for which FI(,)(x) exists and £ 0 for some {¢} €
{harmonics of 1/ T}, and to reﬁne this a purely CS’ time-series was defined to be a
CS' time-series for which £} m(x) 0 for all & ¢ {harmonics of 1/T}.

The relationships among these previously defined classes of time-series can be
described with the Venn diagram shown in Fig. 3. Observe that the nesting of the
classes §', CS’, and PCS’ = PCS is inverted from that in Fig. 2 for the classes S, CS,
and PCS. The definitions of S, CS, and PCS form the basis for a theory of time-series
that in some ways has a stronger duality with the theory of stochastic processes than
does the theory that could be based on the previous definitions of §', CS', and PCS'.

On the other hand, the previcus concepts of pure stationarity and pure cyclosta-
tionarity arise also within the framework of stochastic processes. Since these concepts
depend on notions of ergodicity, let us now consider the relevant types of ergodicity.
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( purely S )
s’ ~\
( purely CS§’
Cs’ (
PCLS’
- J)

Figure 3: Venn diagram for previously defined classes of time-sedes.

2,10 Cycloergodicity and Refined Stochastic-Process
Definitions

Definition 7: X (¢) is an ergodic (E) process if and only if for every natural
number # and every nonrandom function g(-) of » variables for which E{g[X(#)]}
exists, we have

EYNEX(ON) = E%glX(®)]) w.p. 1

(where w.p. 1 means with probability equal to 1). For a S process, EY{E{}} = E {-)
(since the constant component of a constant is that constant) and the outer operation
on the left side of this defining equation can be deleted.

Definition 8: X() is a cycloergodic (CE) process with period T if and only
if for every natural number » and every nonrandom function g(-} of n variables for
which E{g[X(2)]} exists, we have (with {«} € {harmonics of 1/T} )

ERNE{&X(OM = E¥NglX()]) w.p. 1.

For a CS process, EeyE {-}} = E{} (since the periodic component of a periodic
function is that periodic function) and the outer operation on the left side of this
defining equation can be deleted.,

Definition 9:  X(¢) is a polycycloergodic (PCE) process with periods {T) if and
only if it is cycloergodic with period Ty fork = 1,2, 3, .. ..

Stochastic processes that are not CE or PCE can exhibit hidden cyclostationarity.
For example, if X{#) is 8 and PCE with all periods, then its sample paths are stationary
time-series (w.p. 1); however, if X(¢) is S (and possibly E) but not CE, its sample
paths can be C§ (w.p. 1}. Similarly, if X'(¢#) is CS and PCE with all periods, then its
sample paths are CS time-series (w.p. 1); however, if X(¢) is CS {and possibly CE),
but not PCE, its sample paths can be PCS (w.p. 1). Such non-CE and non-PCE models
typically result from the (explicit or implicit) inclusion of random-phase variables in

An Introduction to Cyclostationary Signals 25

the stochastic-process model. This hidden cyclostationarity motivates the following
refined probability-space definitions.

Definition 10: If X(¢) is S and PCE with all periods, then it is defined to be
purely stationary, and its sample paths are purely stationary (S or purely S} time-
series (w.p. 1): there is no hidden CS.

Definition 11: If X(z) is CS and PCE with all periods, then it is defined to
be purely CS, and its sample paths are purely cyclostationarity (CS or purely CS’)
time-series (w.p. 1): there is no hidden PCS.

Definition 12: If X(¢) is PCS and PCE with all periods, then it is defined to be
purely PCS: there is no hidden PCS.

The relationships among all the classes of stochastic processes defined so far are
illustrated with the Venn diagram shown in Fig. 4.

purely PCS ——
TN
PCS CS
NN
\
\\ S 4/9/“591//8/ 4%
hidden PCS ;s
2N
hidden CS A
A
N
N
N
NN\ AL LA \/\\

Figure4: Vern diagram of classes of stochastic processes.

Let us now consider an example that illustrates the various classes of stochastic
processes and time-series that have been introduced. Let the siochastic process X{¢t)
be specified by

X)) = A{) + B(t) cos{w\t + 6;) + C(t) cos{unt + &),

where A{f), B(r), and C(¢) are purely stationary ergodic processes. If ) and 8, are
nonrandom, then the stochastic process X(¢) is PCS and PCE. On the other hand, if
#; and/or 8; is random, then {depending on their PDs) the stochastic process X (1) can
be PCS (with periods T} and 73), or it can be CS (with period T; or T3), or it can be
S, and X{¢) is not PCE. Furthermore, with probability one, the sample paths of X(t)
are PCS time-series, the sample paths of A(¢), B(t}, and C(¢) are S time-series, and
the sample paths of the components B(f) cos(aw ¢ + 8;) and C({¢) cos(w,t + 62) are
CS time-series. '
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2.11 Phase Randomization

To pursue the concept of phase randomization a little further, it is noted that even if 8;
and 8, are both nonrandom, we can introduce a random phase © into X(¢) to obtain

Y) =Xt + @)

which can be changed from PCS to CS or to S by choosing the distribution for
© (Gardner, 1978; Hurd, 1974b). Thus, we see that there is a nonuniqueness of
models for stochastic processes. We can change the stochastic process from PCS to
CS to S by phase-randomizing with a single phase variable: X{¢) - X(t + ©). Or,
equivalently, we can change the PD function from polyperiodic to periodic to constant
by time-averaging; e.g.,

R @) = Ry,

That is, phase-randomizing a CS or PCS process or time-averaging its PD function
can result in hidden cyclostationarity. Similarly, we can change the PD function for
a time-series from polyperiodic to periodic to constant by time-averaging; e.g.,

B w] = £,
2.12 Pitfalls of the Stochastic-Process Framework

There are some significant pitfalls associated with nonunique modeis. One such pitfall
is “hidden statistical dependence.” Let SI denote statistical independence (e.g., of two
variables). We can show that SI in a CS model does not necessarily imply SI in the
corresponding S model, and that 5] in an S model does not necessarily imply SIin the
associated CS model. To prove the first statement we simply observe that the equality

frinxn = fan Moo

that results from the ST of jointly CS processes A (¢) and X3(r) does not necessarily
imply the equality

E® [ frnmn) = E*{ fxo) E°{ fro ) »

which would hold if, in the associated S model, X (¢) and X;(¢) were SI. To prove
the second statement, we consider the example of discrete-time processes

Xin=2Z@)=1iid £1

X2 () = Z(1) cos(t).

‘We can easily show that

EE(Xi(nG 0} = PE{XO}ELE {5 0]
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for all » and m and, therefore, X, (¢) and X;(¢) are SI in the S model. However,
E{x]0Xx7 (0} # E{x7 O} E {X7 (1)}

for n and m odd and, therefore, X;(¢) and X>({¢) are not SI in the CS model.

We are now ready to take stock. One conclusion we can draw is that when a
process is not PCE, the hidden CS or hidden PCS can result in single-sample-path
behavior (w.p. 1) that cannot be predicted from probabilistic analysis (unless the
hidden CS can be revealed by conditioning on certain random phase variables).

An important fact concerning this conclusion is that the theory of PCE is mostly
nonexistent and appears to require nontrivial extensions/generalizations of the theory
of E and the incomplete theory of CE.

Another important fact is that the commonplace approach to deriving ad hoc
signal-processing algorithms, of replacing expectation operations £{} in analyti-
cal expressions with time-average operations E®{-}, or (when a compesition of both
operations are present in the analytical expression) of deleting the expectation oper-
ation, cannot be justified (and will often fail to produce the desired results) when the
stochastic-process model used is not PCE.

A related important fact is that the “optimum” solutiens to inference and decision
problems (e.g., for signal estimation and detection) that are based on S and E, butnot
CE (or based on CS and CE, but not PCE), process models can be highly inferior to
inference and decision rules that exploit the hidden CS (or hidden PCS).

Let us consider some examples that illustrate the ramifications of the preceding
conclusion and associated facts.

Example1: Let Y () be the output of a time-invariant nonlinear transformation
with input X(¢). Let X(¢) be S (for all ») and E, but not CE, with no spectral lines.
Then ¥ (¢) is S (for all n) and E but, because of the hidden CS in X(¢), contains spectral
lines. The presence of these spectral lines cannot be explained except by virtue of the
hidden CS in X(¢f). As a specific example, let X(f) = A(t) cos{enf + @), where
A(t) is S and E, and @, is independent of 4(¢) and uniformly distributed on [0, 2],
and let Y (£) = XZ%(¢). Then Y (¢) has spectral lines at frequencies 0 and +w, /7 Hz.

Exémple 2: Let X(:) be S (for # = 2) and E, but not CE, and let X(¢) admit
an exact AR mode! (with white residuals). The sample paths of the white residuals
can be partially predictable (w.p. 1) using linear periodic predictors derived from the
sample-path statistics. For example, let U(¢t) be any nonwhite CS process and let
¥ (¢) be an independent S process with complementary spectrum; that is, the sum of
the spectra of ¥ (¢) and the stationarized version U (¢ 4 @) of U(¢) equals a constant
over all frequency. Then the S process W (¢t + ©) = U(t + ©) + V (¢ + ©) is white
(the spectra of ¥ (£) and ¥ (¢ 4- ©) are identical) but the CS process # (¢) is nonwhite.
That is, the autocorrelation of W (¢ + ®) is proportional to a delta function in the
lag variable but the autocorrelation of # (¢) is not. Thus, ¥ (£} is predictable using
linear periodic predictors and so too are its sample paths. Since the sample paths of
W (1 +©) and W (¢) are the same except for a time-shift, the sample paths of # (¢ + @)
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are also predictable with a periodic predictor. Furthermore, the sample paths of a S
and E, but not CE, process X (f) can admit periodic AR (PAR) models {w.p. 1) with
finite periodic order even though the stochastic process X(¢r) admits no finite-order
AR model. For example, let the CS and CE process Z (¢) be a first-order PAR process.
The stationary process X(r) = Z(t 4 ©) will not, in general, admit any finite-order
AR model. But its sample paths, being the same as the sample paths of Z(r) except
for a time shift, admit first-order PAR models that can be identified from the sample
path statistics.

Example 3: Let X(¢) and Y (¢) be jointly S (for all ) and E, but not CE, and,
according to the usual definition of causality, let there be no causal relationship of
X(2) to Y (¢). That is, no linear or nonlinear time-invariant operation on X (¢} and its
past has any prediction capability for ¥(z) and its future. Yet, each sample path of
¥ (¢) can possibly be perfectly cyclicaily caused by the corresponding sample path of
X(¢). That is, a periodic operation on X (f) can possibly perfectly predict Y (1). Asa
specific example, consider the two continuous-time processes

X(t)=Z(@)==1
Y(£) = Z(t — v) cos(t + O)

where the transition times between 41 and —1 are arbitrary, and @ is independent of
Z(¢) and uniformly distributed on [0, 27 ]. Ft can easily be shown that

E{X"(¢ —n)Y" (0} = E{X"(¢t — )} E {r" )}

for all n and m, and all v; that is, ¥ (¢) is statistically independent of the past of X ().
Nevertheless, each sample path of ¥ (#) can be perfectly predicted from the past of
the corresponding sample path of X (z):

Y(#) = X(¢t — ) cos{t + ©).

Example 4: Let Z(r) = X(#) + Y (¢), where X(¢) and ¥ (¢) are statistically
independent, § (for n = 2), and E, but rot CE, processes that have identical spectral
densities. The Wiener filter for extracting X (¢) from Z (¢) (separating X(¢) and Y ()
is essentially useless. Its transfer function is a constant. Yet the sample paths of X(¢)
and Y (¢) can possibly be perfectly separated with a periodic filter. Examples include
communication signals such as digital QAM, AM, PSK, ASK, and PAM. Asa specific
example, it can be shown (Gardner, 1993) that up to N spectrally coincident digital
QAM signals with excess bandwidth > (N — 1)100% can be perfectly separated.

Example 5: Let X(t) = [X;(2), X2(D)) be purely S (for all n) with a proba-
bilistic model that is very similar to that of ¥(#) = {¥,(s), ¥2(¢)}, which is CS (e.g.,
X(¢) and Y(¢) are both Gaussian processes and the PSDs of X(?) equal those of the
stationarized ¥(¢)). The Cramér-Rao bounds of the same parameters in each of X ()]
and ¥(z) (e.g., the relative time delay (TD) of an additive signal component common
to both X (£) and X3 (¢)) can be drastically different. This has been demonstrated far
TD at two reception platforms and for angle-of-arrival at a sensor array (Chen and
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Gardner, 1992; Schell and Gardner, 1992b). Moreover, even the Cramér-Rao bound
of the stationarized ¥ () can be drastically different from that of the purely S X(z).

Example 6: Let X(¢) and Y {¢) be independent, S (for all »), and E, but not
CE, and let Z(¢) be specified under two hypotheses—

under hypothesis 1: Z(#) = X(¢} 4+ Y ()
under hypothesis 2: Z{t) = Y (¥)

The “optimum” (e.g., maximum-posterior-probability) detector for the presence
of X (1) in Z(¢) can be greatly outperformed by detectors that exploit the hidden CS
in X(¢) and/or ¥ (¢}, e.g., the joint maximum-posterior-probability detector and phase
estimator (Gardner, 1988b; Gardner and Spooner, 1992a).

2.13 Two Paths into the Future

One approach to this unsettling situation, which is illustrated by the preceding ex-
amples, that should appeal to mathematicians is to take what shall be called Path !:
Develop the needed theory of PCE. The current status of the theory of CE and PCE
is that substantial progress has been made for (1) CE w.p. 1 for discrete-time CS
processes and Gaussian continuous-time CS processes, and (2) PCE in mean-square
for finite-order moments of discrete- and contimious-time PCS processes. Little or
no progress has been made for (1) PCE w.p. 1 for discrete-time PCS processes, (2)
CE w.p. 1 for non-Gaussian continuous-time CS and PCS processes, and (3) PCE
w.p. 1 for continuous-time CS and PCS processes.

The only paper to address PCE w.p. 1 (Boyles and Gardner, 1983) suggests that
a substantial breakthrough will be required {even for the much less technical case of
discrete time): conventional approaches and ideas apparently lead to dead ends. This
suggests a challenge not unlike that Birkhoff faced around 1930 when he formulated
and proved the fundamental ergodic theorem to replace the very unsatisfying “er-
godic hypothesis.” We need a fundamental polycycloergodic theorem that elegantly
formalizes our informal notion of a PCE process in terms of a necessary and sufficient
condition on the associated probability measure.

The most useful concept regarding PCE that we have for applications is the
following unproved proposition. :

Proposition PCS processes constructed from stable (decaying-memory) non-
random polyperiodic transformations of purely stationary ergodic processes are PCE.

Stochastic-process models for many, if not most, communications signals can
be constructed in this way.

In view of the difficulties before us, we should ask what some of the advantages
of the stochastic-process approach are. The most apparent advantages are listed here:

1. Tt is the orthodox approach to modeling and studying evolutionary random
phenomena and it is, therefore, attractive to those already familiar with it.
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2. Mathematicians do know how, in principle, to construct stochastic-process
models from elementary mathematical constructs (Borel fields, sigma alge-
bras, probability measures, etc.). Therefore, there is a greater likelihood of
success (compared with time-series) in constricting a mathematical theory
of PCS and PCE processes from a few basic axioms.

3. Ttis possible, in principle, to exploit the hidden CS (or PCS) in a non-CE
(or non-PCE) process within the conventional framework of stochastic pro-
cesses. But, this requires that one have a model of the hidden CS (or PCS)
thatis explicitly dependent on one or more random phase variables © that are
responsible for the lack of CE so that one can calculate probability densities
and expectations conditioned on @.

4. Development of the theory of PCE will help clear the way for making the
time-space theory of time-series mathematically rigorous.

In spite of these advantages, there is an alternative approach that should appeal to
pragmatic engineers and scientists. Let us begin with the following perspective: The
probability-space approach based on expectation introduces abstractions that, in many
applications (e.g., many problems for which single-sample-path signal processing is
of interest), have no redeeming practical value. Some of these abstractions can be
properiy dealt with only with a theory of PCE that is presently nonexistent. Regressing
back to pre-1930 and adopting a “PCE hypothesis™ is very unappealing (because the
hypothesis can be false). ‘

So, let us consider taking what shall be called Path 2: Adopt the time-space
approach whose theory is in many ways dual to that of the probability-space approach,
but without the practical drawbacks associated with cycloergodicity and the distracting
abstraction associated with expectation over ensembles.

The essence of cyclostationarity from an operational standpoint is the fact that
sine waves making up additive polyperiodic components can be generated from ran-
dom data by applying certain nonlinear transformations. And, the time-space theory
of cyclostationarity arises naturally out of the fundamental theorem of polyperiodic-
component extraction using the generalized temporal expectation operation E{®),
whereas the expectation E that gives rise to the probability-space theory has little to
do with the essence of cyclostationarity.

But, can we construct time-series models? The answer is yes. Time-series mod-
els for many, if not most, communication signals can be constructed by subjecting one
or more ¢lementary time-series (¢.g., purely stationary and white) to elementary trans-
formations such as filters, periodic modulators, multiplexors, etc. (Gardner, 1987a),
The defining properties of a discrete-time purely stationary white time-series are:

1. Whiteness: £, ) = 00y 00 SOy pry 02) -« £ sy () for unequal
3 1 - TR N
2. Pure stationarity: figh(x) = f%,(x) forall (.

x(r
3. Existence: any sample path of any i.i.d. stochastic process will do (w.p. 1).
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Okay. But, can we do probabilistic analysis using time-space theory? The
answer, again, is yes. Performance measures such as bias, variance, Cramér-Rao
bounds, confidence intervals, probabilities of decision-errors, etc., can be calculated
using time-space theory just as well as they can using probability-space theory (Gard-
ner, 1987a). But can we use the theory of statistical inference and decision? Yes,
indeed.

The anthor’s current assessment of progress along Path 2 can be summarized as
follows: The considerable progress in the development and application of the time-
space (or temporal-probability, ot fraction-of-time probability) theory of CS and PCS
time-series that has been made since its adoption by the UCD and SSPI groups in
1985, cf. (Gardner, 1987a, 1991a) includes:

1. Temporal and spectral second-order-moment theory (cyclic autocorrelation
and cyclic spectra, or spectral correlation functions) (Gardner, 1987a; Sec-
tion 3 in this chapter).

. 2. Temporal and spectral higher-order-moment and cumulant theery (cyclic cu-
mulants and cyclic polyspectra, or spectral cumulants) (Gardner and Spooner,
1992b; Spooner and Gardner, 1992a,b; Spooner, 1992; Chapter 2 in this vol-
ume).

3. The rudiments of fraction-of-time probability distribution theory (Gardner,
1987a; Gardner and Brown, 1991).

4. A wide variety of applications of the theory to signal-processing and commu-
nications problems involving signal detection, signal classification, signal-
parameter estimation, and signal-waveform estimation (Agee, et al., 1987,
1988, 1990; Brown, 1987; Chen, 1989; Chen and Gardner, 1992; Gard-
ner, 1987a,b, 1988a,b,c, 1990a,b, 1991a,c, 1992, 1993; Gardner and Archer,
1993; Gardner and Brown, 1989; Gardner and Chen, 1988, 1992; Gard-
ner and Paura, 1992; Gardner and Spooner, 1992a, 1993; Gardner and
Vernkataraman, 1990; Gardner et al., 1987, 1992; Schell, 1990; Schell and
Apgee, 1988; Schell and Gardner, 1989, 1990a,b,c, 1991, 1992, 1993a,b;
Schell et al., 1989, 1993; Spconer, 1992; Spocner and Gardner, 1992b;
Section 4 in this chapter; Chapter 2; Chapter 3).

Also, the conceptual gap between the existing time-space theory and its applicaticn
to many signal-processing problems in communications is perceived by its current
users to be much narrower than it is for the dual probability-space theory.

Further support for taking Path 2 includes the fact that the temporal-probability
approach, which is centered on the concrete sine-wave extraction operation, has led
naturally to a derivation of the cumulant as the solution to a fundamental problem
in characterizing higher-order CS and PCS, It is doubtful that this derivation would
have been discovered within the stochastic-process framework, which is centered on
the abstract expectation operation. This derivation is discussed in Chapter 2 in this
volume.
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But, in the final analysis, the duality between the time-space and probability-
space theories will likely result in either path taking the sufficiently persistent practical
problem solver to the same places, although not necessarily in the same elapsed time
or with the same energy. This duality can be formalized with the following loosely
stated conjecture.

Conjecture  For every theorem that can be proved for a PCE PCS process, a
dual theorem can be proved for a PCS time-series—and vice versa.

This can be viewed as a generalization of Wold’s isomorphism from § to PCS
processes.

Nevertheless, there does remain a fundamental question that is not yet always
answerable: Given a self-consistent set of probability distributions ¥ L‘}'}) for all orders
n, does there exist a comesponding time-series x(z)? We have sufficient conditions
on FL"(',}) that guarantee existence of x(f): They are identical to the conditions that
guarantee that Fyg, is PCE and they are called mixing conditions in the theory of
stochastic processes. But we do not yet have a necessary and sufficient condition.
(This presents another challenge for mathematicians.)

With regard to the taking of Paths I and 2, we can draw three conclusions:

1. The more abstract theory of PCS stochastic processes will undoubtediy be
found to be of considerable value as it is developed, and those who are
sufficiently mathematically inclined are encouraged to pursue this approach.

2. The less abstract theory of cyclostationary time-series is more accessible to
engineers and scientists interested in theory as a conceptual aid for solv-
ing practical problems. It should be the preferred approach for the practi-
cally oriented whenever ensembles are not, in and of themselves, of primary
concern, !

3. Both theories present important challenges to mathematicians,

In the remainder of this chapter, Path 2 is taken, and the theory and application
of second-order (wide-sense) cyclostationarity is pursued in some detail.

3 INTRODUCTION TO THE PRINCIPLES
OF SECOND-ORDER (WIDE-SENSE)
CYCLOSTATIONARITY

The second-order (wide-sense'?) theory of discrete-time stochastic processes deals
with the probability-space autocorrelation function

Ry(t,t — 1) = E{X(O) X*(t - 1)).

UThe practical value of this approach is amply demonstrated for parametric and nonparametric
spectral analysis of S as well as CS and PCS time-series in (Gardner, 1987a).

12Wide-sense theory deals with moments, whereas sirict-sense theory deals with probability
distributions.
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For a PCS process X(¢), this function is pelyperiodic in f for each z. The associated
Fourier series for this function is

Rx(t,t —1) = Z R%(1) £ mel—1/2)
l)

where {e) includes all values of @ in the principal domain (—3, 1] for which the
corresponding Fourier coefficient is not identically zero as a function of t:

R(T) £ (Ry(t, t — 7) e 20="/D) 2
If this PCS process is PCE, then (with probability equal to one)
RYz) = Roz) 2 {X(O) X*(t — 7) e~ 2rett=7/2),

The sine waves exp[i2mra({! — v/2)] in the Fourier series introduced here contain
the time shift —z/2 so that the discrete-time theory presented here will match the
continuous-time theory {cf. Gardner, 1985) in which the function Rx(z +7/2, t—1/2)
is expanded in a Fourier series with unshifted sine waves exp(i2mat).

The second-order theory of PCS discrete time-series x(#) deals with the time-
space autocorrelation function

é’[a} {x(t)x*(t _ I')} - Z EO {x(t)x*(t —7) e—r’2mrr] giemet
{a}

_ Z B2 (1) &=/
= il ,
(]

where
Re(r) & B la(yx* (¢ ~ 7) e2me=e/2)),

That is, this theory deals with the sine-wave components in the delay product
x{)x*(+ — 1), whereas in the stochastic-process framework, we deal with an en-
semble average that happens to be made up entirely of a sum of sine waves.

When our primary concern is the sine-wave components generated from x (¥) by
the quadratic transformation x(f)x*(# — ), then the expectation operation E{-} and
the associated ensemble are irrelevant. This being the case here, we proceed with
the time-space theory, However, it is mentioned that the time-space theory presented
can be translated to a probability-space theory (cf. Section 2) simply by following the
rule: .

For all sinusoidally-weighted time averages {(z(t)e™ 2™} of time-series z(t),
replace z(z) by the expected value E{Z(t)} of the corresponding stochastic
process Z(¢) to obtain (E{Z(t)}e~"*"*'} (when « = 0, the operation (-) can be
omitted to obtain E{Z(¢)} only if Z(r) is purely stationary).

Common examples of z(¢) appearing in this presentation include delay products
z(t) = x()x*(¢ — 7) and cross products z(¢) = u(t)v*{?).
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In the remainder of this chapter, the circumfiex notation (that was introduced in
Section 2) on all time-average quantities is omitted for simplicity.

In the first part of this section, the possibility of generating spectral lines by
simply squaring the signalis illustrated for two types of signals: the random-amplitude
modulated sine wave and the random-amplitude modulated periodic pulse train. Then
in the second part, it is explained that the property that enables spectral-line generation
with some type of quadratic time-invariant transformation is called ¢yclostationarity of
order 2 (in the wide sense) and is characterized by the cyclic autocorrelation function,
whichis a generalization of the conventional autocorrelation function. Following this,
itis shown that a signal exhibits cyclostationarity if and only if the sxgnal is correlated
with certain frequency-shifted versions of itself.

In the third and last part of this section, the correlation of frequency-shifted
versions of a signal is localized in the frequency domain and this leads to the definition
of a spectral correlation density function. Tt is then explained that this function is
the Fourier transform of the cyclic autocorrelation function. This Fourier-transform
relation between these two functions includes as a special case the well-known Wiener
relation between the power speciral density function and the autocorrelation function.
A normalization of the spectral correlation density function that converts it into a
spectral correlation coefficient, whose magnitude is between zero and unity, is then
introduced as a convenient measure of the degree of speciral redundancy in a signal.

Continuing in the final part of this section, the effects on the spectral comrelation
density function of several signal-processing operations are described. These include
filtering and waveform multiplication, which in turn include the special cases of
time delay and multipath propagation, bandlimiting, frequency conversion, and time
sampling. These results are used to derive the spectral correlation density function
for the random-amplitude modulated sine wave, the random-amplitude modulated
pulse train, and the binary phase-shift keyed sine wave. The spectral correlation
density functions for some other types of phase-shift keyed signals are also described
graphically.

To conclude this section, the measurement of the (estimation of the ideal) spectral
correlation density function is discussed and a particular algorithm for this purpose
is illustrated with a simulation of a phase-shift keyed signal.

To complement similar treatments of this material (Gardner, 1987a; Gardner,
1991a), attention is focused in this section primarily on discrete-time signals rather
than continuous-time signals. '3

3.1 Spectral Line Generation

A discrete-time signal x{¢), for ¢ = 0,1, £2, &3, ..., contains a finire-strength
additive sine-wave component (an ac component) with frequency o, say

acos(Zrar +6) witha £0 (1)

3For convenience, the notation herein is modified from that in (Gardner, 1987a; Gardner 1991a);
here, R" and S ¢ are used for continuous time and RY and §¥ are used for discrete time.
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if the Fourier coefficient

MY = (x(5) e” ) 2)
is not zero, in which case (1) gives
1 e
M = Eae .

In (2), the operation (-} is the time-averaging operation

A

{-)

1 Z
I %
zl"éczz+1,=z_:z()

In this case, the power spectral density (PSD) of x (#) includes a spectral line at f = o
and its image f = —a. (The PSD is defined later in this section.) That is, the PSD
in the principal demain (—1/2, 1/2] contains the additive term'4

|M2 P [8(f — o) + 8(f + )], 3

where (-} is the Dirac delta, or impulse, function. For convenience in the sequel, it
15 said that such a signal exhibits first-order periodicity, with frequency .

Let x(¢) be decomposed into the sum of its finite-strength sine-wave component,
with frequency «, and its residual, say n (),

x(t) = acos2rat + 0) + n(f), (4)

where n(¢) is defined to be that which is left after subtraction of (1) from x(¢). It
is assumed that #{¢) is random. Here, the term random is used to denote nothing
more than the vague notion of erratic or unpredictable behavior. If the sine wave is
weak relative to the random residual, it might not be evident from visual inspection
of x(¢) that it contains a periodic component. Hence, it is said to contain hidden
periodicity. However, because of the associated spectral lines, hidden periodicity
can be detected and in some applications exploited through techniques of spectral
analysis.

This presentation is concerned with signals that contain more subtle types of
hidden periodicity that, unlike first-order periodicity, do not give rise to spectral
lines in the PSD, but that can be converted into first-order periodicity by a nonlinear
time-invariant transformation of the signal. In particular, we shall focus on the type
of hidden periedicity that can be converted by a quadratic transformation to yield
spectral lines in the PSD.

The discussion begins with two motivating examples. In the convention used
here, the PSD for x(¢) is denoted by S; (f) and is periodic with unity period. Sz (/")

2 . s e
14The strength of the spectral line is IM;’| as indicated in (3) if and only if the limit (2) exists in
the temporal mean square sense with respect to the time parameter u obtained by replacing ¢ with f 4- 2 In
(2) (Gardner, 1987a, Chapter 15, exc. 6).
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denotes the PSD restricted to the principal domain (—1/2, 1/2]; therefore,

S()= Y 5(f+n).

N==00

On occasion, continuous-time signals also are discussed herein. In such cases it
is assumed that the signal is time-scaled and bandlimited so that the PSD is restricted
tothe band (—1/2, 1/2]. Consequently, the PSD of the discrete-time sampled version,
restricted to the principal domain, will be identical to the PSD of the continuous-time
signal. Consequently, the same notation, §, (f), is used for both,

Examplel: AM Leta(?) be areal random lowpass signal (say lowpass filtered
thermal noise) with the PSD §, ( /) shown in Fig. 5a, which contains no spectral lines.
If a(?) is used to modulate the amplitude of a sine wave, we obtain the amplitude-
moedulated (AM) signal

x(t) = a(t)cos(2x f,1), (5)
whose PSD S, (/) is given by (Gardner, 1937a, Chapter 3, Sec. D)

1 1
§:(f) = 75+ o) + 75— fo) (6)

as shown in Fig, 5b.

Although the PSD is centered about f = f, and f = — Jo, there is no spectral
line at f, or — f;. The reason for this is that, as shown in Fig. 5a, there is no spectral
line in S,(f) at f = 0. This means that the dc component

oA
M, = {a(h)) o)
is zero, since the strength of any spectral line at f = 0 is | M?]%.
Let us now square x (¢) to obtain

¥(£) = x2(1) = a%(¢) cos* (2 £, 1) "
= 1[b(t) + b(t) cos(dn f,1)] ®
where
b(t) = a’(r). ®

Since b(¢) is nonnegative, its dc value must be positive: Mf,’ > 0. Consequently, the
PSD of b{¢) contains a spectral line at # = 0, as shown in Fig. 5c. The PSD for y{t)
is given by

1 1
S =7 [Sb(f) + IS 2+ 380 - 213)] (10)

and, as shown in Fig. 5d, it contains spectral lines at f = 42 foaswellasat /= 0.
Thus, by putting x(¢) through a quadratic transformation (a squarer in this case) we
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(a) Sa(f)

f
(b)

f
(©)

f
(d) Sy(f)

2fg

Figure 5: (a) Power spectral density (PSD) of a lowpass signal. (b) PSD of an
amplitude-modulated (AM) signal. (c) PSD of a squared lowpass signal. (d) PSD
of a squared AM signal.

have converted the hidden periodicity resulting from the sine-wave factor cos(2x f,£)
in (5) into first-order periodicity with associated spectral lines. This is particularly
easy to see if ¢(¢) is a random binary sequence that switches back and forth between
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+1 and —1 because then b(t) = 1 and y(¢) in (8) is therefore a periodic signal:

¥ = % + %005(47:'};:).

Example 2: PAM  As another example, we consider the real pulse-amplitude-
modulated (PAM)} signal

[»,°]
x0) = Y a(nT,) p(t — nT,), (11)
n=—oQ
where the pulse p(¢) is confined within the interval (—7,/2, 7,/2) so that the pulse
ranslates do not overlap, as shown in Fig. 6. For simplicity, we consider a continuous-
time signal in this example (to avoid aliasing). The PSD of x(¢) is given by (Gardner,
1987a, Chapter 3, Sec. D)

SN =m B[ 3 s —mm, (12)

mM=—0cQ

where 8,(f) is shown in Fig. 5a, which contains no spectral lines, and where P(f)
is the Fourier transform of p(t). Since there are no spectral lines in Sa( ) (or BCS)
since p(¢) has finite duration), there are none in S’x (f), as shownin Fig. 7a, regardless
of the periodic repetition of pulses in x (). But, let us lock at the square of x(¢):

YO =20 =3 b(nT,)q(t —nT,), (13)
where
b(nT,) = a*(nT,) (14a)
and
q(t) = pA(). (14b)
The PSD for y(¢) is given by
- 1= 2 e L
5N ==|00| X Sr—mT, (15)

where Q( [} is the Fourjer transform of ¢ (¢). Because of the spectral line at / = Qin
.§b( f), which is shown in Fig. 5¢, we have spectral lines in S (f) at the harmonics
m [ T, (for some integer values of m) of the pulse rate 1/ T, as shown in Fig. 7b. Thus,
again, we have converted the hidden periodicity in x () into first-order periodicity with
associated spectral lines by using a quadratic transformation. This is particularly easy
to see if a(nT,) is arandom binary sequence with values 1, because then b(nT,) = 1
and y(¢) in (13) is therefore a periodic signal
[aa]

O = Y qt—nT). (16)

NH==-00
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x(t)

Fipure 6: A pulse-amplitude-modulated (PAM) signal with pulse width less than interpulse time.

(a) Sx(f)

Figure 7: (a) Power spectral density (PSD) of a pulse-amplitude-modulated (PAM)
signal with 67% duty-cycle pulses. (b) PSD of the squared PAM signal.

3.2 The Cyclic Autocorrelation Function

Although the squaring transformation works in these examples, a different quadratic
transformation involving delays can be required in some cases. Forexample, ifa(n7},)
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in Example 2 is again binary, but p(¢) is flat with height 1 and width T, as shown in
Eig. 8, then y(f) = x2(f) = 1, which is 2 constant for all £. Thus, we have a spectral
line at f* = O but none at the harmonics of the pulse rate. Nevertheless, if we use the
quadratic transformation

YO =x@t)x(t — 1) (17)

for any of a number of nonzero delays 7, we will indeed obtain spectral lines at
S =m/T, Thatis,

M; — (y(f) e—r'27n:t.')

. 1
= (x(x(t — 1) e F) £ 0 18

for ¢ = m/ T, for some nz-.

x(t)

Figure 8: A binary pulse-amplitude-modulated (PAM) signal with full duty-cycle pulses.

The most general time-invariant quadratic transformation of a real time-series
x(r) is simply a linear combination of delay products

PO =Y ha, mx(e — )x(t — )

. T2

for some weighting function 4 (t;, =) that is analogous to the impulse-response func-
tion for a linear transformation, This motivates us to define the property of second-
order periodicity as follows: The real signal x(z) contains second-order periodicity
if and enly if the PSD of the delay-product signal x{¢ — 7,)x (¢ — 77) for some delays
7) and 7, contains spectral lines at some nonzero frequencies . But, this will be so
if and only if the PSD of (17) for some delays (v = 1; — 1)) contains spectral lines
at some nonzero frequencies & # 0; that is, if and only if (18) is satisfied.

In developing the continuous-time theory of second-order periodicity it has been
found to be more convenient to work with the symmetric delay product

Y@ =2+ t/2x (¢t — v /2). (19)

The complex conjugate * is introduced here for generality to accommodate complex-
valued signals, but it is mentioned that for some complex-valued signals, the quadratic
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transformation without the conjugate can also be useful (Gardner, 1987a, Chapter 10,
Sec. C). From (19), the fundamental parameter (18) of second-order periodicity for
continuous time becomes

RE(T) 2 (x(t + 1/2)x*(t — 1/2) ™27y, (20a)

which is the Fourier coefficient A/} of the additive sine-wave component with fre-
quency o contained in the delay-product signal y;(¢). However, for discrete-time
signals, delays equal to half the sampling increment are not allowed. Nevertheless,
since

(I(I)I*(f _ r)e—EZn‘uu) = R’:(r) e—i:rrar

for continucus time, then we can define the fundamental parameter of second-order
periodicity for discrete time as follows

RE(z) £ (x(0)x*(t — v) e~ /2™y gl7oT (20b)

in order to maintain the strongest analogy between the continuous- and discrete-time
theories. Observe that since ¢ and 7 take on only integer values, then RS (7) is periodic
in e with period two, and also R2H!(7) = R%(z)e'™".

The notation RY () is introduced for this Fourier coefficient because, forar = 0,
{20) reduces to the conventional autocorrelation function

Ro(x) = (x(®)x*(¢ = 7)),

for which the notation R, () is commonly used. Furthermore, since RZ (7) is a gener-
alization of the autocorrelation function, in which a cyclic (sinuscidal) weighting
factor ™ is included before the time-averaging it carried out, R¥(t) is called
the cyclic autocorrelation function. Also, the conjugate cyclic autocorrelation for
complex-valued signals obtained from (20) by deleting the conjugate,

R®.(z) = {(x(O)x(t — 7) e/ 27) 7T, (21)

is a further modification of the conventional autocorrelation. !

Thus, we have two distinct interpretations of R{ (v) = M7, . Infact, we have yeta
third distinct interpretation, which can be obtained by simply factoring exp(—i2mar)
in order to reexpress (20) as

RE@) = ([0 ] [x(t — ) 740"}, 2)

15 Although some readers will recognize the similarity between the cyclic autocorrelation function
and the radar ambiguity function, the relationship between these two functions is only superficial. The
concepts and theory underlying the cyclic autocorrelalion function, as summarized in this article, have
little in common with the concepts and theory of radar ambiguity (cf. (Gardner, 1987a, Chapter 10, Sec.
C)). For example, the radar ambiguity function has no meaning relevant to ambiguity (in Doppler) when
applied to a real signal, or when applied to a complex signal without the conjugate.
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That is, RS (z) is actually a conventional crosscorrelation function

Ruy(7) 2 (u(t)* (¢ — 1)) = R2(D), (23)
where
u(t) = x(t) e (24a)
and
v(t) = x(t) et ™ (24b)

are frequency translates of x(#). Recall that multiplying a signal by exp{+imw¢)
shifts the spectral content of the signal by +«/2. For example, the PSDs of #(¢) and
u(l) are

S(f) =8 +a/2) (25)
and

S(f) = S/ —a/2). (26)
It follows from (23} and (24) that x (#) exhibits second-order periodicity ((20) is not
identically zero as a function of t for some & % 0} if and only if frequency transiates
of x(¢) are correlated with each other in the sense that (23) is not identically zero as
a function of = for some & # 0 in (24). This third interpretation of R (z) suggests
an appropriate way to normalize R2(t) as explained next.

As long as the mean values of the frequency translates u(¢) and v(¢) are zero
(which means that x(f) does not contain finite-strength'® additive sine-wave com-
ponents at frequencies o/2 and, therefore, that S,(f) has no spectral lines at
[ = +a/2), the crosscomelation R,,(7) = RY(7) is actually a temporal cross-
covariance K,,(t). That is,

Kuo(D) 2 ([u() — ()] [v(t — ) — (vt — NI
= {u@)*'(t—1)) = Ryu(T)

An appropriate normalization for the temporal crosscovariance is the geometric mean
of the two corresponding temporal variances. This yields a temporal correlation
coefficient, the magnitude of which is upper bounded by unity. It follows from (24)
that the two variances are given by

K (0) = Ru(0) = (lu()*) = Re(0) (28a)

@7

and
K,(0) = R,(0) = {|v())*) = R (0). (28b)
Therefore, the temporal correlation coefficient for frequency translates is given
by
Ko@) _ _RND) a
(K. (0K, 0] R:(0)

Vs (T). _ (2%

161t does contain infinitesimal sine-wave COmponents.
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Hence, the appropriate normalization factor for the cyclic autocovariance R (z) is
simply 1/ R, (0} (and it is the same for the conjugate cyclic autocovariance).

This is a good point at which to introduce seme more terminology. A signal x(z)
for which the autocorrelation R, {z) exists (e.g., remains finite as the averaging time
goes to infinity) and is not identically zero (as it is for transient signals) is commonly
said to be stationary of second order (in the wide sense). But we need to refine
the terminology to distinguish between those stationary signals that exhibit second-
order periodicity (RY(t) # 0 for some o # 0) and those stationary signals that do
not (R%(r) = 0 forall @ # 0). Consequently, we shall call the latter for which
R2(1) = 0 stationary of second order (in the wide sense) and the former for which
R2(1) # 0 for some values of & that are integer multiples of a single fundamental
frequency 1/ 7T (comresponding to the period T') cyclostationary of second order (in
the wide sense). If there is more than one fundamental frequency, then we call the
signal polycyclostationary of second order (in the wide sense). We shall also call any
nonzero value of the frequency parameter o in the principal domain (—%, %] for which
R%(z) # 0 acycle frequency. The discrete set of cycle frequencies is called the cycie
spectrum. For example, if a signal is cyclostationary, the cycle spectrum contains
only harmonics (integer multiples) of the fundamental cycle frequency, which is the
reciprocal of the fundamental period. But if the signal is polycyclostationary, then
the cycle spectrum contains harmonics of each of the incommensurate fundamental
cycle frequencies.

We conclude this section by reconsidering the AM example and determining the
cyclic autocorrelation function for the AM signal.

Example 1 continued: AM Let a(t) be a real random stationary signal with
ZEIQ maan:

{a(0)) =0, (30a)
{a@a*(t — 1)) £ 0, (30b)
laa*(t —t)e ™™y =0 foralla #0. (30c)
Equation (30c) guarantees that .
(a(®)e ™™y =0 foralle # 0. (30d)

We consider the amplitude-modulated sine wave

x(®) = a(t)cos(2m f,t + &)

1 (2. [ —i(2 g (31)
=—a(t) [e:( TSl )+e i2afor + )]'
2

Because of (30d), a(¢) contains no finite-strength additive sine-wave components
and, therefore (together with (30a)), x(f) contains no finite-strength additive sine-
wave components. This means that its power spectral density contains no spectral
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lines, However, the quadratic transformation
Y@ =x(Ox"(t — 1)

— a(t)a*(t—r)% [ei2n'j;r_|_e—i2:'rf,,f + ei(4rrﬁ,t+29)e—i2rrj;t +e—i(4:rﬁ,r+20)ei2:r_ﬂ,r]
(32)

does contain finite-strength additive sine-wave components with frequencies & =
+2 f,, since (30b) renders one or the other of the last two terms in the quantity

(J’r (t) e—iZJml) — %er'erﬂ,r (H(I)a*(f _ T)e—r‘me:)
+2 T (g (et (¢ — 1) =Py
(33)

+ ei29 e—l'Z;'rj;t’ (a(t)a"'(t _ I') e—IZ?r(a—Zj;)f)

— Bl ]

_I_Z e—izﬂ el'zrrﬁ,t (a(f)a*(t‘ _ 7.') e—i22‘r(d+2_ﬂ,)f)

nonzero for @ = +2f,. That these are the only two nonzero cycle frequencies
follows from the fact that (30c) renders (33) equal to zero for all o except & = 0
and @ = +2 f,. Thus, the cycle spectrum consists of only the two cycle frequencies
o = 12 f, and the degenerate cycle frequency a = 0.

Hence, the versions u(¢) and v(¢) of x(#) obtained by frequency shifting x (¢) up
and down by a/2 = f, are correlated. This is not surprising since (31) reveals that
x(#) is obtained from a (r) by frequency shifting up and down by £, and thenadding. In
concluston, we have the cyclic autocorrelation function (in the principal domain of «)

1P R (1) fore = 32,
R (1) = %Ra (D) cos@r for) fora =0 34
0] otherwise,

the magnitude of which is graphed in Fig. 9 for a typical autocorrelation R, (z). It
follows from (34) that the temporal cormrelation coefficient is given by

7ex 29, 0(7) fore =421,
yi(@ =1 y2(r)cos@@nfyr) fora =0 (35a)
0 otherwise.

Thus, the strength of comrelation between x (1) exp(—irat) and
x(t — t) exp(imeft — t1), which is given by

1
@) =3 @], (35b)

can be substantial (as large as 1/2 for this amplitude-moduiated signal.
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5

0~

T

Figure %: Magnitude of the cyclic autocorrelation function for an AM signal graphed
as the height of a surface above the time-frequency plane with coordinates t and a.

As an especially simple specific example of a(¢), we consider as before arandom
binary sequence, which switches back and forth between +1 and —1. If wesett = 0
in (32), we obtain

yo(®) = 1x (O = la()]* cos? (27 fot +6)

1 1
=3 + 3 cos{4x f.t + 20),

which clearly contains finite-strength additive sine-wave components with frequen-
cies @ = X2 f,. In fact, in this very special case, there is no random component in
Jo(t). On the other hand, for 7 # 0, 3, () contains both a sine-wave component and
a random component.

To illustrate the conjugate cyclic autocorrelation (21), let us consider the analytic
signal for AM,

Z(f) — la(!) ei(ZJrﬁ,l‘+5)_
2
For this signal, we have

RZ.(7) & (z(0)z(t — 7) e~2mat) gimer

_ l(a(t)a(r _ 'E) eiZ:r(Zj;—a).r) e—i[‘lrr(j;-nﬂ)r—?ﬁ]

I 1R, (1) fora =2f,

0 otherwise.

Other examples of cyclostationary and polycyclostationary signals can be sim-
ilarly viewed as mixtures of stationarity and periodicity. Examples are cited in
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Section 1. Typical cycle spectra include harmonics of pulse rates, keying rates,
spreading-code chipping rates, frequency hopping rates, code repetition rates, doubled
carrier frequencies, and sums and differences of these (Gardner, 1987a, Chapter 12).

3.3 The Spectral Correlation Density Function

In the same way that it is beneficial for some purposes to localize in the frequency
domain the average power (Jx(?) = R.(0) ina stationary random signal, it can be
very helpful to localize in frequency the correlation ((¢)v* (1)} = (|x(1)|? e~ 2"} =
RZ(0) of frequency-shifted signals u () and v (¢) for a cyclostationary or polycyclosta-
tionary random signal x(¢). In the former case of localizing the power, we simply pass
the signal of interest x () through a narrowband bandpass filter and then measure the
average power at the output of the filter. By doing this with many filters whose center
frequencies are separated by the bandwidth of the filters, we can partition any spectral
band of interest into a set of contiguous narrow disjoint bands. In the limit as the
bandwidths approach zero, the corresponding set of measurements of average power,
normalized by the bandwidth, constitute the power spectral density (PSD) function,
That is, at any particular frequency f (in the principal domain (—1/2, 1/2]), the PSD
for x{r) is given by

500 & im {50 @ xef (36)
ST= B\ * '
where ® denotes convolution and hﬁ(r) is the discrete-impulse response of a one-
sided bandpass filter with center frequency f, bandwidth B, and unity gain at the
band center (see Fig. 10).

Center Frequency = f -

x(t) = Sy (f)
—

BPF |— [«|® — ()

Bandwidth = B

Figure 10: One channel of a spectrum analyzer for measuring the power spectral
density (PSD). (The symbol = indicates that the output only approximates the ideal
function S¢(f) for finite T and B.)

In the latter case of localizing the correlation, we simply pass both of the two
frequency translates () and v(z) of x () through the same set of bandpass filters that
are used for the PSD and then measure the temporal correlation of the filtered signals
(see Fig. 11) to obtain

520 2 fim = ([0 @ 0] [0 @0]), G7)

which is called the spectral correlation density (SCD) function. This yields the
‘'spectral density of correlation in #(#) and v(¢) at frequency f, which is identical to
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the spectral density of correlation in x (¢} at frequencies f + /2 and f — /2 (see
Fig. 12). Thatis, SZ( f) is the bandwidth-normalized (i.e., divided by B) correlation
of the amplitude and phase fluctuations of the narrowband spectral components in
x(t) centered at frequencies f 4+ /2 and f — «/2, in the limit as the bandwidth
B of these narrowband components approaches zero. For complex-valued signals,
the conjugate SCD obtained from (37) by deleting the complex conjugate is also of
interest for seme signals (Gardner, 1987a, Chapter 10, Sec. C).

exp(—iwmat)
t
LN e
x(t) Center Frequency =f () = Sg (f)
Bandwidth= B T |
vV} gpr [/

exp{+inot)

Figure 11:  One channel-pair of a spectral correlation analyzer (or a cyclic spectrum
analyzer) for measuring the spectral correlation density (or cyclic spectral density).

Strictly speaking, the SCD is not a valid density function in the usual sense,
since it is not nonnegative and, in fact, not even real-valued. However, its integral
over all frequencies does equal the correlation of u(¢) and v(¢) and, when u(¢) and
v(t) are decomposed into narrowband spectral components, the correlation of the
components centered at f is indeed the SCD evaluated at . Because of the lack of
the nonnegativity property of the SCD, the correlation of u(t) and v(¢) can equal zero
without the SCD being identically zero because the integral of the SCD over all
can be zero even though the SCD is not identically zero. Nevertheless, because of
the properties that the SCD does share with densities like the PSD, the term density
is retained.

It is well known (see, for example, (Gardner, 1987a, Chapter 3, Sec. C) for a
proof for continuous time) that the PSD obtained from (36) is equal to the Fourier
transform of the autocorrelation function,

Se(f)= Y Re(m)e /e (38)
T=—00
Similarly, it can be shown (cf. {Gardner, 1987a, Chapter 11, Sec. C) for continuous
time) that the SCD (or conjugate SCD) obtained from (37) is the Fourier transform
of the cyclic antocorrelation function (or conjugate cyclic autocorrelation),
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o
+2f

Figure 12: Illustration of spectral bands used in the measurement of the spectral
correlation density S7 (/). (v is a dummy frequency variable; the shaded bands are the
bands selected by the BPFs.)

S#(f) = i R (z)e ¥/t (39a)

T=—00
and, therefore, RZ () is given by the inverse transform
172 ]
R¥ (1) = Se(f) e df. (39b)
—1/2
Since RY (<} is periodic in o with period two, so too is ST(f). Also, since t takes
on only integer values, then S2( /) is periodic in f with period one. Furthermore,
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since increasing f £ /2 by %1 has no effect on the spectral components at these
frequencies, then it follows that S( ) also exhibits the periodicity SF'(f + 1) =
S7(f). Consequently, the principal domain for S¥(f) can be taken to be either
the square with vertices (f, @) = (£3, +1) or the diamond with vertices (f, &) =
(0, £1) and :I:%, 0). Relation (38) is known as the Wierner relation (see, for example,
(Gardner, 1987a, Chapter 3, Sec. C)), and (39) is therefore called the cyclic Wiener
relation (Gardner, 1987a, Chapter 11, Sec. C). The cyclic Wiener relation includes
the Wiener relation as the special case of & = 0. (In the probabilistic framework of
stochastic processes, which is based on expected values [ensemble averages] instead
of time averages, the probabilistic counterpart of (38} is known as the Wiener-Khinchin
relation and, therefore, the probabilistic counterpart of (39) is called the cyclic Wiener-
Khinchin relation (Gardner, 1990a, Chapter 12, Sec. 12.2).) Because of the relation
(39), the SCD is also called the cyclic spectral density function (Gardner, 1987a,
Chapter 10, Sec. B).

It follows from (39) and the interpretation {23) of RY(t) as R,, (1) that the
SCD is the Fourier transform of the crosscorrelation function R,, () and is therefore
identical to the cross-spectral density function for the frequency translates »(7) and
v(t):

S: () = Su( ), (40}

where S, (f") is defined by the right-hand side of (37) for arbitrary () and v(¢). This
istobe expected since the cross-spectral density S, ( /) is known (cf. (Gardner, 1987,
Chapter 7, Sec. A)) to be the spectral correlation density for spectral components in
u(t) and v(z) at frequency f, and x(¢) and v(¢) are frequency-shifted versions of
x(¢). The identity (40) suggests an appropriate normalization for S¥(f): As long
as the PSDs of u{¢) and v(¢) contain no spectral lines at frequency f, which means
that the PSD of x(¢) contains no spectral lines at either of the frequencies f & /2,
then the correlation of the spectral components (40) is actually a covariance since
the means of the spectral components are zero {Gardner, 1987a, Chapter 11, Sec. C).
When normalized by the geometric mean of the corresponding variances, which are
given by

Su(f) =S (f +a/2) (41a)
and
S() =8/ —a/2), (41b)
the covariance becomes a correlation coefficient:
Sua (f) SEH)

o). @)

SIS N ™ 1SS + /)5 (f — a/2]

Since |,o;' o )| is bounded to the intervai [0, 1], it is a convenient measure of the degree
of local spectral redundancy that results from spectral correlation. For example, for
|o2(f)| = 1, we have complete spectral redundancy at f + /2 and f — /2.
For conjugate spectral redundancy of complex-valued signals, (42) is modified by
replacing the numerator with the conjugate SCD.
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Let us now return to the AM example considered previously.

Example 1 continued: AM By Fourier transforming (34) and inveking the
cyclic Wiener relation (39), we obtain the following SCD function on the principal
domain for the amplitude-modulated signal (31):

L+, () fora = +2,
SE() = ﬁSa(f‘F f;)"_%Sa(f_.ﬁ?) fora =0 43)
0 otherwise,

where it has been assumed that S,(f £ f,) = O for | f| > 1/2 to avoid aliasing
effects in the principal domain. The magnitude of this SCD is graphed in Fig. 13
as the height of a surface above the bifrequency plane with coordinates f and o.
For purposes of illustration, a(¢) is assumed to have an arbitrary low pass PSD for
this graph. Observe that although the argument f of the SCD is continuous, as it
always will be for a random signal, the argument « is discrete, as it always will be
since it represents the harmonic frequencies of periodicities underlying the random
time-series (the sine-wave carrier in this example).

Figure 13: Magnitude of the spectral correlation density function for an AM signal
graphed as a height above the bifrequency plane with coordinates f and .

It follows from (43) that the spectral correlation coefficient is given by

Sa (f) e:!:i2\9

foro = £2;.
ST+ SUNS D + ST -2 o=+

(44a)
Thus, the strength of correlation between spectral compenent in x(¢) at frequencies
f+e/2and f— /2 is unity:

|S(f)| =1 for|fl< fo and o==2f, (44b)
provided that a{#) is bandlimited to | f| < f;,
S(fy=0 forlfl= fo (45)

os(f) =
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This is not surprising since the two spectral components in x(f) at frequencies
fExafl = fx f, are obtained from the single spectral component in a(f) at
frequency f simply by shifting and scaling. Thus, they are perfectly correlated. That
is, the upper (lower) sideband for f > O carries exactly the same information as the
lower (upper) sideband for f < 0. Techniques for exploiting this spectral redundancy
are described in Section 4.

To illustrate the conjugate SCD, we consider the analytic signal z(¢) for AM.

o0
SE(f)= ) RE.(r)e ™/
T=—00
B 1S.()e? fora=2f,
0 otherwise.

Before considering other examples of the SCD, let us first gain an understanding
of the effects of somne basic signal-processing operations on the SCD. This greatly fa-
cilitates the determination of the SCD for commonly encountered man-made signals.

3.4 Filtering

When a signal x(#) undergoes a linear time-invariant (LTI} transformation (i.e., a
convolution or a filtering operation),

z(t) = h(t) ® x(1)

23 hyx —w),

=00

(46)

the spectral components in x{f) are simply scaled by the complex-valued transfer
function H{ /), which is the Fourier transform

H(fy= Y h{)e ™ 7

1=—co

of the discrete-impulse-response function 4(t) of the transformation, As a result,
the PSD gets scaled by the squared magnitude of H(f') (see, for example, (Gardner,
1987a, Chapter 3, Sec. C) or (Gardner, 1990a, Chapter 10, Sec. 10,1) for continuous
time)

SNy =H(OP S (48)

Equation (48) can be derived from the definition (36) of the PSD. Similarly, because
the spectral components of x(¢) at frequencies f &+ «/2 are scaled by H(f + «/2),
the SCD gets scaled by the product H(f 4+ a/2) H*(f — a/2):

S =H{+a/2)H* (f —o/2)S(f). 49)
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This result, called the input-output SCD relation for filtering, which can be derived
from the definition (37) of the SCD, includes (48) as the special case of @ = 0.
Observe that it follows from (49) and the definition (42) that

o2 ()] = |p2(N)]. (50)

That is, the magnitude of the spectral correlation coefficient is unaffected by filtering

Gf H{f £a/2) #0).

Example 3: Time Delay As our first example of (49), we consider a filter that
simply delays the input by some integer #,; then k(f) = §(¢ — ¢,), where 8 is the
Kronecker delta, and H(f) = ¢ %7/ Therefore, for z{t) = x(t — £,), we obtain
from the input-output SCD relation (49)

SE(f) = Sx(f)e P, (51)

which indicates that, unlike the PSD, the SCD of a cyclostationary signal is sensitive
to the timing or phase of the signal.

Example 4: Multipath Propagation As a second example of (49), if x(¢)
undergoes multipath propagation during transmission to yield a received signal

Z(t) = Zanx(t — ),

where a, and the integer #, are the attenuation factor and delay of the nth propagation
path, we have

H(fy=Y ae /= (52)
and therefore (49) yields
S =8N Z Aty eXp(—I27[ f(ty — tn) + 0(ta + t)/2D.  (53)

Example 5: Bandpass Signals As a third example of the utility of the relation
(49), let us determine the support region in the ( f; &) plane for a bandpass signal with
lowest frequency b and highest frequency B. To enforce such a spectrum, we can
simply put any signal x(¢) through an ideal bandpass filter with transfer function {cn
the principal domain (—1/2, 1/2])

1 forb<|f|< B

0 otherwise.

H(f)=[

It then follows directly from the input-output SCD relation (49) that the SCD for the
output of this filter can be nonzero only for || f| — |@|/2| > b and | /| + |¢|/2 < B:

0 for ||f] - lel/2] < bor[f]+ |al/2 = B,

S2(f) = 54
(/) [S;”(f) otherwise. &9
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This shows that the support region in the ( f, &) plane for a bandpass signal is the four
diamonds located at the vertices of a larger diamond, depicted in Fig. 14a. By letting
b — 0, we obtain the support region for a lowpass signal, and by letting B8 — 1/2,
we obtain the support region for a highpass signal. This is shown in Figs. 14b and 14c.

Figure 14: (a) Suppor: region in the bifrequency pltanc for the speciral comelation
density function of a bandpass signal. (b) Support region for a lowpass signal. (c)
Support region for a highpass signal (shown over a small fraction of the diamond-shaped
principal domain).
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3.5 Signal Multiplication and Time Sampling

When two signals are multiplied together, we know from the convolution theorem
that their Fourier transforms get convolved. From this, we expect some sort of convo-
lution relation to hold for the SCDs of signals passing through a product modulator.
In fact, it can be shown (cf. (Gardner, 1987a, Chapter 11, Sec. C) or (Gardner, 1990a,
Chapter 12, exc. 41) for continuous time) that if x(¢) is obtained by multiplying
together two statistically independent!” time-series r(¢) and s(z),

x(t) =r(6)s(e), (55)

then the cyclic autocorrelation of x (#) is given by the discrete circular conveolution in
cycle frequency of the cyclic autocorrelations of »() and s(z):

R@ = Y R@EFD, (56)
Be(-4.41

where, for each e, B ranges over all values in the principal domain (—3, 1] for which

Rf (r) # 0. By Fourier transforming (56), we cbtain the input-output SCD relation
for signal multiplication:

1/2
ssh=[ % Swserr- vy 57)
T2 pet-4.4)
which is a double circular convolution that is continuous in the variable f and discrete
in the variable .

Example 6: Frequency Conversion As an example of (57), if s(¢) is simply
a sinusoid,
5(t) = cos(2n fot + 8),

the product modulator becomes a frequency converter when followed by a filter to
select either the up-converted version or the down-converted version of r(¢). By
applying first the input-output SCD relation (57) for the product modulator {which
applies since a sinusoid is statistically independent of all time-series (Gardner, 1987a,
Chapter 15, Sec. A)), and then (49) for the filter, we can determine the up-converted
or down-converted SCD. To illustrate, we first determine the SCD for the sinusoid
s(f). By substituting the sinusoid s(¢) into the definition of the cyclic autocorrela-
tion, we obtain

3 cos@r for) fora =0
RI(z) =4 Lg% fora = £2f, (58)
0 otherwise

on the principal domain of &.

17Time-series are statistically independent if their joint fraction-of-time probability densities factor
into products of individual fraction-of-time probability densities, as explained in (Gardner, 1987a, Chapter
15, Sec, A).
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Fourier transforming then yields the SCD

(U = R+ + f) fore=0

SX(f)= et P51 fora = £2f, (59)

1
1
0 otherwise

on the principal domain, which is illustrated in Fig. 15a. Using (57), we circularly
convolve this SCD with that of a stationary signal #(¢), for which

5(f) fore=0

S = 60
) IO fora # 0 ©0)

on the principal domain (see Fig. 15b). The result is that the SCD of the stationary
signal simply gets replicated and scaled at the four locations of the impulses in the
SCD of the sinusoid, as illustrated in Fig. 15¢ (provided that 5.(f & f,) = 0 for
| f1 = 1/2 to avoid aliasing effects in the principal domain).

Example 7: Time Sampling Another important signal-processing operation
is periodic time sampling. It is known that for a stationary signal x{¢), the PSD
S.(f) of the sequence of samples [x(nT,) : n = 0,41, £2,...} is related to the
PSD 8, ( [ of the continuous-time waveform by the aliasing formula (cf. (Gardner,
19874, Chapter 3, Sec. E) or (Gardner, 1990a, Chapter 11, Sec. 11.1)}

Sx(f)- Z S, (f——) (61)

Ts n=—00

1t is shown in (Gardner, 1987a, Chapter 11, Sec. C), (Gardner, 1990a, Chapter 12,
Sec. 12.4) that this aliasing formula generalizes for the SCD to

cQ

5Py = ; Z Seamn (f— " %) . 62)

Observe that, when x(¢) is not stationary (i.e., when S‘f (Y £ 0fore = m/T
for some nonzero integers m), the conventional PSD aliasing formula (61) must be
corrected according to (62) evaluated at ¢ = 0:

ad g m n
; ( 3T T;)' (63)

This reflects the fact that, when aliased overlappmg spectral components add together,
their PSD values add only if they are uncorrelated. When they are correlated, as in a
cyclostationary signal, the PSD value of the sum of overlapping aliased components
depends on the particular magnitudes and phases of their correlations. The SCD
aliasing formula (62) is illustrated graphically in Fig. 16, where the supportregions for

S(f) =

hi|
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~4f,/3 — 41 /3 3

Figure 15: (a) Magnitude of the spectral correlation density (SCD) for a sine wave
of frequency f,. (b} SCD for a lowpass stationary signal. (¢} SCD magnitude for the

product of signals corresponding te (a) and (b}, obtained by convolving the $CDs in (a)
and (b},

the SCD S (f) for the sequence of samples {x (= T;)} is depicted in terms of the single

diamond support region for a lowpass waveform x (¢}, which is shown in Fig, 14b.
When we subsample a discrete-time signal x(¢) with sampling rate 1/7; for

some integer T to obtain the signal z(¢) = x (¢ T;), we obtain the discrete-time analog

of (62),
SI(fy= TL Y stk Ts (—f+q/2), 64

¥ gep, T
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Figure 16: llustration of support regions in the bifrequency plane for the spectral
comrelation densities that are aliased by periodic time sampling,

where P, is the set of all integers g = BT — & for which o € (—1, 41 Similarly,
when we resample a discrete-time signal x(¢), by (effectively) interpolating back to
a continuous-time waveform and then time sampling at the new rate 1/ 7 to obtain
z(#), the SCD is given by

1 2, .
SHfy= ), Semin (f— o %) , (65)

where §2(f) is the SCD $2 (/) restricted o its principal domain.
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3.6 Periodically Time~Variant Filtering

Many signal-processing devices such as pulse and carrier modulators, multiplexors,
samplers, and scanners, can be modeled as periodically time-variant filters, especially
if multiple incommensurate periodicities (i.e., periodicities that are not harmoni-
cally related) are included in the model. By expanding the periodically time-variant
discrete-impulse-response function in a Fourier series as explained shortly, any such
system can be represenied by a parallel bank of sinusoidal product modulators fol-
lowed by time-invariant filters. Consequently, the effect of any such system on the
SCD of its input can be determined by using the SCD relations for filters and product
modulators. In particular, it can be shown (cf. (Gardner, 1987a, Chapter 11, Sec. D)
for continuous time) that the SCD of the output z(f) of a multiply-periodic system
with input x(¢) is given by

S =Y Galf +/DGL(f — a/2)STHHY (f - E%) ., (66)
Byed

provided that S, (f + 8) = Ofor | f| = 1/2 for all 8 € A to avoid aliasing effects in
the principal demain, where Gg( f) are the transfer functions of the filters and 4 is
the set of sinuseid frequencies associated with the product modulators in the system
representation. More specifically, for the input-output equation

() = Z R, wx W), 67

U=m—00

the multiply-periodic discrete-impulse-response function /#{¢, &) can be expanded in
the Fourier series _
h(t+2,0) =) gp(r) ™™, (68)
Bed

where the Fourier coefficients (for each t) are given by
go(r) = (h{t +,8) e ). (69)
It follows from (67) and (68) that the filter output can be expressed as

2(6) =Y [x(6) ™ ] ® ga(), (70)

feAd

where gp(t) are the discrete-impulse-response functions of the filters with corre-
sponding transfer functions Gg(f). Thus, periodically time-variant filters perform
time-invariant filtering on frequency-shifted versions x(t)e’>™ of the input. This
results in summing scaled, frequency-shifted, cycle-frequency-shifted versions of the
SCD for the input x (¢) to obtain the SCD for the output z(¢), as indicated in (66).
Let us now consider some additional examples of modulation types, making use
of the results obtained in the preceding paragraphs to determine SCDs. However, in
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the interest of realism and for the sake of anatytical simplicity, continuous-time signal
models are used.

Example 2 continued: PAM Let {a,} be a stationary random sequence, and let
us interpret these random variables as the time samples of a continuous-time random
waveform, a, = a(nT,), with PSD S,(f). We consider the continuous-time PAM
signal

=]
x(€)= 3" a, pt —nT, +5), (1)
H=—00
where p(t) is a deterministic finite-energy pulse and ¢ is a fixed pulse-timing phase
parameter. To determine the SCD of x (¢), we can recognize that x (¢) is the output of
a periodically time-variant linear system with input a{¢), and impulse response

o0

h(t,u)= > plt —nT,+¢)(u—nT,),

n=—co

where § is the Dirac delta. We can then use the continucus-time counterpart of the
input-output SCD relation (66), which is identical in form except that continuous-
time Fourier transforms are used (cf. {Gardner, 1987a, Chapter 11, Sec. D)). Or we
can recognize that this particular pericdically time-variant system is composed of a
product modulator that implements an impulse sampler, followed by a linear time-
invariant pulse-shaping filter with impulse-response function 4{z) = p(f), as shown
in Fig. 17. We can then use the continuous-time counterpart of the input-output
SCD relation (57), which is identical in form except the convolutions are linear {cf.
(Gardner, 1987a, Chapter 11, Sec. C)), as it applies tc impulse sampling, together
with the relation (49) for filtering. The result is

3 =P +aB (e Y min (f - - 1) e,

i oo 2T, T,
(72)
Using the SCD aliasing formula (62) for a(¢) we can reexpress (72) as
- 1 -~ ~ .
S = FP(f-i-at/Z)P*(f — o/DS(f) e, (73)

where S¥(f) is the SCD for the pulse-amplitude sequence {a,}. Having assumed
that {a,} is stationary, and using the periodicity property

o | Sk f+af2) fora=4£/T,
S ()= [ o] otherwise (74)
fork=10,41,42,..., we can express {(73) as
1 5 Ty i2res —
.§'f(f) _ EP(I-I—&/Z)P (f—ea/S%{(f+afl)e fore =k/T, (75)

0 otherwise,
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A graph of the magnitude of this SCD for the full-duty-cycle rectangular pulse

1 forye| <T,/2
P = [ 0 otherwise (76)
and a white-noise amplitude sequence with PSD
S(f)=1 D
is shown in Fig, 18.
p(t)
a(t) . x(t)
» Filter f——

s(t)=3.8(tnTy)
n
s(t) =%:%0 exp(izn%t)

Figure 17: Tnterpretation of PAM signal generator as the cascade of an impulse sam-
pler and a pulse-shaping filter.

Figure 18: Magnitude of the spectral correlation density for a PAM signal with full-
duty-cycle rectangular pulses.

_ It follows from (77) that for all @ = %/T, for which S,(f & &/2) # 0 and
P(f+a/2)P*(f — a/2) # 0, the spectral correlation coefficient p%(f) is unity in
magnitude:
lef ()] =1. (78)
Thus, all spectral components outside the band | f| < 1/27, are completely redun-
dant with respect to those inside this band. Techniques for exploiting this spectral
redundancy are described in Section 4.
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The conjugate SCD for the PAM signal (71) is given by (73) with ﬁ*(f —o/2)
replaced by P*(ar/2 — f) and S2(S) replaced by S .(f). For areal PAM signal,
the conjugate SCD is identical to the SCD; however, for complex PAM the conjugate
SCD is, in gencral, different and is, in fact, zero for the complex PAM that models
the complex envelopes of most digital QAM signals, including QPSK. This follows
from the fact that {@,&y+.m} = O for all m for such signals; consequently, $%.(f) =0
for all @.

By inverse Fourier transforming the SCD (75), we obtain the cyclic autocorre-
lation functicn

1 & - i2
Eo=lT n;mRa(nT,,)rg (t —nT,) e fora =k/T, 79)
0 otherwise,
where 00
@2 [ per e - e (30)
—o0
For a white-noise amplitude-sequence as in (77), (79) reduces to
- 1 .
Ri(r) = 1} (@) ¥ fora =k/T,, (81)
(2}

and, for a rectangular pulse as in (76), this yields the temporal correlation coefficient

for 7| = T, (82)
zal,

Yi(D) =
the magnitude of which is shown in Fig. 19. This correlation coefficient peaks for
o =1/T, at T = T,/2, where it takes on the value

72T/ =1/ fore=1/T,. (83)

That is, the strongest possible spectral line that can be regenerated in a delay-product
signal for this particular PAM signal occurs when the delay equals half the pulse
period. In contrast to this, when the more bandwidth-efficient pulse whose transform
is a raised cosine is used, the optimal delay for sine-wave regeneration 1s zero.

An especially simple example of a sequence of pulse amplitudes {a,} is a binary
sequence with values £1. If we consider = 0 in the delay-product signal, then we
obtain

yol&) = xOP = Y ayamplt —nT, +£)plt —mT, + ).

m,a=—o0

If the pulses do not overlap (i.e., if p(t) = 0 for |¢| = T,/2), this reduces to

oQ

yolty= Y alp*(t —nT, +5)

n=-—00

o0
= > Pu—nL+e),

H=—00
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Figure 19: Magnitude of the cyclic autocorrelation function (normalized to form a
correlation coefficient) for a PAM signal with full duty—cycle rectangular pulses.

which is periedic with peried T, and therefore contains finite-strength additive sine-
wave components with frequencies &/ T, (except when p(r) is flat as in (76)). In this
very special case where {a,} is binary and the pulses do not overlap, there is no random
compenent in {#); but, for T # 0, 3, (¢} contains both sine-wave components and
random components (even when p(f) is flat).

Example8: ASK and PSK By combining the amplitude-modulated sine wave
and the digital amplitude-modulated pulse train, we obtain the amplitude-shift-keyed
(ASK) signal

x(t) = aft) cos(2m fot + ), (84)
where o
alty= ) ay plt —nT, +8), (85)

and {a,} are digital amplitudes. By using the continuous-time counterpart of the SCD
relation (57) for signal multiplication and the result (75) for the SCD of a{¢), we can
obtain the SCD for the signal (84) by simply convolving the SCD functions shown in
Figs. 15a and 18. The result is shown in Fig. 20a, where the cycle frequencies shown
area = £2 f, +m/T, and « = m/ T, for integers m, and where f, = 3.3/7T,. When
JoT, is irrational, the ASK signal is polycyclostationary with fundamental periods T,
and 1/2f,.

For a binary sequence with each a, = =1, this amplitude-shift-keyed signal,
with the pulse (76), is identical to the binary phase-shift-keyed (BPSK) signal

x(t) = cos |:21'rf.,t +6+ Z ¢, pt — nTa):| . (86}

n=-00
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Figure 20: Magnitude of speciral correlalion densities. (a) BPSK, (b) QPSK, and (¢)
SQPSK. (Each signal has a rectangular keying envelope.)

where ¢, 2 {a, — 1)/2, since shifting the phase of a sine wave by 0 or & is the same
as multiplying its amplitude by 1 or —1. Other commonly used types of phase-shift-
keyed signals inciude quaternary phase-shift keying (QPSK) and staggered QPSK
(SQPSK). The details of these signal types are available in the literature (see, for
example (Gardner, 1987a, Chapter 12, Sec. E) or (Gardner, 1990a, Chapter 12, Sec.
12.5)). Only their SCD-magnitude surfaces are shown here in Fig. 20b, ¢, where
again f, =3.3/T,.
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It is emphasized that the three signals BPSK, QPSK, and SQPSK differ only
in their carrier phase shifts and pulse timing and, as a result, they have identical
PSDs, as shown in Fig. 20 (consider & = 0). However, as also shown in Fig. 20,
these differences in phase and timing result in substantially different SCDs (consider
a« # 0). That is, the phase-quadrature component present in QPSK but absent in
BPSK results in cancellation of the SCD at cycle frequencies associated with the
carrier frequency (viz., @ = £2 f, +m/ T, for all integers m) in QPSK. Similarly, the
pulse staggering by T, /2 (between the in-phase and quadrature components) present in
SQPSK but absent in QPSK results in the SCDs being cancelledate = £2 f, +m/ T,
only for even integers m, and at « = m /T, only for odd integers m in SQPSK. This
again illustrates the fact that the SCD contains phase and timing information not
available in the PSD. In fact, as formulas (43) and (75) reveal, the carrier phase 8
in (31) and the pulse timing £ in (71) are contained explicitly in the SCDs for these
carrier- and pulse-modulated signals.

3.7 Measurement of Spectral Correlation

The ideal SCD function (37) is derived by idealizing the practical spectral correlation
measurement depicted in Fig. 11, by letting the averaging time T in the correlation
measurement approach infinity and then letting the spectral resolving bandwidth B
approach zero. Consequently, the practical measurement with finite parameters T and
B can be interpreted as an estimate of the ideal SCD. This estimate will be statistically
reliable only if TR » 1, and it will approach the ideal SCD only for sufficiently
large T and sufficiently small B. Numerous alternative methods for making this
practical measurement are described in (Gardner, 1986c; Gardner, 1987a, Chapter
13}, and computationally efficient digital algorithms and architectures for some of
these, which are developed in (Roberts et al., 1991; Brown and Loomis, 1992), are
presented in Article 6 in this volume. The statistical behavior (bias and variance) of
such estimates is analyzed in detail in (Gardner, 1986¢; Gardner, 1987a, Chapter 15,
Sec. B; Brown and Loomis, 1992), and in Chapter 6 in this volume. For the purpose
of making the applications described in Section 4 more concrete, it suffices here to
simply point out that because the SCD S¥(f) is equivalent to a particular case of
the conventional cross speciral density S, (1) (cf. (40)), cne can envision any of the
cenventional metheds of cross spectral analysis as being used in the applications.

Example 9: QPSK As an example, the result of using the Wiener-Daniell
method (Gardner, 1987a, Chapter 7, Sec. D), based on frequency stnoothing of the
cross-periodogram of 4 (¢) and v(¢) (the conjugate product of their FFTs), is illustrated
in Fig. 21 for a QPSK signal with carrier frequency f, = 1/47; and keying rate
1/T, = 1/8T;, where 1/T; is the sampling rate. An FFT of length 128 (T = 1287T})
was used in Fig. 21a, and only four frequency bins were averaged together (B = 4/T)
to produce each output point, whereas, in Fig. 21b, the FFT length used was 32,768
(I = 32,768T;) and 1,024 bins were averaged together (B = 1,024/ T). 1t is easily
seen by comparing with the ideal SCD in Fig. 20b that without adequate spectral
smoothing the variability of the SCD estimate can be very large.
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Figure21: Magnitude of a spectral correlation density (SCD) estimate ebtained from
a finite-length data record for the QPSK signal whose ideal SCD is shown in Fig, 20b.
(a)Record length is 128 lime samples, and four adjacent frequency () bins are averaged
together. (b)Record lengthis 32,768 and 1,024 adjacent frequency (f) bins are averaged
together. (The sampling rate in beth (a) and (b) is 10/ T,, where 1/ T, is the keying rate
of the QPSK signal.)

4 EXPLOITATION OF CYCLOSTATIONARITY

This section describes some ways of exploiting sine-wave generation and the inher-
ent spectral redundancy associated with the spectral correlation in cyclostationary
signals to perform various signal-processing tasks. These include detecting the pres-
ence of signals buried in noise andfor severely masked by interference; recognizing
such corrupted signals according to modulation type; estimating parameters such
as time-difference-of-arrival at two reception platforms and direction of arrival at a
reception array on a single platform,; blind-adaptive spatial filtering of signals imping-
ing on a reception array; reduction of signal corruption due to cochannel interference
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andfor channel fading for single-receiver systems; linear periodically time-variant
prediction; and identification of linear and nonlinear systems from input and output
measurernents. The descriptions include brief explanations of how and why the signal
processors that exploit sine-wave generation or spectral redundancy can outperform
their mere conventional counterparts that ignore cyclostationarity. References to
more detailed treatments are given throughout. It should be ciarified at this point
that although the classical theory of statistical inference and decision is certainly
applicable in principle to cyclostationary signals {modeled either as stochastic pro-
cesses or as nonstochastic time-series with fraction-of-time probability models, <f.
Section 2), the types of problems where exploitation of cyclostationarity can really
pay off are often not amenable to the classical theories (e.g., Bayes minimum risk
and maximum likelihood) because of analytical intractability and implementational
complexity. Thus, the techniques surveyed here are for the most part ad hoc, but
nevertheless very powerful.

4.1 Spectral Redundancy

The existence of correlation between widely separated spectral components (separa-
tion equal to a cycle frequency «) can be interpreted as spectral redundancy. The
meaning of the term redundancy that is intended here is essentially the same as that
used in the field of information theory and coding. Specifically, multiple randomly
fluctuating quantities (random variables) exhibit some redundancy if they are sta-
tistically dependent, for example, correlated. In coding, undesired redundancy is
removed from data to increase the efficiency with which it represents information,
and redundancy is introduced in a controlled manner to increase the reliability of
storage and transmissien of information in the presence of noise by enabling error
detection and correction.

Here, redundancy that is inadvertently introduced into signals by the modula-
tion process is to be exploited to enhance the accuracy and reliability of information
gleaned from the measurements of corrupted signals, but the term information is
interpreted in a broad sense. For instance, it includes the eight examples outlined
in Section 1.2. In all of these examples, the performance of the signal processors
that make the decisions and/or produce the estimates can be substantially improved
by suitably exploiting spectral redundancy. The degree of improvement relative to
the performance of more commonly used signal processors that ignore spectral re-
dundancy depends on both the severity of the signal corruption (noise, interference,
distortion) and the degree of redundancy in the signal x (f), as measured by the mag-
nitude of the spectral correlation coefficient |p§.’ f )| (or its conjugate counterpart)
defined in Section 3. The degree of improvement also depends on the amount of
data available for processing (the collection time). The utility of exploiting spectral
redundarncy can also be enhanced by intentionally designing the signal to exhibit a
sufficient amount of spectral redundancy.

The primary feature of spectral redundancy that enables it to be readily ex-
ploited is its distinctive character. That is, most man-made signals exhibit spectral
redundancy, but most noise (all noise that is not eyclostationary) does not and, more
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importantly, when multiple signals of interest and signals not of interest (interference)
overlap in beth time and frequency, their spectral redundancy functions are nonover-
lapping because their cycle frequencies & are distinct. This is aresultof signals havpg
distinct carrier frequencies and/or pulse rates or keying rates, even when occupying
the same spectral band.

The distinctive character of spectral redundancy makes signal-selective mea-
surements possible. Specifically, for the received composite signal

L
x(6) =Y se(t) +n(®), 87)
é=1

where the set {s; (t)}‘lr‘ includes both signals of interest and interference—all of. which
are statistically independent of each other—and where #(¢) is background noise, we
have the SCD (for measurement time 7 — c0)

SE() = Z 2+ ST (88)

But if the only signal with the particular cycle frequency o = o is sx(#), then (for
T — oo) we have

SECf) = S5(f), (89)

regardless of the temporal or spectral overlap among [.se(t)}f and also n(¢). This
perfect signal selectivity of ideal SCDs implies that practical measurements of SCDs
or their parameters can be made signal selective for measurement times t that are
long enough.

Example 1: BPSK Signal in Multiple AM Interference and Noise To il-
lustrate the concept of signal selectivity, let us consider the situation in which a
broadband BPSK signal of interest is received in the presence of white noise and five
interfering AM signals with narrower bandwidths that together cover the entire band
of the BPSK signal. The noise and each of the five interfering signals have equ?.l
average power. Therefore, the total signal-to-interference-and-noise ratio (SINR) is
approximately —8 dB. The BPSK signal has carrier frequency f, = 0.25/ Ts and
keying rate @, = 0.0625/T;. It has full-duty-cycle half-cosine envelope, which re-
sults in an approximate bandwidth of B, = 0.1875/T;. The five AM signals have
carrier frequencies f1 = 0.156/T;, fp = 0.203/T;, f3 = 0.266/T;, f3 = 0.313/7T;,
fs = 0.375/T;, and bandwidths B, = 0.04/T;, B, = 0.05/T;, By = 0.045/T;,
By = 0.04/T,, Bs = 0.08/T,. With the use of the same measurement parameters
(FFT length = 32,768) as in Example 9 in Section 3 for the measurement of the SCD
of QPSK, the SCD for these six signals in noise was measured. The resultant. SCD
magnitude is shown in Fig. 22a. Also shown in Fig. 22b, ¢ are the SCD magnitudes
for the BPSK signal alone and for the five AM interferences plus noise alone. Al-
though all six signals exhibit strong spectral redundancy {|p2(f)| = l) the cycle
frequencies « at which this redundancy exists are distinct because the carrier frequen-
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Figure 22: Magnitudes of estimated spectral correlation densities (SCDs). (a) SCD
magnitude for a BPSK signal corrupted by white noise and five AM interferences, (b)
SCD magnitude for the BPSK signal aleone. (c) SCD magnitude for the white noise and
five AM interferences. (The power levels, center frequencies, and bandwidths for the
signals and noise are specified in the text; the record length used is 32,768 time samples,
and 1,024 adjacent frequency (/) bins are averaged (ogether.)

Gardner
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cies are all distinct. Thus, an accurate estimate of the SCD for the BPSK signal is
easily extracted from the SCD for the corrupted measurements. Similarly, accurate
estimates of the SCDs for each of the five AM signals can be extracted. Consequently,
any information contained in these SCDs can be reliably extracted.

In connection with this example, let us briefly consider some of the signal-
processing tasks outlined in Section 1.2.

4.2 Detection and Classification

We can see from Fig. 22 that knowing the particular pattern of the SCDs for BPSK and
AM signals (see Figs. 13 and 20} enables us to detect the presence of six signals and
to classify them according to modulation type. This would be impossible if only PSD
(SCD at ¢ = () measurements were used. One approach to exploiting the spectral
redundancy of a signal to detect its presence is to generate a spectral line at one of
its cycle frequencies and then detect the presence of the spectral line (cf. Section 3).
It has been shown that the maximum-SNR spectral-line generator for a signal s(¢)
in additive Gaussian noise and interference with PSD §,(f) produces the detection
statistic (cf. (Gardner, 1987a, Chapter 14, Sec. E} for continuous time)

1/2 . Sa(f)*
= Se s d 90
z f_m D Tramsg-an ¥ o0

for comparison to a threshold. In (90), 3;’ (f)is a crude estimate of S7( /) obtained
by deleting the time-averaging operation {-) and the limiting operation from (37) and
choosing B equal o the reciprocal of the record length of x(¢). It can be shown
that (90) is equivalent to whitening the noise and interference using a filter with
transfer function 1/ [S,(f )]1’ 2 and then correlating the measured SCD for the noise-
and-interference-whitened data with the ideal SCD of the signal, as transformed by
the whitener, to be detected (Gardner, 1987a, Chapter 14, Sec. E). Equivalently, for
noise consisting of a white component plus strong narrowband components, (90)
corresponds to attenuating the narrowband components well beiow the white-noise
component—i.e., excising the narrowband components—using a filter with transfer
function 1/S5,( ), and then correlating the measured SCD for the narrowband-excised
data with the ideal SCD of the signal (untransformed by the excision filter).

A detailed study of both optimum (e.g., maximum-likelihood and maximum-
SNR) and more practical suboptimum detection on the basis of SCD measurement is
reported in (Gardner, 1988b}, and receiver operating characteristics for these detectors
obtained by simulation are presented in (Gardner and Spooner, 1992a, 1993). See
also (Zivanovich and Gardner, 1991).

4.3 Parameter Estimation

Once the six signals have been detected and classified, their carrier frequencies and
phases and the keying rate and phase of the BPSK signal can—with sufficiently long
signal duration—be accurately estimated from the magnitude and phase of the SCD
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(cf., fo. 8 in (43) and T,, £ in (75)) (Gardner and Spooner, 1993). It is clear from
the theory discussed in Section 3 that SCD measurement is intimately related to the
measurement of the amplitudes and phases of sine waves generated by quadratic
transformations of the data. Thus, the fact that an SCD feature occurs at & = 2 f,
for each carrier frequency f, is a direct result of the fact that a sine wave (spectral
line) with frequency o« = 2 f, and phase 28 can be generated by putting the data
through a quadratic transformation. Similarly, for the SCD feature at ¢ = 1/ 7T,
where 1/7 is the keying rate, a spectral line with frequency ¢ = 1/7; and phase
€ can be quadratically generated. Consequently, SCD measurement is useful either
directly or indirectly for estimation of synchronization parameters (frequencies and
phases) required for the operation of synchronized receivers. The link between syn-
chronization problems and spectral redundancy is pursued in (Gardner, 1986a) and
also in Article 2 in this volume.

4.4 Time-difference-of-arrival Estimation

The cross SCD SZ, (/) for two signals x(¢} and w(¢) is defined in a way that is
analogous to the definition (37) and (24) of the auto SCD SZ(f). That is, x(¢) in
(24a) is simply replaced with w{¢). If we were to compute the cross SCD for two
sets of corrupted measurements obtained from two reception platforms, then the cross
SCD magnitude would look very similar to that in Fig, 22 {except that the low flat
feature at @ = 0, which represents the PSD of the receiver noise, would be absent),
but the phase of the cross SCD would contain a term linear in f at each value of o
where the auto SCD of one of the six signals is nonzero. The slope of this linear
phase is proportional to the time-difference-of-arrival (TDOA) of the wavefront at
the two platforms for the particular signal with that feature. That is, for x(¢) from
one platform given by (87) and w(¢) from the other platform given by

L
w(t) =Y agse(t —te) +m(®) o1
£=1

where {#,;} are the TDOAs, we have
Sax() = S5 (f)age™ 2t/ ol 92)

provided that s¢(¢) is the only signal with cycle frequency a. Consequently, accurate
estimates of the TDOAs of each of these signals can be obtained from the cross SCD
measurement, regardless of temporal and spectral gverlap or of the closeness of the
individual TDOAs. In other words, the signal selectivity in the & domain eliminates
the problem of resolving TDOAs of overlapping signals.

For example, it follows from (89) and (92) that

Sie(f) _
Se(f)

over the support band of S7(f). This suggests doing a weighted least-squares fit,

ae e—l’ZJ:r(f+d/'Z)n‘¢ (93)
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with respect to a; and ;. of a measurement of the left side of (93) to the right side:

1/2
min f
dede ~1/2

where W, (/) is some weighting function. After minimization with respect to dy,
this reduces to

2
df 91

S’:,x(f) ~ —i2n(f+u/2)?c}
W,x - —dze
o [ Se(y

‘ 112 580 iom(riapmi ]
2 Swr i2n(f+efdie g\ 95
e [[lﬂ Wal)! Sg(f) ¢ i .

The two algorithms corresponding to the two choices Wo(f) = S7(f) (which
yields the SPECCOA method) and W, (f) = 1 over some band (which yields the
SPECCORR method), along with several other related algorithms are siudied in de-
tail in (Gardner and Chen, 1992; Chen and Gardner, 1992; Gardner and Spooner,
1993), where excellent robusiness to unknown and/or varying noise and interference
is demonstrated. Itis also shown in Article 3 in this volume that this approach is easily
generalized to the problem of multipath channel identification where multiple f¢ and ae
for a single signal are to be estimated using the least-squares criterion (94) with a sum
over ¢ included (provided that the multiple #, are resolvable, i.e., spaced farther apart
than the width of the inverse discrete Fourier transform of | W, { /) |2 S (USE).

4.5 Spatial Filtering

Continuing in the same vein, we consider receiving these same six signals in noise
with an antenna array. Then we can use the signal selectivity in & to blindly adapt
(without any training information other than knowledge of the cycle frequency o
of each signal of interest) adapt a linear combiner of the complex-valued ocutputs
from the elements in the array to perform spatial filtering. Specifically, by directing
the linear combiner to enhance or restore spectral redundaney (or conjugate spectral
redundancy) in its output at a particular cycle frequency ¢, the combiner will adapt
to null out all other signals (if there are enough elements in the array to make this
nulling possible). This behavior of the combiner can be seen from the fact that the
spectral correlation coefficient for x(¢) in (87) is (from (89))

Se (S}

(f)= : (96)
o) [S:(f + a/2)8(f — /22
where .
Se(f) =) 8o () + 5 o7
k=1

and, similarly, the temporal correlation coefficient for the frequency-shifted versions
of x(¢) is
RS ()

R:(0)’ 9

¥ (T) =
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where

L
Ro(0) = D Ry (0) + Ry(0). 9%
k=1

Thus, nulling signals other than s, (#) in the output x(#) of the linear combiner and
attenuating the noise n{¢) in x(¢) reduces the denominators in (96) and (98} but not
the numerators. Hence, [o%(f)| and |y&(t)| can be increased by attenuating the
noise and nulling any of the signals other than s;(z). Moreover, the linear combiner
needs no knowledge of the reception characteristics of the array (no calibration) to
accomplish this attenuation and nulling. A thorough study of spectral-coherence-
restoral algorithms that perform this blind adaptive spatial filtering is reported in
(Schell and Apgee, 1988; Agee et al., 1990; Schell and Gardner, 1993b) and a tutorial
discussion is given in Chapter 3 in this volume,

4.6 Direction Finding

We can take this approach one step further if we do indeed have calibration data for the
reception characteristics of an antenna array because we can then also exploit signal
selectivity in « to perform high-resolution direction finding (DF) without some of the
drawbacks (described below) of conventional methods for high-resolution DF, such
as subspace fitting methods (Schell and Gardner, 1993a), that do not exploit spectral
redundancy. In particular, let us consider the narrowband model

L

(1) =Y a(B)se(t) + n(t) (100)

=1

for the analytic signal {or complex envelope) x of the received data vector of dimension
r, where a(8y) is the direction vector associated with the £-threceived signal 5;(¢), and
the function a(-) is specified by the calibration data for the array. Then, by working
with the magnitude and phase information contained in the r x r cyclic correlation
matrix

Ri(r) = R (7) = a(@) R;, (D)a' (6)) (101)

for some fixed T (where t denotes conjugate transpose), instead of working with the
information contained in the conventional correlation matrix

L 1
R0) =) R,(0) +Ra(0) = Y a(®r) R, (0)al @) + R,(0)  (102)
=1

=1

we can avoid the need for advance knowledge of the correlation properties of the
noise R,(0) and interference Ry, (0) for £ #£ k, and we can avoid the constraint
imposed by conventional methods that the number of elements in the array exceed
the total number L of signals impinging on the array. Also, by resolving signals in
@, we need not resolve them in direction of arrival. Consequently, superior effective
spatial resolution is another advantage available through the exploitation of spectral
redundancy. As an example of a cyclostationarity-exploiting DF method, we can use
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the fact that the # x 7 matrix in (101) has a rank of unity and the (» — 1)-dimensional
null space of this matrix is orthogonal to a(6;). Therefore, we can choose as our
estimate of &, that value ék which renders a(@k) most nearly orthogonal to the null
space of an estimate of the matrix RS (v) obtained from finite-time averaging. Similar
remarks apply to the conjugate cyclic autocorrelation matrix. A thorough study of this
approach to signal-selective DF is reported in (Schell et al., 1989; Schell, 1990; Schell
and Gardner, 1991), where various algorithms are introduced and their performances
are evaluated, and a tutorial discussion is given in Chapter 3 in this volume.

In the preceding paragraphs of this Section 4, the signal-processing tasks (with
the exception of spatial filtering) involve decision or parameter estimation, but de not
involve estimating (or extracting) an entire signal or an information-bearing message
carried by the signal. Nevertheless, for the signal-extraction problem, the utility of
spectral redundancy is just as apparent, as explained in the following paragraphs.

4.7 Signal Extraction

Specirally redundant signals that are corrupted by other interfering signals can be more
effectively extracted in some applications by exploiting spectral correlation through
the use of periodic or multiply-periodic linear time-variant filters, instead of the more
common time-invariant filters. These time-variant filters enable spectral redundancy
to be exploited for signal extraction, because such filters perform frequency-shifting
operations (cf. {70)) as well as the frequency-dependent magnitude-weighting and
phase-shifting operations performed by time-invariant filters. The utility of this is
easily seen for the simple example in which interference in some portions of the
spectral band of the signal is so strong that it overpowers the signal in those partial
bands. In this case, a time-invariant filter can only reject both the signal and the
interference in those highly corrupted bands, whereas a time-variant filter can replace
the rejected spectral components of the signal of interest with spectral components
from other uncorrupted {or less corrupted) bands that are highly correlated with the
rejected components from the signal.

AM is an obvious example of this because of the complete redundancy that exists
between its upper sideband (above the carrier frequency) and its lower sideband (below
the carrier frequency). Although this redundancy is exploited in the conventional
double sideband demodulator to obtain a 3-dB gain in SNR performance, it is seldom
exploited properly when partial-band interference is present. The proper exploitation
in this case is illustrated in Fig. 23. Figure 23a shows the spectral content (Fourier
transform magnitude of a finite segment of data) for an AM signal with partial-band
interference in the upper sideband. Figure 23b shows the spectral content after the
interference has been rejected by time-invariant filtering. The signal distortion cansed
by rejection of the signal components along with the interference can be completely
removed by simply shifting replicas of perfectly correlated components from the
lower sideband into the upper sideband, and then properly adjusting their magnitudes
and phases, as suggested in Fig. 23c.

A less easily explained example involves two spectrally overlapping linearly
medulated signals such as AM, PAM, ASK, PSK, or digital QAM (quadrature AM).
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(b)

Figure 23: Illustration of power spectral densities (PSDs) for cochannel-interference
removal with minimal signal distortion. (2) PSD for AM signal plus interference. {b)
PSD after interference removal by time-invariant filtering. (c) PSD afier distortion
removal by frequency-shifting.

It can be shown that, regardless of the degree of spectral and temporal overlap, each of
the two interfering signals can be perfectly extracted by using frequency shifting and
complex weighting, provided only that they have either different carrier frequencies or
phases (AM, ASK, BPSK) cr different keying rates or phases (PAM, ASK, PSK, dig-
ital QAM) and at least 100% excess bandwidth (bandwidth in excess of the minimum
Nyquist bandwidth for zero intersymbol interference). In addition, when the excess
bandwidth is (L — 1)100%, L spectrally overlapping signals can be separated if they
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have the same keying rate but different keying phases or carrier frequencies. Also,
when broadband noise is present, extraction of each of the signals can in many cases
be accomplished without substantial noise amplification. To illustrate the potential
for signal separation in this case, consider L digital QAM signals with (L — 1)100%
excess bandwidth, all sharing the same carrier frequency and keying rate, but with
distinct keying phases. Then for any particular frequency f in the Nyquist band the
received spectral component at that frequency is a weighted sum of the L spectral
components of the L individual signals at that same frequency f and the same is true
at the L — 1 additional frequencies separated by the keying rate, except that the sets
of L weights in each of thesg L weighted sums are distinct, although the L sets of
L spectral components are all identical (because the spectral correlation coefficients
are unity in magnitude). Thus, for each frequency within the Nyquist band, we have
L equations with L unknowns. In practice, the L x L array of weights also will be
unknown and will have to be adaptively learned.

This particular problem of separating multiple digital QAM signals sharing the
same carrier frequency (or baseband PAM signals) and sharing the same keying rate
is explored in Article 1 in this volume.

To gain additional insight into how spectrally overlapping signals can be sep-
arated by frequency-shift filtering, we consider the case of two QPSK (quadrature-
phase-shift-keyed) signals with unequal carrier frequencies and unequal keying rates
and 100% excess bandwidth. The graphs in Fig. 24 show the overlapping spectra for
these two signals. Starting from the top of this figure, each pair of graphs illustrates
the tesult of one filtering and frequency-shifting stage. The subband shaded with a
single set of parallel lines represents spectral components from one signal that are not
corrupted by the other signal. These components are selected and complex-weighted
by a filter and then frequency-shifted to cancel the components in another subband,
which is identified by crosshatched shading. The result of this cancellation is shown
in the second graph (which contains no shading) of each pair. After five such stages, a
full sideband of each of the two QPSK signals has been comgletely separated. In each
stage the complete spectral redundancy between components separated by the keying
rate is being exploited, and this same spectral redundancy can be used to reconstruct
the entire QPSK signal from either one of its sidebands.

The five cascaded stages of filtering, frequency-shifting, and adding operations
can be cenverted into one parallel connection of frequency-shifters, each followed by a
filter, simply by using standard system-transformations to move all frequency-shifters
to the input.

Further insight into how spectrally overlapping signals can be separated by
frequency-shift filtering can be gained by considering the case of two double sideband
AM signals with suppressed carrier (or, equivalently, two ASK signals, or one AM
and one ASK) with different carrier frequencies and any amount of spectral over-
lap. For each of these signals the upper sideband is completely redundant with the
lower sideband. Consequently, if we were to reflect the complex spectrum about its
center—its downconverted carrier frequency—say fi, by replacing frequency f with
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f-1 :

Figure 24: Ilustration of power spectral densities for cochannel-QPSK-signal sepa-
ration. The keying rates of the two signals are different and the carrier frequencies also
are different. Each QPSK signal has a positive-frequency bandwidth equal to twice its
keying rate.

2 f; — f for all f, and we were to shift its phase so that the downconverted carrier
phase becomes zero, and we were to conjugate this reflected phase-shifted spectrum,
then we would obtain precisely the original spectrum. Thus, if we subtracted the
cenjugated, phase-shifted, reflected spectrum from the original spectrum, we would
cancel the signal. This cancellation in the frequency domain is equivalent to simply
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downconverting the signal to a carrier frequency and phase of zero and then conjugat-
ing the time-domain signal and subtracting it from the unconjugated downconverted
time-domain signal. However, in the process of cancelling the signal downconverted
to zero frequency, we introduce severe distortion to the other signal present, which
is downconverted to frequency f> — fi 5 0: there will be two replicas of the signal
present, with carrier frequencies of f> — £, and f; — f2. Nevertheless, by downcon-
verting the processed data so that one of the two replicas present (either the original
signal or its conjugate that was added in the first stage of processing) has carrier
frequency and phase of zero, we can again subtract the conjugate of this processed
data to cancel one of the two replicas present. This will introduce new distortion;
that is, there will again be two replicas of the signal present, but this time the carrier
frequencies will be £2 | 5 — fi|. By proceeding through N = B/2| 4 — fi| — 1
stages of downconverting, conjugating, and subtracting (where B is the bandwidth
of the signal with original carrier frequency /), we end up with two nonoverlapping
replicas of the signal, which can be separated with a filter.

When signal distortion due te convolution (e.g., from passage through a channel)
is present, this procedure will still work, in principle, provided that a filtered version
of the conjugated data is subtracted at each stage. The challenge in practice is to find
a way to adapt the filter needed to obtain effective cancellation.

A final example involves the reduction of the signal distortion due to frequency-
selective fading caused by multipath propagation. Straightforward amplification in
faded portions of the spectrum using a time-invariant filter suffers from the resul-
tant amplification of noise. In contrast to this, a periodically time-variant filter can
replace the faded spectral compoenents with strenger highly correlated components
from other bands, If these correlated spectral components are weaker than the orig-
inal components before fading there will be some noise enhancement when they are
amplified. But the amount of noise enhancement can be much less than that which
would result from the time-invariant filter, which can only amplify the very weak
faded components.

Detailed studies of the principles of operation and the mean-squared-error perfor-
mance of both optimurmn and adaptive frequency-shift filters are reported in (Gardner,
1987a, Chapter 14, Secs. A, B; Gardner, 1990a, Chapter 12, Sec. 12.8; Gardner
and Brown, 1989; Reed and Hsia, 19%0; Gardner, 1993). See also (Zivanovich and
Gardner, 19¢1).

4.8 Prediction and Causality

If asignal is correlated with time-shifted versions of itself (i.e., if it is not a white-noise
signal), then its past can be used to predict its future. The higher the degree of temporal
coherence ny () ], the better the prediction. A signal that exhibits cyclostationarity is
also correlated with frequency-shifted versions of itself. Consequently, its future can
be better predicted if frequency-shifted versions of its past also are used, so that its
spectral coherence as well as its temporal coherence can be exploited. For example,
if x(¥) has cycle frequencies {oq, ..., ay-1) then we can estimate the future value
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x(t + v} for some 7 > O using a linear combination of the present and past values of
the N signals

x,() =x(t) ™' forg=0,...,N—1. (103)
That is, the predicted value is given by

M-1N-1

B+ =Y hoCw) x,lt —ul, (104)

u=0 g=0

where M is the memory-length of the predictor. The set of M.N prediction coefficients
that minimize the time-averaged (over f) squared magnitude of the prediction error
X(¢+7)—x(¢+7) canbe shown to be fully specified by the cyclic correlation functions
for the NV cycle frequencies. Specificaily, the set of MN coefficients {4, (u)}] is the
solution to the set of MN simultaneous linear equations

M-1N—-1

Z Z A, (u)R:p—ﬂq ¢ — u) gimlep—ag)t—u} _ R:p(f +1) 2T lt+T) (105)
u=0 g=0

fort =0,...,M—1land p=0, ..., N—1. Also, the percent accuracy of prediction
is determined solely by the temporal coherence functions (29) for the frequency
translates. It can be shown that for each cycle frequency a, exploited, there is a
corresponding increase in the percent accuracy of the prediction.

In the same way that time-invariant autoregressive model-fitting of station-
ary time-series data is mathematically equivalent to time-invariant linear predic-
tion (Gardner, 1987a, Chapter 9, Sec. B), it can be shown that frequency-shift (cr
polyperiodic time-variant) autoregressive model-fitting is mathematically equivalent
to frequency-shift linear prediction. Studies of this problem are reported in (Brels-
ford, 1967; Pagano, 1978; Miamee and Salehi, 1980; Tiao and Grupe, 1980; Sakai,
1982, 1983, 1990, 1991; Vecchia, 1985; Obeysekera and Salas, 1986; Li and Hui,
1988; Anderson and Vecchia, 1992). Also, the univariate prediction problem for
cyclostationary (not polycyclostationary) time-series is equivalent to the multivariate
prediction problem for stationary time-series (Pagano, 1978). This follows from the
representation of univariate cyclostationary time-series in terms of multivariate sta-
tionary time-series (Gladyshev, 1961; Gardner and Franks, 1975). A survey of recent
results in prediction theory for cyclostationary processes is given in Article 7 in this
volume.

A measure of the degree to which one time-series causes another time-series is
the degree to which the present and past of the former can lineatly predict the future
of the latter. If the two time-series are jointly cyclostationary, then cyclic as well as
constant causality is possible. In fact, by considering only time-invariant predictors,
it is possible to conclude for some pairs of time-series that no causality exists when,
in fact, one time-series is perfectly cyclically caused by the other. An example of this
isx(f) = z(¢) and p(¢) = z(tr — t) cos(t), where 7 > 0 and z(¢) is an independent
identically distributed sequence. The best linear time-invariant predictor of y(#) using
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the past of x (¢} is () = 0, whereas the best linear periodically time-variant predictor
is p(¢) = x(t — ©) cos(t) = y{¢), which yields perfect prediction. Moreover, if z(¢)
takes on values of only £1, it is particularly easy to show for this example that

X"t =" = " =)

for all positive integers m, n, and s. Consequently, even the best nonlinear time-
invariant predictor is ¥{f) = 0.

4.9 Linear and Nonlinear System Identification

The cyclostationarity of signals passing through linear time-invariant systems can be
exploited in several ways for the purpose of using input/output or output-only mea-
surements to identify the system. In the case where the input/output measurements
are corrupted by additive noise and/or interfering signals, the signal selectivity prop-
erty associated with cyclostationarity can be used to obtain (asymptotically) complete
immunity to this corruption. As explained in more detail in (Gardner, 1990b), the
transfer function A (f) of a system with corrupted input w(f) and corrupted output
x(¢) is given by

wa (f _ a/ 2)

Su(f —a/2)
regardless of the additive corruption in w(f) and x(¢), provided only that « is a
cycle frequency of the uncorrupted system-input and is not a cycle frequency of the
corruption, and that the support of the SCD 83 (f — @/2) in f covers the whole
passband of the system.

Also, in the case where corrupted output-only measurements are available, the
fact that the spectral correlation function S () of the system ountput contains infor-
mation about the phase as well as the magnitude of the transfer function H(f) (cf.
{49)) means that blind identification of the system using only second-order statistics
(SCD and PSD) is possible (Gardner, 1991c). One particularly simple scheme for
blind channel equalization for digital QAM signals (or PAM signals) uses the fact
that over each and every symbol interval, the channel output is the sum of noise and a
linear combination of the same functions (viz., {#(t —nT): n =0, £1, L2, ...} for
0 <t < T, where T is the length of the symbol interval, and #(¢) is the combined
impulse response function of the transmitter’s pulse-shaping filter and the channel.
Consequently, the first term of an empirical Karhunen-Loeve expansion of the channel
output over cne symbol interval obtained from an eigendecomposition of the empiri-
cal output autocovariance matrix over one symbol interval (measured by performing
synchronized averaging over multiple symbol intervals) can be used to equalize the
channel. (This is particularly so when the symbol sequence and noise are both white.)
That is, the eigenvector ¢ corresponding to the largest eigenvalue will tend fo be
colinear with the channel output pulse over one symbol interval and orthogonal to the
tails within this interval from the pulses centered in other symbol intervals. Thus, the
inner product
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nT—1
an= Y w)ei)
t=(r—1)T

of this eigenvector with the channel output (for the nth symbol interval with length T')
can suppress intersymbol interference and provide an accurate estimate of the symbol
in each interval.

The aforementicned synchronized average that provides the empirical autoco-
variance matrix is given by

1 N

—_— x@t+nD)x*s +nT)
2N +1 H=E_N

for the ts element of the T x T matrix (assuming the sampling increment is 7, = 1).

This sraightforward approach is the special case of a more general approach
{cemresponding to the choice of parameters K = L = () proposed by Schell in
Chapter 3 in this volume, where the results of a simulation of this special case are
presented. Schell’s more general method is derived from another approach based on
least-squares filtering of a cyclostationary signal model to the channel output. Other
approaches are described in Articles 4 and 5 in this volume.

A popular approach to the identification of nonlinear dynamical systems from
input-output measurements is to model the system in terms of the Volterra series,
which is a generalization of the power-series {or polynomial) representation of a
memoryless system to systerns with memory, and then to identify one-by-one the
Volterra kemels, each one of which characterizes one term in the series representation.
The first kernel is the impulse response of the linear part of the system. The second
kernel is a two-dimensicnal generalization of the impulse response of the quadratic
part of the system, and so on. Commeon approaches to identifying the kernels are
based on crosscorrelation measurements between the unknown-system output and
specially designed nonlinear functions of the system input.

Although the fundamental theory of this crosscorrelation approach to nonlin-
ear system identification is built on the foundation of stationary random processes
or time-series (Schetzen, 1989), it has recently been shown (Gardner and Arxcher,
1993) that substantial advantages can be gained by using cyclostationary inputs to the
unknown system and cyclic crosscorrelations. In particular, desirable orthogonality
(zero-correlation) properties between the system output and nonlinear functions of
the input that are not possible for stationary inputs are possible for cyclostationary
inputs, and this leads to particularly convenient designs for the inputs and the non-
linear functions. Moreover, this approach of exploiting cyclostationarity to identify
time-invariant systems has recently been generalized to identify polyperiedic non-
linear systems (Gardner and Paura, 1992). In (Gardner and Archer, 1993; Gardner
and Paura, 1992}, the basic theory of this new approach is presented for both a time-
domain method, which directly identifies the Volterra kernels or their polyperiodic
counterparts, and a frequency-domain method, which directly identifies the multi-
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dimensional Fourier transforms of the kemels—the Volterra transfer functions, and
several examples of cyclostationary inputs and corresponding nonlinear functions are
given. This work exploits higher-than-second-order cyclostationarity, the principles
of which are given in Chapter 2 in this volume.
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