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Cyclic Wiener Filtering: Theory and Method

William A. Gardner, Fellow, IEEE

Abstract—Conventional time and space filtering of stationary
random signals, which amounts to forming linear combinations
of time translates and space translates, exploits the temporal and
spatial coherence of the signals. By including frequency translates
as well, the spectral coherence that is characteristic of cyclosta-
tionary signals can also be exploited. This paper develops some
of the theoretical concepts underlying this generalized type of
filtering called FREquency-SHift (FRESH) filtering, summarizes
the theory of optimum FRESH filtering, which is a generalization
of Wiener filtering called cyclic Wiener filtering, and illustrates
the theory with specific examples of separating temporally and
spectrally overlapping communications signals, including AM,
BPSK, and QPSK. The structures and performances of optimum
FRESH filters are presented, and adaptive adjustment of the
weights in these structures is discussed. Also, specific results on
the number of digital QAM signals that can be separated, as a
function of excess bandwidth, are obtained.

I. INTRODUCTION

N view of the tremendous diversity of theory, analytical

technique, and method of implementation in the field of
filtering, the objective of filtering seems almost trivial: viewed
in the time-domain, the objective is to convolve a signal
with an impulse-response function, which means to add up
weighted versions of delayed replicas of the signal. Viewed in
the frequency domain, the objective is to multiply the spectral
components of the signal by a transfer function, which means
to scale their strengths and shift their phases. Nevertheless, we
know that this simple signal processing operation can perform
the important task of mitigating the ill effects of both additive
signal corruption, due to noise and interfering signals, and
signal distortion, due to time-smearing phenomena such as
dispersion and multipath propagation.

It is clear from the frequency domain viewpoint that signals
can be separated from noise or interfering signals by filtering
when the spectral content of the signal lies in a different band
from that of the corruption. But another way to understand
how a filter discriminates against corruption is to observe that
if a signal is correlated with a time-shifted version of itself
then, by adding a weighted version of the time-shifted signal
to the original signal, the signal strength can be increased or
decreased depending on the weight used. Thus, by choosing
appropriate delays and weights, a signal can be enhanced while
an interfering signal or noise is attenuated, provided that the
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correlations of the interference or noise differ from that of the
signal.

This principle of exploiting teitporal correlation or temporal
coherence for signal selectivity has a spatial counterpart that
is the basis for the spatial filtering capability of sensor arrays,
which add up weighted space-shifted versions of signals. Thus,
some of the theory, analytical techniques, and methods of
implementation, such as those developed for adaptive digital
filtering, carry over at least in part from time-filtering to array
processing or, more generally, to joint time/space filtering by
exploitation of temporal/spatial coherence [1].

A much lesser known generalization of time-filtering arises
from the fact that for many man-made signals encountered in
communications, radar, sonar, and telemetry systems, certain
frequency-shifted versions of the signal can be highly corre-
lated with the original signal. This spectral coherence can be
exploited for signal selection by adding up properly weighted
frequency-shifted versions of the signal.

For two reasons, the theory and practice of frequency-shift
processing differs some from that of time-shift processing.
First, the theory of time-invariant filtering based on exploiting
temporal coherence is based primarily on the use of stationary
time-series models for the signals and noises. This is so, for
example, in the theory of Wiener filtering [2], [3]. Interest-
ingly, no stationary time-series can exhibit spectral coherence
and, consequently, frequency-shift processing is not useful for
stationary time-series. Second, whereas temporal coherence
is typically distributed continuously with the time-shift pa-
rameter, spectral coherence by its nature must be discretely
distributed with the frequency-shift parameter. Therefore, ar-
bitrary time shifts are useful in time-shift processing, but only
select frequency shifts are useful in frequency-shift processing.

Actually, these two differences are intimately related. In
recent theoretical developments [3]-[6], it has been established
that a signal can exhibit spectral coherence if and only if
it is cyclostationary, and the discrete frequency shifts for
which the spectral correlation is nonzero coincide with the
cycle frequencies of cyclostationarity. That is, the only type
of nonstationarity that gives rise to spectral coherence is
cyclostationarity [7]. This link between cyclostationarity and
spectral coherence is briefly reviewed in Section II.

The purpose of this paper is to develop some of the
theoretical concepts underlying the generalization of filtering
that consists of not only magnitude-weighting and phase-
shifting, but also frequency-shifting of spectral components.
As an abbreviation, this FREquency-SHift filtering is referred
to as FRESH filtering. However, because of the underlying
statistical property of cyclostationarity that is exploited by
FRESH filtering, we refer to the theory of optimum FRESH
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filtering as cyclic Wiener filtering theory. This theory gen-
eralizes Wiener’s theory of optimum time-invariant filtering
of stationary time-series to optimum polyperiodic (multiply-
periodic) time-variant filtering of cyclostationary time-series.

The first general theoretical development of optimum
filtering for cyclostationary time-series was presented in
the 1972 Ph.D. dissertation [8] (see [9]). The applica-
tions considered then were restricted to a single cy-
clostationary signal with a single period of cyclosta-
tionarity in additive stationary noise. For such applica-
tions, the most dramatic performance improvements of the
cyclic Wiener filter over the conventional time-invariant
Wiener filter are realizable with standard communica-
tion receiver structures such as demultiplexors/Wiener fil-
ters/multiplexors, and matched-filter-banks/periodic-sampler-
banks/multi-variate-sampled-data Wiener filters. However, for
the more general applications considered in this paper, which
include multiple cyclostationary signals and/or interferences,
each with one or more periods of cyclostationarity, in additive
stationary or cyclostationary noise, the polyperiodic filtering
structures required are novel. '

The first general development of the frequency-domain the-
ory of cyclic Wiener filtering was presented in the 1985 book
[3]. Both these pioneering treatments [3], [8], as well as the
early 1980°s work in [10]-[11] on the joint receiver/transmitter
optimization problem, were based on the probabilistic the-
ory of stochastic processes where performance is measured
in terms of ensemble averaged squared error. In 1987, a
dual frequency-domain theory based on a nonprobabilistic
theory of time-series, where performance is measured in
terms of time-averaged squared error, was introduced [5].
This time-averaged theory has the advantage of being much
more closely linked with adaptive implementations of FRESH
filters and, as a result, is less likely to lead the user into
conceptual pitfalls associated with unnecessary abstractions
such as cycloergodicity [12]. In order to better serve potential
users of cyclic Wiener filtering theory, the nonprobabilistic
approach has been used exclusively by this author and his
colleagues in continuing work since 1987. This is in keeping
with Wiener’s original treatise on optimum filtering.! This
continuing work includes Brown’s 1987 Ph.D. dissertation
[13], which generalizes the theory from real time-series to
complex time-series, and the two recent conference papers
[6], [17], which further develop the theory for specific types
of communications and telemetry signals. Specifically, in
[16] the spectral correlation theory of pulse-amplitude mod-
ulated (PAM) signals is used to give a novel frequency-
domain interpretation of the standard matched-filter/periodic-
sampler/sampled-data-filter structure that forms the basis for
many adaptive digital receivers. This new interpretation re-
veals the capacity of this structure to exploit spectral coherence
in the PAM signal to mitigate severe partial-band corruption
due to either fading or interference. The spectral correlation
theory is also used in [16] to show that two cochannel
amplitude-modulated (AM) signals can be perfectly separated
by exploiting spectral coherence regardless of the degree of

!Many present-day authors mistakenly believe that Wiener’s theory was
based on stochastic processes.
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spectral overlap or of the values of their bandwidths and
carrier frequencies and phases. In [17], the spectral correlation
theory of binary phase-shift-keyed (BPSK) and quaternary
phase-shift-keyed (QPSK) signals is used to demonstrate the
degree to which two such spectrally overlapping signals can
be separated by exploiting spectral coherence, as a function
of receiver complexity (the number of frequency shifts and
associated time-invariant filters). In addition, an empirical
study of adaptive FRESH filtering for communications signals
(which uses the probabilistic framework from [3]) is reported
in Reed’s 1987 Ph.D. dissertation [14] (see [15]).

In this paper, a more expansive study of the problem of
separating cochannel digital quadrature AM (QAM) signals is
presented with emphasis on the special cases of AM, BPSK,
and QPSK (and, equivalently, all digital QAM with am-
plitude/phase constellations exhibiting quadrantal symmetry,
since their spectral correlation characteristics are identical to
those of QPSK [5]).

In Section II, the basic definitions of cyclostationarity and
spectral correlation are briefly reviewed. In Section III, the
equivalence of polyperiodic filtering and FRESH filtering is
briefly explained, and the optimum FRESH filtering equations
for filtering design and filter performance evaluation are pre-
sented. In Section IV, the class of QAM signals and the special
cases of AM, BPSK, and QPSK are reviewed, and the spectral
correlation functions for these signals are presented. In Section
V, the specific optimum FRESH filtering structures for AM,
BPSK, and QPSK are determined, and in Section VII their
mean-squared-error performance is numerically evaluated as
a function of the particular frequency-shift values used in the
FRESH filter. In Section VI, a graphical explanation of how
FRESH filtering can separate spectrally overlapping signals is
provided. In Section VIII, the capabilities of FRESH filters
for separating multiple digital QAM signals such as QPSK
are delineated, and finally in Section IX, the relative merits of
waveform extraction and digital data extraction are discussed.

II. SPECTRAL CORRELATION

A complex-valued time-series z(t) is said to exhibit cyclo-
stationarity (in the wide sense) if its lag-product waveform
wr(t) = z(t + 7/2)z*(t — 7/2)(where * denotes complex
conjugation) exhibits finite-strength additive sine-wave com-
ponents that give rise to spectral lines in the spectrum of w. (%)
for some values of the lag parameter 7. The amplitude and
phase of such a spectral line are given by the magnitude and
argument of the complex-valued Fourier coefficient

R2(7) & (z(t +7/2)z*(t — 7/2) exp (—i2mat)) (1)

where (-) denotes average over all time ¢, and « is the
frequency of the spectral line. For ¢ = 0, the function
RY(-) = R,() is the conventional nonprobabilistic auto-
correlation function. For e # 0, it is called the cyclic
autocorrelation function with cycle frequency o [5]. A time- -
series z(t) is also said to exhibit cyclostationarity if the
conjugate cyclic autocorrelation function

R%..(7) & (z(t +7/2)z(t — 7/2) exp (—i27t))  (2)
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is not identically zero for o # 0. RZ(7) is typically nonzero for
bauded signals, with o equal to the baud rate and its harmonics,
whereas RZ,.(7) is typically nonzero for carrier-modulated
signals with o equal to twice the carrier frequency, possibly
plus or minus the baud rate and its harmonics [5].

The complex envelope of the spectral component of z(t) at
frequency v with approximate bandwidth 1/T is given by

A1 [T/
Xr(t,v) = T/t . z(u) exp (—i2rvu) du.  (3)

The frequency density of correlation of spectral components
at frequencies v = f + /2 and v = f — /2 is, therefore,
given by

se(f) &

where (-) again denotes average over all time ¢. It can be
shown that this spectral correlation density function and the
cyclic autocorrelation function are a Fourier transform pair [5],

S(f) = /_00 RZ(7)exp (—i2nfT)dr. ®)

Similarly, for a pair of time-series z(¢) and y(¢), we have

s2,(f) = /

oy (T) exp(—i2m f7) dr ©)

where
Rz, () 2 (z(t+ 7/2)y*(t — 7/2) exp (—i27at)), (7)
S2,(f) & lim T(Xr(t, f+ o/2)¥7(t f - a/2)- ®)

For o = 0, the function S2(-) = S.(-) is the conventional
spectral density of time-averaged power, and SZ,(-) = Szy(-)
is the cross-spectral density. Consequently, (5) is the Wiener
relation for a = 0, and for « # 0 it is called the cyclic Wiener
relation [5].

III. OptiMmuM FRESH FILTERING

It is well known that optimum filters for stationary signals
are time-invariant. Similarly, optimum filters for signals that
exhibit cyclostationarity with a single period (or multiple in-
commensurate periods) are singly (multiply) periodically time-
variant. A polyperiodic time-variant linear filter has input-
output relation

(oo}

o)) = [t walu) du ©)
—00

where for each value of the age variable 7 = {—u, the impulse-

response function A(t, ) is a polyperiodic (almost periodic, cf.

[18]) function of the time variable «, and can be expanded in

a Fourier series

h(t,u) =Y hy(t — u) exp (i2rnu). (10)
n

In this series, the Fourier coefficients for each value of 7 are
given by the average

hy(T) = (h(t + 7,t) exp (—i27nt))
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over all time ¢, and the sum in (10) ranges over all integer
multiples of each fundamental frequency 1/7T, corresponding
to each period T of the filter. Substituting (10) into (9) yields
the general input-output relation for polyperiodic linear filters:

y(t) = Z [- ~ by (t — u)[z(u) exp (127nu)] du.

=3 hy(t) ® z,(t) (11)

where ® denotes convolution and z,(t) e z(t) exp (i27nt)
is a frequency-shifted version of z(t). Considering for the
moment finite-energy signals, which are Fourier transformable,
the Fourier transforms of both sides of (11) can be equated to
obtain '

Y(f) =Y Hy(HX( = ). (12)
n

Thus, the input is subjected to a number of frequency-shifting
(by amount 7) operations, each followed by a linear time-
invariant filtering operation [with impulse-response function
hy(-) and transfer function H,(-)], and the results are added
together. Consequently, polyperiodic filtering is equivalent to
FRESH filtering (discussed in Section I). From this, we see
that the periodic time variations in an optimum filter for a
signal that exhibits cyclostationarity provide the means (viz.,
frequency shifting) by which the spectral coherence of such
signals can be exploited.

It is well known that linear time-invariant filtering of a
real signal is equivalent to linear time-invariant filtering of
its analytic signal which in turn is equivalent to linear time-
invariant filtering of its complex envelope. But, this is not
true for time-variant filtering. In general, linear time-variant
filtering of a real signal is equivalent to distinct linear time-
variant filtering of each of the complex envelope (or analytic
signal) and its complex conjugate. This is proved in [13].
Consequently, if complex signals are to be used, then the
problems of optimum and adaptive time-variant polyperiodic
filtering must be approached as bivariate filtering problems,
where a signal and its conjugate are jointly filtered and then
added together. This is referred to as linear-conjugate-linear
(LCL) filtering [19], [20].

The general form for the LCL-FRESH filtering of a com-
plex signal z(t) to produce an estimate d(¢) of some desired
signal d(t) is then [cf. (11)]

M N
d(t) =) am(t) ® Ta,(t) + Y balt) @24 ()  (13)
m=1 n=1

where o, (t) = =z(t)exp (i2ram,t) and Tre (t) =
x*(t) exp (i27wB,t), and where M and N can be infinite. The
filter is completely specified by the numbers M and N, values
{am} and {B,} of the periodicity frequencies (or frequency-
shift parameters), and the impulse-response functions {an (¢)}
and {b,(t)}, or their Fourier transforms—the transform
functions—{A,,(f)} and {B,(f)}.

For specified M,N,{amn}, and {B,}, the optimum
LCL—FRESH filtering problem is equivalent to the multi-
variate (dimension = M + N) Wiener filtering problem [5].
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Using the vector concatenations

h(t) =[a1(t),-- -, am(8),ba (), -,
z(t) = [xal (t)7 Ty Tay (t)’ -Tigl (t)a t ax’-k-,@N (t)]la (14)
(13) can be reexpressed as d(t) = k'(t) ® z(t), and the vector
of transfer functions that minimizes the time-averaged squared

error between d(t) and d(t) is given by the solution to the
M + N simultaneous linear equations

SL(HH(S) = Sa=(f) (15)

where S, (f) and S4.(f) are the auto- and cross-spectral den-
sity matrices obtained by Fourier transforming the correlations

R..(1) & (2(t+7/2)2'(t - 7/2))
Ra.(1) & (d(t +7/2)2*(t - 7/2)),

b ()]

in which (-)' denotes transpose conjugate. Substituting the def-
inition of z(t) in terms of z(t) into (15) yields the equivalent
optimum LCL-FRESH filtering equations:

M Qp + O
3 sz -an(f - S ) ()

m=1
Z ( IBn + ay

Bn—otk :
D +2) B

Tx*

=su(r-%), k=12-M, (6
ZSE;T‘M( - 2n B )4 )
m=1
k—Bn [ _ ﬂn"'ﬁk
e 3ot (<4 Bt B g g

n=1

Sd,.( -%—k) k=1,2,---,N, (l6b)

which are fully specified in terms of the spectral correlation
density functions for z(t) and d(t).

The spectrum of the error e(t) 2 d(t) — d(t) whose mean
squared value is minimized by the multivariate Wiener filter
is [5]

Se(f) = Sa(f) = SLAHH(), )
which can be expressed more explicitly as
M *
SN =Sa) = Y 55 (£~ 52) Am(f)
m=1
- ZSW( G
n=1

The problem of selecting the best finite sets of frequency-
shift parameters {a,,} and {B,} is an important one in
practice, but it is not easy to characterize mathematically. This
problem is addressed in Section V. On the other hand, if no
constraint is put on the number of frequency shifts to be used,
then a (possibly infinite) set that is guaranteed to yield the
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minimum - attainable time-averaged squared error is that which
contains all a,,, for which either

- goeam (f _Em T ; a") #0

for each f and aj which

se(r-3) #0

(r- 2252 20

for each f and Bifor which
st (1-5) %0
and all 3, for which either
( fo @) £0
for each f and aj for which

su(f-%)#0

or

Sﬁk —Qm

Tx*

Sﬁn—ak

Tx*

or
Sf’“—ﬂ"( f+ﬂn+ﬂk)#0

for each f and B for which
Sdm*< 5’“) £0.

This follows directly from (16a)—-(16b).
For purely stationary signals,”> we have [5]

S2(f) = 82 (f) = 85(f) =5%-(H) =0 (19)

for all @ # 0, and for « = 0 we also have (for complex
envelopes z(t)) [21]

$$ (f)

Consequently, M = 1,N = 0, and @; = 0 in the optimum
FRESH filter (13), which reduces to the single convolution

d(t) = ao(t) ® zo(2).

S9..=0. (20)

In this case (16) reduces to
S2(f)Ao(f) = Sg(f),

which yields the transfer function Ao(f) for the conventional
Wiener filter. Generalizing this terminology for cyclostationary
signals, the optimum FRESH filter specified by (16) with
M, N,{am}, and {B3,} optimally chosen is called the cyclic
Wiener filter. When N or M or {an} or {3,} is constrained
in any way that is suboptimal, the resultant minimum-time-
averaged-squared error filter specified by (16) is a constrained
optimum FRESH filter and should not be called a cyclic

2These are the nonprobabilistic counterparts of cycloergodic stationary
stochastic processes [S].
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Wiener filter. This is consistent with the fact that only the
unconstrained time-invariant (noncausal or causal) optimum
filter is appropriately called a Wiener filter.?

It follows from the derivation of the optimum FRESH fil-

tering equations (16), in terms of multivariate Wiener filtering, -

that adaptive implementations of FRESH filters can easily be
obtained from conventional multivariate adaptive filters. Thus,
a basic adaptively adjustable structure is simply a parallel
bank of N + M frequency-shifting product modulators each
followed by an FIR filter, the outputs of which are summed.
The N + M filters can be jointly adapted using standard
algorithms such as LMS, RLS, and the more recent constant-
modulus algorithms.

IV. QAM SIGNALS

A real QAM signal is made up of two sine-wave carriers in
quadrature (Q), each amplitude modulated (AM) with a time
series:

d(t) = c(t) cos (wot) + s(t) sin (wt). 1)

If ¢(t) and s(t) are analog message signals, d(t) is called
simply QAM. If s(t) is proportional to ¢(t), then d(t) is called
AM. If in this latter case the amplitude, which is proportional
to ¢(t), is a digital PAM message signal

oo

Z Crp(t -7, - to)a'

r=—00

o(t) = @)

then d(t) is called an amplitude-shift-keyed (ASK) signal with
keying rate 1/T,. Also, if the pulse p(t) is a full-duty-cycle
rectangular pulse, and the digital variables ¢, are binary-valued
with values of 1, then this binary ASK signal is equivalent
to a BPSK signal. If s(¢) is not proportional to ¢(t), but is also
a binary PAM signal with full-duty cycle rectangular pulses,
then d(t) is a QPSK signal. If the pulses in the QPSK signal
are not restricted to be rectangular, then d(¢) is a 4-ary digital
QAM signal. More generally, (21) is called an M-ary digital
QAM signal when the total number of states of the pair (c,, s,)
is equal to M. The M states correspond to different amplitude

shifts
larl = VI ¥ 52

and different phase shifts

la, = —tan™! (S—T)
Cr

For all signals in this general QAM class, the spectral corre-
lation function is given by [5]

S3(f) = Z [SX(f +nfo) + S(f + nf,)]

'n—— 1,1
+ 0[S (f +nfo) — S&(f + nfo)]

3 Constrained optimum filters such as FIR filters are commonly but incor-
rectly referred to as Wiener filters by present-day authors. Wiener’s theory of
optimum filtering was developed for the more challenging infinite-dimensional
problem of unconstrained filtering rather than the simpler finite-dimensional
problem of constrained filtering [2].
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+2 Y [setinte(f) — setrinte(f)]

n=-1,1
+ ni[SoetPn e (F) + St de (£)]

where f, = w,/27 and

82(f) = %P(f +a/2P*(f - af2)

N

(23)

x Z Se7Te(f — /T, + /2T, )e~ 27t (24)

T,8=—00

in which P(f) is the Fourier transform of p(t) and ¢&(t) is any
times-series* for which &(rT,) = c,.
For
oo

S(t) = Z SrQ(t -7, — to)-:

rT=—00

(25)

we have an expression for S@(f) that is analogous to (24).
In the case where c, is a purely statlonary discrete-time-
series, (24) reduces to

SE(f) = s PUT +a/2)P*(f =~ a/2)

o0
Y Sa(f - s/To + af2)e™ 27t (26)
§=—00
for a = k/T, for all integers k, and S¢(f) = 0 for all other
values of a. Also, if ¢, is a white sequence with variance a?:,
then

S¢(f) =

In addition, 1f c- and s, are statistically independent zero-
mean time-series (cf. [5]), then S&(f) = S&(f) = 0, and
(23) reduces to

2

= P(f +a/2)P*(f —af2)e”™m%. (27)

S§(f Z [SS(f +nfo) + S(f +nfo)
n—-l 1
+ SIS (f) — SeFEne(f)). 28)

For AM with purely stationary amplitude ¢(t), (28) reduces
further to (letting s(t) = 0)

75:0), o = £2f,
Si(hH =191 1 (29)
ZSc(f + fo) + Zsc(f - fo)a a=0

and S§(f) = 0 for all other values of o.. For BPSK with T, f,
irrational, (28) with (27) substituted in reduces to

2
HOES- + /P (f + fo - a/2)

+ P(f ~ fo+ @/2)P*(f = fo = @/2)]e™"%  (30)
for @ = k/T and

)P (f —a/2F fo)

.6—1.27r[(ai2fo Ytot20,]

53(f) =

G

4(24) can be reexpressed in terms of the spectral correlation function for
the discrete-time-series ¢ [5].
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Fig. 1. Magnitude of spectral correlation function for an AM signal graphed
as the height of a surface above the plane with coordinates f and c.

10/To

Fig.2. Magnitude of spectral correlation function for a BPSK signal graphed
as the height of a surface above the plane with coordinates f and a.

-5/To

Fig. 3. Magnitude of spectral correlation function for a QPSK signal graphed
as the height of a surface above the plane with coordinates f and o.

for o = F2f, + k/T,. The parameter ¢, is the carrier phase
parameter which we have included in our BPSK model for
the sake of generality,

d(t) = c(t) cos (wot + ©o)- 32)

For balanced QPSK (for which S(f) = S¢(f) and S&(f) =
0) with T, f, irrational, we obtain (30) multiplied by 2 for
a = k/T,, but S§(f) =0 for o = F2f, + k/T,.

The magnitude of these spectral correlation functions for
AM, BPSK, and QPSK are graphed as the heights of surfaces
above the plane with coordinates f and « in Figs. 1-3.

In the next section, only AM, BPSK, and balanced QPSK
signals are considered, so only the results (29)—(31) are
needed. However, both real signals and their complex repre-
sentations are considered. For AM, the complex representation
is simply

d(t) = a(t)e!wottee) (33)
and for BPSK it is the same with
a(t) = Y aph(t—rT, —t,), (34)

in which a, = ¢, are real-valued, but h(t) is, in general,
complex-valued. For QPSK, (33)—(34) again apply, except that
now a, = ¢, — 18, are complex-valued. In both cases, (34)
can be substituted into (33) to obtain

d(t) = i brg(t — 1T, — t,)

T=—00

(33)
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where

ilwo (rTo+10)+¥o) (363)

b, = are
and

g(t) = h(t)e*. (36b)
For this general complex digital QAM signal (35) where b,
is a white complex sequence with variance cr%, the spectral
correlation function is given by

o? ‘
Sg(f) = T’i'G(f +a/2)G*(f - a/z)e—ﬂﬂ'ato (37)

for o = k/T,, and the conjugate spectral correlation function
is given by

Sga-(F) =

g

2 G(f + a/2)Glaf2 — feErla=tite=2e

T.
(38)
for a = 2f, + k/T, for BPSK, and for balanced QPSK we
have

Sga-(£) =0 (39)

for all a.

Similarly, for the complex AM signal (33) where c(t)
is purely stationary and real-valued, the spectral correlation
density function is given by

Sg(f) = Sa(f - fo)a

and S§(f) = 0 forall o # 0; the conjugate spectral correlation
function is given by

Sga- () = Sa(f)e®*7,

and S3;.(f) = 0 for all o # 2f,.

In summary, the complex representation of AM has no
spectral correlation; it has only conjugate spectral correlation
(associated with the carrier frequency f,). In contrast to
this, the complex representation of balanced QPSK has no
conjugate spectral correlation; it has only spectral correlation
(associated with the baud rate 1/7, and its harmonics). The
complex representation of BPSK, on the other hand, has both
spectral correlation and conjugate spectral correlation.

For all digital QAM signals whose amplitude/phase constel-
lations exhibit quadrantal symmetry, the spectral correlation
functions are identical to that of balanced QPSK.

For all three signals AM, BPSK, and QPSK, all spectral
components with nonzero correlation are, in fact, completely
correlated: their correlation coefficients

5¢(f)
[Sa(f + a/2)Sa(f — a/2)]}/?

have magnitude equal to unity, as explained in [5]. As a
result of this spectral redundancy, certain spectral components
in a signal can be used to completely cancel other spectral
components in that signal. This is the primary mechanism that
enables the separation of spectrally overlapping signals.

a=0 (40)

a=2f, @én

ci(f) £ “2)
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Fig. 5. FRESH-filter structure for a QPSK signal.

V. OrriMuM FRESH FILTER
STRUCTURES FOR QAM SIGNALS

It follows from the results in Section IV for complex QAM
signals and the optimum FRESH filtering equations (16) in
Section III that in the LCL cyclic Wiener filter for AM in
stationary noise, the linear (L) part does not include any
frequency shifts—it includes only one time-invariant (TT) filter
(M =1, a; = 0)—and the conjugate linear (CL) part includes
only the onme shift, 81 = 2f, (N = 1,61 = 2f,). This
LCL-FRESH structure is shown in Fig. 4. .

For QPSK in stationary noise, the results in Sections III and
IV reveal that the LCL cyclic Wiener filter contains no CL part
at all (N = 0). The L part, however, includes frequency shifts
am = m/T, for all integers m for which

G(f +m/2T,)G*(f — m/2T,) # 0.

For 100 K% excess-bandwidth (EBW) pulses (i.e., 100 K%
bandwidth in excess of the Nyquist bandwidth of 1/2T5), (43)
requires |m| < K. Thus, in the L part of the filter there is a
filtering path with no shift and there are also K parallel paths
with positive shifts and another K with negative shifts (where
K is the greatest integer that is less than or equal to K).
Hence, for 100% EBW, the L part of the filter contains two
frequency shifters, each followed by a TI filter, and there is a
TI filter with no frequency shifter. For 200% EBW, there are
four paths with frequency shifters and one path without, and
so on. This L-FRESH structure is shown in Fig. 5.

For BPSK in stationary noise, the results in Sections III and
IV reveal that the LCL cyclic Wiener filter contains the same

43)
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paths in the L part as for QPSK, and it also contains the same
number of paths in the CL part, but the frequency shift values
are all increased by 2f,. In other words, each of the two TI
filters in the structure for AM shown in Fig. 4 gets replaced
for BPSK with a structure identical to that shown in Fig. 5,
and both have the same 2K + 1 frequency shifts but different
transfer functions.

The preceding results on frequency shifts can be arrived
at quite easily by simply determining what shifts will yield
overlapping spectral components from z(¢) and d(t) that are
correlated with each other. For the L part of the filter, we shift
components in the spectrum of z(t) = d(t) + n(t) where n(t)
is the noise, to overlap other components in the spectrum of
d(t). For the CL part, we shift components in the reversed
spectrum of z(t) to overlap components in the spectrum of
d(t). However, when there is more than one cyclostationary
signal present, then we obtain not only the frequency shifts
that are useful for each signal alone in stationary noise, but
also sums and differences of some of these frequency shifts.
The problem becomes sufficiently complicated, particularly
when it is desired to find the optimum subset of a given
size of all useful frequency shifts, that in the next section
numerical evaluations of the mean-squared-error performance
as a function of the particular frequency shifts used are resorted
to. That is, the integral

. co
min(e2(£)) = / S.(f) df 4)
—00

is numerically evaluated by first numerically solving the linear
equations in.(16) and substituting them into (18), the result of
which is substituted into (44). However, before proceeding
to the numerical study, a few cases that can be explained
graphically are considered.

VI. GRAPHICAL EXPLANATION OF SIGNAL SEPARATION

To illustrate how two spectrally overlapping signals can -
be separated using FRESH filtering, we consider two cases.
The first case involves two QPSK signals with unequal carrier
frequencies and arbitrary baud rates, both of which have 100%
EBW. Fig. 6, which shows the overlapping spectra of these
two signals, illustrates graphically one way that exploitation
of only cyclostationarity associated with the baud rate can be
used to separate the two signals.

Starting from the top of this figure, each pair of graphs
illustrates the result of one filtering and frequency-shifting
stage. The subband shaded with a single set of parallel lines
represents spectral components from one signal that are not
corrupted by the other signal. These components are selected
and complex-weighted by a filter and then frequency-shifted to
cancel the components in another subband, which is identified
by crosshatched shading. The result of this cancellation is
shown in the second graph (which contains no shading) of
each pair. The only frequency-shifts used are equal to plus
and minus each of the two baud rates. After five such stages,
a full sideband of each of the two QPSK signals has been
completely separated. In each stage the spectral redundancy
between complex spectral components separated by the baud
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Fig. 6. IDlustration of spectral densities for step-by-step separation of QPSK
signals with unequal carriers and arbitrary baud rates, using baud-rate ex-
ploitation only.

rate is being exploited, and this same spectral redundancy can
be used to reconstruct the entire QPSK from either one of its
sidebands.

The five cascaded stages of filtering, frequency-shifting,
and adding operations can be converted into one parallel
connection of frequency shifters, each followed by a filter,
simply by using standard system transformations to move all
frequency shifters to the input.

Fig. 7 shows the overlapping spectra for the second case,
which involves two AM (or BPSK) signals with unequal
carrier frequencies and arbitrary bandwidths (or baud rates).
The same scheme is used here to illustrate in a step-by-step
manner how the two signals are separated. However, since the
cyclostationarity associated with the carrier is being exploited
in this case, and since the complex representations of the
signals are being used, the operations involved in each step
include a reflection of the subband shaded with a single set
of parallel lines about the zero-frequency point before the
complex weighting and shifting operations are applied. This
extra operation corresponds to conjugating the time-domain
signals. The only frequency-shifts used are equal to plus and
minus each of the two carrier frequencies.

Although the graphical explanation of signal separatlon
offered here requires that at least one of the signals be free of
interference in some part of its band, this is not necessary in
general. This is illustrated in Section VIIL
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Fig. 7. Illustration of spectral densities for step-by-step separation of AM

signals with unequal carriers, using carrier exploitation only.

VII. PERFORMANCE OF OPTIMUM FRESH
FILTERS FOR INTERFERING QAM SIGNALS

In this section, sums of two or three real AM signals, o
two complex BPSK signals, or two complex QPSK signals,
in additive white Gaussian noise are considered. One of the
two or three spectrally overlapping signals is considered to
be the signal of interest (SOI), and the remaining one or two
signals are considered to be signals not of interest (SNOI).
All signals for each scenario considered have the same power
spectral density, which is either triangle-shaped (for AM and
BPSK/QPSK with 300% EBW), or raised-cosine-shaped (for
BPSK/QPSK with 25% and 100% EBW),> the same EBW
of either 25, 100, or 300%, and the same SNR of 20 dB.
However, the absolute bandwidths, as determined by the baud
rates, are the same in some cases and different in others. The
same is true of the carrier frequencies.

In Figs. 8-10, the minimum mean-squared-error (MSE) in
dB is shown versus the number of frequency shifts used in
the complex LCL-FRESH filter for the case of the one SOI
and one SNOI, both of which are either complex BPSK or
complex QPSK. The values of the frequency-shifts used are
specified in Table I for Fig. 8, Table II for Fig. 9, and Table III
for Fig. 10. In these tables, the frequency shift having value 0
corresponds to the linear time-invariant (LTI) path for QPSK
and it corresponds to both the LTI and LCLTI paths for BPSK.
Similérly, for BPSK, each frequency-shift value listed is used
in both the L and CL paths. There are no CL paths for QPSK.
Thus, in terms of the number-of-shifts parameter L in Figs
8-10, the number of actual filter paths for QPSK is L + 1, but

5For BPSK and QPSK, these shapes are the squared magnitudes of the
pulse transforms (keying-envelope transforms) since the digital data sequence

is white. These particular shapes result in zero intersymbol interference at the
output of a matched filter.
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Fig. 10. Same as Fig.  except the carrier frequencies are equal. SNOI

overlaps the SOI 75%.

for BPSK it is 2(L+1) forall L > 1, and itis L+1 for L < 1.
However, since both the phases and frequencies of the two
carriers are equal for the case depicted in Fig. 10, the CL path
is of relatively little use for BPSK. The order of frequency
shifts has been chosen empirically to maximize the rate of
decrease of MSE with an increase in L. The carrier frequency
and baud rate of the SOI are f, = 0 and f; = 1/(1 +e)
where e = 1/4,1,3 for excess bandwidths of 25, 100, and
300%, respectively. The two-sided bandwidth of the SOI is
unity. In cases where the carrier frequency or baud rate of
the SNOI are different from those of the SOI, their values are
fo = 0.2257 and f» = 0.753/(1 + €), respectively, where
0.753 is the two-sided bandwidth of the SNOI. The triangular
spectral densities for the three cases considered in Figs. 8-10
are shown in Fig. 11.

The best performance is attainable when the two carrier
frequencies are different regardless of whether the baud rates
are the same or different. The performance for these two cases
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TABLE 1
FREQUENCY-SHIFT VALUES IN THE ORDER THEY APPEAR IN FIG. 8.
FREQUENCIES fi AND fo ARE THE BAUD RATES AND 0 AND fo ARE
THE CARRIER FREQUENCIES OF THE SOI AND SNOI, RESPECTIVELY

[QBSK25%: 0, £f,, 16y, H(f1—£,), (£ +,), H2,—fp),
H(f,-2f,), £(2f,-2f,)

BPSK 25%: O, ), tf,, 2fo, $(2f+£,), H(26o—f,),
H2fy+f), H2f—f)), H(f;—1,)

OPSK 100%: 0, +f,, +f,, +(f;—f,), H(f,+£,), +(2f,—£,),
(f;-26,), $2(f;~£,), 22(f; +f,)

BPSK 100%: 0, £f;, f,, +(f;~f,), 12f, £(2fo1;),
H(2fy+f;), H(2fy—f,), H2fy+f,)

|QPSK 300%: 0, f,, +f,, +2f,, H(f—f,), H{f; +f,),
H2f—f,), H(£;-2f,), 12(f;~F5), 22(F;+£),
+(3f,-2f,), +(2f;-3f,), 13f;

BPSK 300%: 0, f,, +f,, 260, +(2fg+f,), +(26(—f,),
H(2f,-1,), £2f), $2f,, +3f;, $3f,

TABLE II

" FREQUENCY-SHIFT VALUES IN THE ORDER THEY APPEAR IN FIG. 9. FREQUENCY

f1 1s THE BAUD RATE FOR BOTH SOI AND SNOI, AND O AND fo ARE
THE CARRIER FREQUENCIES OF THE SOI AND SNOI, RESPECTIVELY

OPSK25%: 0, 1f;, 22f;, 13f;, +4f,

BPSK 25%: 0, £, 12f, +(26(-f,), 2(2fg+f,), £2f;,

43f,

0, +f,, $2f, $3f,, +4f,, $2f), +(26o-f,),

(2fy+£y)

0, £f,, 126y, +(26,f,), £(2fy+f,), 22f,,

#3f,, $4f,

2 0, fy, £2f), £3f,, $4f;, 226, +(2f)—f,),
H(2fy+f;)

: 0, Hf, 22f), 336, $4f;, 226, +(2fp-f,),
+(2fy+£,)

| QPSK 100%:

|BESK 100%:

TABLE III
FREQUENCY-SHIFT VALUES IN THE ORDER THEY APPEAR IN FIG. 10. FREQUENCIES
f1 AND fo ARE THE BAUD RATES OF THE SOI AND SNOI, RESPECTIVELY, AND
THE CARRIER FREQUENCIES OF BOTH THE SOI AND SNOI ARE ZERO

OPSK25%: 0, f), 1f,, 1(f;—f,), H(2f;~f,), H(f;-2f,).

12(5,-£,), H(E,+£,), £2(E,+6)

0, £y, 26, 2(f,t,), 226, 1), 2(E-26,),

$2(£,-£,), H(E; +5,), £2(6+5)

0, £, 26, 2(f,£), 226,1,), 2(E-26),

12(f,-f,), H(f;+£,), 22(f;+£,)

- 0, £y, 6, 2(E-f,), 22, 1,), H(E1-26),
12(fy-f,), H(f;+£,), £2(f;+£,)

- 0, 2, £, £(,-,), 2, +1,), 2,
H(26,-1,), H(E,-26,), 22(6,-8,), £2(6,+65),
+(36,-26,), H(26,-36), 13, 136, 125,

T 0, 2y, 4, +(f,-f,), (i +,), 226,

(2 -f,), H(f,-2f,), £2(f)—f,), 22(f,+£,),
+(36,-2£,), +(2£,-36,), £3,, £3f,, 26,

BPSK 25%:

OPSK 100%:

is shown in Figs. 8 and 9 where it can be seen that very
little improvement relative to the LTI filter is available for
QPSK with 25% EBW (since there is no spectral redundancy
associated with the carriers and little associated with the baud
rates because of the low EBW), but substantial improvement
(14-16 dB) is available for QPSK with 100% EBW. For BPSK
with 25% EBW, about 17-18 dB improvement is available,
and this increases to about 20 dB for 100% EBW, and about
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Fig. 11. The triangular spectral densities of the BPSK and QPSK signals
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22-23 dB for 300% EBW. Since the SNR is 20 dB, this reveals
that the SNOI can be essentially eliminated for all EBW’s for
BPSK, but only for EBW > 100% for QPSK.

The performance is not quite as good when the two car-
rier frequencies are the same and only the cyclostationarity
associated with the baud rate is exploited unless the EBW
exceeds 100%, but substantial improvement relative to the LTI
filter is still attainable for EBWs on the order of 100%. The
performance for this case is shown in Fig. 10, where it can
be seen that there is little improvement relative to the LTI
filter for either BPSK or QPSK when the EBW is low (25%).
But, when the EBW is increased to 100%, an improvement of
6—7 dB is available, and this increases to 16-19 dB for EBW
= 300%, in which case the SOI is very nearly eliminated.
When the two phases of the carriers with equal frequencies
are known, the cyclostationarity associated with the carriers
can be exploited and amounts to using a slight variation on
the conventional method for demodulating the in-phase and
quadrature components of a QAM signal [13]. By this method
the two signals can be perfectly separated. However, if the
difference in the two phases is not sufficiently different from 0°
or 180°, then the extracted signals will be severely attenuated,
which will result in a substantial reduction in SNR. Also,
when the carrier frequencies are different as in Figs. 8 and 9,
but are close together, the large number of shifts required to
separate the signals if the cyclostationarity of the baud rates
is not exploited (e.g., if the signals are AM as in Fig. 12
and, therefore have no baud rate) can result in a substantial
decrease in SNR.

In Fig. 12, the minimum MSE is shown versus the number
of frequency shifts used in a real FRESH filter for one real
AM SNOI and three cases of one or two real AM SNOI’s.
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TABLE IV
FREQUENCY-SHIFT VALUES IN THE ORDER THEY APPEAR IN FiG. 12.
FREQUENCY f; IS THE CARRIER FREQUENCY OF THE SOI AND fo
AND f3 ARE THE CARRIER FREQUENCIES OF THE Two SNOI

Two SNOI Cases 1.2: 0, £2f), 22f,, #2(fp—f;),
12(£y—£3), £2(f,—f3) :

One SNQL Case 3: 0, £2f,, +2f,, £2(f,—f,), £2(f,-2f)),
12(2f,—f,), +4(f,—f; ), 22(2£,-3f;)

For cases 1 and 2, the first SNOI spectrally overlaps the real
AM SOI and the second SNOI overlaps the first SNOI, but
not the SOL. The amount of overlap of the SOI and first SNOI
is 77 percent and the overlap of the first and second SNOI’s is
16 percent for case 1. For case 2, the SOI and the first SNOI
overlap 20% and the first and second SNOI’s overlap 65%. Fo
case 3, there is only one SNOI and it overlaps the SOI by 77%.
The bandwidths of all three AM signals are unity, the carrier
frequency of the SOl is f; = 0.75, and the carrier frequencies
of the SNOI are denoted by f» and f3. The particular values
of frequency shifts used in Fig. 12 are shown in Table IV.
As can be seen from Fig. 12, excellent performance is
attainable when there is only one SNOI, which overlaps the
SOI by 77%. In this case (case 3) the SNOI is very nearly
eliminated with the use of six frequency shifts. When two
SNOI are present, one of which overlaps the SOI by 77%,
about eight frequency shifts are needed to approach the best
attainable performance (case 1). When there is only 20%
overlap (case 2), the SNOI is essentially eliminated with
only two frequency shifts. Similar results have been obtained
for complex LCL-FRESH filtering of complex AM signals.
Specifically, with fi = 0, fo = 0.5, f3 = 0.75, and unity
bandwidths (i.e., 50% overlap between first SNOI and SOI,
and 75% overlap between the two SNOI), frequency shifts of
0, £2f5 in both L and CL paths yield MSE = —21.5 dB. But,
with fo = 0.2257 and f3 = 1.0 (i.e., 77% overlap between
first SNOI and SOI, and 23% overlap between the two SNOI),
it takes nine frequency shifts (including combinations of both
f2 and f3) in both L and CL paths to obtain MSE = —18.8 dB.

VIII. FRESH FILTERING CAPABILITIES FOR
SEPARATION OF MULTIPLE QAM SIGNALS

The various scenarios of signal and interference considered
in the previous section include no more than two overlapping
signals at any one frequency. In this section, the more general
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problem of an arbitrary number of spectrally overlapping
signals is considered, but attention is restricted to only those
signals that share a common baud rate 1/7,. Also, relatively
large EBW’s are considered since the number of signals
that can be separated increases as the EBW is increased.
Throughout the section, N signals are considered. Although
the methods discussed apply for arbitrary carrier frequencies,
the case of equal carrier frequencies is focused on since this
is the worst case. To prevent the possibility of exploiting
cyclostationarity associated with the carrier frequencies, digital
QAM signals with quadrantal symmetry (like balanced QPSK)
are considered.

Let us consider first the obvious situation where the N
spectrally overlapping signals are disjoint in the time domain.
That is, if the pulse envelopes are duration limited with widths
of T,/N (where T, is the baud interval), and if the pulse
epochs are equally staggered throughout the baud interval,
‘then the signals do not overlap in time and can obviously
be separated using periodically time-variant linear processing
(time gating). The null-to-null bandwidth of each of these
signals is 2N /T,, which corresponds to an approximate EBW
of (2N — 1) 100% (the absolute bandwidth is infinite).

This simple result properly reflects the fact that to separate
N spectrally overlapping signals, we need an EBW on the
order of 100N %. However, it is shown in this section that
there is no need to have the pulses perfectly staggered in time
or nonoverlapping. In fact, it is shown that as long as their
pulse-timings are distinct, and the EBW > (N — 1) 100%,
‘hey can be perfectly separated using FRESH filtering.

To gain insight into the problem of interest here, the signals
are treated as if they were Fourier transformable (e.g., only a
finite number of the random variables b, in (35) are nonzero).
From (35), we obtain the Fourier transform

Dr(f) = Ba(f)An(f)

where

>

Bn(f)

oo
§ : bnre—iZWTTof

T=-—00

Gn(f)e—i%rftn
/ gn(t)e™ 2™t 4t

—0o0

An(f)
Gn(f)

e

The factor A,(f) is nonrandom, but the factor B,(f) is
random by virtue of the randomness of the digital data b,,.
The random factor is, however, periodic:

Bn(f +k/To) = Bn(f).

It follows that the random variables D,(f + k/T,) for k =
0,£1,+£2,--- are perfectly correlated since they are simply
scaled (by the nonrandom factors A, (f + k/T,)) versions of
each other. Consequently, for each frequency f in the band
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[-1/2T,,1/2T,], the N frequency samples

N
X(f+k/T.) =Y An(f +k/To)Bu(f + K/T)

n=1

_Z[A (f+k/T)]

n=1

Dn(f)

(for N integers k) of the transform of the received data

N
.’L‘(t) = Z dn(t)

n=1

produces N linear equations in the N unknowns {D,(f):n =
1,2,---,N}. These equations can be solved if the N x N
matrix with (kn)th element A,(f + k/T,) is nonsingular.
This can be guaranteed if the N pulse-timing parameters {¢, }
are different or if the NV pulse shapes {g,(t)} are different.
For example, if the n carrier frequencies w;, in

9n(t) = hn(t)e™n*

[from (36)] are different, then the matrix can be nonsingular
even if the baseband pulse shapes {h,(¢)} are all the same.

It should be pointed out that in the case being considered
here, where the correlated spectral components are perfectly
correlated (the correlation coefficient magnitudes are unity),
we have been able to use a nonstatistical argument that
completely circumvents the concept of correlation to obtain
the desired result.® However, this nonstatistical argument is
inadequate whenever the spectral correlation is imperfect (as
it must be in practice). Furthermore, unlike the statistical
theory presented here in Sections II-IV, the nonstatistical
approach does not indicate how to optimize the FRESH filter
to minimize MSE in arbitrary stationary and cyclostationary
noise and interference backgrounds.

The solution described here in terms of solving N linear
equations obtained from sampling in frequency can be imple-
mented using a FRESH filter with IV frequency shifts (one of
which is zero) followed by an N x N matrix of TI filters. If the
signals are BPSK instead of QPSK, then carrier exploitation
also is possible by using an LCL structure. In this case, either
more than N signals can be separated or the MSE for N
signals in noise can be reduced.

IX. WAVEFORM EXTRACTION OR DIGITAL DATA EXTRACTION?

An issue that deserves some discussion is that of waveform
extraction versus digital data extraction. That is, in a digital
communication system, we ultimately are interested only in the
quality of the extracted digital data, not the entire waveform
that carries this data. However, in many cases the digital data
can be obtained from the ideal transmitted waveform by time
sampling at the baud rate, i.e., d(rT, +t,) = a, in (34). Even
if the zero-intersymbol-interference criterion is not satisfied
by the transmitted waveform, the training waveform used in
an adaptive implementation can be constructed (e.g., from the

SA similar result is obtained in [23] using a nonstatistical argument.

However, the result is for separation of the IV digital data sequences only,
not the entire signal waveforms (cf. Section IX herein).
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data sequence a, obtained at the output of a decision device)
to satisfy this criterion. Furthermore, the cyclic Wiener filter
specified by (16) minimizes the time-averaged squared error
for all sequences of such time samples, regardless of sampling
phase, since it is the optimum polyperidioc time-variant filter.
Thus, when the number of frequency shifts used is enough to
yield an MSE that closely approximates the absolute minimum,
which is reached by the cyclic Wiener filter, the corresponding
optimum FRESH filter for waveform extraction whose output
is sampled at the times ¢t = r7T, + ¢, will provide optimum
extraction of the digital data. Moreover, it can be shown
that the cyclic Wiener filter for the signal (34) provides the
waveform estimate

where l;r is the minimum-MSE estimate of b,., regardless
of whether or not d(rT, + t,) = b, (cf. [22]). Thus, the
cyclic Wiener filter can be followed by the ideal noise-free
demodulator for this modulated signal. But it would probably
be preferable to design g(t) in a training signal d(t) to
guarantee not only d(rT, + t,) = b, but also small error
d(rT, +t, +€) — b, for the magnitude of time-sampling error
e that can be expected. The fact’ that the cyclic Wiener filter
minimizes MSE at all times ¢ could then yield a small MSE
even in the presence of unknown time sampling error.

On the other hand, by adaptively adjusting the filters to
minimize the MSE at only 7T, +t,+¢ where € is an unknown
timing offset, the FRESH filter will adapt to accommodate
this timing offset provided that it varies sufficiently slowly.
[The same is true for the optimum waveform extractor with
timing offset in d(t¢).] More importantly, when the number of
frequency shifts used is less than the number needed to reach
the performance of the cyclic Wiener filter, then lower MSE at
the sampling times ¢ = rT,+t,+¢ can potentially be obtained
by ignoring the MSE at other times. Thus, by using decision
direction to perform the adaptation, the MSE in estimating the
digital data a, is minimized (subject to the constraints imposed
on the structure, Such as the number of frequency shifts)
independent of any zero-intersymbol-interference criterion.

In conclusion, when FRESH filters are actually implemented
in practice, the best performance might be obtained by sam-
pling the FRESH filter output at the baud rate and minimizing
the MSE at these time samples only, using training data b, or
decision direction. However, without knowing more about the
nature of the time-sampling error, it cannot be known for sure
if this is so, or if the waveform estimator, which minimizes
MSE for all time, might perform better.

It is worth mentioning at this point that when a bandlimited
FRESH filter with frequency shifts equal to a baud rate and
its harmonics only is followed by a baud-rate sampler, the
overall structure is exactly equivalent to a fractionally spaced
equalizer (with an unlimited number of equalizer taps) [16].
However, when incommensurate frequency shifts associated
with multiple signals are used in the FRESH filter, no such

7This fact is not quite so obvious in the nonprobabilistic framework [5]
adopted here as it is in the probabilistic framework [3].
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equivalence is possible. In this sense, the FRESH filter,
followed by a baud-rate sampler, is a generalization of the
fractionally spaced equalizer.

It should also be pointed out that frequency-domain im-
plementations of FRESH filters, based on the FFT, can be
attractive alternatives [5]. The only difference between a
frequency-domain implementation of a conventional TI filter
and that of a polyperiodic (FRESH) filter is that the contents
of more than one frequency bin from the input are linearly
combined to obtain the contents of each frequency bin at the
output. This idea has been pursued for digital data extraction
(demodulation) as well as waveform extraction [24]-[26].

X. CONCLUSION

In this paper, Wiener filtering theory is generalized from
stationary signals to cyclostationary signals. The generalized
optimum filters, called cyclic Wiener filters, are polyperi-
odic time-variant linear filters which incorporate frequency-
shifting operations as well as the usual frequency-dependent
amplitude-weighting and phase-shifting operations. It is shown
that these frequency-shift filters can separate signals that
overlap in frequency as well as in time. The minimum-MSE
performance of these filters as a function of the number of
frequency-shifts used is evaluated for several signal and inter-
ference scenarios. Specific results are obtained for the number
of cochannel digital QAM signals that can be separated, as a
function of their excess bandwidth. The results obtained show
that the spectral redundancy inherent in excess bandwidt!
can be used effectively to improve system performance, and
this suggests that excess bandwidth is a richer system-design
parameter than previously recognized. In other words, high
bandwidth-efficiency can be more costly in system perfor-
mance when cochannel interference is present than we might
have thought.

More recent work by the author has led to novel FRESH
filtering structures that can be blindly adapted using only LS,
RLS, or LMS algorithms, and with prior knowledge of only
the modulation types and the values of carrier frequencies or
baud rates, that is, without use of decisions-direction, modulus
restoral, or demodulation/remodulation methods, all of which
exhibit threshold effects.
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