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Blind Adaptive Spatiotemporal Filtering for
- Wide-Band Cyclostationary Signals

Stephan V. Schell and William A. Gardner

Abstract—An algorithm that blindly adapts spatiotemporal filters to
extract from sensor array data one or more desired signals having
known cyclostationarity properties is presented. It can perform well
without knowledge of a training signal, spatiotemporal characteristics
of the interference and noise, the directions of arrival of the desired
signal(s), or any array calibration data.

1. INTRODUCTION

The need to spatially filter data received by a sensor array arises
in many applications, including radar and sonar, communications,
signals intelligence, geophysical and astrophysical exploration, and
biomedicine. However, most existing methods for selecting the
beamformer weights used in the spatial filter require prior knowl-
edge of the signal or interference characteristics that may be diffi-
cult, costly, or simply impossible to obtain in some applications,
especially for signals intelligence or where the receiver and/or
transmitter(s) are moving. In particular, existing methods typically
require known reference signals or spreading codes [1], [2], known
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spatial autocorrelation matrices of the desired signal and/or inter-
ference [3], known direction of arrival of the desired signal [4], or
known array calibration data [5]. When the knowledge required by
these methods is only approximate, the quality of the estimated
signal can be degraded (e.g., via well-known signal cancellation
effects [6]), although some methods [7] are more robust than oth-
ers.

In contrast, the method in [8] adapts the array so as to maximize
the degree of cyclostationarity (at a particular cycle frequency and
time lag) of the output signal. This method, referred to as the spec-
tral self-coherence restoral (SCORE) method, can accommodate
multiple signals of interest, multiple interferers, and unknown
noise, does not require complicated searches, and requires knowl-
edge of only a cycle frequency (e.g., a baud rate or doubled carrier
frequency) of the desired signal(s). Although knowledge of a cycle
frequency may not be available in some applications, it can be es-
timated directly from the data, given a sufficiently large number of
samples [9]. Thus, if the cycle frequency is known or can be esti-
mated, SCORE can be a viable alternative to other methods of
adaptive spatial filtering.

In this correspondence, the SCORE method is reinterpreted us-
ing the framework of canonical correlation analysis that is well
known in the multivariate statistics community (e.g., see [10]) and
is then generalized to accommodate wide-band received data that
do not adhere to the narrow-band assumption. In Section II, some
background information on cyclostationarity is presented, and ca-
nonical correlation analysis is explained briefly in Section III. The
SCORE method for wide-band array data is presented in Section
IV from the perspective of canonical correlation analysis. Results
of computer simulations are presented in Section V to illustrate the
performance of the new method and to compare it with that of the
minimum-variance distortionless response beamformer.

II. CYCLOSTATIONARITY

In this section some relevant concepts from the theory of cy-
clostationary signals are presented. More detailed treatments can
be found in [11], [12].

A zero-mean signal s(t) exhibits second-order cyclostationarity
if there exist one or more finite-amplitude additive sine waves hav-
ing nonzero frequencies in one of its lag-product waveforms or,
equivalently, if its cyclic autocorrelation function R%(7) is not
identically zero for at least one nonzero value of the cycle fre-
quency parameter «, where R (7) is defined as R (7) £ (st +
7/2)s*(t — 7/2)e™I*™),, and (- )7 denotes the time-average op-
eration over a time interval of length 7. Equivalently, a signal that
exhibits second-order cyclostationarity at cycle frequency o con-
tains spectral components separated in frequency by « that are cor-
related; that is, the signal exhibits spectral correlation. The degree
to which a signal s(#) exhibits correlation of spectral components
centered at frequency fand separated by « is specified by the spec-
tral autocoherence magnitude

Ss ()
‘/Sss(f+ a/z)Sss(f— a/z)
which is the magnitude of a correlation coefficient, where S2 (f)

is the cyclic spectrum (or spectral correlation) which is equal to the
Fourier transform of the cyclic autocorrelation.

|ca(f)] &

III. CanonNicaAL CORRELATION ANALYSIS

The task of determining weight vectors to extract L desired sig-
nals from x(#) can be phrased in terms of the canonical correlation
problem as follows. Given observations over a time interval ¢ € [0,
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T] of two zero-mean signals x(¢) and r(¢) that both contain the
desired signals but do not contain any other common components,
find the two sets of L weight vectors W = [w; - - - w;] and C =
[e; - - - ¢.] that extract the L most significant signal components
that are common to both x(¢) and r(¢), where the signals extracted
from x(¢) and r(z) are given by y(z) = Wox(@t), u(z) = Crt),
respectively. The standard solution to this problem (e.g., see [10])
is to find w, and ¢, that jointly maximize the cross-correlation coef-
ficient between y, (¢) and u, (¢), and then to sequentially find w, and
¢, forl = 2, - - -, L that maximize the magnitude of the cross-
correlation coefficient p,,, between y,(¢) and u;(¢) such that y,(¢) is
uncorrelated with y,(¢), - - -, y,_;() and u;(¢) is uncorrelated
with u; (¢), - - - , u;_ (). It is shown in [10] that the solutions are
the eigenvectors satisfying R,R,'R.w, = A"”R.,w, and
R.R}'R.c; = NOR,.c;, where A\{ and \{© are the [th largest
eigenvalues, respectively, the cross-correlation matrix R, is de-
fined as Ié,, 2 (x(t)r(t)™ )y, and the autocorrelation matrices are
defined in the obvious way. It can be shown [10] that A{¥ = \{©
= |pyy|* forall { = 1, - - -, L, so the superscripted identifiers
(w) and (c) are typically omitted from the symbols denoting the
eigenvalues. It should be noted that choosing r(t) = x(z — 7)e/2™
yields the narrow-band cross-SCORE method presented and de-
rived from the alternative self-coherence restoral framework in [8].

IV. Wipe-BaND SCORE

In wide-band environments the received data x(¢) can be mod-
eled in terms of finite-time Fourier transforms (FTFT):

L
Xt f) = X a0, /s, f) + i@ f)
= A, /S, f) + it ) (1

where
t+4/2

x()e > dr
a/2

X1, f) & (1/38) S

(-
is the FTFT of the received data, a(6, f) is the transfer function of
the array for a signal arriving from angle 6, s(z, f) is the FTFT of
the L cyclostationary signals impinging .on the array from angles

" 0,, - -, 0, respectively, and having cycle frequency «, and i(z,

f) is the FTFT of all other signals and noise that do not have cycle
frequency «. The approximation in (1) holds well if the FTFT in-
tegration time A is greater than the duration of the impulse response
of the array. Similarly, the FTFT of the /th extracted signal is given
by y,(z, f) = w, ¢, f)¥x(, f)forl =1, - - -, L.

In order to frame the problem of extracting the cyclostationary
signals having cycle frequency « in terms of the canonical corre-
lation analysis problem discussed in Section III, notice that the
FTET #(t, f) of the auxiliary signal defined by r(f) £ x(2)e/>™ is
given by

r(t, f) = x(t. f = o)
=A®O,f-a)st, f—a) +ilt,f— ). @2
Since s(2) is cyclostationary with cycle frequency «, s (¢, f — «) is
correlated (shares a common component) with s(¢, f). Conse-

quently, a solution based on canonical correlation analysis can be
found for each value of f:

Se (DS (O 'S (W) = N(OS (W () ()
S (H)8e(F) 'S (NE(S) = NS (HE(f) @)

where S, (f) is the cross-correlation matrix of x (¢, f) and r(z, f)
and approaches the cross-spectrum matrix of x(¢) and r(¢) as A in-
creases.
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The role of cyclostationarity (or spectral coherence) in comput-
ing the weight vectors can be seen .more clearly by noting that
S.-(f) is equal to the cyclic spectrum $% (f — o/2) and reinter-
preting (3)-(4) accordingly. As in Section III, the eigenvalues
MM (f) and N9 (f) are identical for each . For reasons explained
in [8], the spatial filtering method based on the solution of (3)-(4)
is called SCORE.

Although it is not immediately apparent from the preceding dis-
cussion, the support in the frequency domain of the weight vectors
{w;(f)} computed according to (3) does not include the entire sup-
port of the desired signals. It can be shown that this problem is
solved by defining an effective set of weight vectors, denoted by
{wi()}, as wi(f) = w(f) forf; < f = Byand wi(f) = ¢/(f
+ «) for B, < f < f,, where the transition frequency f, can be set
to any value in the interval [B; + «, By — «J, and « is assumed
to be positive and less than (By — B.)/2. A similar construction
can be made if « is negative. If « is greater than (By — B;) /2 then
the frequency range [By — «, B, + «] in the center of the receiver
band [B,, By] is not covered by {w{(f)}.

In practice, the received data may be decomposed into spectrally

disjoint subbands rather than computing the FTFT for all possible
f. Then (3) is solved once for each band, and the L weight vectors
resulting from a given band are then treated as being constant over
this band. For example, in the simulations presented in Section V,
eight bands are used.

For any particular frequency f, the capabilities of the wide-band
SCORE method based on (3)-(4) are similar to those of the narrow-
band SCORE algorithm presented in [8]. That is, if only one signal
has the property that narrow-band components at frequencies f and
f — a are correlated, then w{ (f) converges toward a weight vector
that extracts a maximum-SNR estimate of the narrow-band com-
ponent at frequency f of that signal. If L uncorrelated signals share
this property (e.g., independent signals which have the same baud
rate), then each of the L weight vectors found for frequency f ex-
tracts an estimate of the narrow-band component at frequency f of
a different signal, provided that the spectral autocoherence mag-
nitude (defined in Section II) at frequency f of each signal is dif-
ferent (e.g., see [8]).

It should be noted that the wide-band SCORE method presented
here differs from the frequency-dependent SCORE method pre-
sented in [13]. In most environments of interest in which a < (By
— B,)/2, the latter method requires that a complicated set of cou-
pled matrix equations be solved, which hinders practical applica-
tion. .

Finally, although the wide-band SCORE method does not re-
quire knowledge of training signals, spreading codes, or the spatial
characteristics of the signals or interference, it does require knowl-
edge of a cycle frequency of the signal(s) of interest. In [9] it is
shown (in the context of direction finding methods that exploit cy-
clostationarity) that the cycle frequency (normalized to the sam-
pling rate) need be known or estimated only to within about
+ 1/2N, where N is the number of data samples used to compute
the weights of the spatial filter. Also, a simple method presented
there requires only a search for peaks in the FFT of a lag-product
waveform, and simulation results in [9] show that this method pro-
duced exact estimates for N = 1024 when the input SINR was
0 dB. Nonetheless, cycle frequency estimation and the degradation
in performance due to cycle frequency error do merit further study.

V. SIMULATION RESULTS

Results from computer simulations of the wide-band SCORE al-
gorithm processing wide-band data are presented here. The simu-
lated environment models a low-SNR binary phase-shift-keyed di-
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rect-sequence spread-spectrum signal of interest hidden beneath five
high-SNR narrow-band digital communication signals (also BPSK).
The results are presented, followed by a brief discussion of their
implications.

The array is linear and consists of four identical equispaced om-
nidirectional sensors; the sensor spacing is equal to one-half of the
wavelength corresponding to the highest frequency in the receiver
band. The lowest RF frequency is 0.75 times the highest, yielding
a relative bandwidth (defined here as the ratio of the width to the
center frequency of the receiver band) of about 28%. The noise
consists of stationary complex white Gaussian noise that is uncor-
related from sensor to sensor. The signals not of interest (SNOI’s)
are identical BPSK signals having bit rate 1,/10 (normalized to the
sampling rate) and independent and identically distributed (i.i.d.)
random bit sequences and Nyquist-shaped pulses with 100% excess
bandwidth. Five such SNOI’s having carrier offsets (relative to the
center frequency of the receiver band and normalized to the sam-
pling rate) —2 /5, —1/5,0, 1/5, and 2 /5 arrive from —20°, 10°,
—10°, 40°, and 0°, respectively. Each SNOI has in-band SNR
(defined here as the ratio of the signal power to the power of the
noise within the band occupied by the signal) equal to 15 dB. The
signal of interest (SOI) is a BPSK signal having chip rate 1,/2 with
chip sequence modeled as an i.i.d. random bit sequence, and rect-
angular chip pulses; it has zero carrier frequency offset and arrives
from 25°. The SNR of the SOI is —5 dB, for a total signal-to-
interference-and-noise ratio (SINR) of —20 dB. The periodogram
of the received data at one of the sensors is shown in Fig. 1, wherein
the contribution of the SOI is obscured by the interference and
noise.

One hundred independent trials are conducted in which the wide-
band SCORE algorithm is applied using o = 1/2 to extract the
SOI. The wide-band data is decomposed into data from eight spec-
trally disjoint subbands using an FFT channelizer, such that each
subband closely follows the narrow-band model. The average SINR
(averaged over the 100 trials) of the extracted signal in each of the
eight subbands s plotted in Fig. 2 for different numbers N of data
samples used to compute the weight vector. As can be seen from
the figure, substantial improvement in SINR (from 5 to 15 dB higher
than the input SINR, depending on the subband) is obtained when
only 128 data samples are used to compute the weight vectors, and
from 10 to 20 dB improvement when more data samples are used.
Also, when greater than 2048 data samples are used, the output
SINR of the SCORE processor is within a fraction of a decibel of
the maximum-attainable SINR (which is computed using a per-
fectly known training signal).

For comparison, the minimum variance distortionless response
(MVDR) beamformer (e.g., see [14]) is also simulated using
knowledge of the exact direction of arrival (25°) of the signal of
interest and perfectly known array calibration data. As shown in
Fig. 3, the MVDR beamformer converges more quickly than
SCORE. However, when the look direction is erroneously given
as 35°, the SINR of the MVDR beamformer at convergence is about
6 dB lower than the SINR of the SCORE beamformer in the central
subbands, as shown in Fig. 4.

These results indicate that the use of a sensor array for this co-
channel interference problem could be exploited in the design of a
spread spectrum communication system to accomplish either of two
objectives without requiring a ‘training signal or other potentially
troublesome prior knowledge: 1) reduce the bit error rate in the
despread SOI while keeping the spreading factor constant, or 2)
allow a much smaller spreading factor to be used at the transmitter
while keeping the bit error rate constant. For example, if a BER of
107° is desired (which can be attained with an uncoded BPSK sig-
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Fig. 1. Periodogram of the data received at one of the sensors. The five
SNOI’s are labeled with their DOA’s. The SOI, which arrives from 25°,
is not visible because its total SINR is —20 dB.
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Fig. 2. Average SINR (averaged over 100 trials) in each of the eight sub-
bands of SCORE processor output, plotted for different numbers N-of data
samples: 128, 256, 512, - - -, 8192. The input SINR at the first sensor
and the maximum-attainable output SINR are shown at the extreme bottom
and top of the graph, respectively.
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Fig. 3. Average SINR in each of the eight subbands of MVDR processor
output using knowledge of the exact look direction and exact calibration
data plotted for different numbers N of data samples: 128, 256, 512, - - -,
8192. The input SINR at the first sensor and the maximum-attainable out-
put SINR are shown at the extreme bottom and top of the graph, respec-
tively.

nal having about 10-dB SINR [15]), then a spreading factor (pro-
cessing gain) of about 1000 would be needed without the use of the
array to overcome the —20 dB SINR of the spread signal. In con-
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Fig. 4. Average SINR in each of the eight subbands of MVDR processor
output using erroneous look direction, plotted for different numbers N of
data samples: 128, 256, 512, - - - , 8192. The input SINR at the first sen-
sor and the maximum-attainable output SINR are shown at the extreme
bottom and top of the graph, respectively.

trast, the increase in output SINR of between 10 and 20 dB due to
the SCORE processor implies that a much lower spreading factor
between 100 and 10, respectively, would be needed.

The results also indicate that in signal interception applications,
the SINR of the SOI at the output of the SCORE processor could
be sufficiently high that a blind despreading technique might be
applied successfully.
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