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This introductory chapter has five objectives. The first is to give a broad but thorough
view of the status of the development of the theory and application of cyclostationary
signals. This entails discussing and answering the following questions: What is
cyclostationarity? How is it useful? Why publish a book on cyclostationarity? What
are some of the seminal contributions to the study of cyclostationarity? and What
are some of the specific motivations—both practical and mathematical—for studying
cyclostationarity?

The second objective is to explain the philosophies behind the two alternative
approaches to the subject: the orthodox approach based on stochastic processes and
ensemble averaging and the more recently developed approach based on nonstochas-
tic time-series and time averaging. Since some controversy regarding these two
approaches is said to exist (it is more misunderstanding than it is controversy), the

This chapter is adapted from the opening plenary lecture at the Workshop on Cyclostationary Signals,
held August 16-18, 1992 in Yountville, CA. The reference style (author(s), date(s)) is used in this chapter
to help the reader put the contributions surveyed into historical perspective. In the remainder of the book,
references are identified by number according to the order listed at the end of each chapter and article.
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Editor’s Introduction

Many conventional statistical signal-processing methods treat random signals
as if they were statistically stationary, that is, as if the parameters of the underly-
ing physical mechanisms that generate the signals do not vary with time. But for
most man-made signals encountered in communication, telemetry, radar, and sonar
systems, some parameters do vary periodically with time. In some cases even multi-
ple incommensurate (not harmonically related) periodicities are involved. Examples
include sinusoidal carriers in amplitude, phase, and frequency modulation systems,
periodic keying of the amplitude, phase, or frequency in digital modulation systems,
periodic scanning in television, facsimile, and some radar systems, and periodic
motion in rotating machinery. Although in some cases these periodicities can be
ignored by signal processors, such as receivers that must detect the presence of sig-
nals of interest, estimate their parameters, and/or extract their messages, in many
cases there can be much to gain in terms of improvements in performance of these
signal processors by recognizing and exploiting underlying periodicity. This typically
requires that the random signal be modeled as cyclostationary or, for multiple period-
icities, polycyclostationary, in which case the statistical parameters vary in time with
single or multiple periods. Cyclostationarity also arises in signals of natural origins,
because of the presence of rhythmic, seasonal, or other cyclic behavior. Examples in-
clude time-series data encountered in meteorology, climatology, atmospheric science,
oceanology, astronomy, hydrology, biomedicine, and economics.

Important work on cyclostationary processes and time-series dates back over
three decades, but only recently has the number of published papers in this area
grown exponentially. Fueled by recent advances in applications to communications,
signal processing, and time-series analysis that demonstrate substantial advantages of

xi
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exploiting cyclostationarity in both design and analysis, the appetite for learning about
cyclostationarity exhibited by research and development communities in areas such as
wireless and cable communications, signals intelligence and covert communications,
and modeling and prediction for natural systems (hydrology, climatology, meteo-
rology, oceanology, biology/medicine, economics, etc.) has outgrown the available
tutorial literature. This edited book is intended to help fill this void by presenting indi-
vidual tutorial treatments of the major subtopics of cyclostationarity and by featuring
selected articles that survey the latest developments in various specific areas.

The book is composed of two parts. Part I consists of six chapters, the first four of
which are adapted from the four plenary lectures at the Workshop on Cyclostationary
Signals, which was held August 16-18, 1992, at the Napa Valley Lodge in Yountville,
California. Part II consists of seven articles. Part I is strongly tutorial and provides
in-depth surveys of major areas of work. Similarly, Part I, which focuses on more
specific topics, also has a tutorial survey flavor. Each of these two parts treats both
theory and application.

Chapter 1 provides a historical perspective on cyclostationarity and discusses in
detail both the practical and mathematical motives for studying cyclostationarity. It
also treats the philosophy of aesthetics and utility that underlies alternative concep-
tual/mathematical frameworks within which theory and method can be developed.
The latter half of the chapter surveys the theory and application of wide-sense cyclo-
stationarity, touching on the problems of detection, modulation recognition, source-
location, and extraction of highly corrupted signals, and the roles that the spectral-line
generation and spectral-redundancy properties of cyclostationarity play in tackling
these and other problems. This chapter provides an introduction to cyclostationary
signals that serves as a foundation for the remainder of the book.

Chapter 2 provides an overview of the recently formulated theory of higher-order
temporal and spectral moments and cumulants of cyclostationary time-series. It is
shown that the nth-order polyperiodic cumulant of a polycyclostationary time-series
is the solution to the problem of characterizing the strengths of all sine waves that
are produced by multiplying » delayed versions of the time-series together, with the
parts of those sine waves that result from products of sine waves that are present in
lower-order factors of the nth-order product removed. Thus, the study of higher-order
cumulants is motivated by a practical problem that arises in signal processing. The
chapter also discusses other motivations for studying the moments and cumulants
and provides a historical account of cumulants and their uses. The properties of these
statistical functions that render them useful in signal processing are discussed and
compared to the properties of similar statistical functions for stationary time-series.
Applications of the unique signal-selectivity property of the polyperiodic cumulants
to the tasks of weak-signal detection and source location are briefly described.

Chapter 3 provides an overview of sensor array processing for cyclostation-
ary signals, focusing on adaptive spatial filtering and direction-of-arrival estimation,
and presenting some new results on blind equalization and channel identification. It
briefly describes many recently introduced methods and highlights their advantages




November 1, 1993 15:33  876-int  Sheet number 3 Page number Xiii

Editor’s Introduction xiii

and disadvantages relative to each other and to more conventional techniques that
ignore cyclostationarity. Applications of cyclostationarity-exploiting methods to ex-
isting problems in array processing and to the design of new wireless communication
systems are suggested.

Chapter 4 supplements the material on cyclostationary processes by reviewing
the basic theory of periodically and polyperiodically time-varying linear systems.
Such systems are extensively employed as filters for processing and modeling cyclo-
stationary signals. Various input-output and state-variable descriptions together with
filter structures that are appropriate for implementing the desired response charac-
teristics in both continuous- and discrete-time are discussed. The chapter concludes
with a brief discussion and some examples of polyperiodic filtering for waveform
extraction.

Chapter 5 provides an overview of the state-space theory of cyclostationary
processes in discrete time. The three alternative descriptions, (i) jointly periodic
autocovariance functions, (i7) state-space stochastic models (Markovian representa-
tions), and (ii7) autoregressive moving average models with periodic coefficients, are
investigated, and connections among them are explained. Innovations representa-
tions, linear prediction, spectral factorization, and model identification are all studied
and the current state of knowledge on these topics is summarized.

Chapter 6 provides areview of the spectral theory of cyclostationary (periodically
and almost periodically correlated) random processes and of existing results on the
consistent estimation of the Fourier coefficients of the autocorrelation function and
their Fourier transforms, the spectral correlation densities. The representation of
these processes in terms of sets of jointly stationary processes and in terms of unitary
operators also is reviewed.

Article 1 in Part II addresses the joint transmitter/receiver optimization prob-
lem for multiuser communications and presents a coherent view of system design
approaches that include different but related multiinput/multioutput models on the
basis of analytical optimization. The present state of knowledge in this area is summa-
rized, and the potential for suppression of cochannel interference that is
afforded by the cyclostationarity of the signals is emphasized. The results demonstrate
analytically that greatly improved cross-talk rejection is achievable when the spectral
correlation property of the cyclostationary signals is properly exploited.

In Article 2 the objective is to provide insight into the nature of the self-noise
that is present in the timing wave produced by a square-law synchronizer acting
on a cyclostationary pulse-amplitude modulated signal and to provide a quantitative
analysis of the mean square phase jitter in the timing wave. The results obtained show
explicitly how the design and performance analysis of the square-law synchronizer
is characterized by the spectral correlation function and the fourth-order spectral-
moment function of the signal.

Article 3 provides a tutorial review of recent methods for multipath channel
identification using known test signals. By exploiting the signal-selectivity proper-
ties of the cyclic autocorrelation function or the associated spectral correlation func-
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tion, these methods can perform well in severely corruptive noise and interference
environments. Several such identification methods are compared in terms of their
performance characteristics by analysis and simulation.

Article 4 provides a brief overview of the various approaches to blind chan-
nel equalization and identification that have been reported in the literature and then
explains the potential advantages to be gained by exploiting the cyclostationarity
of digital-quadrature-amplitude-modulated signals. The theoretical possibility of
accomplishing blind identification with the use of only second-order statistics
is explained, and a frequency-domain approach is described. '

The fifth article presents a time-domain approach to the blind channel equaliza-
tion and identification problem. The results of simulations presented therein suggest
that exploitation of second-order cyclostationarity can be an effective alternative to
methods that ignore it in favor of higher-than-second-order statistics. A connection
between the frequency-domain and time-domain approaches also is explained.

Article 6 reviews the theory and implementation of digital spectral correlation
analysis. The performance characteristics and computational requirements of various
algorithms based on either time smoothing or frequency smoothing are compared
analytically, and two specific implementation studies are briefly presented.

Article 7 briefly reviews recent developments in the theory of prediction for
cyclostationary processes. The fundamental role in the theory played by multivariate
stationary representations of univariate cyclostationary processes is explained, and
both discrete-time and continuous-time processes are considered.

The chapters in Part I and articles in Part II collectively cover a wide range of
topics in the theory and application of cyclostationarity. We hope that the tutorial
style of these contributions coupled with the broad survey and comprehensive refer-
ence lists they provide will make this volume instrumental in furthering progress in
understanding and using cyclostationarity not only in the fields of communications
and signal processing, but in all fields where cyclostationary data arises.
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discussion here is intended to be particularly thorough, including both pragmatic and
mathematical arguments and illuminating both strengths and weaknesses of each ap-
proach. The goal is to provide a sound basis for choice for everyone interested in
studying cyclostationarity.

The third objective is to provide a comprehensive introduction to the principles of
second-order cyclostationarity, which involve only second-order statistical moments
of signals in the time and frequency domains. This treatment considers primarily
discrete-time signals, and in this way it complements previous treatments by this
author, which focus on continuous-time signals.

The fourth objective of this chapter is to survey applications of second-order
cyclostationarity in the areas of communications and signal processing. The focus
here is on exploiting the spectral redundancy and sine-wave generation properties of
cyclostationary signals to perform difficult signal-processing tasks.

The fifth objective is to provide a reasonably comprehensive bibliography of
work on the theory and application of cyclostationarity (which is complemented by
the more focused bibliographies in subsequent chapters and articles).

Altogether, this chapter provides a foundation for the rest of the book that will
help the reader to put each individual contribution into perspective and to integrate
the parts into a whole reference source that not only will chart the past, but also will
serve as a primary vehicle for taking us into the future.

1 BACKGROUND
1.1 What Is Cyclostationarity?

Let us begin with the most obvious question: “What is a cyclostationary signal?”!
One answer is that a signal is cyclostationary of order # (in the wide sense) if and only if
we can find some nth-order nonlinear transformation of the signal that will generate
finite-strength additive sine-wave components, which result in spectral lines. For
example, for n = 2, a quadratic transformation (like the squared signal or the product
of the signal with a delayed version of itself, or the weighted sum of such products)
will generate spectral lines. For n = 3 or n = 4, cubic or quartic transformations
(i.e., sums of weighted products of 3 or 4 delayed versions of the signal) will generate
spectral lines. In contrast, for stationary signals, only a spectral line at frequency zero
can be generated.

Another answer to this question, which is completely equivalent to the first an-
swer but does not appear to be so upon first encounter, is that a signal is cyclostationary
of order # (in the wide sense) if and only if the time fluctuations in # spectral bands
with center frequencies that sum to certain discrete nonzero values are statistically
dependent in the sense that their joint #th-order moment (the infinite time average of
their product in which each factor is shifted in frequency to have a center frequency of

1For the moment, it is not important to be specific about whether or not we conceive of a signal as a
member of the ensemble of some stochastic process. This issue is addressed later. Similarly the modifier
wide sense is also explained later, in footnote 12.
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zero) is nonzero. In contrast, for stationary signals, only those bands whose center
frequencies sum to zero can exhibit statistical dependence.

In fact, for a cyclostationary signal, each sum of center frequencies for which
the nth-order spectral moment is nonzero is identical to the frequency of a sine wave
that can be generated by putting the signal throu gh an appropriate nth-order nonlinear
transformation.

For the simplest nontrivial case, which is n = 2, this means that a signal x(¢)
is cyclostationary with cycle frequency o if and only if at least some of its delay-
product waveforms, y(¢) = x(t — )x(¢) or z(¢) = x(t —7)x*(¢) (where (-)* denotes
conjugation) for some delays 7, exhibit a spectral line at frequency «, and if and only
if the time fluctuations in at least some pairs of spectral bands of x(¢), whose two
center frequencies sum (for the case of y(¢)) or difference (for the case of z(z)) to «,
are correlated.

If not all cycle frequencies & for which a signal is cyclostationary are multiples
of a single fundamental frequency (equal to the reciprocal of a fundamental period),
then the signal is said to be polycyclostationary (although the term cyclostationary
also can be used in this more general case when the distinction is not important). This
means that there is more than one statistical periodicity present in the signal.

1.2 Is Cyclostationarity Useful?

Perhaps the second most obvious question an engineer would ask is, “Is the property
of cyclostationarity useful?”” The answer is emphatically “Yes!” Cyclostationarity
can generally be exploited to enhance the accuracy and reliability of information
gleaned from data sets such as measurements of corrupted signals. This enhancement
is relative to the accuracy and reliability of information that can be gleaned from
stationary data sets or from cyclostationary data sets that are treated as if they were
stationary. Such information includes the following:

1. A decision as to the presence or absence of a random signal, or about the
number of random signals present, with a particular modulation type in a
data set that also contains background noise and other modulated signals,

2. A classification of multiple received signals present in a noisy data set ac-
cording to their modulation types,

3. An estimate of a signal parameter, such as carrier phase, pulse timing, or
direction of arrival, based on a noise—and—interference—corrupted data set,

4. Anestimate of an analog or digital message being communicated by a signal
over a channel corrupted by noise, interference, and distortion,

5. A prediction of a future value of a random signal,

6. Anestimate of the input-output relation of a linear or nonlinear system based
on measurements of the system’s response to random excitation,

7. An estimate of the degree of causality between two data sets, and
8. An estimate of the parameters of a model for a data set.
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1.3 Why Publish a Book on Cyclostationarity?

The next question we should consider is “Why publish a book on cyclostationarity?”
Some of the primary reasons are

1. There is a growing awareness in signal processing and communications
communities that the cyclostationarity inherent in many man-made random
signals and some signals of natural origins (that were previously modeled as
stationary) must be properly recognized and modeled if analyses of systems
involving such signals are to properly reflect actual behavior;

2. There is a growing awareness of the potential for considerable enhancement
of performance of signal-processing algorithms by recognizing and exploit-
ing cyclostationarity in the design process rather than ignoring it by treating
signals as if they were stationary;

3. There is a growing awareness by theoreticians that cyclostationary processes
are, in many ways, much more than a trivial variation on stationary processes
and do, therefore, merit their attention to further develop and refine the theory
of these processes;

4. There is a perception by engineers and scientists that cyclostationary pro-
cesses are much more than a trivial variation on stationary processes and
do, therefore, merit their effort to retrain—to expand their theoretical back-
ground (their analytical/conceptual “tool boxes”) from stationary to cyclo-
stationary processes; and

5. Technological advances, which enable the implementation of increasingly
sophisticated signal-processing algorithms, have made the exploitation of
cyclostationarity more viable in practice.

We have important work on cyclostationary processes dating back twenty to
thirty years (Bennett, 1958; Gladyshev, 1961; Brelsford, 1967; Franks, 1969; Hurd,
1969; Gardner, 1972) and the author’s research group at the University of California,
Davis, has contributed for the last twenty years. Also, there have been relatively
isolated contributions from many others to the development of this subject over the
last twenty years. However, the growth in the number of research papers has re-
cently accelerated, and it is only in the last five years that research groups, journal
editors, and program directors at funding agencies have shown real interest. The
accelerated growth in research activity is illustrated by the histogram of the num-
ber of papers on cyclostationarity published per two-year period that is shown in
Fig. 1.2

2The statistics in this graph were compiled by the author using a comprehensive bibliography that
he has created over the last five years using his personal files, computerized literature searches, and the
assistance of colleagues and students, most notably L. Paura, C. M. Spooner, and K. Vokurka.
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Figure 1: Histogram of papers on cyclostationarity.

Considering the following indicators, it appears that a “critical mass” of in-
terest has been reached and, as a result, that research activity will undergo explosive
growth:

1. Acceleration in production of research papers on cyclostationarity;

2. Interest of the National Science Foundation, Army Research Office, Air
Force Office of Scientific Research, and Office of Naval Research in sup-
porting the recent workshop on cyclostationarity;

3. Interest demonstrated by the participants of the recent workshop on cyclo-
stationarity;

4. Recent increases in both industrial and government funding of research on
cyclostationarity.
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Thus, the time is right for publishing a book that provides comprehensive tu-
torial treatments of the major subtopics of cyclostationarity and surveys the latest
developments in various specific areas.

1.4 What Are Some of the Seminal Contributions
to the Study of Cyclostationarity?

To expand our perspective on this subject, let us consider the following brief his-
torical survey of some of the seminal contributions to the theory and application of
cyclostationarity:>

(Bennett, 1958, Franks, 1969): Establishment of cyclostationary processes as
appropriate models for many communications signals.

(Jacobs, 1958; Gladyshev, 1963; Gardner, 1978): First studies of cyclostation-
ary processes with multiple periods.

(Gudzenko, 1959): First study of consistency of nonparametric estimates of the
Fourier coefficients of periodic autocorrelations.

(Gladyshev, 1961 and 1963): Discovery of equivalences among a cyclostationary
process (with one period) and several vector-valued stationary processes. Initial work
on spectral representation.

(Brelsford, 1967): Seminal work on periodic autoregressive modeling and
periodic linear prediction.

(Hurd, 1969, 1989a; Gardner, 1986¢, 1987a, Brown 1987): First studies of con-
sistency of nonparametric estimates of spectral moments of cyclostationary processes
with one period (Hurd) and with multiple periods (Gardner and Brown).

(Gardner, 1972; Gardner and Franks, 1975): First development and application
of several series representations of continuous-time cyclostationary processes in terms
of jointly stationary processes for optimum periodically time-variant linear filtering
of cyclostationary processes. First characterization of Fourier coefficients of periodic
autocorrelations and periodic spectra (the cyclic autocorrelations and cyclic spectra)
as crosscorrelations and cross-spectra of frequency-shifted versions of the process.

(Rootenberg and Ghozati, 1977, 1978; Bittanti 1987 Bittanti and DeNicolao,
1993): First efforts to develop the Gauss-Markov theory of cyclostationary processes;
formulation and partial solution of the cyclospectral factorization problem.

(Pagano, 1978): Development of equivalence between univariate periodic AR
modeling and multivariate constant AR modeling.

(Miamee and Salehi, 1980): Extension—from stationary to cyclostationary
processes—of the Wold-Cramér decomposition of a process (and its spectrum) into
regular (continuous) and singular (discrete) components.

(Nedoma, 1963, Boyles and Gardner, 1983): First formulation and development
of cycloergodicity for cyclostationary processes with single (Nedoma) and multiple
(Boyles and Gardner) periods.

3Contributions from the untranslated Russian literature are not included here, but it is men-
tioned that several Russian authors, most notably Ya. P. Dragan, have published a substantial amount
on cyclostationarity.
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(Gardner, 1985): First general treatise on cyclostationary processes and their
applications to signal processing and communications (1 book chapter).

(Gardner, 1986b, 1987a): First formulation and development of the nonstochas-
tic statistical theory of cyclostationary time-series and its applications to signal pro-
cessing and communications (6 book chapters).

(Gardner, 1987a; Brown, 1987; Chen, 1989, Agee et al., 1990, Schell, 1990,
Spooner, 1992): First studies of the exploitability of the separability of individual-

. signal contributions to cyclic temporal and spectral moments (of second order) of
multiple interfering signals for the problems of detection, modulation recognition,
time-delay estimation, blind-adaptive spatial filtering, and high-resolution direction
finding. Discovery that spectrally overlapping signals can be separated with linear
temporal processing by exploiting spectral redundancy.

(Gardner and Spooner, 1992b; Spooner and Gardner, 1992a, b, Spooner, 1992):
First formulation and development of the temporal and spectral moment and cumulant
theory of cyclostationary time of order series n > 2.

1.5 What about Terminology?

A few words about terminology are in order. The first term given to this class of pro-
cesses is the term cyclostationary, which was introduced by Bennett (1958), who also
introduced the term cycloergodic. Other terms used include periodically stationary,
periodically nonstationary, and periodically correlated. This last term is appropri-
ate only for second-order (wide-sense) cyclostationarity, whereas the preceding three
terms admit the modifiers wide-sense, nth-order, and strict-sense, and are, therefore,
more general. The most commonly used term is cyclostationary. When multiple
periodicities exist, this term is modified to polycyclostationary, although the terms
almost cyclostationary and almost periodically correlated are used also.

1.6 What Are Some of the Specific Motivations
for Studying Cyclostationarity?

There is a great deal of motivation for studying cyclostationarity. Let us consider
first some of the practical motives and then some of the mathematical motives and,
while we are at it, we can recognize many of the existing contributions to the study of
cyclostationarity. The practical motives cited here are specified in terms of a series
of facts.

Fact 1: Cyclostationary models, such as PAR (periodic autoregressive), PMA
(periodic moving average), and PARMA (periodic autoregressive moving average),
can be more parsimonious—better fit with fewer parameters—than stationary models
(AR, MA, and ARMA) are. This has been illustrated with real data from

o climatology/meteorology (Brelsford, 1967; Hasselmann and Barnett, 1981;
Barnett, 1983; Barnett et al., 1984; Johnson et al., 1985)

e hydrology (Salas, 1972; Salas and Smith, 1980; Vecchia, 1983, 1985; Thomp-
stone et al., 1985; Obeysekera and Salas, 1986; McLeod et al., 1987; Bartolini
et al., 1988)
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e medicine/biology (Newton, 1982)
e oceanology (Dragan and Yavorskii, 1982; Dragan et al., 1984, 1987)
e economics (Parzen and Pagano, 1979).

Fact2: Periodic prediction of cyclostationary processes can be done (and peri-
odic causality between cyclostationary processes can be found) when time-invariant
prediction is not possible or is inferior (and time-invariant causality is not found or is
weaker). Examples are given in Section 2.

Fact 3: Spectrally overlapping cyclostationary signals can never be separated
using time-invariant linear filters (e.g., optimum filters of the Wiener and Kalman
type for stationary models of the cyclostationary signals). But they can possibly be
separated using periodic filters that exploit spectral redundancy. This has been demon-
strated for PAM (pulse-amplitude modulation), digital QAM (quadrature-amplitude
modulation), AM (amplitude modulation), ASK (amplitude-shift-keying), and PSK
(phase-shift-keying) signals (Brown, 1987; Gardner, 1987a; Gardner and Brown,
1989; Gardner and Venkataraman, 1990; Reed and Hsia, 1990; Petersen, 1992; Gard-
ner, 1993).

Fact4: The biases and variances of parameter estimators (e.g., for TDOA (time-
difference-of-arrival), FDOA (frequency-difference-of-arrival), and AOA (angle-of-
arrival) of propagating waves) can be much lower, especially for multiple interfering
signals, when algorithms that exploit the signal selectivity associated with cyclosta-
tionarity (rather than ignore it by treating the signals as if they were stationary)
are used. This has been demonstrated for various types of communications signals
(Gardner, 1987a, 1988a, 1990a; Gardner and Chen, 1988, 1992; Chen 1989; Chen and
Gardner, 1992; Schell and Gardner 1989, 1990a,b,c, 1991, 1992, 1993a; Schell, 1990;
Gardner and Spooner, 1993; Izzo et al., 1989, 1990, 1992; Xu and Kailath, 1992).

Fact 5:  For the design and analysis of systems that synchronize local digi-
tal clocks and sine-wave generators to the frequencies and phases of periodicities
embedded in received communications and telemetry signals, the property of cyclo-
stationarity is crucial (Franks, 1980; Franks and Bubrouski, 1974; Moeneclaey, 1982,
1983, 1984; Gardner 1986a).

Fact 6: For the design of algorithms that blindly adapt sensor arrays to perform
spatial filtering (for beam/null steering and/or miti gation of multipath fading effects),
exploitation of signal selectivity associated with cyclostationarity has proven to be
extremely powerful (Agee et al., 1987, 1988, 1990; Schell and Gardner, 1990a;
Gardner 1990a) and application to multiuser wireless communications appears to be
promising (Gardner et al., 1992; Schell et al., 1993).

Fact 7:  For the design of algorithms that adapt channel equalizers to remove
intersymbol interference in digital communication systems, exploitation of the phase
information contained in second-order cyclostationary statistics of the channel output
enables blind adaptation without the use of higher-order statistics (cf. Chapter 3 and
Articles 4 and 5 in this volume).
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Fact 8: For radio-signal analysis, including detection, classification, modu-
lation recognition, source location, etc., the cyclic spectrum analyzer and related
algorithms that exploit cyclostationarity have proven to be ideally suited (Gardner,
1985, 1986b,c, 1987a,b, 1988b,c, 1990a,c, 1991a; Gardner et al., 1987; Brown, 1987;
Roberts, 1989; Roberts et al., 1991; Brown and Loomis, 1992; Spooner and Gardner,
1991, 1992a,b; Gardner and Spooner, 1990, 1992a; Spooner, 1992).

Fact 9: For the design and analysis of communications systems that accom-
modate unintentional nonlinearities that inadvertently generate spectral lines from
modulated message signals, the property of cyclostationarity is crucial (Campbell et
al., 1983; Albuquerque et al., 1984).

Fact10: For acoustic-noise analysis for rotating machinery, the cyclic spectrum
analyzer holds promise for improved diagnosis of machine wear (e.g., in ground, air,
and water vehicles, and hydroelectric plants) and for detection, classification, and
location of cyclostationary noise sources (e.g., submarines) (Sherman, 1992).

Fact 11: Many statistical inference and decision problems involving multi-
ple interfering cyclostationary signals in noise can exploit the cyclostationarity to
great advantage because of the inherent noise-tolerance and separability of the cyclic
features in the signals (Gardner, 1987a, 1990a, 1991a, 1992).

Let us now consider some of the mathematical motives for studying cyclosta-
tionarity. Cyclostationary processes (including one or more periods), as a subclass of
nonstationary processes, have more in common with stationary processes than do other
subclasses of nonstationary processes. The common structure shared by cyclostation-
ary processes suggests (and in some ways this has already been proven) that important
theorems and special theories for stationary processes can be extended and/or gen-
eralized, and that important theorems for generally nonstationary processes can be
specialized, to cyclostationary processes. This potential for mathematical progress,
coupled with the increasingly recognized importance of cyclostationarity to practical
problems, provides strong motivation for mathematicians to study these processes.

A few examples of important theorems/theories for stationary (or nonstationary)
processes that should be—or have been—extended/generalized (or specialized) are
given here (consult the key given below®).

Topic 1: {1 Wiener-Khinchin and Shiryaev-Kolmogorov theorems relating
temporal and spectral moments and cumulants (Gardner 1986b, 1987a, 1990c; Gard-
ner and Spooner, 1990; Spooner and Gardner, 1992a; Spooner, 1992; Chapter 2 in
this volume)

Topic 2: | Spectral representation theory (e.g., for harmonizable processes)
(Gladyshev, 1963; Hurd, 1974a, 1989b, 1991; Honda, 1982; Rao and Chang, 1988;
Chapter 6 in this volume)

4% Some progress has been made for cyclostationary processes with one period.
T Substantial progress has been made for cyclostationary processes with one period.
** Some progress has been made for polycyclostationary processes with multiple periods.
11 Substantial progress has been made for polycyclostationary processes with multiple periods.
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Topic 3: 1 Wold-Cramér theorem on decomposition of a process into sin-
gular and regular components and decomposition of its spectrum into discrete and
continuous components (Miamee and Salehi, 1980; article 7 in this volume)

Topic 4: *x Wiener and Kalman smoothing, filtering, and prediction theory
(Gardner, 1972; Gardner and Franks, 1975; Gardner 1985, 1987a, 1993; Brown,
1987; Gardner and Brown, 1989; Chapter 5 and Article 1 in this volume)

Topic 5: % Theory of AR, MA, and ARMA models, linear prediction, and
parametric spectral estimation (Brelsford, 1967; Pagano, 1978; Miamee and Salehi,
1980; Tiao and Grupe, 1980; Sakai, 1982, 1983, 1990, 1991; Pourahmadi and Salehi,
1983; Vecchia, 1985; Obeysekera and Salas, 1986; Li and Hui, 1988; Anderson and
Vecchia, 1992; Chapter 5 and Article 7 in this volume)

Topic 6: x Theory of fast algorithms for linear prediction and filtering (Sakai,
1982, 1983)

Topic 7: % Markov theory of state-space representations (Rootenberg and
Ghozati, 1977, 1978; Bittanti, 1987; Bittanti and DeNicolao, 1993; Chapter 5 in this
volume)

Topic8: = Birkhoff Ergodic Theorem and associated ergodic theory (Nedoma,
1963; Blum and Hansen, 1966; Boyles and Gardner, 1983; Honda, 1990)

Topic9: xx Theory of consistent nonparametric estimation of temporal and
spectral moments and cumulants (Gudzenko, 1959; Hurd, 1969, 1989a; Alekseev,
1988, 1991; Gardner, 1985, 1986¢, 1987a, 1991b; Dehay, 1991; Spooner, 1992;
Spooner and Gardner, 1991, 1992c; Genossar et al., 1993; Hurd and Leskow, 1992a,
1992b; Chapter 2 in this volume)

Topic10: {1 Theory of higher-order statistics (temporal and spectral moments
and cumulants) (Gardner, 1990c; Gardner and Spooner, 1990, 1992b; Spooner and
Gardner, 1992a,b; Spooner, 1992; Chapter 2 in this volume)

2 FUNDAMENTAL CONCEPTS, PHILOSOPHY,
AND DEFINITIONS

What do we need to accomplish here? We need a general description of the types of
signals that motivate the work being done under the name of cyclostationarity; we need
a generally useful definition of the signal property called cyclostationarity, and we
need to understand what mathematical/conceptual frameworks are particularly useful
for formulating and solving practical problems involving cyclostationary signals,
particularly those arising in communication system design and analysis and more
general signal processing.

We shall see that an empirically motivated approach to accomplishing these
things leads naturally to a probabilistic conceptual framework. However, this frame-
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work is distinct from that of stochastic processes in that it does not involve the concept
of an ensemble of random samples.

2.1 Signal Types

The types of signals of primary interest here are those normally encountered in com-
munication systems. These signals are typically unpredictable and occur over long
periods of time. That is, they are in some sense random (this does not necessarily
mean stochastic) and they are persistent rather than transient. These signals also typ-
ically originate from physical sources with parameters that are either time-invariant,
periodic, or polyperiodic. Thus, the characteristics of the physical signal-generating
mechanism vary polyperiodically with time (this includes as special cases periodic
variation and time invariance). In some cases the signal-generating mechanism can
be decomposed into more elementary signal generators whose outputs are mixed to-
gether to form the signal of interest. Some of these more elementary signal generators
can have characteristics all of which are time-invariant, thereby giving rise to station-
ary random signals. Other elementary signals can be simply periodic or polyperiodic
functions of time. Thus, the signals of interest often consist of combinations—
additive, multiplicative, and other types—of stationary and polyperiodic signals, and
are called polycyclostationary signals.

2.2 Operational Definition of Polycyclostationarity

What physical evidence in a signal reveals that there is polyperiodic time variation
present in its generating mechanism? Fortunately, there is a unique unambiguous an-
swer to this question that appears to be adequate for the general purpose of designing
and analyzing signal-processing algorithms that exploit or in some way involve the
underlying polyperiodic time variation: We shall say that polyperiodic time variation
exists in the generating mechanism of a signal if and only” if it is possible to gener-
ate finite-amplitude additive polyperiodic components from the signal by passing it
through some appropriate nonlinear transformation that is time-invariant and stable.
We can take this as an operational definition of polycyclostationarity.

2.3 Operational Origin of Probabilistic Models

There are two particularly interesting ways to characterize an adequately large class of
all nonlinear transformations that could potentially generate polyperiodic components
from polycyclostationary signals. One way is to require that all transformations of
interest be representable in a generalized® Volterra series (which is a multivariate
Taylor series with a continuum of variables indexed by time). Thus, for a signal x

3One can conceive of polyperiodic variation in a signal generator that is unobservable in the signal.
This is analogous to the concept of unobservability in system theory. Since the focus here is on modeling
signals in which there is physical evidence of underlying polyperiodic variation, we are not interested in
unobservable polyperiodic variation.

6“Generalized” in the sense that the transformations are not constrained to be causal.
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and a transformation g(-), we have

20 =Y [ bmL mydr

n Tn

where L, (¢, 7,), is the nth-order delay product

n
Le(t,m)n = [ [ 2t + 1),
j=1

and k, (7;,) is the nth-order Volterra kernel. For example, all transformations g(-) that
are continuous and have finite memory admit a convergent Volterra series represen-
tation.

Another way is to require that all transformations be representable as a convo-
lution with a finite product of Dirac deltas:

g(x)=/g(yl,yz,.-',yn)]—[z?[yj—X(tJrrj)]dyj
j=1
=glx@t+1),xCt+1),...,x(t+1,)],

which can be reexpressed as a Riemann-Stieltjes integral

aw=/gnwmmnwm

where

n
[x(ta Tn’yn)rl é n[[y] _x](t +T])]
Jj=1

and 7 (-) is the indicator function

1, >0
](Z)={ 0, <0

for which d/(z) = 8(z)dz. For example, all continuous transformations with finite
discrete memory admit this representation. Although this representation of g(-) in
terms of itself appears to accomplish nothing, we shall see that it is very useful for
our purpose here.

The operation, denoted by P{-}, for extracting the additive polyperiodic com-
ponent of a signal is linear (as explained subsequently). Therefore, the polyperiodic
component of a weighted sum of signals is the weighted sum of polyperiodic com-
ponents. Consequently, the polyperiodic component of the first type of transformed
signal is given by

Ple@) = 3 [ ka(m) P UL 7)) d,
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and that of the second type of transformed signal is given by

P (g(x)) = / 20" PUL (1, T, ).

As explained later on, the function P{L, (¢, 7,),} is mathematically equivalent to
the joint nth-order moment of » random variables Xi=xt+1),j=12,...,n,
and the function P{/; (¢, T, y,)»} is mathematically equivalent to the joint nth-order
probability distribution for the same N random variables, and these equivalences
reveal that the polyperiodic component extraction operation P{-} is mathematically
equivalent to the probabilistic expectation operation. In fact, choosing

g(x) =L, (t9 Tudn

in the preceding equation yields

P{Ly(t, Ty)n} = / |: l—[yj:l d" P{L.(t, Tw,¥,)n}

j=l1

which is the standard formula from probability theory for the nth-order moment in
terms of the nth-order probability distribution.

We see, then, that the physical evidence in a signal of polyperiodic time-variation
in the generating mechanism of the signal is completely characterized by the signal’s
temporal moment functions or its temporal probability distribution functions. That s,
the polyperiodic component of the delay product of the signal is a temporal moment
function and the polyperiodic component of the indicator product is a temporal prob-
ability distribution. Hence, we are led naturally by a practically motivated inquiry
into the problem of mathematically characterizing physical evidence of polyperiodic
time-variation in an unpredictable signal, to a probabilistic description of the signal.
Moreover, as explained later on, these moments and distributions are identical to those
corresponding to a polycyclostationary stochastic process with appropriate ergodic
properties (called cycloergodicity), in which case the signal x(¢) can be interpreted
as a sample path (one ensemble member) of the stochastic process. However, in spite
of this equivalence between the mathematical model of polyperiodic time variation
underlying a signal and a corresponding stochastic process model, the conceptual
framework of a stochastic process and its associated ensemble is fundamentally dif-
ferent from the conceptual framework of a single signal that is characterized by all
the polyperiodic components that can be generated from it using nonlinear trans-
formations. It is the latter conceptual framework, not the former, that is motivated
by the desire to design and analyze signal processors that exploit the generatable
polyperiodic components.

2.4 Stochastic vs. Nonstochastic Operational Models

We need to understand the similarities and differences between the stochastic-process
approach and the nonstochastic signal (or time-series) approach to conceptualizing,
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defining, and modeling stationary (S), cyclostationary (CS), and polycyclostationary
(PCS) signals, and to developing theory—like the classical theory of statistical infer-
ence and decision—to guide the practice of designing and analyzing signal-processing
algorithms.

The nonstochastic time-series approach to this subject has not gained the wide
level of acceptance that the stochastic-process approach enjoys, particularly for sta-
tionary processes. This is believed to be primarily a result of the limited exposure
that the time-series approach has received. The aim in recent work (Gardner, 1987a)
on developing the time-series approach has been to bring the aesthetics of mathemat-
ics and the utility of engineering pragmatism together to produce elegant problem
solving.” The treatment presented here aims at the same target: the focusing of
attention on important concepts for mathematicians who care about the applicabil-
ity of the mathematics of polycyclostationary signals and for engineers who seek
more than a superficial understanding of not only the “how” but also the “why” of
polycyclostationary signal processing.

However, before embarking on a discussion of specific mathematical defini-
tions and properties, questions of mathematical existence, and unsolved mathematical
problems, a brief summary of the essence of the differences and similarities, from an
operational standpoint, of the two alternative approaches is presented.

When properly restricted to appropriate domains of definition (i.e., requiring
stochastic process models to exhibit certain ergodic properties and requiring time-
series models to exhibit certain regularity properties that guarantee the existence of
infinitely long time averages), either approach can be used to obtain the same results
in deriving signal-processing algorithms and analyzing their performances (Gardner,
1990a). However, it is not guaranteed that any particular user will in fact obtain
the same results regardless of the approach used, because each approach has its
own unique conceptual attributes. Thus, it is argued here that the most proficient
problem solvers need to understand how to use both approaches.® Some problems
may naturally fit one approach or the other, and some other problems may benefit
from application of both approaches. For example, sometimes it is easier to see how
to carry out a particular mathematical calculation using one or the other approach
(the stochastic-process approach seems to be favored here), and sometimes it is easier

"The title of the book (Gardner, 1987a), which seems to have sparked some controversy, Statistical
Spectral Analysis: A Nonprobabilistic Theory, can be misleading since it is shown in this book that an
empirically motivated inquiry into the problem of quantifying the average behavior of spectral measure-
ments leads naturally to a probabilistic theory. Since this probabilistic theory is nonstochastic (it involves
only time averages, not ensemble averages), the title could have been Statistical Spectral Analysis: A
Nonstochastic Theory. Nevertheless, the majority of the concepts and methods developed in the book are
not only nonstochastic, they are indeed nonprobabilistic, and a primary goal of the book is to show that
in an empirically motivated development of the fundamental concepts and methods of statistical spectral
analysis, probability does not play a seminal role. It does play an important role in the mechanics of quan-
tifying average behavior, but it plays no role in conceptualizing the objectives and methods (parametric
and nonparametric) of statistical spectral analysis of single time-series.

81t is curious that some followers of the stochastic-process approach insist that the alternative
approach is of no value or, worse yet, has negative value. Perhaps the stochastic process faith should be
formally recognized as a religion. -
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to relate the mathematics to the real-world problem at hand using one or the other
approach (the nonstochastic time-series approach seems to be favored here with regard
to many of the applications discussed in this book®).

Mathematicians have, for the most part, chosen the stochastic-process frame-
work for their work because it is apparently more amenable to deep mathematical
treatment. Statisticians have, for the most part, chosen the approach to statistical
inference and decision that is based on stochastic processes because it does naturally
fit the problem of making inferences about a total population on the basis of limited
“random” samples from the population, which is the statistician’s classical problem.
The concept of a population, or ensemble, also naturally fits a number of situations in
communications engineering and signal processing or time-series analysis for engi-
neering purposes; however, there are many other engineering (and science) problems
involving time-series data where the ensemble concept is fictitious, irrelevant, or oth-
erwise inappropriate. In these cases, users often force an application of the theory
of stochastic processes onto their real-world problem because they have not learned
that there is a viable alternative for statistical inference and decision. This can lead
to substantial confusion and less effective engineering.

2.5 Nonstochastic Statistical Inference and Decision

Let us briefly consider how a theory of statistical inference and decision can be based
on the concept of a single time-series without reference to an ensemble. Many—but
by no means all—real-world problems in engineering and science involve time-series
data for which no population exists; that is, for which replication of the “experiment”
is impossible or impractical. However, many of these time-series arise from physical
phenomena that can be considered to be unchanging in their basic nature for a very
long time. In such cases, conceptually idealizing this time-invariance by extending
the length of time without bound enables us to conceive of a model that is derivable
from the data in the limit as the amount of data used for measuring the parameters of
the model approaches infinity. This leads us to the concept of a fraction-of-time (FOT)
probability model that is free from the abstract concept of a population. For example,
the FOT probability that a time-series exceeds some specified level is defined to be
the fraction of time that this event occurs over the life of the time-series.

Once we have accepted the idea of an infinitely long time-series with an FOT
probability model, we can develop a theory of statistical inference and decision that is
isomorphic to the theory for stationary stochastic processes. This was briefly pointed
out in (Wold, 1948), developed in (Hofstetter, 1964), and extended from stationary
to cyclostationary and polycyclostationary time-series in (Gardner, 1987a), (Gardner
and Brown, 1991). But one might ask what it is that motivates the development of
such a FOT probability theory. One of the answers to this question is analogous to
that which motivates the theory that is based on the concept of a population: We want
to make inferences about the physical phenomenon that gave rise to the observed

° A compelling example of this is the novel derivation of the cumulant in the study of highér—order
cyclostationarity presented in Chapter 2.
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time-series. To the extent that this phenomenon is characterized by the FOT model
for the time-series x (¢), (i.e., the set of joint FOT probability distributions for all finite
sets of time translates {x (¢ +¢) : i = 1, ..., n} for all n translations 7; and all natural
numbers ), we can interpret our objective as that of making inferences about the
infinitely long time-series or its generating mechanism on the basis of finite-length
observations. We can use the FOT probability model to calculate bias, variance,
and confidence intervals for parameter estimates, and we can calculate probabilities
of correct and incorrect decisions. We also can formulate and solve optimization
problems.

2.6 A Historical Perspective

The stochastic-process approach (to the exclusion of the nonstochastic time-series
approach) is currently the orthodox approach because this is the approach that dom-
inated for sixty years in mathematics and statistics and it is, therefore, the approach
in terms of which the theory of statistical inference and decision has been formulated
and is taught. It does not follow that the stochastic-process approach is orthodox
because it is always the superior approach. This last point can be illustrated with a
brief history of statistical inference and decision in communications engineering.

Why have communications engineers focused on using theoretical measures of
performance that average over an ensemble of signals and/or noises? Because they
have wanted to design systems that would perform well on the average over the
ensemble, and because mathematicians and statisticians had developed a powerful
theory of statistical inference and decision that was based on ensemble averages,
and because probability theory itself is an immensely powerful conceptual tool, and
few engineers have realized that probability theory can be based entirely on time-
averages. But why then have communications engineers focused almost exclusively
on measuring system performance in practice by averaging over time for a single
system? Because of economics (the high cost of making measurements on many
systems) and because they also want each system to perform well on the average over
time.

In order to match the theory based on ensembles of data to the practice based on
a single record of data, they invoked the concept of ergodicity. That is, they agreed
to use stationary stochastic-process models that were ergodic so that the mathemati-
cally calculated expected values (ensemble averages) would equal the measured time
averages (in the limit as averaging time approaches infinity).

Unfortunately, however, the logic seems to have stopped at this point. It ap-
parently was not recognized (except by too few to make a difference) that once con-
sideration was restricted to ergodic stationary models, the stochastic process and its
associated ensemble could be dispensed with because a completely equivalent theory
of statistical inference and decision that was based entirely on time-averages over a
single record of data could be used (Hofstetter, 1964). Any calculations made using
a model based on the time-average theory could be applied to any one member of an
ensemble if one so desired because the arguments that justify the ergodic stochastic-
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process model also guarantee that the time-average for one ensemble member will be
the same (with probability one) as the time-average for any other ensemble member.

Because the time-average framework is more conceptually straightforward for
application to problems where time-average performance is of primary concern, it
is a more natural choice; but because of history and inertia, it may never gain its
rightful place in engineering. This is even more likely to be the case when the utility
of nonergodic stochastic processes is taken into account. For example, whenever
transient behavior is of interest, ergodic models are ruled out, because all transient
behavior is lost in an infinitely long time-average. Thus, to counter the conceptual
simplicity and realism offered by the time-average approach, the stochastic-process
approach offers the advantage of more general applicability.

Nevertheless, there is a special class of signals that includes more than just those
that can be modeled as stationary ergodic processes, for which there is a compelling
argument, which has only recently surfaced, to adopt an alternative nonstochastic
approach. And these are the signals that are appropriately modeled as polycyclo-
stationary time-series. As explained earlier here, the use of time-averages to extract
additive polyperiodic components from nonlinear transformations of these signals
leads naturally to a probability theory based entirely on time averaging. Let us now
consider in some detail these two alternative approaches to conceptualizing, defining,
and modeling signals.

2.7 Dual Theoretical Frameworks

The concepts and definitions presented here apply equally well to continuous-time
and discrete-time signals. We need only choose either the continuous-time-averaging
operation

()2 lim i/z(.)dr
Z—so0 27 _z

or its discrete-time counterpart

z
A 1
) = lim -).
) Z-—>0022+1t=Z_Z()
We consider first stochastic processes, and then we consider nonstochastic time-

series. Let X(¢) be a real-valued stochastic process on the real line —oo < ¢ < o0,
with measure 1 on the probability space £2. Consider the event indicator

1, X@) <x

Ilx - X)) = { 0, X(t)>x.

The expected value of this event indicator is the probability distribution (PD) function
for the random variable X| ),

Fx(x) £ Prob{X(t) < x} = E{I[x — X1
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where the expectation operation E{-} is defined by
£ 2 [ H)duo)
Q

for any random variable H defined on . Therefore, the joint PD function for the set
of random variables

X0) 2 (X +1),..., Xt +1,)),

where 7 is the time-translation parameter, is given by the expectation

n

FX(,)(x)zEl [[X—X(f+fj)]},
1

Jj=
and the joint probability density (Pd) function is

n

d
= B,
Jxa(x) P X1 (x)

.0

which contains Dirac deltas when the PD contains step discontinuities. We have the
following theorem from probability theory.

Fundamental Theorem of Expectation

For any nonrandom function g(-) for which E {g[X ()]} exists, we have

E{glX(]} & / Ve () dy

= / g(x) Fx( (x) dx

That is, the Pd for g[X(#)] need not be found from the Pd of X (t) in order to
evaluate the expected value of this random variable. This theorem can be used to
verify that the PD is indeed equal to the expected value of the event indicator by
letting

gXO1=T]1[x; - Xt +1)]
=1

J

to obtain

Eex O = [ 175 5] o @ e
j=1

= / Jxao@) dz

= Fxp (x).
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Let us now consider time-series. Let x (¢) be a well-behaved! real-valued time-
series (a nonstochastic real-valued function) on the real line —oo < ¢ < co. Consider

the event indicator
Al L x@®)<x
Ix —x(@®)] =
0, x@) >=x.

The time-average of this event indicator is the fraction-of-time (FOT) PD

F () = Prob{x(t) < x} = E™{I[x — x(1)])

where the time-average operation E 0{ -} is defined by
B} 2 tim /Z Wt + 1)) dt
= lim —
Z-00 27 J_4

for any time function 4. (The superscript O will be explained subsequently.) Therefore
the joint FOT PD for the set of variables x(z) S {x(t+t),...,x(@+1,)}is given by

Flyx) = E° {H I[x;—x(t+ tj)]}
j=1

and the joint FOT Pd is

n
- Fop ().

N 0
0
Jx®) = 0x1

We have the following theorem.
Fundamental Theorem of Time-Averaging

For every time-invariant function g(-) for which E O{g[x(¢)]} exists, we have
A A Z
gt 2 Jim o [ e+ Oar
-z
= fg(x)f:?(t)(x) dx.

This theorem motivates us to call the time-average operation E 0{.} the temporal-
expectation operation. To illustrate the validity of this theorem, we can substitute the
definition of the FOT PD into the definition of the FOT Pd, which can be substituted
into the result of this theorem to obtain

10We mean “well-behaved” in the sense that x(t) exhibits the regularity required for all time averages
of interest to exist.
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n

d
/g(x)fx(t)(x) dx = fg(X)mFxm(x) dx

n

[g(x) EO {HI —x(t—l—tj)]} dx
= /g(x)ﬁ'o {1_[8 [xj- —x(t +tj)]} dx
j=1
= EO{/g(x)HS[xj—x(t—l—tj)]} dx
j=1

= Eglx(n)1),

where we have used the sampling property of the Dirac delta §, which is the derivative
of the unit-step function 7 (). )
For any function % (¢) for which E°{A(¢)} exists, we have

ht) = c +r(t)

where ¢ = E O{h (¢)} is a constant (independent of ¢) and 7 () = %(¢) — c is the residual
for which £ O{r (#)} = 0. Consequently, the temporal expectation operation can also
be called the constant-component extractor.

We can see from these two theorems that there is a duality between the probability-
space theory of stochastic processes based on the operation £{-} and what we shall
call the time-space theory of time-series based on £ 0{.}. Wold (Wold, 1948) tried to
formalize this duality in terms of an isomorphism based on the mapping

x(t+0) > X, w(0))

where X (¢, ) is a sample path of the stochastic process X (¢) corresponding to the
sample point @ = (o), indexed by o, in Q. That is, the ensemble members of
X(#) correspond to translates of x (¢) in this isomorphism. While this isomorphism is
conceptually useful, a mathematically rigorous study of it has not (to my knowledge)
been performed. (For example, does such a stochastic process corresponding to a
given time-series actually exist?)

We can justifiably ask, “Just how viable is the time-space theory?—do ‘well-
behaved’ time-series models exist?” The answer to the latter question is “Yes”;
examples are provided by typical sample paths of ergodic stochastic processes. But,
“Can we construct useful time-series models?” The answer, again, is “Yes”: We can
construct models in the same way we do for stochastic processes, except we specify

F ) (x) instead of Fy)(x).

Regarding the answer to the first question, we might ask “Does this apparent
reliance, of existence of time-series, on stochastic processes detract from the concep-
tual simplicity of working with time-series rather than stochastic processes?” The
answer, in my opinion, is “No.”
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1 (7 o
Fyiy(x) = hrr;oﬁ/ZFX(Hﬂ)(x)e iamat’ gy

EO {FX(t) (x) e—iZﬂott} eiZm'xt

I

1>

EA'a {FX(t) (x)} .
For any function A4 (¢) for which E"‘{h (t)} exists, we have
h(t) = c &P +r(t)

where c is a constant, ce’? — Fofp(n)}, and r(t) = h(t) — ce’ ™ is the residual
for which E%{r(¢)} = 0. Consequently, we call the operation

Ea{.} é EO {(_)e—iZﬂott} ei27tozt

the sine-wave-component extractor. It can be thought of as the limit, as bandwidth
goes to zero, of a bandpass filter with center frequency o and unity gain at . For
o = 0, it reduces to the constant-component extractor E 0().

2.9 Time-Series Definitions

Now let us turn from stochastic processes to time-series. Before we can give the
dual time-space definitions of S, CS, and PCS time- -series, we need to generalize the
temporal expectation operation E 0{.}. The appropriate generalization is simply the
sum of sine-wave-component extractors

Bergy 2 3 By

ae{a}

for all sine-wave frequencies in some set {cc} of interest. Thus, E {e}(.} is called the
multiple-sine-wave-component extractor or, equivalently, the polyperiodic-component
extractor. (Itisidentical to the operator P{-} discussed in Section2.3.) The sine-wave
frequencies o are the harmonics of the reciprocals of the periods 1/ Ty, 1/ 12, 1/ T3, . ...
of interest.

In terms of the generalized temporal expectation operation, we can define the
polyperiodic FOT PD:

n
Fio(‘t})(x) = gl {1_[] [xj —x(+ lj)]}
j=1
and the polyperiodic FOT Pd:
plo) sl
fx(t) (x) = '(,rFx(t) ().

It is not obvious that £ 3ler) ) (%) is indeed a valid probability distribution function,
but this proposition is proved in (Gardner and Brown, 1991). We have the following
theorem.
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Let us trace the conceptual paths for both stochastic processes and time-series
so that we can see specifically where they are parallel and where they diverge. As
before, we begin with stochastic processes by giving the definitions of the classes of
processes of interest in the study of cyclostationarity, namely, processes that are S,
CS, or PCS of order n (in the strict sense).

2.8 Stochastic-Process Definitions
Definition 1: X(z) is a S process if and only if Fy()(x) is independent of the

time-translation parameter ?.

Definition 2: X(¢) is a CS process with period T if and only if Fx¢)(x) is
periodic in ¢ with period 7.

Definition 3: X (¢) is a PCS process with periods {T} = T3, T2, T3, . .. if and
only if Fx()(x) is polyperiodic in ¢ with periods {T'} (which is a sum of periodic
functions with single periods 71, T2, T3, . . .).

The relationships among the class of generally nonstationary (NS) processes and
the three classes S, CS, and PCS can be described with the Venn diagram shown in

Fig. 2.

( )
NS N

PCS W

cs [ A

S

\_ ), |
\_ L ~ J/J :

Figure2: Venn diagram of classes of stochastic processes. With the class NS omitted,
also the Venn diagram of classes of time-series.

It is useful to expand the polyperiodic PD function in a Fourier series:
Fyy(x) =Y Ffo/(x) ™ =) Fg (%),
o o

where F; )‘}‘(0) (x) are the Fourier-coefficients, and where the sinusoidal-component func-
tions are given by
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Fundamental Theorem of Polyperiodic-Component Extraction

For every time-invariant function g(-) for which E @} o[x(t)]} exists, we have
z
Fla) A . Ny gmiZnat gy
B alon) 2 Y Jim o [ 4017 d

/ () /) ) dx

The validity of this theorem can be illustrated in the same way the validity of
the fundamental theorem of constant-component extraction is illustrated. Also, this
theorem is valid more generally if g(-) = g(¢, -) is polyperiodic in time #.

We are now in a position to define the classes of S, CS, and PCS of order # (in
the strict-sense) time-series. Let {«} be the set of all o for which F' io(‘t}) £ 0.

Definition 4: x(¢) is a S time-series if and only if £ (t) (x) exists and = 0 and
is independent of the time-translation parameter ¢ (that is, {a} = {0}).

Definition 5: x(¢) is a CS time-series with period 7 if and only if F') (x)
exists and = 0 and is periodic in ¢ with period T (that is, {«'} = {harmonics of 1/T'}).

Definition 6: x(¢) is a PCS time-series with periods {T} = Ty, I, T3, . .. if
and only if F'¢)) (x) exists and # 0 and is polyperiodic in ¢ with periods {T}).

The relationships among these three classes of time-series can be described
with the Venn diagram shown in Fig. 2 except that for time-series, unlike stochastic
processes, the superclass NS does not exist. Generally nonstationary FOT PDs cannot
be defined (although locally S FOT PDs, which are NS, can be defined by limiting
the time-averaging interval used in E 01} to one of finite length Z).

These definitions of S, CS, and PCS time-series represent a modification of
previous termmology Wold (Wold, 1948) defined a stationary (S') time-series to be
one for which F ) (x) exists and # 0. To refine this definition, (Gardner, 1987a)
defined a purely S’ time-series to be a S’ time-series for which F p®) = 0 for all
a # 0. Following Wold, (Gardner, 1987a) also defined a cyclostatlonary (CS’) time-
series with period T to be one for which F o) ) (x) exists and # O for some {a} €
{harmonics of 1/T}, and to reﬁne this a purely CS’ time-series was defined to be a
CS' time-series for which £ o) (x) = O for all o ¢ {harmonics of 1/T}.

The relationships among these previously defined classes of time-series can be
described with the Venn diagram shown in Fig. 3. Observe that the nesting of the
classes S’, CS’, and PCS’ = PCS is inverted from that in Fig. 2 for the classes S, CS,
and PCS. The definitions of S, CS, and PCS form the basis for a theory of time-series
that in some ways has a stronger duality with the theory of stochastic processes than
does the theory that could be based on the previous definitions of S’, CS’, and PCS’.

On the other hand, the previous concepts of pure stationarity and pure cyclosta-
tionarity arise also within the framework of stochastic processes. Since these concepts
depend on notions of ergodicity, let us now consider the relevant types of ergodicity.
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f purely S’ ) |
S ~N |
( purely CS’ |
Cs’ ( |
PCS’ |
t |
|
|
_ /)

Figure 3: Venn diagram for previously defined classes of time-series.

2.10 Cycloergodicity and Refined Stochastic-Process
Definitions

Definition 7: X (¢) is an ergodic (E) process if and only if for every natural
number 7 and every nonrandom function g(-) of n variables for which E {glX ()]}
exists, we have

ENE{g[X()1)) = E%gIX(0)]} w.p. 1

(where w.p. 1 means with probability equal to 1). For a S process, EO{E {-}} = E{}
(since the constant component of a constant is that constant) and the outer operation
on the left side of this defining equation can be deleted.

Definition 8: X (¢) is a cycloergodic (CE) process with period 7T if and only
if for every natural number 7 and every nonrandom function g(-) of n variables for
which E{g[X(#)]} exists, we have (with {«} € {harmonics of 1 /T})

ECNE(gX(0)1)) = ENglX()]} w.p. 1.

For a CS process, £ {E{-}} = E{-} (since the periodic component of a periodic
function is that periodic function) and the outer operation on the left side of this
defining equation can be deleted.

Definition 9:  X(¢) is a polycycloergodic (PCE) process with periods {7’} if and
only if it is cycloergodic with period T} fork = 1,2, 3, ... .

Stochastic processes that are not CE or PCE can exhibit hidden cyclostationarity.
For example, if X(¢) is S and PCE with all periods, then its sample paths are stationary
time-series (w.p. 1); however, if X(¢) is S (and possibly E) but not CE, its sample
paths can be CS (w.p. 1). Similarly, if X(¢) is CS and PCE with all periods, then its
sample paths are CS time-series (w.p. 1); however, if X(¢) is CS (and possibly CE),
but not PCE, its sample paths can be PCS (w.p. 1). Such non-CE and non-PCE models
typically result from the (explicit or implicit) inclusion of random-phase variables in
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the stochastic-process model. This hidden cyclostationarity motivates the following
refined probability-space definitions.

Definition 10: If X(¢) is S and PCE with all periods, then it is defined to be
purely stationary, and its sample paths are purely stationary (S or purely S') time-
series (w.p. 1): there is no hidden CS.

Definition 11: If X(¢) is CS and PCE with all periods, then it is defined to
be purely CS, and its sample paths are purely cyclostationarity (CS or purely CS’)
time-series (w.p. 1): there is no hidden PCS.

Definition 12: If X(¢) is PCS and PCE with all periods, then it is defined to be
purely PCS: there is no hidden PCS.

The relationships among all the classes of stochastic processes defined so far are
illustrated with the Venn diagram shown in Fig. 4.

purely PCS ——]
— \\\\ AN\ \
PCS S purely C

NS
\ S / /// /// 1
hidden PCS
hidden CS |
~ N\LLLLLI1 111012 |

Figure 4: Venn diagram of classes of stochastic processes.

Let us now consider an example that illustrates the various classes of stochastic
processes and time-series that have been introduced. Let the stochastic process X (t)
be specified by

X(t) = A(t) + B(t) cos(wit + 61) + C(t) cos(wat + 62),

where A(¢), B(t), and C(¢) are purely stationary ergodic processes. If 6, and 6, are
nonrandom, then the stochastic process X (t) is PCS and PCE. On the other hand, if
0, and/or 8, is random, then (depending on their PDs) the stochastic process X (t) can
be PCS (with periods 77 and T3), or it can be CS (with period T} or T>), or it can be
S, and X (¢) is not PCE. Furthermore, with probability one, the sample paths of X (z)
are PCS time-series, the sample paths of A(¢), B(t), and C(¢) are S time-series, and
the sample paths of the components B(#) cos(wi? + 01) and C(¢) cos(wat + ;) are
CS time-series.
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2.11 Phase Randomization

To pursue the concept of phase randomization a little further, it is noted that even if 6
and ¢, are both nonrandom, we can introduce a random phase ® into X (¢) to obtain

Y) = X(t+0)

which can be changed from PCS to CS or to S by choosing the distribution for
® (Gardner, 1978; Hurd, 1974b). Thus, we see that there is a nonuniqueness of
models for stochastic processes. We can change the stochastic process from PCS to
CS to S by phase-randomizing with a single phase variable: X(¢) — X (¢ + ®). Or,
equivalently, we can change the PD function from polyperiodic to periodic to constant
by time-averaging; e.g.,

A @} = Ay .

That is, phase-randomizing a CS or PCS process or time-averaging its PD function
can result in hidden cyclostationarity. Similarly, we can change the PD function for
a time-series from polyperiodic to periodic to constant by time-averaging; e.g.,

A @] = Y@
2.12 Pitfalls of the Stochastic-Process Framework

There are some significant pitfalls associated with nonunique models. One such pitfall
is “hidden statistical dependence.” Let SI denote statistical independence (e.g., of two
variables). We can show that SI in a CS model does not necessarily imply SI in the
corresponding S model, and that SI'in an S model does not necessarily imply SIin the
associated CS model. To prove the first statement we simply observe that the equality

Fao. 60 = fxo fon

that results from the ST of jointly CS processes X; () and X;(¢) does not necessarily
imply the equality

E{ fxx00) = E° {frot E{fuo}

which would hold if, in the associated S model, X;(¢) and X, (¢) were SI. To prove
the second statement, we consider the example of discrete-time processes

Xi)=Z(@)=iid. £1

Xo(t) = Z(¢t) cos().

‘We can easily show that

EE{X{ X7 0} = E°E (X7 (0} E°E {x7 1))
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for all » and m and, therefore, X;(¢) and X, (¢) are SIin the S model. However,
E{Xt)X3 )} # E{X] 0} E{X) (1)}

for n and m odd and, therefore, X7 (z) and X;(¢) are not SI in the CS model.

We are now ready to take stock. One conclusion we can draw is that when a
process is not PCE, the hidden CS or hidden PCS can result in single-sample-path
behavior (w.p. 1) that cannot be predicted from probabilistic analysis (unless the
hidden CS can be revealed by conditioning on certain random phase variables).

An important fact concerning this conclusion is that the theory of PCE is mostly
nonexistent and appears to require nontrivial extensions/generalizations of the theory
of E and the incomplete theory of CE.

Another important fact is that the commonplace approach to deriving ad hoc
signal-processing algorithms, of replacing expectation operations E{-} in analyti-
cal expressions with time-average operations E°{-}, or (when a composition of both
operations are present in the analytical expression) of deleting the expectation oper-
ation, cannot be justified (and will often fail to produce the desired results) when the
stochastic-process model used is not PCE.

A related important fact is that the “optimum” solutions to inference and decision
problems (e.g., for signal estimation and detection) that are based on S and E, but not
CE (or based on CS and CE, but not PCE), process models can be highly inferior to
inference and decision rules that exploit the hidden CS (or hidden PCS).

Let us consider some examples that illustrate the ramifications of the preceding
conclusion and associated facts.

Example 1: Let Y (¢) be the output of a time-invariant nonlinear transformation
with input X(¢). Let X(¢) be S (for all n) and E, but not CE, with no spectral lines.
Then Y (¢) is S (for all ) and E but, because of the hidden CS in X (¢), contains spectral
lines. The presence of these spectral lines cannot be explained except by virtue of the
hidden CS in X(¢). As a specific example, let X(¢) = A(¢) cos(w1t + ©1), where
A(t) is S and E, and @ is independent of A (¢) and uniformly distributed on [0, 27 ],
and let Y (¢) = X?(t). Then Y (¢) has spectral lines at frequencies 0 and +w; /7 Hz.

Example 2: Let X(¢z) be S (for n = 2) and E, but not CE, and let X (¢) admit
an exact AR model (with white residuals). The sample paths of the white residuals
can be partially predictable (w.p. 1) using linear periodic predictors derived from the
sample-path statistics. For example, let U(¢) be any nonwhite CS process and let
V (¢) be an independent S process with complementary spectrum; that is, the sum of
the spectra of V' (¢) and the stationarized version U (# + ®) of U (¢) equals a constant
over all frequency. Then the S process W (t + ®) = U (¢t + ©) + V (¢t + ®) is white
(the spectra of V' (¢) and V' (¢ + ©) are identical) but the CS process W (¢) is nonwhite.
That is, the autocorrelation of W (¢ + ®) is proportional to a delta function in the
lag variable but the autocorrelation of W (¢) is not. Thus, W (¢) is predictable using
linear periodic predictors and so too are its sample paths. Since the sample paths of
W (¢t +®) and W (¢) are the same except for a time-shift, the sample paths of ¥ (t + ©®)
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are also predictable with a periodic predictor. Furthermore, the sample paths of a S
and E, but not CE, process X(¢) can admit periodic AR (PAR) models (w.p. 1) with
finite periodic order even though the stochastic process X (¢) admits no finite-order
AR model. For example, let the CS and CE process Z (¢) be a first-order PAR process.
The stationary process X(¢) = Z(¢t + ®) will not, in general, admit any finite-order
AR model. But its sample paths, being the same as the sample paths of Z(¢) except
for a time shift, admit first-order PAR models that can be identified from the sample
path statistics.

Example 3: Let X(¢) and Y (¢) be jointly S (for all ) and E, but not CE, and,
according to the usual definition of causality, let there be no causal relationship of
X(¢) to Y (¢). That is, no linear or nonlinear time-invariant operation on X (¢) and its
past has any prediction capability for Y (¢) and its future. Yet, each sample path of
Y (¢) can possibly be perfectly cyclically caused by the corresponding sample path of
X(t). That is, a periodic operation on X (¢) can possibly perfectly predict Y (¢). As a
specific example, consider the two continuous-time processes

X@t)=2Z@) =+l
Y(@)=Z(t —1t)cos(t + ®)

where the transition times between +1 and —1 are arbitrary, and ® is independent of
Z(t) and uniformly distributed on [0, 277]. It can easily be shown that

E{X"(t —n)Y"()} = E{X"¢t -} E{Y"®)}

for all n and m, and all v; that is, Y (¢) is statistically independent of the past of X (¢).
Nevertheless, each sample path of Y (¢) can be perfectly predicted from the past of
the corresponding sample path of X (¢):

Y(#) = X(t — t)cos(t + O).

Example 4: Let Z(t) = X(¢t) + Y (¢), where X (¢) and Y (¢) are statistically
independent, S (for n = 2), and E, but not CE, processes that have identical spectral
densities. The Wiener filter for extracting X (¢) from Z(¢) (separating X (¢) and Y (¢))
is essentially useless. Its transfer function is a constant. Yet the sample paths of X (¢)
and Y (¢) can possibly be perfectly separated with a periodic filter. Examples include
communication signals such as digital QAM, AM, PSK, ASK, and PAM. As a specific
example, it can be shown (Gardner, 1993) that up to N spectrally coincident digital
QAM signals with excess bandwidth > (N — 1)100% can be perfectly separated.

Example 5: Let X(¥) = {X1(¢), X2(¢)} be purely S (for all #) with a proba-
bilistic model that is very similar to that of Y (¢) = {Y;1(¢), Y2(¢)}, which is CS (e.g.,
X(t) and Y (¢) are both Gaussian processes and the PSDs of X(¢) equal those of the
stationarized Y (¢)). The Cramér-Rao bounds of the same parameters in each of X(¢)
and Y (¢) (e.g., the relative time delay (TD) of an additive signal component common
to both X (¢) and X, (¢)) can be drastically different. This has been demonstrated for
TD at two reception platforms and for angle-of-arrival at a sensor array (Chen and
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Gardner, 1992; Schell and Gardner, 1992b). Moreover, even the Cramér-Rao bound
of the stationarized Y (¢) can be drastically different from that of the purely S X(z).

Example 6: Let X(¢) and Y (¢) be independent, S (for all ), and E, but not
CE, and let Z(¢) be specified under two hypotheses—

under hypothesis 1: Z(t) = X(¢) + Y (¢)
under hypothesis 2: Z(t) = Y (¢)

The “optimum” (e.g., maximum-posterior-probability) detector for the presence
of X(¢) in Z(¢) can be greatly outperformed by detectors that exploit the hidden CS
in X(z) and/or Y (¢), e.g., the joint maximum-posterior-probability detector and phase
estimator (Gardner, 1988b; Gardner and Spooner, 1992a).

2.13 Two Paths into the Future

One approach to this unsettling situation, which is illustrated by the preceding ex-
amples, that should appeal to mathematicians is to take what shall be called Path I :
Develop the needed theory of PCE. The current status of the theory of CE and PCE
is that substantial progress has been made for (1) CE w.p. 1 for discrete-time CS
processes and Gaussian continuous-time CS processes, and (2) PCE in mean-square
for finite-order moments of discrete- and continuous-time PCS processes. Little or
no progress has been made for (1) PCE w.p. 1 for discrete-time PCS processes, (2)
CE w.p. 1 for non-Gaussian continuous-time CS and PCS processes, and (3) PCE
w.p. 1 for continuous-time CS and PCS processes.

The only paper to address PCE w.p. 1 (Boyles and Gardner, 1983) suggests that
a substantial breakthrough will be required (even for the much less technical case of
discrete time): conventional approaches and ideas apparently lead to dead ends. This
suggests a challenge not unlike that Birkhoff faced around 1930 when he formulated
and proved the fundamental ergodic theorem to replace the very unsatisfying “er-
godic hypothesis.” We need a fundamental polycycloergodic theorem that elegantly
formalizes our informal notion of a PCE process in terms of a necessary and sufficient
condition on the associated probability measure.

The most useful concept regarding PCE that we have for applications is the
following unproved proposition.

Proposition  PCS processes constructed from stable (decaying-memory) non-
randompolyperiodic transformations of purely stationary ergodic processes are PCE.

Stochastic-process models for many, if not most, communications signals can
be constructed in this way. .
In view of the difficulties before us, we should ask what some of the advantages
of the stochastic-process approach are. The most apparent advantages are listed here:

1. Itis the orthodox approach to modeling and studying evolutionary random
phenomena and it is, therefore, attractive to those already familiar with it.
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2. Mathematicians do know how, in principle, to construct stochastic-process
models from elementary mathematical constructs (Borel fields, sigma alge-
bras, probability measures, etc.). Therefore, there is a greater likelihood of
success (compared with time-series) in constructing a mathematical theory
of PCS and PCE processes from a few basic axioms.

3. It is possible, in principle, to exploit the hidden CS (or PCS) in a non-CE
(or non-PCE) process within the conventional framework of stochastic pro-
cesses. But, this requires that one have a model of the hidden CS (or PCS)
that is explicitly dependent on one or more random phase variables ® that are
responsible for the lack of CE so that one can calculate probability densities
and expectations conditioned on ®.

4. Development of the theory of PCE will help clear the way for making the
time-space theory of time-series mathematically rigorous.

In spite of these advantages, there is an alternative approach that should appeal to
pragmatic engineers and scientists. Let us begin with the following perspective: The
probability-space approach based on expectation introduces abstractions that, in many
applications (e.g., many problems for which single-sample-path signal processing is
of interest), have no redeeming practical value. Some of these abstractions can be
properly dealt with only with a theory of PCE that is presently nonexistent. Regressing
back to pre-1930 and adopting a “PCE hypothesis” is very unappealing (because the
hypothesis can be false).

So, let us consider taking what shall be called Path 2: Adopt the time-space
approach whose theory is in many ways dual to that of the probability-space approach,
but without the practical drawbacks associated with cycloergodicity and the distracting
abstraction associated with expectation over ensembles.

The essence of cyclostationarity from an operational standpoint is the fact that
sine waves making up additive polyperiodic components can be generated from ran-
dom data by applying certain nonlinear transformations. And, the time-space theory
of cyclostationarity arises naturally out of the fundamental theorem of polyperiodic-
component extraction using the generalized temporal expectation operation Ef);
whereas the expectation E that gives rise to the probability-space theory has little to
do with the essence of cyclostationarity.

But, can we construct time-series models? The answer is yes. Time-series mod-
els for many, if not most, communication signals can be constructed by subjecting one
or more elementary time-series (e.g., purely stationary and white) to elementary trans-
formations such as filters, periodic modulators, multiplexors, etc. (Gardner, 1987a).
The defining properties of a discrete-time purely stationary white time-series are:

1. Whiteness: f o = Vi e e @1 7 ety () - - 7 St (o) for unequal
1,0, ..., by A

2. Pure stationarity: fi‘g) (x) = Af(t) (x) for all {a}.

3. Existence: any sample path of any i.i.d. stochastic process will do (w.p. 1).
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Okay. But, can we do probabilistic analysis using time-space theory? The
answer, again, is yes. Performance measures such as bias, variance, Cramér-Rao
bounds, confidence intervals, probabilities of decision-errors, etc., can be calculated
using time-space theory just as well as they can using probability-space theory (Gard-
ner, 1987a). But can we use the theory of statistical inference and decision? Yes,
indeed.

The author’s current assessment of progress along Path 2 can be summarized as
follows: The considerable progress in the development and application of the time-
space (or temporal-probability, or fraction-of-time probability) theory of CS and PCS
time-series that has been made since its adoption by the UCD and SSPI groups in
1985, cf. (Gardner, 1987a, 1991a) includes:

1. Temporal and spectral second-order-moment theory (cyclic autocorrelation
and cyclic spectra, or spectral correlation functions) (Gardner, 1987a; Sec-
tion 3 in this chapter).

2. Temporal and spectral higher-order-moment and cumulant theory (cyclic cu-
mulants and cyclic polyspectra, or spectral cumulants) (Gardner and Spooner,
1992b; Spooner and Gardner, 1992a,b; Spooner, 1992; Chapter 2 in this vol-
ume).

3. The rudiments of fraction-of-time probability distribution theory (Gardner,
1987a; Gardner and Brown, 1991).

4. A wide variety of applications of the theory to signal-processing and commu-
nications problems involving signal detection, signal classification, signal-
parameter estimation, and signal-waveform estimation (Agee, et al., 1987,
1988, 1990; Brown, 1987; Chen, 1989; Chen and Gardner, 1992; Gard-
ner, 1987a,b, 1988a,b,c, 1990a,b, 1991a,c, 1992, 1993; Gardner and Archer,
1993; Gardner and Brown, 1989; Gardner and Chen, 1988, 1992; Gard-
ner and Paura, 1992; Gardner and Spooner, 1992a, 1993; Gardner and
Venkataraman, 1990; Gardner et al., 1987, 1992; Schell, 1990; Schell and
Agee, 1988; Schell and Gardner, 1989, 1990a,b,c, 1991, 1992, 1993a,b;
Schell et al., 1989, 1993; Spooner, 1992; Spooner and Gardner, 1992b;
Section 4 in this chapter; Chapter 2; Chapter 3).

Also, the conceptual gap between the existing time-space theory and its application
to many signal-processing problems in communications is perceived by its current
users to be much narrower than it is for the dual probability-space theory.

Further support for taking Path 2 includes the fact that the temporal-probability
approach, which is centered on the concrete sine-wave extraction operation, has led
naturally to a derivation of the cumulant as the solution to a fundamental problem
in characterizing higher-order CS and PCS. It is doubtful that this derivation would
have been discovered within the stochastic-process framework, which is centered on
the abstract expectation operation. This derivation is discussed in Chapter 2 in this
volume.
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But, in the final analysis, the duality between the time-space and probability-
space theories will likely result in either path taking the sufficiently persistent practical
problem solver to the same places, although not necessarily in the same elapsed time
or with the same energy. This duality can be formalized with the following loosely
stated conjecture.

Conjecture For every theorem that can be proved for a PCE PCS process, a
dual theorem can be proved for a PCS time-series—and vice versa.

This can be viewed as a generalization of Wold’s isomorphism from S to PCS
processes.

Nevertheless, there does remain a fundamental question that is not yet always
answerable: Given a self-consistent set of probability distributions F i‘é‘t}) for all orders
n, does there exist a corresponding time-series x(¢)? We have sufficient conditions
on F i"(’,}) that guarantee existence of x(#): They are identical to the conditions that
guarantee that Fy() is PCE and they are called mixing conditions in the theory of
stochastic processes. But we do not yet have a necessary and sufficient condition.
(This presents another challenge for mathematicians.)

With regard to the taking of Paths 1 and 2, we can draw three conclusions:

1. The more abstract theory of PCS stochastic processes will undoubtedly be
found to be of considerable value as it is developed, and those who are
sufficiently mathematically inclined are encouraged to pursue this approach.

2. The less abstract theory of cyclostationary time-series is more accessible to
engineers and scientists interested in theory as a conceptual aid for solv-
ing practical problems. It should be the preferred approach for the practi-
cally oriented whenever ensembles are not, in and of themselves, of primary
concern.!!

3. Both theories present important challenges to mathematicians.

In the remainder of this chapter, Path 2 is taken, and the theory and application
of second-order (wide-sense) cyclostationarity is pursued in some detail.

3 INTRODUCTION TO THE PRINCIPLES
OF SECOND-ORDER (WIDE-SENSE)
CYCLOSTATIONARITY

The second-order (wide-sense'?) theory of discrete-time stochastic processes deals
with the probability-space autocorrelation function

Rx(t,t — 1) = E{X®O)X*¢ — 1)}.

1 The practical value of this approach is amply demonstrated for parametric and nonparametric
spectral analysis of S as well as CS and PCS time-series in (Gardner, 1987a).

12Wide-sense theory deals with moments, whereas strict-sense theory deals with probability
distributions.
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For a PCS process X(¢), this function is polyperiodic in # for each 7. The associated
Fourier series for this function is

Rx(t,t —1) = Z R‘o{z(‘f) el2malt—1/2)
{o}

where {o} includes all values of « in the principal domain (—%, %] for which the
corresponding Fourier coefficient is not identically zero as a function of :

R%(7) 2 (RX(t, t—1) e“iz”“(t—f/Z)) £ 0.
If this PCS process is PCE, then (with probability equal to one)
RY(v) = R‘;((‘L’) EN <X(Z)X*(t _ e—iZJ'ra(t—t/Z)).

The sine waves exp[i2wa(t — t/2)] in the Fourier series introduced here contain
the time shift —7/2 so that the discrete-time theory presented here will match the
continuous-time theory (cf. Gardner, 1985) in which the function Ry (¢ +1/2, t —7/2)
is expanded in a Fourier series with unshifted sine waves exp(i27 at).

The second-order theory of PCS discrete time-series x (¢) deals with the time-
space autocorrelation function

EA'{at} {x(t)x*(t _ ‘E)} — Z EO {x(t)x*(t _ ‘L') e—i27‘[0lt} eiZJ'rozt
{or}

— E :R‘a(t) ei2mx(t—r/2)
X )
{a}

where
R (r) 2 E%x(t)x*(t — 1) e 2ret=/2y,

That is, this theory deals with the sine-wave components in the delay product
x(t)x*(t — 7), whereas in the stochastic-process framework, we deal with an en-
semble average that happens to be made up entirely of a sum of sine waves.

‘When our primary concern is the sine-wave components generated from x () by
the quadratic transformation x (¢)x*(f — t), then the expectation operation E{-} and
the associated ensemble are irrelevant. This being the case here, we proceed with
the time-space theory. However, it is mentioned that the time-space theory presented
can be translated to a probability-space theory (cf. Section 2) simply by following the
rule:

For all sinusoidally-weighted time averages (z(¢)e 2"} of time-series z(¢),
replace z(t) by the expected value E{Z(¢)} of the corresponding stochastic
process Z(t) to obtain (E{Z(¢)}e™'?"*) (when « = 0, the operation (-) can be
omitted to obtain E{Z ()} only if Z(¢) is purely stationary).

Common examples of z(¢) appearing in this presentation include delay products
z(t) = x(¢)x*(¢ — ) and cross products z(z) = u(t)v*(¢).
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In the remainder of this chapter, the circumflex notation (that was introduced in
Section 2) on all time-average quantities is omitted for simplicity.

In the first part of this section, the possibility of generating spectral lines by
simply squaring the signal is illustrated for two types of signals: the random-amplitude
modulated sine wave and the random-amplitude modulated periodic pulse train. Then
in the second part, itis explained that the property that enables spectral-line generation
with some type of quadratic time-invariant transformation s called cyclostationarity of
order 2 (in the wide sense) and is characterized by the cyclic autocorrelation function,
which is a generalization of the conventional autocorrelation function. Following this,
it is shown that a signal exhibits cyclostationarity if and only if the signal is correlated
with certain frequency-shifted versions of itself.

In the third and last part of this section, the correlation of frequency-shifted
versions of a signal is localized in the frequency domain and this leads to the definition
of a spectral correlation density function. 1t is then explained that this function is
the Fourier transform of the cyclic autocorrelation function. This Fourier-transform
relation between these two functions includes as a special case the well-known Wiener
relation between the power spectral density function and the autocorrelation function.
A normalization of the spectral correlation density function that converts it into a
spectral correlation coefficient, whose magnitude is between zero and unity, is then
introduced as a convenient measure of the degree of spectral redundancy in a signal.

Continuing in the final part of this section, the effects on the spectral correlation
density function of several signal-processing operations are described. These include
filtering and waveform multiplication, which in turn include the special cases of
time delay and multipath propagation, bandlimiting, frequency conversion, and time
sampling. These results are used to derive the spectral correlation density function
for the random-amplitude modulated sine wave, the random-amplitude modulated
pulse train, and the binary phase-shift keyed sine wave. The spectral correlation
density functions for some other types of phase-shift keyed signals are also described
graphically.

To conclude this section, the measurement of the (estimation of the ideal) spectral
correlation density function is discussed and a particular algorithm for this purpose
is illustrated with a simulation of a phase-shift keyed signal.

To complement similar treatments of this material (Gardner, 1987a; Gardner,
1991a), attention is focused in this section primarily on discrete-time signals rather
than continuous-time signals.'

3.1 Spectral Line Generation

A discrete-time signal x(¢), for ¢t = 0,41, 4+2, &3, ..., contains a finite-strength
additive sine-wave component (an ac component) with frequency «, say
acosQrat +6) witha #£0 €8

£3For convenience, the notation herein is modified from that in (Gardner, 1987a; Gardner 1991a):
here, R and Sy are used for continuous time and R% and S¢ are used for discrete time.
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if the Fourier coefficient

M = (x(t) e>™) 2
is not zero, in which case (1) gives
1 .
M;x = Ea e’g.

In (2), the operation (-) is the time-averaging operation
1 z

I ).
2o ZZ—I—lt;_Z()

A

()

In this case, the power spectral density (PSD) of x (#) includes a spectral line at f = «
and its image /' = —a. (The PSD is defined later in this section.) That is, the PSD
in the principal domain (—1/2, 1/2] contains the additive term!4

|ME[[8(f — ) +8(f + )], 3)

where §(-) is the Dirac delta, or impulse, function. For convenience in the sequel, it
is said that such a signal exhibits first-order periodicity, with frequency «.

Letx(¢) be decomposed into the sum of its finite-strength sine-wave component,
with frequency «, and its residual, say 7 (),

x(t) = acosQmat 4 6) + n(r), “4)

where n(¢) is defined to be that which is left after subtraction of (1) from x (). It
is assumed that n(¢) is random. Here, the term random is used to denote nothing
more than the vague notion of erratic or unpredictable behavior. If the sine wave is
weak relative to the random residual, it might not be evident from visual inspection
of x(¢) that it contains a periodic component. Hence, it is said to contain hidden
periodicity. However, because of the associated spectral lines, hidden periodicity
can be detected and in some applications exploited through techniques of spectral
analysis.

This presentation is concerned with signals that contain more subtle types of
hidden periodicity that, unlike first-order periodicity, do not give rise to spectral
lines in the PSD, but that can be converted into first-order periodicity by a nonlinear
time-invariant transformation of the signal. In particular, we shall focus on the type
of hidden periodicity that can be converted by a quadratic transformation to yield
spectral lines in the PSD.

The discussion begins with two motivating examples. In the convention used
here, the PSD for x(¢) is denoted by S, ( J) and is periodic with unity period. S, ( )

2
14The strength of the spectral line is IM;‘ ' as indicated in (3) if and only if the limit (2) exists in
the temporal mean square sense with respect to the time parameter u obtained by replacing ¢ with ¢ + u in
(2) (Gardner, 1987a, Chapter 15, exc. 6).
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denotes the PSD restricted to the principal domain (—1/2, 1/2]; therefore,

S(f) =Y Slf+m.

n=—00

On occasion, continuous-time signals also are discussed herein. In such cases it
is assumed that the signal is time-scaled and bandlimited so that the PSD is restricted
tothe band (—1/2, 1/2]. Consequently, the PSD of the discrete-time sampled version,
restricted to the principal domain, will be identical to the PSD of the continuous-time
signal. Consequently, the same notation, S, ( f), is used for both.

Example 1: AM Leta(?) be areal random lowpass signal (say lowpass filtered
thermal noise) with the PSD S, ( /) shown in Fig. 5a, which contains no spectral lines.
If a(?) is used to modulate the amplitude of a sine wave, we obtain the amplitude-
modulated (AM) signal

x(t) = a(t) cos2r fot), o)

whose PSD S, (f) is given by (Gardner, 1987a, Chapter 3, Sec. D)

1 1
S:(f) = 75(f + fo) + 1 8a(f = fo) (6)

as shown in Fig. 5b.

Although the PSD is centered about ' = f, and f = — f,, there is no spectral
line at f, or — f,. The reason for this is that, as shown in Fig. 5a, there is no spectral
line in S,(f) at f = 0. This means that the dc component

A

M? = (a(2)) @)

. . . . 2
is zero, since the strength of any spectral line at ' = 0 is |M£ | .
Let us now square x(¢) to obtain

(t) = x2(t) = a’(t) cos?>(2n fyt)

1 ®)
= 5 [b(2) + b(t) cos(4m fot)]

where
b@t) = a(@). ©

Since b(t) is nonnegative, its dc value must be positive: Mg > 0. Consequently, the
PSD of b(¢) contains a spectral line at f = 0, as shown in Fig. 5c. The PSD for y(¢)
is given by

1 1 1
S,(H =7 [Sb(f) 15 +200) + 7S50~ 2fo)] (10)

and, as shown in Fig. 5d, it contains spectral lines at f = +2 f,, as well as at f = 0.
Thus, by putting x(¢) through a quadratic transformation (a squarer in this case) we
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(a)

(b) Sx(f)

Figure 5: (a) Power spectral density (PSD) of a lowpass signal. (b) PSD of an
amplitude-modulated (AM) signal. (c) PSD of a squared lowpass signal. (d) PSD
of a squared AM signal.

have converted the hidden periodicity resulting from the sine-wave factor cos(2m f,t)
in (5) into first-order periodicity with associated spectral lines. This is particularly
easy to see if a(¢) is a random binary sequence that switches back and forth between
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+1 and —1 because then b(¢) = 1 and y(¢) in (8) is therefore a periodic signal:

1 1
y(t) = 3 + 3 cos(4m f,1).

Example 2: PAM As another example, we consider the real pulse-amplitude-
modulated (PAM) signal

o0

x(t)= Y a@l,) pt —nT,), (11)
n=—00
where the pulse p(¢) is confined within the interval (—7,/2, T,/2) so that the pulse
translates do not overlap, as shown in Fig. 6. For simplicity, we consider a continuous-
time signal in this example (to avoid aliasing). The PSD of x(¢) is given by (Gardner,
1987a, Chapter 3, Sec. D)

5.0 =P > S(f-m/T). (12)

m=—0o0

where S, (f) is shown in Fig. 5a, which contains no spectral lines, and where 13( D)
is the Fourier transform of p(¢). Since there are no spectral lines in S, ( f) (or 13( D)
since p(f) has finite duration), there are none in S, (f), as shown in Fig. 7a, regardless
of the periodic repetition of pulses in x(¢). But, let us look at the square of x (¢):

YOy =x*(t)= Y b(T,)q(t —nT,), (13)
where
bnT,) = a*(nT,) (14a)
and
q(t) = p*(). (14b)

The PSD for y(¢) is given by

5,00 =7 [on] > S/ —m/ T, ()

m——oo

where Q( Jf') is the Fourier transform of ¢ (¢). Because of the spectral line at f=0in
Si( 1), which is shown in Fig. 5c, we have spectral lines in S »(f) at the harmonics
m/ T, (for some integer values of m) of the pulse rate 1/ T, as shown in Fig. 7b. Thus,
again, we have converted the hidden periodicity in x (¢) into first-order periodicity with
associated spectral lines by using a quadratic transformation. This is particularly easy
toseeif a(nT,) is arandom binary sequence with values -1, because thenb(n7,) = 1
and y(¢) in (13) is therefore a periodic signal

0

yO) = Y qt—nT). (16)

n=—00
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Figure 6: A pulse-amplitude-modulated (PAM) signal with pulse width less than interpulse time.

(a) Sx(f)

(b) Sy(f)

0 2B 1 2 3
To To To

Figure 7:  (a) Power spectral density (PSD) of a pulse-amplitude-modulated (PAM)
signal with 67% duty-cycle pulses. (b) PSD of the squared PAM signal.

3.2 The Cyclic Autocorrelation Function

39

Although the squaring transformation works in these examples, a different quadratic
transformation involving delays can be required in some cases. For example,ifa(nT,)
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in Example 2 is again binary, but p(¢) is flat with height 1 and width T, o> as shown in
Fig. 8, then y(r) = x2(t) = 1, which is a constant for all 7. Thus, we have a spectral
line at f = 0 but none at the harmonics of the pulse rate. Nevertheless, if we use the
quadratic transformation

(@) =x®)x(t — 1) a7

for any of a number of nonzero delays r, we will indeed obtain spectral lines at
f=m/T,. Thatis,

My = (p(t) e~>7)

—i2mat (18)
=x@®x(t—1)e ") £0

for « =m/ T, for some m.

x(t) . |

Figure 8: A binary pulse-amplitude-modulated (PAM) signal with full duty-cycle pulses.

The most general time-invariant quadratic transformation of a real time-series
x(¢) is simply a linear combination of delay products

y(®) =Y (1, )x(t — t)x(t — 1)

T, T2

for some weighting function 4 (t;, 1) that is analogous to the impulse-response func-
tion for a linear transformation. This motivates us to define the property of second-
order periodicity as follows: The real signal x (¢) contains second-order periodicity
if and only if the PSD of the delay-product signal x (¢ — 71)x(t — 7,) for some delays
71 and 7, contains spectral lines at some nonzero frequencies «. But, this will be so
if and only if the PSD of (17) for some delays (t = 1, — 11) contains spectral lines
at some nonzero frequencies o # 0; that is, if and only if (18) is satisfied.

In developing the continuous-time theory of second-order periodicity it has been
found to be more convenient to work with the symmetric delay product

Ye(@) =x( +/2)x*( — t/2). (19)

The complex conjugate * is introduced here for generality to accommodate complex-
valued signals, but it is mentioned that for some complex-valued signals, the quadratic
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transformation without the conjugate can also be useful (Gardner, 1987a, Chapter 10,
Sec. C). From (19), the fundamental parameter (18) of second-order periodicity for
continuous time becomes

RE(T) 2 (x(t + 1/2)x*(t — /2) e~i2700y, (20a)

which is the Fourier coefficient M, of the additive sine-wave component with fre-
quency « contained in the delay-product signal y;(¢). However, for discrete-time
signals, delays equal to half the sampling increment are not allowed. Nevertheless,
since

<x(t)x*(t _ t)e—imet) — Rvg(_’:) e—i?‘[ot‘[

for continuous time, then we can define the fundamental parameter of second-order
periodicity for discrete time as follows

R(7) & (x(O)x*(t — 1) 71270ty gimar (20b)

in order to maintain the strongest analogy between the continuous- and discrete-time
theories. Observe that since # and  take on only integer values, then R?(7) is periodic
in « with period two, and also R;“” (1) = R%(v)e'™".

The notation R} (7) is introduced for this Fourier coefficient because, for « = 0,
(20) reduces to the conventional autocorrelation function

RY(7) = (x()x*(t — 1)),

for which the notation R, (t) is commonly used. Furthermore, since RZ(7)is a gener-
alization of the autocorrelation function, in which a cyclic (sinusoidal) weighting
factor e 27 is included before the time-averaging is carried out, R%(7) is called
the cyclic autocorrelation function. Also, the conjugate cyclic autocorrelation for
complex-valued signals obtained from (20) by deleting the conjugate,

Ry (1) = (x(Dx(t — T) e 127e) gimer, @n

is a further modification of the conventional autocorrelation.!’

Thus, we have two distinct interpretations of RI(r) = M;‘r . Infact, we have yeta
third distinct interpretation, which can be obtained by simply factoring exp(—i2rwat)
in order to reexpress (20) as

RY(7) = ([x(t) e_i”“t] [x(t — 1) e+i”°‘(t_f)]*>. (22)

15 Although some readers will recognize the similarity between the cyclic autocorrelation function
and the radar ambiguity function, the relationship-between these two functions is only superficial. The
concepts and theory underlying the cyclic autocorrelation function, as summarized in this article, have
little in common with the concepts and theory of radar ambiguity (cf. (Gardner, 19872, Chapter 10, Sec.
C)). For example, the radar ambiguity function has no meaning relevant to ambiguity (in Doppler) when
applied to a real signal, or when applied to a complex signal without the conjugate.
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That is, R (7) is actually a conventional crosscorrelation function

Run(7) 2 (u(®)v*(t — 1)) = R%(2), (23)
where
u(t) = x(t) e 7 (24a)
and
v(t) = x(t) etim (24b)

are frequency translates of x(¢). Recall that multiplying a signal by exp{Zimat}
shifts the spectral content of the signal by t-«/2. For example, the PSDs of u(¢) and
v(t) are

Su(f) =8:(f+a/2) (25)
and

So(f) = S (f —a/2). (26)

It follows from (23) and (24) that x () exhibits second-order periodicity ((20) is not
identically zero as a function of t for some « # 0) if and only if frequency translates
of x(¢) are correlated with each other in the sense that (23) is not identically zero as
a function of  for some o # 0 in (24). This third interpretation of R%(t) suggests
an appropriate way to normalize R®(7) as explained next.

As long as the mean values of the frequency translates u(z) and v(¢) are zero
(which means that x(#) does not contain finite-strength'¢ additive sine-wave com-
ponents at frequencies +«/2 and, therefore, that S,(f) has no spectral lines at
f = £a/2), the crosscorrelation R,,(tr) = R%(t) is actually a temporal cross-
covariance K,,(t). That is,

Ku() = ([u(t) — @) [v(t — 1) — (u(t — D))
= (u®v*(t — 1)) = Ru(7)

27

An appropriate normalization for the temporal crosscovariance is the geometric mean
of the two corresponding temporal variances. This yields a temporal correlation
coefficient, the magnitude of which is upper bounded by unity. It follows from (24)
that the two variances are given by

Ku(0) = Ry(0) = (Ju(®)|*) = R.(0) (28a)

and
K,(0) = R,(0) = (Ju(®)|*) = R, (0). (28b)

Therefore, the temporal correlation coefficient for frequency translates is given
by
Kuv (T) Rg (T) A

K OKOIZ - R > 29)

161t does contain infinitesimal sine-wave components.




October 18, 1993 11:06 876-chl  Sheet number 43 Page number 43

An Introduction to Cyclostationary Signals 43

Hence, the appropriate normalization factor for the cyclic autocovariance R%(t) is
simply 1/R,(0) (and it is the same for the conjugate cyclic autocovariance).

This is a good point at which to introduce some more terminology. A signal x (¢)
for which the autocorrelation R, (t) exists (e.g., remains finite as the averaging time
goes to infinity) and is not identically zero (as it is for transient signals) is commonly
said to be stationary of second order (in the wide sense). But we need to refine
the terminology to distinguish between those stationary signals that exhibit second-
order periodicity (RZ(7) # 0 for some o # 0) and those stationary signals that do
not (R¥(r) = 0 for all @ # 0). Consequently, we shall call the latter for which
R2 (1) = 0 stationary of second order (in the wide sense) and the former for which
RZ () # 0 for some values of « that are integer multiples of a single fundamental
frequency 1/T (corresponding to the period T') cyclostationary of second order (in
the wide sense). If there is more than one fundamental frequency, then we call the
signal polycyclostationary of second order (in the wide sense). We shall also call any
nonzero value of the frequency parameter « in the principal domain (— % , %] for which
R} (7) # 0acycle frequency. The discrete set of cycle frequencies is called the cycle
spectrum. For example, if a signal is cyclostationary, the cycle spectrum contains
only harmonics (integer multiples) of the fundamental cycle frequency, which is the
reciprocal of the fundamental period. But if the signal is polycyclostationary, then
the cycle spectrum contains harmonics of each of the incommensurate fundamental
cycle frequencies.

We conclude this section by reconsidering the AM example and determining the
cyclic autocorrelation function for the AM signal.

Example 1 continued: AM Let a(f) be a real random stationary signal with
Zero mean:

{a@®)) =0, (30a)
(a()a*(t — 1)) £ 0, (30b)
(a)a*(t —t)e ™) =0 foralla # 0. (30c)
Equation (30c) guarantees that
(a(t)e ™y =0 forall o 0. (30d)

We consider the amplitude-modulated sine wave

x() = a(t) cos2m fot + 0)
(31

la(z‘) [ei(27rfat+9) + e"'(z”ﬁ)’ﬂ“@)]
2 , :

Because of (30d), a(¢) contains no finite-strength additive sine-wave components
and, therefore (together with (30a)), x(¢) contains no finite-strength additive sine-
wave components. This means that its power spectral density contains no spectral
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lines. However, the quadratic transformation
Ye() = x(@O)x*(t — 1)
= a(t)a* (¢ _t)i [einrfDr FemiPThT | pi(nfo1426) j—i2n fot +e—i(4zrfot+20)ei2nfor]
(32)
does contain finite-strength additive sine-wave components with frequencies ¢ =
+2 f,, since (30b) renders one or the other of the last two terms in the quantity

(y: () e—lZJTClt) — Z e’znﬁ’r(a(t)a*(t _ _[)e—that)

4 e—i2nj;r<a(t)a*(t _ ‘L’) e—i2rrott>
(33)

ei29 e—iZJTfDr (Cl (t)a*(t _ T) e—i27r(a—2fa)t>

._l_
it S N e B

+Z e—i20 eianor (a (t)a*(t _ ‘L') e—i27t(oz+2ﬁ,)t)
nonzero for o = +2f,. That these are the only two nonzero cycle frequencies
follows from the fact that (30c) renders (33) equal to zero for all « except o = 0
and o = £2 f;. Thus, the cycle spectrum consists of only the two cycle frequencies
o = £2 f; and the degenerate cycle frequency @ = 0.

Hence, the versions u(¢) and v(¢) of x (¢) obtained by frequency shifting x (¢) up
and down by &/2 = f;, are correlated. This is not surprising since (31) reveals that
x (1) is obtained from a (¢) by frequency shifting up and down by £, and then adding. In
conclusion, we have the cyclic autocorrelation function (in the principal domain of o)

1eH 2R, (1) fora =42,
RY(t) = | FRu(t)cosQufyr) fora =0 ‘ (34)
0 otherwise,

the magnitude of which is graphed in Fig. 9 for a typical autocorrelation R, (r). It
follows from (34) that the temporal correlation coefficient is given by

1e*120y0(1) fora = £2f,
Yo (@) =1 y2()cosQrf,r) fora =0 (35a)
0 otherwise.

Thus, the strength of correlation between x (¢) exp(—imat) and
x(t —7) exp(iwa[t — 1), which is given by

1
@l =7 @), (35b)

can be substantial (as large as 1/2 for this amplitude-modulated signal.
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0~

T

Figure 9: Magnitude of the cyclic autocorrelation function for an AM signal graphed
as the height of a surface above the time-frequency plane with coordinates  and .

As an especially simple specific example of a(¢), we consider as before a random
binary sequence, which switches back and forth between +1 and —1. If we set 7 = 0
in (32), we obtain

yo(t) = [x(OF = la(®) cos’ 2 fot +6)
1
2
which clearly contains finite-strength additive sine-wave components with frequen-
cies @ = F2 f,. In fact, in this very special case, there is no random component in
Jo(t). On the other hand, for t # 0, y,(¢) contains both a sine-wave component and
a random component.

To illustrate the conjugate cyclic autocorrelation (21), let us consider the analytic
signal for AM,

1
+ 2 cos(4m f,t + 26),

z(t) = la(t) e Fhot+ )
2
For this signal, we have

R%.(7) & (z(1)z(t — 1) e~ 1201y gimer

_ l(a(t)a(t _ 7:) ei271(2f,,—a)t> e—i[Zn’(fo—a/Z)‘L’—ZG]
%Rd (1)e? fora=2f,
0 otherwise.

Other examples of cyclostationary and polycyclostationary signals can be sim-
ilarly viewed as mixtures of stationarity and periodicity. Examples are cited in
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Section 1. Typical cycle spectra include harmonics of pulse rates, keying rates,
spreading-code chipping rates, frequency hopping rates, code repetition rates, doubled
carrier frequencies, and sums and differences of these (Gardner, 1987a, Chapter 12).

3.3 The Spectral Correlation Density Function

In the same way that it is beneficial for some purposes to localize in the frequency
domain the average power (|x(¢)|*) = R, (0) in a stationary random signal, it can be
very helpful to localize in frequency the correlation (u(¢)v*(z)) = (|x()|? eTiZmaly =
R (0) of frequency-shifted signals u(¢) and v (¢) for a cyclostationary or polycyclosta-
tionary random signal x (¢). In the former case of localizing the power, we simply pass
the signal of interest x (#) through a narrowband bandpass filter and then measure the
average power at the output of the filter. By doing this with many filters whose center
frequencies are separated by the bandwidth of the filters, we can partition any spectral
band of interest into a set of contiguous narrow disjoint bands. In the limit as the
bandwidths approach zero, the corresponding set of measurements of average power,
normalized by the bandwidth, constitute the power spectral density (PSD) function.
That s, at any particular frequency f (in the principal domain (—1/2, 1/2]), the PSD
for x(¢) is given by

5.0 2 tim (o @ x| 36)

)= B\ * ’
where ® denotes convolution and h{;(t) is the discrete-impulse response of a one-
sided bandpass filter with center frequency f, bandwidth B, and unity gain at the

band center (see Fig. 10).

Center Frequency = f

x(t) = Sy(f)

BPF 1 [+|® f—> (o).

Bandwidth = B ‘

Figure 10: One channel of a spectrum analyzer for measuring the power spectral
density (PSD). (The symbol = indicates that the output only approximates the ideal
function Sy (/') for finite T and B.)

In the latter case of localizing the correlation, we simply pass both of the two
frequency translates u(f) and v(¢) of x (¢) through the same set of bandpass filters that
are used for the PSD and then measure the temporal correlation of the filtered signals
(see Fig. 11) to obtain

520 2 tim ([0 e uw] [0y wo]'). 37

which is called the spectral correlation density (SCD) function. This yields the
spectral density of correlation in () and v(#) at frequency f, which is identical to
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the spectral density of correlation in x (¢) at frequencies f + «/2 and f — /2 (see
Fig. 12). Thatis, S7(f) is the bandwidth-normalized (i.e., divided by B) correlation
of the amplitude and phase fluctuations of the narrowband spectral components in
x(¢) centered at frequencies f + «/2 and f — «/2, in the limit as the bandwidth
B of these narrowband components approaches zero. For complex-valued signals,
the conjugate SCD obtained from (37) by deleting the complex conjugate is also of
interest for some signals (Gardner, 1987a, Chapter 10, Sec. C).

exp(—imat) |
BPF }
=S%(f)
Center Frequency =f ( . ) — X 1
Bandwidth = B T |
t
vyl gpe P/*

exp(+intat)

Figure 11:  One channel-pair of a spectral correlation analyzer (or a cyclic spectrum
analyzer) for measuring the spectral correlation density (or cyclic spectral density).

Strictly speaking, the SCD is not a valid density function in the usual sense,
since it is not nonnegative and, in fact, not even real-valued. However, its integral
over all frequencies does equal the correlation of #(¢) and v(¢) and, when u(¢) and
v(?) are decomposed into narrowband spectral components, the correlation of the
components centered at f is indeed the SCD evaluated at f. Because of the lack of
the nonnegativity property of the SCD, the correlation of u(¢) and v(¢) can equal zero
without the SCD being identically zero because the integral of the SCD over all f
can be zero even though the SCD is not identically zero. Nevertheless, because of
the properties that the SCD does share with densities like the PSD, the term density
is retained.

It is well known (see, for example, (Gardner, 1987a, Chapter 3, Sec. C) for a
proof for continuous time) that the PSD obtained from (36) is equal to the Fourier
transform of the autocorrelation function,

S:(f)= ) R(@e T, (38)

T=—00

Similarly, it can be shown (cf. (Gardner, 1987a, Chapter 11, Sec. C) for continuous
time) that the SCD (or conjugate SCD) obtained from (37) is the Fourier transform
of the cyclic autocorrelation function (or conjugate cyclic autocorrelation),
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u

o
+2f

Figure 12: Tllustration of spectral bands used in the measurement of the spectral
correlation density S (f). (v is a dummy frequency variable; the shaded bands are the
bands selected by the BPFs.)

SEf)y= ) Ri(r)e I (39a)

T=—00

and, therefore, RZ (7) is given by the inverse transform

1/2
RY(z) = / S(f) et df. (39b)
—1/2

Since R¢(t) is periodic in & with period two, so too is SE(f). Also, since t takes
on only integer values, then S{(f) is periodic in f with period one. Furthermore,
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since increasing f =+ /2 by %1 has no effect on the spectral components at these
frequencies, then it follows that S%( f) also exhibits the periodicity S*H1(f + %) =
S (f). Consequently, the principal domain for SZ(f) can be taken to be either
the square with vertices (f, @) = (£1, :I:%) or the diamond with vertices (f, &) =
(0, £1) and :I:%, 0). Relation (38) is known as the Wiener relation (see, for example,
(Gardner, 1987a, Chapter 3, Sec. C)), and (39) is therefore called the cyclic Wiener
relation (Gardner, 1987a, Chapter 11, Sec. C). The cyclic Wiener relation includes
the Wiener relation as the special case of @ = 0. (In the probabilistic framework of
stochastic processes, which is based on expected values [ensemble averages] instead
of time averages, the probabilistic counterpart of (38) is known as the Wiener-Khinchin
relation and, therefore, the probabilistic counterpart of (39) is called the cyclic Wiener-
Khinchin relation (Gardner, 1990a, Chapter 12, Sec. 12.2).) Because of the relation
(39), the SCD is also called the cyclic spectral density function (Gardner, 1987a,
Chapter 10, Sec. B).

It follows from (39) and the interpretation (23) of R¢(t) as R,,(7) that the
SCD is the Fourier transform of the crosscorrelation function R, (1) and is therefore
identical to the cross-spectral density function for the frequency translates u(¢) and
v(t):

S:(f) = S (f), (40)

where Sy, (f) is defined by the right-hand side of (37) for arbitrary u(¢) and v(¢). This
is to be expected since the cross-spectral density Sy, (/) isknown (cf. (Gardner, 1987a,
Chapter 7, Sec. A)) to be the spectral correlation density for spectral components in
u(t) and v(¢) at frequency f, and u(¢) and v(f) are frequency-shifted versions of
x(#). The identity (40) suggests an appropriate normalization for S&(f): Aslong
as the PSDs of u(¢) and v() contain no spectral lines at frequency f, which means
that the PSD of x(¢) contains no spectral lines at either of the frequencies f 4+ «/2,
then the correlation of the spectral components (40) is actually a covariance since
the means of the spectral components are zero (Gardner, 1987a, Chapter 11, Sec. C).
When normalized by the geometric mean of the corresponding variances, which are
given by

Su(f) = 8:(f +a/2) (41a)
and
Su(f) = S8(f —a/2), (41b)
the covariance becomes a correlation coefficient:
Suv (f) Sy () A 4

- = : 42
[Su(f)Sv(f)]l/Z [Sx(f+a/2)Sx(f—Ol/2)]l/2 Px 0] (42)

Since ‘,0;‘ ) f is bounded to the interval [0, 1], it is a convenient measure of the degree
of local spectral redundancy that results from spectral correlation. For example, for
[ pe(f )| = 1, we have complete spectral redundancy at f+oa/2and f— a/2.
For conjugate spectral redundancy of complex-valued signals, (42) is modified by
replacing the numerator with the conjugate SCD.
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Let us now return to the AM example considered previously.

Example 1 continued: AM By Fourier transforming (34) and invoking the
cyclic Wiener relation (39), we obtain the following SCD function on the principal
domain for the amplitude-modulated signal (31):

1€528,(f) fora = £2f,
SIS =1 iSe(f+ /) +1S.(f— f) fora=0 (43)
0 otherwise,

where it has been assumed that S,(f £ f,) = 0 for | f| > 1/2 to avoid aliasing
effects in the principal domain. The magnitude of this SCD is graphed in Fig. 13
as the height of a surface above the bifrequency plane with coordinates f and «.
For purposes of illustration, a(¢) is assumed to have an arbitrary low pass PSD for
this graph. Observe that although the argument f of the SCD is continuous, as it
always will be for a random signal, the argument « is discrete, as it always will be
since it represents the harmonic frequencies of periodicities underlying the random
time-series (the sine-wave carrier in this example).

Figure 13: Magnitude of the spectral correlation density function for an AM signal
graphed as a height above the bifrequency plane with coordinates f and a.

It follows from (43) that the spectral correlation coefficient is given by

Sa(f) e:l:i20
{LSa(f + 21 + Sa (OIS () + Sa(f = 21)1}1/2

fora = 42 f,.

(44a)
Thus, the strength of correlation between spectral component in x (¢) at frequencies
f+o/2and f — «/2 is unity:

P2 =1 for|fl < f, and a==2f, (44b)

e (f) =

provided that a(¢) is bandlimited to | f| < f,,

Sa(f) =0 for|fl= f. (45)
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This is not surprising since the two spectral components in x(¢) at frequencies
f £ a/2 = f £ f, are obtained from the single spectral component in a(¢) at
frequency f simply by shifting and scaling. Thus, they are perfectly correlated. That
is, the upper (lower) sideband for f > O carries exactly the same information as the
lower (upper) sideband for ' < 0. Techniques for exploiting this spectral redundancy
are described in Section 4.

To illustrate the conjugate SCD, we consider the analytic signal z(¢) for AM.

Se.(f) = Z R%.(7) e~ 127/

T=—00
B 18(f) e fora=2f,
0 otherwise.

Before considering other examples of the SCD, let us first gain an understanding
of the effects of some basic signal-processing operations on the SCD. This greatly fa-
cilitates the determination of the SCD for commonly encountered man-made signals.

3.4 Filtering

When a signal x(¢) undergoes a linear time-invariant (LTI) transformation (i.e., a
convolution or a filtering operation),

z(t) = h(t) @ x(?)

S Z h(w)x (@ — u),

U=—00

(46)

the spectral components in x(¢) are simply scaled by the complex-valued transfer
function H( f), which is the Fourier transform

H(f)= Y h(t)e >/ (47)

t=—00

of the discrete-impulse-response function %(z) of the transformation. As a result,
the PSD gets scaled by the squared magnitude of H(f) (see, for example, (Gardner,
1987a, Chapter 3, Sec. C) or (Gardner, 1990a, Chapter 10, Sec. 10.1) for continuous
time)

S:(f) = [H(IP Se(f). (48)

Equation (48) can be derived from the definition (36) of the PSD. Similarly, because
the spectral components of x(¢) at frequencies f & «/2 are scaled by H(f % «/2),
the SCD gets scaled by the product H(f + a/2) H*(f — a/2):

S =H(f +a/D)H (f —a/2)SF(f). (49)
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This result, called the input-output SCD relation for filtering, which can be derived
from the definition (37) of the SCD, includes (48) as the special case of « = 0.
Observe that it follows from (49) and the definition (42) that

2] = p2(N]. (50)

That is, the magnitude of the spectral correlation coefficient is unaffected by filtering

Gf H(f £ a/2)  0).

Example 3: Time Delay As our first example of (49), we consider a filter that
simply delays the input by some integer #,; then h(t) = §(t — t,), where 8 is the
Kronecker delta, and H(f) = e "2"/%_ Therefore, for z(f) = x(¢ — ,), we obtain
from the input-output SCD relation (49)

SH(f) = SE(f) e 2, (51)

which indicates that, unlike the PSD, the SCD of a cyclostationary signal is sensitive
to the timing or phase of the signal.

Example 4: Multipath Propagation As a second example of (49), if x(¢)
undergoes multipath propagation during transmission to yield a received signal

2(t) =) apx(t —ty,),

where a, and the integer ¢, are the attenuation factor and delay of the nth propagation
path, we have

H(f) =Y ae™/t (52)
and therefore (49) yields
SE) = 53 Y ana exp(—i2m [ £ty — tn) + &ty +12)/2).  (53)

Example 5: Bandpass Signals As a third example of the utility of the relation
(49), let us determine the support region in the ( f; &) plane for a bandpass signal with
lowest frequency b and highest frequency B. To enforce such a spectrum, we can
simply put any signal x (¢) through an ideal bandpass filter with transfer function (on
the principal domain (—1/2, 1/2])

1 forb<|f|<B

0 otherwise.

H(f)=[

It then follows directly from the input-output SCD relation (49) that the SCD for the
output of this filter can be nonzero only for || /| — |a|/2| > b and | f| + |«|/2 < B:

0 f — 2| <b 2 > B,
So(f) = { or [[f]—lal/2] <bor|f|+ |al/2 > 54
S¢(f) otherwise.
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This shows that the support region in the ( f, &) plane for a bandpass signal is the four
diamonds located at the vertices of a larger diamond, depicted in Fig. 14a. By letting
b — 0, we obtain the support region for a lowpass signal, and by letting B — 1/2,
we obtain the support region for a highpass signal. This is shown in Figs. 14b and 14c.

(©

» f

7/ :

Figure 14: (a) Support region in the bifrequency plane for the spectral correlation
density function of a bandpass signal. (b) Support region for a lowpass signal. (c)
Support region for a highpass signal (shown over a small fraction of the diamond-shaped
principal domain).
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3.5 Signal Multiplication and Time Sampling

When two signals are multiplied together, we know from the convolution theorem
that their Fourier transforms get convolved. From this, we expect some sort of convo-
lution relation to hold for the SCDs of signals passing through a product modulator.
In fact, it can be shown (cf. (Gardner, 1987a, Chapter 11, Sec. C) or (Gardner, 1990a,
Chapter 12, exc. 41) for continuous time) that if x(¢) is obtained by multiplying
together two statistically independent!” time-series 7 () and s(z),

x(@) =r(0)s@), (55)

then the cyclic autocorrelation of x () is given by the discrete circular convolution in
cycle frequency of the cyclic autocorrelations of 7(¢) and s(¢):

R = Y RAOR™P), (56)
Be(-3.11

where, for each &, 8 ranges over all values in the principal domain (— 2, %] for which

R’ (7) # 0. By Fourier transforming (56), we obtain the input-output SCD relation
for signal multiplication:

12
=[SOS vy 57)
2 pe-L4
which is a double circular convolution that is continuous in the variable f and discrete
in the variable .

Example 6: Frequency Conversion As an example of (57), if s(¢) is simply
a sinusoid,
s(t) = cosm fot +0),

the product modulator becomes a frequency converter when followed by a filter to
select either the up-converted version or the down-converted version of r(t). By
applying first the input-output SCD relation (57) for the product modulator (which
applies since a sinusoid is statistically independent of all time-series (Gardner, 1987a,
Chapter 15, Sec. A)), and then (49) for the filter, we can determine the up-converted
or down-converted SCD. To illustrate, we first determine the SCD for the sinusoid
s(¢). By substituting the sinusoid s(¢) into the definition of the cyclic autocorrela-
tion, we obtain
1cos2n for) fora =0

RY(r) = ze¥% fora = £21, (58)

0 otherwise

on the principal domain of o.

" Time-series are statistically independent if their joint fraction-of-time probability densities factor
into products of individual fraction-of-time probability densities, as explained in (Gardner, 1987a, Chapter
15, Sec. A).
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Fourier transforming then yields the SCD

B =f)+58(f+ f) fora=0

SHf) =1 LteF25(1) fora = 27, (59)

S A=

otherwise

on the principal domain, which is illustrated in Fig. 15a. Using (57), we circularly
convolve this SCD with that of a stationary signal 7 (¢), for which

S.(f) fora =0

SHf) = 60
) {o fora # 0 ©0

on the principal domain (see Fig. 15b). The result is that the SCD of the stationary
signal simply gets replicated and scaled at the four locations of the impulses in the
SCD of the sinusoid, as illustrated in Fig. 15c (provided that S, (f =+ Jfo) = 0 for
[f1 > 1/2 to avoid aliasing effects in the principal domain).

Example 7: Time Sampling Another important signal-processing operation
is periodic time sampling. It is known that for a stationary signal x(¢), the PSD
S:(f) of the sequence of samples {x(nT;) : n = 0,41, £2, ...} is related to the
PSD S, (f) of the continuous-time waveform by the aliasing formula (cf. (Gardner,
1987a, Chapter 3, Sec. E) or (Gardner, 1990a, Chapter 11, Sec. 11.1))

1 & .
(=72 5 (f—%) 61)

It is shown in (Gardner, 1987a, Chapter 11, Sec. C), (Gardner, 1990a, Chapter 12,
Sec. 12.4) that this aliasing formula generalizes for the SCD to

1 & - m n
S — a+m/ T - ). 62
e () T m,;:_oo P S/ o, T (62)

Observe that, when x(¢) is not stationary (i.e., when S';j‘ (f) #O0fora = m/T
for some nonzero integers m), the conventional PSD aliasing formula (61) must be
corrected according to (62) evaluated at o = 0:

1 & . m n
— m/ T _ _
S:(f) = T. m’;:_oo x (f T, Ts> . (63)

This reflects the fact that, when aliased overlapping spectral components add to gether,
their PSD values add only if they are uncorrelated. When they are correlated, as in a
cyclostationary signal, the PSD value of the sum of overlapping aliased components
depends on the particular magnitudes and phases of their correlations. The SCD
aliasing formula (62) is illustrated graphically in Fig. 16, where the support regions for
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+2f

o

-3
-4f /3 — af/3 = °

+2f,

-f f f

(o]

Figure 15: (a) Magnitude of the spectral correlation density (SCD) for a sine wave
of frequency f,. (b) SCD for a lowpass stationary signal. (c) SCD magnitude for the
product of signals corresponding to (a) and (b), obtained by convolving the SCDs in (a)
and (b).

the SCD S ( 1) for the sequence of samples {x (nT;)} is depicted in terms of the single

diamond support region for a lowpass waveform x (¢), which is shown in Fig. 14b.
When we subsample a discrete-time signal x(¢) with sampling rate 1/7 for

some integer Ty to obtain the signal z(#) = x (¢ T}), we obtain the discrete-time analog

of (62),
Se(f) = TL Z S)E"“"q)/TS <M> , (64)

s qu’x T.S‘
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Figure 16: Illustration of support regions in the bifrequency plane for the spectral
correlation densities that are aliased by periodic time sampling.

where P, is the set of all integers ¢ = BT, — « for which o € (—%, %]. Similarly,
when we resample a discrete-time signal x(¢), by (effectively) interpolating back to
a continuous-time waveform and then time sampling at the new rate 1 / T to obtain
z(t), the SCD is given by

I X . m n
S =7 Y Semin <f— o7 ~7>, (65)

where S’;‘ (f) is the SCD SZ( f) restricted to its principal domain.
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3.6 Periodically Time-Variant Filtering

Many signal-processing devices such as pulse and carrier modulators, multiplexors,
samplers, and scanners, can be modeled as periodically time-variant filters, especially
if multiple incommensurate periodicities (i.e., periodicities that are not harmoni-
cally related) are included in the model. By expanding the periodically time-variant
discrete-impulse-response function in a Fourier series as explained shortly, any such
system can be represented by a parallel bank of sinusoidal product modulators fol-
lowed by time-invariant filters. Consequently, the effect of any such system on the
SCD of its input can be determined by using the SCD relations for filters and product
modulators. In particular, it can be shown (cf. (Gardner, 1987a, Chapter 11, Sec. D)
for continuous time) that the SCD of the output z(¢) of a multiply-periodic system
with input x(¢) is given by

SN =Y Ga(f +a/)GE(f —af2)Se Pt <f - ﬂ%) . (66)
B,yed

provided that S, (f + B) = 0for | f| > 1/2 for all B € A4 to avoid aliasing effects in
the principal domain, where G4 () are the transfer functions of the filters and 4 is
the set of sinusoid frequencies associated with the product modulators in the system
representation. More specifically, for the input-output equation

z20)= Y h(t,wx(w), (67)

U=—00

the multiply-periodic discrete-impulse-response function % (¢, u) can be expanded in
the Fourier series

ht 47,0 =" gg(r) e, (68)
Bed

where the Fourier coefficients (for each ) are given by
gp(0) = (h(t + 7, 1) e ). (69)
It follows from (67) and (68) that the filter output can be expressed as

26) = ) [x() ™) ® g (1), (70)

BeAd

where gg(t) are the discrete-impulse-response functions of the filters with corre-
sponding transfer functions Gg(f). Thus, periodically time-variant filters perform
time-invariant filtering on frequency-shifted versions x(t)e'?Pt of the input. This
results in summing scaled, frequency-shifted, cycle-frequency-shifted versions of the
SCD for the input x(¢) to obtain the SCD for the output z(¢), as indicated in (66).
Let us now consider some additional examples of modulation types, making use
of the results obtained in the preceding paragraphs to determine SCDs. However, in
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the interest of realism and for the sake of analytical simplicity, continuous-time signal
models are used.

Example 2 continued: PAM Let {a,} be a stationary random sequence, and let
us interpret these random variables as the time samples of a continuous-time random
waveform, a, = a(nT,), with PSD S,(f). We consider the continuous-time PAM
signal

[e ¢}
x() = ) anplt —nT, +e), (1)
n=—00
where p(t) is a deterministic finite-energy pulse and ¢ is a fixed pulse-timing phase
parameter. To determine the SCD of x (¢), we can recognize that x (¢) is the output of
a periodically time-variant linear system with input a(¢), and impulse response

00

h(t,u)y= Y p(t —nT,+e)8u—nT,),

n=—00

where § is the Dirac delta. We can then use the continuous-time counterpart of the
input-output SCD relation (66), which is identical in form except that continuous-
time Fourier transforms are used (cf. (Gardner, 1987a, Chapter 11, Sec. D)). Or we
can recognize that this particular periodically time-variant system is composed of a
product modulator that implements an impulse sampler, followed by a linear time-
invariant pulse-shaping filter with impulse-response function % (t) = p(¢), as shown
in Fig. 17. We can then use the continuous-time counterpart of the input-output
SCD relation (57), which is identical in form except the convolutions are linear (cf.
(Gardner, 1987a, Chapter 11, Sec. C)), as it applies to impulse sampling, together
with the relation (49) for filtering. The result is

o0
§a+m/To _ m _ 1_ i2mxe.
2. & I=3r,71)¢

- 1 -~ -
S;(f) =gz P +a/DP(f ~a/2)

m,n=—0o0
(72)
Using the SCD aliasing formula (62) for a(#) we can reexpress (72) as
~ 1 -~ ~ .
S¥(f) = TP(f—l—oc/Z)P*(f—a/Z)S;‘(f)e’Z”"‘B, (73)

where S (/) is the SCD for the pulse-amplitude sequence {a,}. Having assumed
that {a,} is stationary, and using the periodicity property

a | Si(f+aj2) fora=k/T,
S (f)= { 0 otherwise (74)

fork =0, +£1,+£2,..., we can express (73) as

Tiﬁ(f+a/2)15*(f— a/2)S,(f +a/2) P fora =k/T,

0 otherwise.

Se(f) = (75)
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A graph of the magnitude of this SCD for the full-duty-cycle rectangular pulse

)1 for|t| <T,/2
p) = { 0 otherwise (76)
and a white-noise amplitude sequence with PSD
Sa(f) =1 (77
is shown in Fig. 18.
p(t) |
a(t) , x(t)
Filter p——

= 1 in. M |
S(t)—ZT exp(i2nT t) 1
m 0 0 |
|
Figure 17: Interpretation of PAM signal generator as the cascade of an impulse sam-
pler and a pulse-shaping filter.

Figure 18: Magnitude of the spectral correlation density for a PAM signal with full-
duty-cycle rectangular pulses.

It follows from (77) that for all @« = k/ T, for which S,(f + «/2) # 0 and
P( f+a/2)P*( J —a/2) # 0, the spectral correlation coefficient P2(f) is unity in
magnitude:
P2 (N =1. (78)
Thus, all spectral components outside the band | f] < 1/27, are completely redun-
dant with respect to those inside this band. Techniques for exploiting this spectral
redundancy are described in Section 4.
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The conjugate SCD for the PAM signal (71) is given by (73) with P*( f—a/2)
replaced by P*(a/2 — f) and S%(f) replaced by S .(f). For a real PAM signal,
the conjugate SCD is identical to the SCD; however, for complex PAM the conjugate
SCD is, in general, different and is, in fact, zero for the complex PAM that models
the complex envelopes of most digital QAM signals, including QPSK. This follows
from the fact that (@, a,+,) = 0 for all m for such signals; consequently, S5.(f) =0
for all «.

By inverse Fourier transforming the SCD (75), we obtain the cyclic autocorre-
lation function

1 & ‘
- > Ra(nT)ré(t —nT,) e fora=k/T,

Rg (t) = 0 n=—00 (79)
0 otherwise,
where oo
r;‘(r) E / pE+t/2)p*Et — T/2)e” 2 4t (80)
—00
For a white-noise amplitude-sequence as in (77), (79) reduces to
~ 1 .
RY(x) = —rp(@) e fora =k/T, (81)
o

and, for a rectangular pulse as in (76), this yields the temporal correlation coefficient

sin[ma (T, — |T]] ei2rm8
ral,

Vi) = for |t] = T, (82)
the magnitude of which is shown in Fig. 19. This correlation coefficient peaks for
a=1/T, at t = T,/2, where it takes on the value

74T, /2)| =1/m  fora=1/T,. (83)

That is, the strongest possible spectral line that can be regenerated in a delay-product
signal for this particular PAM signal occurs when the delay equals half the pulse
period. In contrast to this, when the more bandwidth-efficient pulse whose transform
is a raised cosine is used, the optimal delay for sine-wave regeneration is zero.

An especially simple example of a sequence of pulse amplitudes {a,} is a binary
sequence with values 1. If we consider T = 0 in the delay-product signal, then we
obtain

yo) =1x@0F = Y awanpt —nT,+&)plt —mT,+¢).

m,n=—00

If the pulses do not overlap (i.e., if p(¢) = O for [¢| > T,/2), this reduces to

o0
yot)y= Y a; p*(t —nT, +e)
n=—00
o0

= Z PPt —nT, +e),

n=—00
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Figure 19: Magnitude of the cyclic autocorrelation function (normalized to form a
correlation coefficient) for a PAM signal with full duty-cycle rectangular pulses.

which is periodic with period T, and therefore contains finite-strength additive sine-
wave components with frequencies &/ 7, (except when p(z) is flat as in (76)). In this
very special case where {a, } is binary and the pulses do not overlap, there is no random
component in yy(#); but, for T % 0, y.(¢) contains both sine-wave components and
random components (even when p(¢) is flat).

Example8: ASKand PSK By combining the amplitude-modulated sine wave
and the digital amplitude-modulated pulse train, we obtain the amplitude-shift-keyed
(ASK) signal ‘

x(t) = a(t) cos 2 fot +6), (84)
where -
at)y= Y a, pt —nT, +e), (85)

and {a, } are digital amplitudes. By using the continuous-time counterpart of the SCD
relation (57) for signal multiplication and the result (75) for the SCD of a(¢), we can
obtain the SCD for the signal (84) by simply convolving the SCD functions shown in
Figs. 15a and 18. The result is shown in Fig. 20a, where the cycle frequencies shown
area = £2f, +m/T, and « = m/ T, for integers m, and where f, = 3.3/T,. When
JoT, is irrational, the ASK signal is polycyclostationary with fundamental periods 7},
and 1/2 f,.

For a binary sequence with each a, = =+1, this amplitude-shift-keyed signal,
with the pulse (76), is identical to the binary phase-shift-keyed (BPSK) signal

x(t) = cos |i2nfot +O0+ D ¢uplt— nTo):l , (86)

n=-—00
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10/To |

10/T,

-5/To — 5/T,

Figure 20: Magnitude of spectral correlation densities. (a) BPSK, (b) QPSK, and (c)
SQPSK. (Each signal has a rectangular keying envelope.)

where ¢, 2 (a, — 1)/2, since shifting the phase of a sine wave by O or 7 is the same
as multiplying its amplitude by 1 or —1. Other commonly used types of phase-shift-
keyed signals include quaternary phase-shift keying (QPSK) and staggered QPSK
(SQPSK). The details of these signal types are available in the literature (see, for
example (Gardner, 1987a, Chapter 12, Sec. E) or (Gardner, 1990a, Chapter 12, Sec.
12.5)). Only their SCD-magnitude surfaces are shown here in Fig. 20b, ¢, where
again f, =3.3/7,.
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It is emphasized that the three signals BPSK, QPSK, and SQPSK differ only
in their carrier phase shifts and pulse timing and, as a result, they have identical
PSDs, as shown in Fig. 20 (consider « = 0). However, as also shown in Fig. 20,
these differences in phase and timing result in substantially different SCDs (consider
a # 0). That is, the phase-quadrature component present in QPSK but absent in
BPSK results in cancellation of the SCD at cycle frequencies associated with the
carrier frequency (viz., « = £2 f, +m/ T, for all integers m) in QPSK. Similarly, the
pulse staggering by 7, /2 (between the in-phase and quadrature components) present in
SQPSK but absent in QPSK results in the SCDs being cancelled atee = £2 f, +m/ T,
only for even integers m, and at « = m /T, only for odd integers m in SQPSK. This
again illustrates the fact that the SCD contains phase and timing information not
available in the PSD. In fact, as formulas (43) and (75) reveal, the carrier phase 6
in (31) and the pulse timing ¢ in (71) are contained explicitly in the SCDs for these
carrier- and pulse-modulated signals.

3.7 Measurement of Spectral Correlation

The ideal SCD function (37) is derived by idealizing the practical spectral correlation
measurement depicted in Fig. 11, by letting the averaging time T in the correlation
measurement approach infinity and then letting the spectral resolving bandwidth B
approach zero. Consequently, the practical measurement with finite parameters 7' and
B can be interpreted as an estimate of the ideal SCD. This estimate will be statistically
reliable only if 7B > 1, and it will approach the ideal SCD only for sufficiently
large T and sufficiently small B. Numerous alternative methods for making this
practical measurement are described in (Gardner, 1986c; Gardner, 1987a, Chapter
13), and computationally efficient digital algorithms and architectures for some of
these, which are developed in (Roberts et al., 1991; Brown and Loomis, 1992), are
presented in Article 6 in this volume. The statistical behavior (bias and variance) of
such estimates is analyzed in detail in (Gardner, 1986c; Gardner, 1987a, Chapter 15,
Sec.' B; Brown and Loomis, 1992), and in Chapter 6 in this volume. For the purpose
of making the applications described in Section 4 more concrete, it suffices here to
simply point out that because the SCD SZ(f') is equivalent to a particular case of
the conventional cross spectral density S,,(f) (cf. (40)), one can envision any of the
conventional methods of cross spectral analysis as being used in the applications.

Example 9: QPSK As an example, the result of using the Wiener-Daniell
method (Gardner, 1987a, Chapter 7, Sec. D), based on frequency smoothing of the
cross-periodogram of u(¢) and v(¢) (the conjugate product of their FFTs), is illustrated
in Fig. 21 for a QPSK signal with carrier frequency f, = 1/47; and keying rate
1/T, = 1/8T;, where 1/ T is the sampling rate. An FFT of length 128 (T = 1287})
was used in Fig. 21a, and only four frequency bins were averaged together (B = 4/T)
to produce each output point, whereas, in Fig. 21b, the FFT length used was 32,768
(I' = 32,768T) and 1,024 bins were averaged together (B = 1,024/ T). It is easily
seen by comparing with the ideal SCD in Fig. 20b that without adequate spectral
smoothing the variability of the SCD estimate can be very large.
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-5/To R 5/To

Figure 21: Magnitude of a spectral correlation density (SCD) estimate obtained from
a finite-length data record for the QPSK signal whose ideal SCD is shown in Fig. 20b.
(2) Record length is 128 time samples, and four adjacent frequency ( f) bins are averaged
together. (b) Record length is 32,768 and 1,024 adjacent frequency ( /) bins are averaged
together. (The sampling rate in both (a) and (b) is 10/ T,,, where 1/ T, is the keying rate
of the QPSK signal.)

4 EXPLOITATION OF CYCLOSTATIONARITY

This section describes some ways of exploiting sine-wave generation and the inher-
ent spectral redundancy associated with the spectral correlation in cyclostationary
signals to perform various signal-processing tasks. These include detecting the pres-
ence of signals buried in noise and/or severely masked by interference; recognizing
such corrupted signals according to modulation type; estimating parameters such
as time-difference-of-arrival at two reception platforms and direction of arrival at a
reception array on a single platform; blind-adaptive spatial filtering of signals imping-
ing on a reception array; reduction of signal corruption due to cochannel interference
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and/or channel fading for single-receiver systems; linear periodically time-variant
prediction; and identification of linear and nonlinear systems from input and output
measurements. The descriptions include brief explanations of how and why the signal
processors that exploit sine-wave generation or spectral redundancy can outperform
their more conventional counterparts that ignore cyclostationarity. References to
more detailed treatments are given throughout. It should be clarified at this point
that although the classical theory of statistical inference and decision is certainly
applicable in principle to cyclostationary signals (modeled either as stochastic pro-
cesses or as nonstochastic time-series with fraction-of-time probability models, cf.
Section 2), the types of problems where exploitation of cyclostationarity can really
pay off are often not amenable to the classical theories (e.g., Bayes minimum risk
and maximum likelihood) because of analytical intractability and implementational
complexity. Thus, the techniques surveyed here are for the most part ad hoc, but
nevertheless very powerful.

4.1 Spectral Redundancy

The existence of correlation between widely separated spectral components (separa-
tion equal to a cycle frequency «) can be interpreted as spectral redundancy. The
meaning of the term redundancy that is intended here is essentially the same as that
used in the field of information theory and coding. Specifically, multiple randomly
fluctuating quantities (random variables) exhibit some redundancy if they are sta-
tistically dependent, for example, correlated. In coding, undesired redundancy is
removed from data to increase the efficiency with which it represents information,
and redundancy is introduced in a controlled manner to increase the reliability of
storage and transmission of information in the presence of noise by enabling error
detection and correction.

Here, redundancy that is inadvertently introduced into signals by the modula-
tion process is to be exploited to enhance the accuracy and reliability of information
gleaned from the measurements of corrupted signals, but the term information is
interpreted in a broad sense. For instance, it includes the eight examples outlined
in Section 1.2. In all of these examples, the performance of the signal processors
that make the decisions and/or produce the estimates can be substantially improved
by suitably exploiting spectral redundancy. The degree of improvement relative to
the performance of more commonly used signal processors that ignore spectral re-
dundancy depends on both the severity of the signal corruption (noise, interference,
distortion) and the degree of redundancy in the signal x (¢), as measured by the mag-
nitude of the spectral correlation coefficient | p2(f )‘ (or its conjugate counterpart)
defined in Section 3. The degree of improvement also depends on the amount of
data available for processing (the collection time). The utility of exploiting spectral
redundancy can also be enhanced by intentionally designing the signal to exhibit a
sufficient amount of spectral redundancy.

The primary feature of spectral redundancy that enables it to be readily ex-
ploited is its distinctive character. That is, most man-made signals exhibit spectral
redundancy, but most noise (all noise that is not cyclostationary) does not and, more
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importantly, when multiple signals of interest and signals not of interest (interference)
overlap in both time and frequency, their spectral redundancy functions are nonover-
lapping because their cycle frequencies o are distinct. This is aresult of signals having
distinct carrier frequencies and/or pulse rates or keying rates, even when occupying
the same spectral band.

The distinctive character of spectral redundancy makes signal-selective mea-
surements possible. Specifically, for the received composite signal

L
x(t) =) se(®) +n(0), (87)
=1

where the set {s, (t)}f includes both signals of interest and interference—all of which
are statistically independent of each other—and where n(¢) is background noise, we
have the SCD (for measurement time 7 — o0)

L
SEUN) =D SH) +SE). (88)
=1

But if the only signal with the particular cycle frequency a = ay is s;(¢), then (for
T — o0) we have

SEf)=850f), (89)

regardless of the temporal or spectral overlap among {s, (z‘)}f and also n(¢). This
perfect signal selectivity of ideal SCDs implies that practical measurements of SCDs
or their parameters can be made signal selective for measurement times t that are
long enough.

Example 1: BPSK Signal in Multiple AM Interference and Noise To il-
lustrate the concept of signal selectivity, let us consider the situation in which a
broadband BPSK signal of interest is received in the presence of white noise and five
interfering AM signals with narrower bandwidths that together cover the entire band
of the BPSK signal. The noise and each of the five interfering signals have equal
average power. Therefore, the total signal-to-interference-and-noise ratio (SINR) is
approximately —8 dB. The BPSK signal has carrier frequency f, = 0.25/7, and
keying rate o, = 0.0625/ T;. It has full-duty-cycle half-cosine envelope, which re-
sults in an approximate bandwidth of B, = 0.1875/7;. The five AM signals have
carrier frequencies f; = 0.156/ Ty, f, = 0.203/T,, f3 = 0.266/ Ty, fo = 0.313/ Ty,
fs = 0.375/T;, and bandwidths B; = 0.04/7T,, B, = 0.05/T,, B; = 0.045/T,,
By = 0.04/T5, Bs = 0.08/T,. With the use of the same measurement parameters
(FFT length = 32,768) as in Example 9 in Section 3 for the measurement of the SCD
of QPSK, the SCD for these six signals in noise was measured. The resultant SCD
magnitude is shown in Fig. 22a. Also shown in Fig. 22b, c are the SCD magnitudes
for the BPSK signal alone and for the five AM interferences plus noise alone. Al-
though all six signals exhibit strong spectral redundancy (|o%(f)| = 1), the cycle
frequencies « at which this redundancy exists are distinct because the carrier frequen-
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Figure 22: Magnitudes of estimated spectral correlation densities (SCDs). (a) SCD
magnitude for a BPSK signal corrupted by white noise and five AM interferences. (b)
SCD magnitude for the BPSK signal alone. (¢) SCD magnitude for the white noise and
five AM interferences. (The power levels, center frequencies, and bandwidths for the
signals and noise are specified in the text; the record length used is 32,768 time samples,
and 1,024 adjacent frequency (/') bins are averaged together.)
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cies are all distinct. Thus, an accurate estimate of the SCD for the BPSK signal is
easily extracted from the SCD for the corrupted measurements. Similarly, accurate
estimates of the SCDs for each of the five AM signals can be extracted. Consequently,
any information contained in these SCDs can be reliably extracted.

In connection with this example, let us briefly consider some of the signal-
processing tasks outlined in Section 1.2.

4.2 Detection and Classification

We can see from Fig. 22 that knowing the particular pattern of the SCDs for BPSK and
AM signals (see Figs. 13 and 20) enables us to detect the presence of six signals and
to classify them according to modulation type. This would be impossible if only PSD
(SCD at @ = 0) measurements were used. One approach to exploiting the spectral
redundancy of a signal to detect its presence is to generate a spectral line at one of
its cycle frequencies and then detect the presence of the spectral line (cf. Section 3).
It has been shown that the maximum-SNR spectral-line generator for a signal s(7)
in additive Gaussian noise and interference with PSD S, () produces the detection
statistic (cf. (Gardner, 1987a, Chapter 14, Sec. E) for continuous time)

1/2 R Sa(f)*
— Sa S
2= S S TS -

for comparison to a threshold. In (90), S’;‘ (f) is a crude estimate of S () obtained
by deleting the time-averaging operation (-) and the limiting operation from (37) and
choosing B equal to the reciprocal of the record length of x(#). It can be shown
that (90) is equivalent to whitening the noise and interference using a filter with
transfer function 1/ [S, (f )]'/2, and then correlating the measured SCD for the noise-
and-interference-whitened data with the ideal SCD of the signal, as transformed by
the whitener, to be detected (Gardner, 1987a, Chapter 14, Sec. E). Equivalently, for
noise consisting of a white component plus strong narrowband components, (90)
corresponds to attenuating the narrowband components well below the white-noise
component—i.e., excising the narrowband components—using a filter with transfer
function 1/, ( 1), and then correlating the measured SCD for the narrowband-excised
data with the ideal SCD of the signal (untransformed by the excision filter).

A detailed study of both optimum (e.g., maximum-likelihood and maximum-
SNR) and more practical suboptimum detection on the basis of SCD measurement is
reported in (Gardner, 1988b), and receiver operating characteristics for these detectors
obtained by simulation are presented in (Gardner and Spooner, 1992a, 1993). See
also (Zivanovich and Gardner, 1991).

df (90)

4.3 Parameter Estimation

Once the six signals have been detected and classified, their carrier frequencies and
phases and the keying rate and phase of the BPSK signal can—with sufficiently long
signal duration—be accurately estimated from the magnitude and phase of the SCD
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(cf., f5,0 in (43) and T,, ¢ in (75)) (Gardner and Spooner, 1993). It is clear from
the theory discussed in Section 3 that SCD measurement is intimately related to the
measurement of the amplitudes and phases of sine waves generated by quadratic
transformations of the data. Thus, the fact that an SCD feature occurs at @ = 2 f,
for each carrier frequency f, is a direct result of the fact that a sine wave (spectral
line) with frequency o = 2 f, and phase 26 can be generated by putting the data
through a quadratic transformation. Similarly, for the SCD feature at « = 1/ Ty,
where 1/ Ty is the keying rate, a spectral line with frequency o = 1/7, and phase
& can be quadratically generated. Consequently, SCD measurement is useful either
directly or indirectly for estimation of synchronization parameters (frequencies and
phases) required for the operation of synchronized receivers. The link between syn-
chronization problems and spectral redundancy is pursued in (Gardner, 1986a) and
also in Article 2 in this volume.

4.4 Time-difference-of-arrival Estimation

The cross SCD S, (f) for two signals x(¢) and w(¢) is defined in a way that is
analogous to the definition (37) and (24) of the auto SCD S?(f). Thatis, x(¢) in
(24a) is simply replaced with w(¢). If we were to compute the cross SCD for two
sets of corrupted measurements obtained from two reception platforms, then the cross
SCD magnitude would look very similar to that in Fig. 22 (except that the low flat
feature at « = 0, which represents the PSD of the receiver noise, would be absent),
but the phase of the cross SCD would contain a term linear in f at each value of «
where the auto SCD of one of the six signals is nonzero. The slope of this linear
phase is proportional to the time-difference-of-arrival (TDOA) of the wavefront at
the two platforms for the particular signal with that feature. That is, for x(¢) from
one platform given by (87) and w(#) from the other platform given by

L
w(t) =Y st — 1) +m() ©1)

£=1

where {#,;} are the TDOAs, we have
Se (f) = SE(f)age U H/Di 92)

provided that s, (¢) is the only signal with cycle frequency «. Consequently, accurate
estimates of the TDOAs of each of these signals can be obtained from the cross SCD
measurement, regardless of temporal and spectral overlap or of the closeness of the
individual TDOAs. In other words, the signal selectivity in the o domain eliminates
the problem of resolving TDOAs of overlapping signals.

For example, it follows from (89) and (92) that

Siox (F) i (fa/2)t
= gy e 2T (Ha/ 93
sa(f) % ©3)

over the support band of S (/). This suggests doing a weighted least-squares fit,
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with respect to a, and #;, of a measurement of the left side of (93) to the right side:
2
12 .
min / War) | Sl g pmintrran
dg,fe -1/2

S (f )
where W, (f) is some weighting function. After minimization with respect to a,,
this reduces to

af 94)

max{/ Z e S i 4 } .
fe 1/2 Sa(f)

The two algorithms corresponding to the two choices W, (f) = SF(f) (which
yields the SPECCOA method) and W,(f) = 1 over some band (which yields the
SPECCORR method), along with several other related algorithms are studied in de-
tail in (Gardner and Chen, 1992; Chen and Gardner, 1992; Gardner and Spooner,
1993), where excellent robustness to unknown and/or varying noise and interference
is demonstrated. Itis also shown in Article 3 in this volume that this approach is easily
generalized to the problem of multipath channel identification where multiple #, and a,
for a single signal are to be estimated using the least-squares criterion (94) with a sum
over £ included (provided that the multiple #, are resolvable, i.e., spaced farther apart
than the width of the inverse discrete Fourier transform of |W,, (/) |2 S () SEN.

4.5 Spatial Filtering

Continuing in the same vein, we consider receiving these same six signals in noise
with an antenna array. Then we can use the signal selectivity in « to blindly adapt
(without any training information other than knowledge of the cycle frequency o«
of each signal of interest) adapt a linear combiner of the complex-valued outputs
from the elements in the array to perform spatial filtering. Specifically, by directing
the linear combiner to enhance or restore spectral redundancy (or conjugate spectral
redundancy) in its output at a particular cycle frequency «, the combiner will adapt
to null out all other signals (if there are enough elements in the array to make this
nulling possible). This behavior of the combiner can be seen from the fact that the
spectral correlation coefficient for x (¢) in (87) is (from (89))

Ss, ()

¢ = , 96
7 [Sc(f + /)8 (f — a/2)]? ©o
where .
S =) S () + Su( ), ©7)
k=1

and, similarly, the temporal correlation coefficient for the frequency-shifted versions
of x(t) is
RS, (7)

R.(0)’

Yo () = (98)
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where

L
Re(0) =) Ry(0) + R,(0). (99)
k=1

Thus, nulling signals other than s,(#) in the output x(¢) of the linear combiner and
attenuating the noise 7(¢) in x (z) reduces the denominators in (96) and (98) but not
the numerators. Hence, |pg (f )] and |y)f‘ (r)| can be increased by attenuating the
noise and nulling any of the signals other than s¢(¢). Moreover, the linear combiner
needs no knowledge of the reception characteristics of the array (no calibration) to
accomplish this attenuation and nulling. A thorough study of spectral-coherence-
restoral algorithms that perform this blind adaptive spatial filtering is reported in
(Schell and Agee, 1988; Agee et al., 1990; Schell and Gardner, 1993b) and a tutorial
discussion is given in Chapter 3 in this volume.

4.6 Direction Finding

We can take this approach one step further if we do indeed have calibration data for the
reception characteristics of an antenna array because we can then also exploit signal
selectivity in & to perform high-resolution direction finding (DF) without some of the
drawbacks (described below) of conventional methods for high-resolution DF, such
as subspace fitting methods (Schell and Gardner, 1993a), that do not exploit spectral
redundancy. In particular, let us consider the narrowband model

L
x(t) =) an)si(t) + n() (100)
£=1

for the analytic signal (or complex envelope) x of the received data vector of dimension
r, where a(0;) is the direction vector associated with the £-th received signal s, (¢), and
the function a(-) is specified by the calibration data for the array. Then, by working
with the magnitude and phase information contained in the » x r cyclic correlation
matrix

R:(t) =R (v) = a(@) R ()" (6)) (101)

for some fixed T (where 1 denotes conjugate transpose), instead of working with the
information contained in the conventional correlation matrix

L

L
R.(0) = Ry (0) + Ry(0) = ) a0 R,,(0)a’ (B) + Ru(0)  (102)
=1 £=1

we can avoid the need for advance knowledge of the correlation properties of the
noise R,(0) and interference R, (0) for £ # k, and we can avoid the constraint
imposed by conventional methods that the number of elements in the array exceed
the total number L of signals impinging on the array. Also, by resolving signals in
o, we need not resolve them in direction of arrival. Consequently, superior effective
spatial resolution is another advantage available through the exploitation of spectral
redundancy. As an example of a cyclostationarity-exploiting DF method, we can use
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the fact that the » x » matrix in (101) has a rank of unity and the (» — 1)-dimensional
null space of this matrix is orthogonal to a(6;). Therefore, we can choose as our
estimate of 6; that value ék which renders a(ék) most nearly orthogonal to the null
space of an estimate of the matrix R% (t) obtained from finite-time averaging. Similar
remarks apply to the conjugate cyclic autocorrelation matrix. A thorough study of this
approach to signal-selective DF is reported in (Schell et al., 1989; Schell, 1990; Schell
and Gardner, 1991), where various algorithms are introduced and their performances
are evaluated, and a tutorial discussion is given in Chapter 3 in this volume.

In the preceding paragraphs of this Section 4, the signal-processing tasks (with
the exception of spatial filtering) involve decision or parameter estimation, but do not
involve estimating (or extracting) an entire signal or an information-bearing message
carried by the signal. Nevertheless, for the signal-extraction problem, the utility of
spectral redundancy is just as apparent, as explained in the following paragraphs.

4.7 Signal Extraction

Spectrally redundant signals that are corrupted by other interfering signals can be more
effectively extracted in some applications by exploiting spectral correlation through
the use of periodic or multiply-periodic linear time-variant filters, instead of the more
common time-invariant filters. These time-variant filters enable spectral redundancy
to be exploited for signal extraction, because such filters perform frequency-shifting
operations (cf. (70)) as well as the frequency-dependent magnitude-weighting and
phase-shifting operations performed by time-invariant filters. The utility of this is
easily seen for the simple example in which interference in some portions of the
spectral band of the signal is so strong that it overpowers the signal in those partial
bands. In this case, a time-invariant filter can only reject both the signal and the
interference in those highly corrupted bands, whereas a time-variant filter can replace
the rejected spectral components of the signal of interest with spectral components
from other uncorrupted (or less corrupted) bands that are highly correlated with the
rejected components from the signal.

AM is an obvious example of this because of the complete redundancy that exists
between its upper sideband (above the carrier frequency) and its lower sideband (below
the carrier frequency). Although this redundancy is exploited in the conventional
double sideband demodulator to obtain a 3-dB gain in SNR performance, it is seldom
exploited properly when partial-band interference is present. The proper exploitation
in this case is illustrated in Fig. 23. Figure 23a shows the spectral content (Fourier
transform magnitude of a finite segment of data) for an AM signal with partial-band
interference in the upper sideband. Figure 23b shows the spectral content after the
interference has been rejected by time-invariant filtering. The signal distortion caused
by rejection of the signal components along with the interference can be completely
removed by simply shifting replicas of perfectly correlated components from the
lower sideband into the upper sideband, and then properly adjusting their magnitudes
and phases, as suggested in Fig. 23c.

A less easily explained example involves two spectrally overlapping linearly
modulated signals such as AM, PAM, ASK, PSK, or digital QAM (quadrature AM).
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(b)

Figure 23: Tllustration of power spectral densities (PSDs) for cochannel-interference
removal with minimal signal distortion. (a) PSD for AM signal plus interference. (b)
PSD after interference removal by time-invariant filtering. (c) PSD after distortion
removal by frequency-shifting.

It can be shown that, regardless of the degree of spectral and temporal overlap, each of
the two interfering signals can be perfectly extracted by using frequency shifting and
complex weighting, provided only that they have either different carrier frequencies or
phases (AM, ASK, BPSK) or different keying rates or phases (PAM, ASK, PSK, dig-
ital QAM) and at least 100% excess bandwidth (bandwidth in excess of the minimum
Nyquist bandwidth for zero intersymbol interference). In addition, when the excess
bandwidth is (L — 1)100%, L spectrally overlapping signals can be separated if they
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have the same keying rate but different keying phases or carrier frequencies. Also,
when broadband noise is present, extraction of each of the signals can in many cases
be accomplished without substantial noise amplification. To illustrate the potential
for signal separation in this case, consider L digital QAM signals with (L — 1)100%
excess bandwidth, all sharing the same carrier frequency and keying rate, but with
distinct keying phases. Then for any particular frequency f in the Nyquist band the
received spectral component at that frequency is a weighted sum of the L spectral
components of the L individual signals at that same frequency f and the same is true
at the L — 1 additional frequencies separated by the keying rate, except that the sets
of L weights in each of these L weighted sums are distinct, although the L sets of
L spectral components are all identical (because the spectral correlation coefficients
are unity in magnitude). Thus, for each frequency within the Nyquist band, we have
L equations with L unknowns. In practice, the L x L array of weights also will be
unknown and will have to be adaptively learned.

This particular problem of separating multiple digital QAM signals sharing the
same carrier frequency (or baseband PAM signals) and sharing the same keying rate
is explored in Article 1 in this volume.

To gain additional insight into how spectrally overlapping signals can be sep-
arated by frequency-shift filtering, we consider the case of two QPSK (quadrature-
phase-shift-keyed) signals with unequal carrier frequencies and unequal keying rates
and 100% excess bandwidth. The graphs in Fig. 24 show the overlapping spectra for
these two signals. Starting from the top of this figure, each pair of graphs illustrates
the result of one filtering and frequency-shifting stage. The subband shaded with a
single set of parallel lines represents spectral components from one signal that are not
corrupted by the other signal. These components are selected and complex-weighted
by a filter and then frequency-shifted to cancel the components in another subband,
which is identified by crosshatched shading. The result of this cancellation is shown
in the second graph (which contains no shading) of each pair. After five such stages, a
full sideband of each of the two QPSK signals has been completely separated. In each
stage the complete spectral redundancy between components separated by the keying
rate is being exploited, and this same spectral redundancy can be used to reconstruct
the entire QPSK signal from either one of its sidebands.

The five cascaded stages of filtering, frequency-shifting, and adding operations
canbe converted into one parallel connection of frequency-shifters, each followed by a
filter, simply by using standard system-transformations to move all frequency-shifters
to the input.

Further insight into how spectrally overlapping signals can be separated by
frequency-shift filtering can be gained by considering the case of two double sideband
AM signals with suppressed carrier (or, equivalently, two ASK signals, or one AM
and one ASK) with different carrier frequencies and any amount of spectral over-
lap. For each of these signals the upper sideband is completely redundant with the
lower sideband. Consequently, if we were to reflect the complex spectrum about its
center—its downconverted carrier frequency—say f7, by replacing frequency f with
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Figure 24: Illustration of power spectral densities for cochannel-QPSK-signal sepa-
ration. The keying rates of the two signals are different and the carrier frequencies also
are different. Each QPSK signal has a positive-frequency bandwidth equal to twice its
keying rate.

2fi — f for all f, and we were to shift its phase so that the downconverted carrier
phase becomes zero, and we were to conjugate this reflected phase-shifted spectrum,
then we would obtain precisely the original spectrum. Thus, if we subtracted the
conjugated, phase-shifted, reflected spectrum from the original spectrum, we would
cancel the signal. This cancellation in the frequency domain is equivalent to simply
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downconverting the signal to a carrier frequency and phase of zero and then conjugat-
ing the time-domain signal and subtracting it from the unconjugated downconverted
time-domain signal. However, in the process of cancelling the signal downconverted
to zero frequency, we introduce severe distortion to the other signal present, which
is downconverted to frequency f> — fi # O: there will be two replicas of the signal
present, with carrier frequencies of f> — f1 and f; — f>. Nevertheless, by downcon-
verting the processed data so that one of the two replicas present (either the original
signal or its conjugate that was added in the first stage of processing) has carrier
frequency and phase of zero, we can again subtract the conjugate of this processed
data to cancel one of the two replicas present. This will introduce new distortion;
that is, there will again be two replicas of the signal present, but this time the carrier
frequencies will be 2| — fil. By proceeding through N = B/2|fo— fil =1
stages of downconverting, conjugating, and subtracting (where B is the bandwidth
of the signal with original carrier frequency f), we end up with two nonoverlapping
replicas of the signal, which can be separated with a filter.

When signal distortion due to convolution (e.g., from passage through a channel)
is present, this procedure will still work, in principle, provided that a filtered version
of the conjugated data is subtracted at each stage. The challenge in practice is to find
a way to adapt the filter needed to obtain effective cancellation.

A final example involves the reduction of the signal distortion due to frequency-
selective fading caused by multipath propagation. Straightforward amplification in
faded portions of the spectrum using a time-invariant filter suffers from the resul-
tant amplification of noise. In contrast to this, a periodically time-variant filter can
replace the faded spectral components with stronger highly correlated components
from other bands. If these correlated spectral components are weaker than the orig-
inal components before fading there will be some noise enhancement when they are
amplified. But the amount of noise enhancement can be much less than that which
would result from the time-invariant filter, which can only amplify the very weak
faded components.

Detailed studies of the principles of operation and the mean-squared-error perfor-
mance of both optimum and adaptive frequency-shift filters are reported in (Gardner,
1987a, Chapter 14, Secs. A, B; Gardner, 1990a, Chapter 12, Sec. 12.8; Gardner
and Brown, 1989; Reed and Hsia, 1990; Gardner, 1993). See also (Zivanovich and
Gardner, 1991).

4.8 Prediction and Causality

If a signal is correlated with time-shifted versions of itself (i.e., if itis not a white-noise
signal), then its past can be used to predictits future. The higher the degree of temporal
coherence Iy)? () ] , the better the prediction. A signal that exhibits cyclostationarity is
also correlated with frequency-shifted versions of itself. Consequently, its future can
be better predicted if frequency-shifted versions of its past also are used, so that its
spectral coherence as well as its temporal coherence can be exploited. For example,

if x(¢) has cycle frequencies {a1, ..., ay—1} then we can estimate the future value
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x(¢t + 1) for some T > 0 using a linear combination of the present and past values of
the N signals '
x,(t) = x(t) e*™"  forq =0,...,N — 1. (103)

That is, the predicted value is given by

M—-1N-1

e+ =Y haw)xglt —ul, (104)

u=0 g=0

where M is the memory-length of the predictor. The setof M N prediction coefficients
that minimize the time-averaged (over ¢) squared magnitude of the prediction error
X (t+1)—x(t-+7) canbe shown to be fully specified by the cyclic correlation functions
for the N cycle frequencies. Specifically, the set of M N coefficients {hq (u)} is the
solution to the set of M N simultaneous linear equations

M—-1N-1 ) )
Z Z hq(u)R;‘p—aq t —u) el ap—ag)t—u) _ R;‘p t+71) £ T (t+T) (105)
u=0 ¢=0

fort =0,...,M—1land p =0, ..., N—1. Also, the percent accuracy of prediction
is determined solely by the temporal coherence functions (29) for the frequency
translates. It can be shown that for each cycle frequency «, exploited, there is a
corresponding increase in the percent accuracy of the prediction.

In the same way that time-invariant autoregressive model-fitting of station-
ary time-series data is mathematically equivalent to time-invariant linear predic-
tion (Gardner, 1987a, Chapter 9, Sec. B), it can be shown that frequency-shift (or
polyperiodic time-variant) autoregressive model-fitting is mathematically equivalent
to frequency-shift linear prediction. Studies of this problem are reported in (Brels-
ford, 1967; Pagano, 1978; Miamee and Salehi, 1980; Tiao and Grupe, 1980; Sakai,
1982, 1983, 1990, 1991; Vecchia, 1985; Obeysekera and Salas, 1986; Li and Hui,
1988; Anderson and Vecchia, 1992). Also, the univariate prediction problem for
cyclostationary (not polycyclostationary) time-series is equivalent to the multivariate
prediction problem for stationary time-series (Pagano, 1978). This follows from the
representation of univariate cyclostationary time-series in terms of multivariate sta-
tionary time-series (Gladyshev, 1961; Gardner and Franks, 1975). A survey of recent
results in prediction theory for cyclostationary processes is given in Article 7 in this
volume.

A measure of the degree to which one time-series causes another time-series is
the degree to which the present and past of the former can linearly predict the future
of the latter. If the two time-series are jointly cyclostationary, then cyclic as well as
constant causality is possible. In fact, by considering only time-invariant predictors,
it is possible to conclude for some pairs of time-series that no causality exists when,
in fact, one time-series is perfectly cyclically caused by the other. An example of this
is x(¢) = z(¢) and y(t) = z(t — t) cos(¢), where t > 0 and z(¢) is an independent
identically distributed sequence. The best linear time-invariant predictor of y(¢) using
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the past of x (¢) is (¢) = 0, whereas the best linear periodically time-variant predictor
is P(t) = x(t — ) cos(t) = y(¢), which yields perfect prediction. Moreover, if z(¢)
takes on values of only +1, it is particularly easy to show for this example that

("t =)y () = ("t — ) (V" (@)

for all positive integers m, n, and s. Consequently, even the best nonlinear time-
invariant predictor is $(¢) = 0.

4.9 Linear and Nonlinear System Identification

The cyclostationarity of signals passing through linear time-invariant systems can be
exploited in several ways for the purpose of using input/output or output-only mea-
surements to identify the system. In the case where the input/output measurements
are corrupted by additive noise and/or interfering signals, the signal selectivity prop-
erty associated with cyclostationarity can be used to obtain (asymptotically) complete
immunity to this corruption. As explained in more detail in (Gardner, 1990b), the
transfer function H(f") of a system with corrupted input w(#) and corrupted output
x(t) is given by

Sew(f —a/2)

Sw(f —a/2)
regardless of the additive corruption in w(¢) and x(¢), provided only that « is a
cycle frequency of the uncorrupted system-input and is not a cycle frequency of the
corruption, and that the support of the SCD S%, (f — «/2) in f covers the whole
passband of the system.

Also, in the case where corrupted output-only measurements are available, the
fact that the spectral correlation function SZ(f) of the system output contains infor-
mation about the phase as well as the magnitude of the transfer function A (f) (cf.
(49)) means that blind identification of the system using only second-order statistics
(SCD and PSD) is possible (Gardner, 1991c). One particularly simple scheme for
blind channel equalization for digital QAM signals (or PAM signals) uses the fact
that over each and every symbol interval, the channel output is the sum of noise and a
linear combination of the same functions (viz., {ht —nT): n=0,41,4£2, ...} for
0 <t < T, where T is the length of the symbol interval, and %(¢) is the combined
impulse response function of the transmitter’s pulse-shaping filter and the channel.
Consequently, the first term of an empirical Karhunen-Loeve expansion of the channel
output over one symbol interval obtained from an eigendecomposition of the empiri-
cal output autocovariance matrix over one symbol interval (measured by performing
synchronized averaging over multiple symbol intervals) can be used to equalize the
channel. (This is particularly so when the symbol sequence and noise are both white.)
That is, the eigenvector ; corresponding to the largest eigenvalue will tend to be
colinear with the channel output pulse over one symbol interval and ortho gonal to the
tails within this interval from the pulses centered in other symbol intervals. Thus, the
inner product
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nT—1
ap= Y w®)ei®
t=(n—1)T

of this eigenvector with the channel output (for the nth symbol interval with length 7')
can suppress intersymbol interference and provide an accurate estimate of the symbol
in each interval.

The aforementioned synchronized average that provides the empirical autoco-
variance matrix is given by

1 il .
N1 n;Nx(t+nT)x (s +nT)

for the ¢s element of the 7’ x T matrix (assuming the sampling increment is 7, = 1).

This straightforward approach is the special case of a more general approach
(corresponding to the choice of parameters K = L = 0) proposed by Schell in
Chapter 3 in this volume, where the results of a simulation of this special case are
presented. Schell’s more general method is derived from another approach based on
least-squares filtering of a cyclostationary signal model to the channel output. Other
approaches are described in Articles 4 and 5 in this volume.

A popular approach to the identification of nonlinear dynamical systems from
input-output measurements is to model the system in terms of the Volterra series,
which is a generalization of the power-series (or polynomial) representation of a
memoryless system to systems with memory, and then to identify one-by-one the
Volterra kernels, each one of which characterizes one term in the series representation.
The first kernel is the impulse response of the linear part of the system. The second
kernel is a two-dimensional generalization of the impulse response of the quadratic
part of the system, and so on. Common approaches to identifying the kernels are
based on crosscorrelation measurements between the unknown-system output and
specially designed nonlinear functions of the system input.

Although the fundamental theory of this crosscorrelation approach to nonlin-
ear system identification is built on the foundation of stationary random processes
or time-series (Schetzen, 1989), it has recently been shown (Gardner and Archer,
1993) that substantial advantages can be gained by using cyclostationary inputs to the
unknown system and cyclic crosscorrelations. In particular, desirable orthogonality
(zero-correlation) properties between the system output and nonlinear functions of
the input that are not possible for stationary inputs are possible for cyclostationary
inputs, and this leads to particularly convenient designs for the inputs and the non-
linear functions. Moreover, this approach of exploiting cyclostationarity to identify
time-invariant systems has recently been generalized to identify polyperiodic non-
linear systems (Gardner and Paura, 1992). In (Gardner and Archer, 1993; Gardner
and Paura, 1992), the basic theory of this new approach is presented for both a time-
domain method, which directly identifies the Volterra kernels or their polyperiodic
counterparts, and a frequency-domain method, which directly identifies the multi-
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dimensional Fourier transforms of the kernels—the Volterra transfer functions, and
several examples of cyclostationary inputs and corresponding nonlinear functions are
given. This work exploits higher-than-second-order cyclostationarity, the principles
of which are given in Chapter 2 in this volume.
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- Chapter 2

Higher-Order Statistics
for Nonlinear Processing
of Cyclostationary Signals

Chad M. Spooner
Department of Electrical and Computer Engineering
University of California
Davis, CA 95616

1 INTRODUCTION TO HIGHER-ORDER
CYCLOSTATIONARITY

This chapter presents a tutorial introduction to the theory and application of higher-
order cyclostationarity and is an adaptation and extension of the fourth plenary lecture
given at the Workshop on Cyclostationary Signals [111] held in August 1992. As the
title indicates, this chapter is generally concerned with higher-order statistics (HOS),
which means moments and cumulants with orders greater than two. It is specifically
concerned with the higher-order statistics of polycyclostationary signals, the study
of which is called higher-order cyclostationarity (HOCS). This tutorial explains the
mathematical structure of the moments and cumulants of polycyclostationary signals
in both the time and frequency domains, provides practical interpretations of these
moments and cumulants, discusses several applications of the theory, and presents
nonparametric estimators of the higher-order statistics, which are generalizations of
nonparametric autocorrelation and spectrum estimators for stationary signals and for
order two to polycyclostationary signals and to arbitrary orders.

The word signal is used in this chapter to mean a single persistent time-series
with finite time-averaged power. This is somewhat unusual because the study of

This work was supported jointly by the National Science Foundation under grants MIP-88-12902
and MIP-91-12800, PI: W. A. Gardner, and by the United States Army Research Office under contract
DAAL03-91-C-0018, PI: W. A. Gardner.
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higher-order statistics is usually carried out in the framework of stochastic process
theory. However, it has been demonstrated that the theory of second-order poly-
cyclostationarity (SOCS) is more naturally developed in the time-series framework
because it closes the conceptual gap between the abstract probability space quanti-
ties of the theory and the empirical quantities of interest in practice [34, 35, 43, 45,
52, 53, 110]. For example, it has the benefit of permitting the sine-wave-generation
interpretation of cyclostationarity, which in turn has led to a unique derivation of the
cumulant (Section 2.3).

A signal x (¢) is second-order cyclostationary (in the wide sense, cf. [52]) if there
exists a quadratic transformation, such as a squarer, of x (¢) such that the output of this
transformation contains at least one finite-strength additive sine-wave component with
nonzero frequency. Equivalently—but not obviously—a signal x (#) is second-order
cyclostationary if the amplitude and phase fluctuations of some narrowband frequency
components with center frequencies that are separated by a nonzero amount are tem-
porally correlated; that is, x (¢) is second-order cyclostationary if it exhibits spectral
correlation. The frequencies of the quadratically generated sine-wave components
and the frequency separations of the correlated spectral components are specified by
the same set of numbers. These numbers are most commonly called cycle frequencies,
but are also called frequency separations. If the cycle frequencies are not all harmon-
ically related, then the signal is said to be polycyclostationary (cf. Chapter 1). The
subject of HOCS is the study of the additive sine-wave components in the outputs of
higher-than-second-order nonlinear transformations of x(¢). Equivalently—but not
obviously—it is the study of the temporal statistical dependence between more than
two spectral components of x(¢). Important examples of modulations that produce
polycyclostationary signals are analog and digital amplitude and frequency modu-
lation, and digital quadrature-amplitude modulation (QAM) (which includes some
phase-shift-keyed and amplitude-shift-keyed signals as special cases) [37, 38]. Nat-
urally occurring signals can also exhibit polycyclostationarity [35, 52].

The existence of unintentional, unavoidable, and purposely designed nonlinear
transformations forms the basic motivation for studying the statistics of arbitrary non-
linear transformations of polycyclostationary signals. Unintentional and unavoidable
nonlinearities can be found in the components of receivers and signal processors,
such as amplifiers and modulators. When polycyclostationary signals are processed
by these components, spectral lines can appear in the output. To characterize the
performance of systems containing these components, a statistical characterization
of the dependence of the frequencies, amplitudes, and phases of these spectral lines on
the inputs is necessary. Purposely designed nonlinearities include quadratic timing-
recovery circuits, such as the delay-and-multiply circuit, fourth-power carrier-phase
recovery devices for digital quadrature-amplitude-modulated signals with balanced
M-ary symbol constellations for M > 2, and other similar quadratic, quartic, and
higher-order processors for signal detection, modulation recognition, and parameter
estimation.

Nonlinear system models are common in many areas of scientific inquiry, such
as physics, biology, and engineering. It is often of interest to determine an appro-
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priate model for a particular system, and then to design and carry out experiments
to determine the model’s parameters. A common model for the relation between the
input and output of a nonlinear system is the Volterra series [102]. This model is
quite general and is used to motivate the choice of the particular statistical quantities
to be dealt with by the theory of HOCS that is developed in this chapter. Before
proceeding with this, however, the analytical tools of fraction-of-time probability are
defined, the relationship of the theory of HOCS to other theories that deal with the
statistical properties of nonlinearly transformed signals is clarified, and two specific
signal-processing problems are described in order to properly motivate the subsequent
development.

1.1 Fraction-of-Time Probability

In direct analogy with the joint probability distribution function defined for stochastic
processes, the nth-order fraction-of-time (FOT) probability distribution function for
the time-series x (¢), ¢ € (—00, 00) is defined by

Fo(y) = E® { [Tuly —xa +tj)]} M

=1
where

E'{a} (z(0)} AL Z(Z(t + u)e—ianxu> — Z(z(u)e~i2nau)ei2nat 2)
o o
is the multiple sine-wave extraction operation and

1 rZnr
(ww)) = lim 7/ w () du

Z—00 Z/2

is the usual time-averaging operation. In (1), U[-] is the event-indicator function

Uly; —x(t +1)] =
Ly ( 2 { 0, otherwise,

and the vectors x(¢) and y are specified by

x(t) = [x(t+4) - x(t + )17,

y= I -l
where t denotes matrix transpose. The sum in (2) is over all real numbers « for
which (z(u)e™"?") 3 0. The multiple sine-wave extraction operation £ {} is
completely analogous to the expectation operation E{-}. That is, it is shown in [45]
that the function (1) is a valid probability distribution function for the time-series for
which it exists.
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If the only nonzero term in the sum over « in (2) is that corresponding to o = 0,
then the time-series x(¢) is said to be stationary of order n (in the strict sense, cf.
[52]). On the other hand, if some terms corresponding to o = ( are also nonzero, then
x(¢) is said to exhibit nth-order cyclostationarity. If all such values of o are integer
multiples of a single fundamental frequency, corresponding to a period Tp, then x (¢) is
said to be cyclostationary of order n; otherwise x (¢) is said to be polycyclostationary
(or multiply cyclostationary or almost cyclostationary) of order n. In the latter case,
the FOT distribution function can be expressed as

Fay () = F9) + Y [Fraonr, () = K],
q

where
EX(y) = <1’[U[y,~ —x(t+rj>]>,
j=1

and Fygy.7,(y) is the FOT distribution obtained from (1) by summing in (2) over only
those values of « that are integer multiples of the distinct fundamental frequency
1/ 1.

The FOT probability density function is given by the n-fold derivative of the
FOT distribution function,

A 9"
S (¥) = Iy 39 Feoy (),
and has the properties normally associated with a probability density function. The
FOT expectation operation is defined in terms of the FOT probability distribution in
the natural way. Let g[x(#)] be any function of the vector of time-samples x(¢). If we
redefine the symbol E'®) {.} to mean the expected value with respect to the probability
density function (PDF) fx»(¥),

E glx()]} = f / gl ¥ feoy () dy, 3

then it can be shown that this expected value consists exactly of the finite-strength
additive sine-wave components that are present in g{x(#)] (cf. [45, 52]). Specifically

E® {glx()]) = )_ Mge™™, @

oo

where : '
Mg = (glx®)]e™™), ®)

which is consistent with the meaning given to E {-}in (2).
The FOT distributions and densities are not used explicitly (as in (3)) in this
chapter. Instead, the time-averages that characterize the FOT expectations are used
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directly as in (4) and (5). Thus, the primary purpose of the preceding discussion of
FOT probability is to show that the multiple-sine-wave extraction operation E
is completely analogous to the familiar probabilistic expectation operation E{-} and,
therefore, that the subsequent use of terms such as moment, cumulant, and character-
istic function is both appropriate and mathematically justified. For a more detailed
overview of the theory of FOT probability, see Chapter 1.

It is important to understand that the theory herein can be developed using
stochastic processes and Ef{-} instead of time-series and E {e} {.3. Doing so, how-
ever, results in a more abstract theory in the sense that it is another step removed from
practice. Specifically, developing the theory of HOCS using stochastic processes:
(i) requires a thorough understanding of ergodicity and cycloergodicity, (ii) does not
lend itself to the important interpretation of moments and cumulants as nonlinearly
generated sine waves, and (iii) complicates the development of single-data-record
estimators of the parameters of the theory, because the parameters are based on an
ensemble, whereas the estimators operate on a single sample path. However, ana-
lytical calculation of parameters, such as cumulants, can sometimes be easier using
stochastic processes rather than FOT probability. Both frameworks have been used to
develop the theory herein, with the time-average framework heavily favored and the
stochastic-process framework used as a tool to facilitate certain calculations. Never-
theless, only the time-average framework is used to present the theory herein so as to
develop a unified whole in the reader’s mind.

1.2 Other Theories for Statistical Analysis of
Time-Series

Because the autocorrelation function is the expected value (either stochastic or FOT)
of a signal x(¢#) multiplied by a delayed version of itself—which is a quadratic
transformation—it can be viewed as the expected value of a signal y(¢, 7) that is
obtained by nonlinearly transforming x (¢),

y(t,t) =x(t+1/2)x(t —1/2).

If the expected value of y(¢, T) does not depend on ¢, then the signal x(¢) is said to
be second-order stationary in the wide sense, and the autocorrelation function is said
to be translation invariant because when ¢ is replaced by ¢ + ty, the autocorrelation
remains the same. The theory of wide-sense stationary signals is well developed and
the basics of this theory are assumed to be familiar to the reader. The point here is that
we can think of the autocorrelation as a second-order statistic of x (¢), or as the mean
of the output of a quadratic transformation of x (¢), and when we use the expectation
E@} {.} this mean is just the dc value or the constant component of the output of the
transformation.

For wide-sense polycyclostationary signals x (¢), the autocorrelation depends on
t in a specific way:

By, 1)} = Ru(t, 1) = Z R¥(z)e™
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where
R;C:(‘L') = (x(t +t/2)x(t — T/Z)e_iz”“t)'

If we think of this autocorrelation as the expected value of y(¢, T), then it is clear
that the output of the quadratic transformation contains finite-strength additive sine-
wave components. Alternatively, if we think of the autocorrelation as a second-order
statistic of x(¢), then it is clear that this autocorrelation is polyperiodic in ¢.

We can thus interpret the theories of second-order wide-sense stationarity and
polycyclostationarity in two different ways: (i) in terms of translation invariant or
polyperiodic second-order probabilistic parameters, or (ii) in terms of the constant or
sine-wave components in the outputs of quadratic transformations of the signal.

These two interpretations extend to the case of higher-order statistical parameters
such as moments. A signal x(¢) is nth-order stationary in the wide sense if each kth-
order moment is translation invariant for £ = 1, - - -, n. Such signals are the subject
of the theory of higher-order statistics [9, 54, 81, 83, 99] (which is somewhat of a
misnomer since the restriction to stationarity is not made explicit).

A signal x(¢) is nth-order polycyclostationary in the wide sense if the output
y(t, ) = [, x(t + ;) of some nth-order nonlinear transformation of x () contains

j
at least one finite-strength additive sine-wave component with nonzero frequency o:

n

Rg(T)n = < l_Ix(l‘ + tj)e—ﬂftat> — (y(t, T)e—iZnott) ?_é 0.

j=1
Thus, for a polycyclostationary signal

E@ (y(t,m)} = ) R () ™,
o

where the sum is over the frequencies of all of the sine-wave components of y(¢, 7).
That is, the nth-order nonlinearity generates sine waves from an nth-order polycyclo-
stationary signal.

It is the interpretation of sine-wave generation, rather than periodicity of the mo-
ment, that is most important from both conceptual and practical standpoints because
it is by examining this interpretation that cumulants naturally assume their central
role in the theory of HOCS. This is explained in detail in Section 2.

The difference between the theories of SOCS, HOS, and HOCS are pointed out
throughout the chapter where appropriate. The major difference between HOS and
HOCS is that HOS has been developed and applied within the probabilistic frame-
work of (stationary) stochastic processes, whereas HOCS has been developed and
applied primarily within the fraction-of-time probability framework. Whenever the
theory of HOS is applied to problems in which only a single data record is avail-
able, the question of ergodicity is of primary importance. And when the single data
record is itself polycyclostationary—which is quite possible even when the stochastic
process from which it arises is strict-sense stationary (cff:Qhapter 1)—the theory of
HOCS presented in this chapter is required to obtain correég results for single-record
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processing—it is not optional. Specific ways in which the absence of ergodicity
can cause erroneous results in applying the theory of HOS are discussed in Section
7.6.

1.3 Two Motivating Examples

To motivate the development of the theory, two sample problems are presented. These
problems are especially difficult to solve by using the theories of SOCS or HOS, and
the classical theory of statistical inference and decision is intractable. Consider the
signal model

M
x(t) = s(t) +me(®) + Y ix(t)

k=1
where s(¢) is a signal of interest, {iz(#)} are non-Gaussian interfering signals that
temporally and spectrally overlap s(¢), and m, (¢) is broadband noise. All the signals
and noise are statistically independent of each other. The signal of interest s(¢) is
polycyclostationary of order » but is not polycyclostationary of order two. We assume
that the power level of the noise is unknown and is varying within the observation
interval, and that the interferers can be turning on and off within the observation
interval. The first of the sample problems is to detect the presence of s(z).

Methods of detecting s(¢) that are based on measuring the power spectrum are
ineffective because the power level of the noise and interference is unknown and
time-varying: Setting a threshold for energy detection is difficult. Detection methods
that are based on measuring the cyclic spectrum are not applicable because the signal
of interest is not second-order polycyclostationary: There is no spectral correlation to
measure. Detection methods that are based on measuring the (stationary) higher-order
statistics of x(¢) (e.g., the bispectrum) can fail for the same reason that the energy
detection methods do: All non-Gaussian signals contribute to the HOS. Nevertheless,
as explained in Section 8.1, the theory of HOCS provides a practical solution to this
problem provided that s(¢) possesses a unique nth-order cycle frequency.

Next let’s assume that we have data available from another receiver:

M
() = aos(t — do) +my (1) + Y axix(t — dp),
k=1

where the a; and dj are the attenuation factors and delays, respectively, relative to
the corresponding signals in x (¢), and all the signals and noise in y(¢) are statistically
independent of each other. The second of the two sample problems mentioned previ-
ously is to estimate ag and dp. This estimation is difficult to accomplish by computing
the cross-correlation between filtered versions of x () and y(¢) (known as generalized
cross-correlation [GCC] methods) because the signals are spectrally overlapping and
cannot be separated by linear time-invariant filtering. Thus, each signal will con-
tribute a peak to the GCC output function. SOCS-based estimators cannot be used
because, as in the detection problem, there is no SOCS to exploit, and HOS-based
methods suffer from the same problem as the GCC: All signals contribute a peak.
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However, as explained in Section 8.2, this problem can be solved by using the theory
of HOCS, provided only that s(#) possesses a unique nth-order cycle frequency.
The remainder of this chapter is organized as follows: In Section 1.4, the his-
tory of the cumulant is traced, starting with the original contributions from the late
nineteenth century and ending with the recent workshops on higher-order statistics
sponsored by the Institute of Electrical and Electronics Engineers. The time-domain,
or temporal, moments and cumulants of polycyclostationary signals are defined in
Section 2, where a complete introduction to cumulants is provided. The frequency-
domain, or spectral, moments and cumulants are the subject of Section 3. These
spectral moments and cumulants are shown to be related to the temporal moments
and cumulants by Fourier transformation. In Section 4, the utility of the theory of
moments and cumulants for solving statistical inference and decision problems is
discussed. The theory of HOCS is developed further in Section 5 by accommo-
dating complex-valued signals and by determining the effects of signal-processing
operations on the higher-order moments and cumulants of polycyclostationary sig-
nals. The moments and cumulants of the complex envelopes of digital QAM signals
(which includes real and complex pulse-amplitude-modulated (PAM) signals as spe-
cial cases) are derived in Section 6 for arbitrary orders. Nonparametric estimation
of the moments and cumulants of arbitrary polycyclostationary signals is discussed
and illustrated with examples in Section 7, and the two motivating examples dis-
cussed in this section—weak-signal detection and interference-tolerant time-delay
estimation—are studied in Section 8. Concluding remarks are given in Section 9.

1.4 Relevant Previous Work

In this section, relevant work in the areas of higher-order statistics and second-order
polycyclostationarity is reviewed. In addition, since cumulants are assumed to be
unfamiliar to the reader, a complete history of the development of the concept of the
cumulant is included.

1.4.1 Cumulants and Polyspectra

The history of the cumulant is traced in this section. A concise history, to
begin with, is that the cumulant was born in mathematical statistics, developed in
the probabilistic theory of stochastic processes, and after nearly one hundred years
found its way into electrical engineering through the field of higher-order statistics
as applied primarily to problems of time-series modeling and system identification.

In 1903, Danish astronomer Thorvald Nicolai Thiele published a book called
The Theory of Observations [113] in which he tried to quantify the statistical nature
of measurement errors. Thiele developed functions that he called laws of presump-
tive errors, which are probability density functions. By expressing these functions
in Maclaurin series form, he found that they could be characterized by moments or
by cumulants, which he called half-invariants, because cumulants are invariant to
additive constants in a random variable, but not to multiplicative constants. Thiele
recognized that the half-invariants provided an easy way to test for the normal dis-
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tribution: The higher-order half-invariants are zero for Gaussian random variables.
Although Thiele’s introduction of cumulants was practically motivated, he did not
arrive at them as the solution to a particular problem. Thiele gave no indication that
he was aware of any other work on cumulants, and he did not use any term other than
half-invariant to describe cumulants. Cramer [16], A. Fisher [28], and Graham [73]
each claim that Thiele discovered cumulants.

Cumulants were introduced into the theory of sampling distributions, that is, the
theory of the probability distribution of sample statistics, largely through the work
of R. A. Fisher, Kendall, and Wishart, [14, 29, 68, 118]. The basic problem here
is to determine the distribution of statistics such as the sample moments or sample
cumulants by, say, determining the moments or the cumulants of the sample statistic.
Fisher knew that the mean of a statistic does not necessarily equal the corresponding
population parameter. In the case of the sample variance 62, the mean is

) 1 N 5 1 N N

i=1

- Ste (3] e 3 )

where o2 is the population variance. Fisher proposed a new set of cumulant statis-
tics, called k-statistics, for which the expected value is equal to the corresponding
population cumulant. This set of statistics greatly facilitated work in sampling dis-
tribution theory. A detailed treatment of this topic is given in [68]. In 1937, Cor-
nish [14] attributed the term cumulant to Laplace, without referencing a particular
work of Laplace’s, because Laplace called the logarithm of the characteristic function
the cumulative function (CF), and cumulants are the coefficients of this function in
Maclaurin series form. The cumulative function gets its name from the property that
the CF for a sum of independent random variables is the sum of their CFs: The CF
is cumulative. However, in 1928, Wishart [118] called the CF the kappa generating
function, and called the cuamulants cumulative moment functions. The terms cumulant
and log-characteristic function are used today.

In the early 1950s, cumulants were used in an engineering context for the first
time by Kuznetsov, Stratonovich, and Tikhonov in a study of the passage of stochastic
processes through linear and nonlinear systems [75, 76]. Apparently without moti-
vation, the authors decided to characterize the output stochastic process by using the
logarithm of the joint characteristic function of samples of the output. They were
therefore faced with a function that contained cumulants that were parameterized by
the specific values of the sampling times. They called these cumulants generalized
correlation functions because they were equal to the familiar correlation function for
order two (the covariance). The main result in these two references is that the gener-
alized correlation functions for the output process are related in a simple way to those
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for the input process. The authors also used the generalized correlation functions
to characterize the degree to which the output process deviated from normality. A
more general form of the relation between moments and cumulants than that given by
Thiele in [113] is given in [76] apparently for the first time, but without proof, and is
not central to the work therein. The authors of [75, 76] used none of the terminology
described here in the previous paragraphs.

In the late 1950s and early 1960s the theory of cumulants, which are sometimes
called semi-invariants (or seminvariants), was put on a firm theoretical foundation
by Shiryaev and Leonov [78, 103]. In [78], the cumulants of the output of a polyno-
mial nonlinearity are obtained in terms of the cumulants of the input process, thereby
formalizing the earlier work in [75, 76]. Also, a combinatorial proof of the relation-
ships between moments and cumulants is given for arbitrary order. This appears to
be the only published proof of these relations. The results of the work in [103] are
essentially the probabilistic counterpart of the material presented in Sections 2 and
3 herein, restricted (for the most part) to stationary processes; [103] is a measure-
theoretic approach to understanding higher-order moments and spectra of stochastic
processes. Shiryaev defines the polyspectrum as a cumulant with respect to the loga-
rithm of a spectral characteristic function, which is the characteristic function of the
spectral increments of the process, and also shows that the polyspectrum is equal to
the Fourier transform of the time-domain cumulant function for generally nonstation-
ary as well as stationary processes. Shiryaev does not specialize his results to the
case of cyclostationary or polycyclostationary processes for which cumulants take on
a special meaning that leads to special applications, which is explained in subsequent
sections of this chapter.

In the 1960s the properties of cumulants, both temporal and spectral, were inves-
tigated [9] and measurement techniques were developed [10, 11]. It is here that the
term polyspectrum is introduced (which Brillinger attributes to J. W. Tukey) for the
spectral cumulants or, equivalently, the Fourier transform of the temporal cumulants,
and a case for the superiority of cumulants over moments for use in the theoretical
development of HOS is made in [9]. The processes involved in [9] are assumed
to be nth-order stationary, which means that all moments up to and including or-
der n are translation invariant. In [9-11], polyspectra are defined to be the Fourier
transforms of time-domain cumulants, but are also recognized to be spectral cumu-
lants.

The 1970s saw minimal application of polyspectra and cumulants. The focus was
on the third-order polyspectrum, called the bispectrum; the application was to the area
of detection of phase-coupling in sinusoids [61, 69, 70, 84, 96, 97]. Three sinusoids
with frequencies { fi}?=1 and random phases {01}3’:1 are said to be phase-coupled if
fi+ fo = f» and the sum 6 46, is statistically dependent on 6. This can be the case,
for example, in the output of a linear-plus-quadratic system with the sum of sine waves
with frequencies f; and f; at the input. Some progress in this area was made, and
a corresponding interest in the statistical properties of estimates of the bispectrum
was piqued. (Interestingly, this work has nothing to do with statistical inference
based on single-sample-path processing since the phase coupling can be measured
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from a single sample path if and only if the phase is time-varying and the coupling
that can be measured in this case is correlation—or more general dependences—over
time, which has nothing to do with correlation over the ensemble unless the phases
are ergodic stochastic processes. A time-invariant random phase is a nonergodic
stochastic process.)

In the 1980s a sector of the electrical engineering community became interested
in HOS as a tool that could be used to perform system identification. Since the au-
tocorrelation (and power spectral density) of a second-order stationary process does
not contain phase information, it cannot be used to identify nonminimum-phase sys-
tems. Researchers were led to higher-order statistics because higher-order moments
and cumulants do contain phase information. Many researchers in the area of HOS
claim that second-order statistics cannot be used to obtain phase information, but
this is incorrect since the cyclic autocorrelation, which is a second-order statistic, is
sensitive to phase for cyclostationary and polycyclostationary signals, and this fact is
currently being exploited for nonminimum-phase system identification (cf. Chapter 3
and Articles 4 and 5 in this volume). Nevertheless, if the signal is stationary, or does
not exhibit SOCS, then third- or higher-order statistics must be used to obtain phase
information. System identification is still the dominant application area in HOS, as
can be seen by noting that over half of the recent HOS tutorial paper by Mendel
[81] is concerned with parametric system identification, that is, determining the co-
efficients of AR, MA, and ARMA system models (see references in [81]). Other
recent applications include synchronization [6, 26], random signal detection [54,71],
image reconstruction [90], tests for the Gaussian property and linearity of stochastic
process [59], neural-network based estimation [115], radar signal processing [25],
equalization [91], and direction-finding (source location) [12, 31, 60, 92, 121]. In
most of these applications, the signals of interest are modeled as stationary stochastic
processes (the exception is synchronization), and in many cases the highest order
employed is three. There are good reasons for the latter restriction. For example,
if the input signal-to-noise ratio (SNR) for a signal in noise is below 0 dB, then the
output SNR is approximately proportional to the input SNR raised to the nth power
for an nth-order nonlinear transformation, such as a measurement of an nth-order
moment or cumulant. Thus, the output SNR decreases as the order n increases for a
given data-record length. Also, computational complexity of algorithms that exploit
HOS can grow rapidly as the order increases.

The subject of cumulants has been largely neglected by the authors of the classic
(or at least popular) texts in probability theory, mathematical statistics, stochastic
processes, and time-series analysis. This is largely because of the long-standing em-
phasis on the correlation theory of processes and time-series wherein only the first and
second moments are of interest. This theory is very powerful because it is sufficient
for the explanation of the behavior of Gaussian processes, handles linear transfor-
mations of data easily and elegantly, and is computationally simpler (more tractable)
than higher-order theories. The limited treatment of cumulants and polyspectra in
the most well-known texts is discussed next, followed by a brief description of three
modern texts that treat the topic of cumulants and polyspectra in some detail.
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The texts considered in time-series analysis are [4, 8, 58, 64, 67, 74, 93]. The
book [93] by Priestley contains the most material on cumulants. There is a short
history that starts with Shiryaev’s contribution [103], and then cumulants are defined
through the cumulative function (CF). Polyspectra are defined to be the Fourier trans-
forms of these cumulants. Brillinger [8], on the other hand, defines cumulants in terms
of their relation to moments and lists several of their elementary properties. The other
books in the area of time-series analysis offer little (such as the moment/cumulant
relations for n = 1, 2, 3, 4) or nothing on cumulants.

The texts considered in the area of stochastic processes are [7, 23, 24, 33, 57,
65, 66, 82, 86, 88, 95, 112, 114, 119, 120]. These texts pay very little attention to
cumulants and polyspectra. The three texts [82], [95], and [112] each define the
cumulant through the series expansion of the CF, but do little with them. The other
references in the area of stochastic processes do not even mention cumulants.

References [15, 27, 28, 79, 80, 87, 89] are the texts considered in probability
theory. Parzen [89] and Papoulis [87] both define the cumulant through the series
expansion of the CF, although Parzen does it in an exercise. Neither theory nor
application of cumulants is developed in either of these books. A. Fisher essentially
reproduces Thiele’s work in his 1923 book [28]. The other references in the area of
probability theory do not mention cumulants.

Finally, the texts considered in mathematical statistics are [16, 30, 68, 77, 98,
117]. BothFisz [30] and Cramer [16] define the cumulant through the series expansion
of the CF in the usual way, but go no further with the theory. The unique book by
Kendall and Stuart [68] devotes a great deal of attention to cumulants, mostly in the
context of sampling distribution theory (as mentioned previously). The authors are
not concerned with stochastic processes nor time-series analysis and do not define
polyspectra. The other texts in mathematical statistics do not mention cumulants.

Three modern texts do treat the topics of cumulants and polyspectra for time-
series and stochastic processes. The first is by Rosenblatt [99]. The material on
cumulants and polyspectra in this text is essentially the same as in the two papers
[10, 11], in which the cumulants and polyspectra of stationary stochastic processes
are investigated, with emphasis on estimating these parameters from finite-length
data records. The book by Priestley [94] contains a chapter devoted to estimation of
the polyspectrum of a stationary stochastic process from a finite-length data record.
The methods considered therein are the same as in [99]. The material in both of
these texts is considered further in Section 7 herein, where the measurement of the
parameters of HOCS is studied, and where an error in Priestley’s description of the
frequency-domain method of estimating the cyclic polyspectrum is brought to light.
The third modern text that treats cumulants is a collection of papers edited by Haykin
[84]. The chapter by Nikias treats the topic of estimation of the polyspectrum, but
the emphasis of the chapter is on the use of such estimates in solving the problem of
parametric (ARMA) system identification.

The nine research papers [40], [42], [51], and [104-109], all of which are from
the same research group, address the topic of HOCS directly. In [40], the higher-order
temporal moments of polycyclostationary time-series are introduced and shown to be
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related to the higher-order moments of spectral components of the time-series by
Fourier transformation, and it is established for the first time that the nth-order lag
product of a time-series contains a finite-strength additive sine-wave component with
frequency « if and only if the joint moment of » spectral components of the time-
series is nonzero for some sets of 7 frequencies that sum to «. In [42], the concept
of a pure nth-order sine wave is introduced and is shown to be characterized by the
temporal cumulant function, whose Fourier transform is shown to be a spectral cum-
ulant function, and the relationship between these functions and those that arise in
the theory of HOS for stationary processes is discussed. Higher-order temporal and
spectral moments of cyclostationary time-series are used in [51] to identify Volterra
models of nonlinear systems. New techniques for measuring the higher-order statis-
tical functions (cyclic moments, cumulants, and polyspectra) for polycyclostationary
time-series are presented in [104], and some results on their performance are presented
in [105]. A brief overview of the theory of higher-order cyclostationary time-series
is given in [106]. Finally, the application of the theory of HOCS to the problems of
weak-signal detection and time-delay estimation is considered in [109].

Three research papers by other researchers also treat HOCS directly. One of
these is the recent paper [123], in which the stochastic-process framework is used,
and in which no connection is made to the sine-wave generation idea that is central
to this chapter, nor to cumulants, which are also central to this chapter. The second is
[5], in which a cyclic spectral analysis of the powers of a PAM signal is carried out,
that is, the cyclic spectrum of the output of a nonlinear system with a PAM signal at
the input is calculated. The results herein are more general than those in [5]. The
third is [2], in which the symmetry properties of nth-order polyspectra for n < 6 for
cyclostationary stochastic processes are investigated.

Finally, there are several research papers that deal with HOCS indirectly [17—
22, 55, 56]. These papers, which are the work of a single research group, treat
the problem of higher-order statistical analysis of generally nonstationary stochastic
processes, which includes cyclostationarity as a special case, and present several
applications of the theory to cyclostationary signals, such as system identification
and signal detection.

The strong recent interest in HOS (cumulants) in a sector of the electrical en-
gineering community is reflected in the recent workshops on higher-order statistics,
in the two IEEE Proceedings tutorial papers [81, 83], and in the special sections
on HOS in the July 1990 IEEE Transactions on ASSP, and the January 1990 /IEEE
Transactions on Automatic Control.

1.4.2 Second-Order Polycyclostationarity

The research on second-order polycyclostationarity can be divided into two sets:
that which adheres to the time-average analysis (FOT) framework, and that which
uses the stochastic-process framework. The former is more relevant to this chapter
because the time-average framework is used herein. The basic references for the
theory and application of second-order polycyclostationarity for the time-average
framework are [34, 35, 44, 45] and the references therein and in Chapter 1 of this
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volume and for the stochastic-process framework in [33, 63] and the references therein
and in Chapter 1. Examples of the application of cyclostationarity include weak-
signal detection [39, 46], time-delay estimation [49, 50], high-resolution direction
finding [100], blind-adaptive spatial filtering for signal extraction [1, 101], system
identification [41, 51], and frequency-shift filtering for signal separation [48]. A
bibliography on cyclostationarity and its applications, and a detailed overview of
second-order cyclostationarity is given in Chapter 1 of this volume.

2 THE TEMPORAL PARAMETERS OF HOCS
2.1 Moments

Let us consider all nonlinear signal-processing operations that can be represented by
a Volterra series. This includes (but not exclusively) all continuous, time-invariant,

finite-memory, causal systems [85]. The output y(¢) of such an operation is expressed

as!

o0 o0 o0
y(t)=f hl(f1)x(l+fl)df1+/ / ha(t, )x(t +)x(t + ) dudr + - - -
—0Q —0o0 —00

_ Z/w /oo Bu(T) Ly (t, Ty dT,

where = [t1- - 7,]  and L, (t, T) is the nth-order lag product of the input x (¢)

Le(t,Dn = [[xt + 7. ©6)
j=1

J

We are interested in the finite-strength additive sine-wave components present
in the output but absent in the input, that is, those sine waves that are generated by
the action of the nonlinear operation on the input x (¢), which is assumed to exhibit
cyclostationarity. For example, the strength (magnitude and phase) of the sine wave
with frequency « in y(z) is given by (assuming the order of £(*}, 3", and [ can be
interchanged)

{p(eye=2me) = Z/_C: : /_: B (7) (Ly (¢, Tpe™ 2™ dr.

Thus, we need only study the statistical quantities

<Lx @, e—i27mt) ,

!Strictly speaking, the name Volterra is reserved for causal systems, for which 4, (7) = 0 for any
7; < 0, but this restriction is lifted here. Also, infinite-memory systems, for which the %, (-) have infinite
support, are included here.
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for arbitrary positive integers n, which are the strengths of the sine-wave components
contained in the nth-order lag products of x (¢).

The nth-order lag product is an elementary nth-order homogeneous polynomial
transformation of x (¢). This transformed time-series can be decomposed into a peri-
odic or polyperiodic part and an aperiodic residual part,

Lx(t:'r)n = p(t»T)n +m(t’T)n3

where _

(m@, 1)y e = 0, )
for all real . The polyperiodic portion of L, (z, T), has associated with it the Fourier
series

pt, Dy =Y R, ™™™, ®)
where

RE(D)y = (p(t, Dn e 7). )

It is assumed herein that the partial sums in the Fourier series (8) converge uniformly
in ¢ for each 7 to p(¢, 7),. Then p(-, T), is an almost periodic function, the limit (9)
exists for each 7, and the set of values of the real variable « for which R (1), #
0 for each T is denumerable [13]. That is, there is at most a denumerable set of
incommensurate periods in the polyperiodic function p(t, ), for each 7. It is further
assumed that the union over all 7 of the sets of values of « for which R¥(7), # 0
is denumerable. For example, it is shown in [63] that this union is denumerable for
n = 2 if p(¢, 7), is uniformly continuous in t and 7.
The lag-product time-series can therefore be expressed as

Lo(t, Py = ) RE(D, €7 +m(t, D)y, (10)

where the sum is over the denumerable set of real o for which R%(7),, # 0. From (7)
and (10), we have

RE(D)y = (L (t, D)y e”7"). €8))

Each value of « in the representation (10) is called an impure cycle frequency of
order n (to distinguish it from a pure nth-order cycle frequency, which is defined
subsequently), and R¥(7), in (11) is called the cyclic temporal moment function
(CTMF) of order n. From (11), it is evident that the CTMF arises quite naturally
from a consideration of the finite-strength additive sine-wave components in the lag
product (6). The sum of all such sine waves in L, (¢, T), is given by the temporal
expected value of the lag product (cf. Section 1.1),

E{a} (Lo(t, D)n) = R*(7), eiZnat,
X

which is called the temporal moment function (TMF), and is denoted by R, (¢, T)x,
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Rot, Tn = B {Lo(t, D} =) RE (1) . (12)
o
An individual component of the TMF, such as
Rit (T)n ei2nat’

is called an nth-order moment sine wave or an impure nth-order sine wave. Time-
series for which there exists at least one moment sine wave of order n (with ¢ # 0) are
said to exhibit nth-order cyclostationarity (CS,) in the wide sense (such a time-series
can be nth-order cyclostationary or nth-order polycyclostationary). A potentially
confusing property of CS, time-series is that such time-series are in general CSy,. A
simple example illustrates this fact. Consider the time-series given by

x(t) = cos(wt) + m(t),
where the zero-mean signal m (¢) contains no sine-wave components. The signal x (#)

is CS. Every second-order lag product contains sine waves as well,

1 1
x@+t)x(t+ 1) = 3 cosQwt + w[t; + ©o]) + 3 cos(w[ty — 12]) + residue.

More interesting cases involve random time-series that do not themselves contain
additive sine-wave components, because it is still true that, for example, CS, implies
CS,. This is illustrated in the next section.

2.2 Impure nth-Order Sine Waves

It is often the case that an nth-order moment sine wave is impure in the sense that it
is made up—in part or wholly—of products of k m ;th-order moment sine waves with

Z;f:l m; = nand k < n, for various values of k. For example, consider the following
signal, which is an amplitude-modulated (AM) signal with an added carrier tone:

x(t) = a(t) cosm fot +60) + Bcosu fc.t +0). (13)

The second-order lag product for this signal clearly contains (complex) sine-wave
components with the frequencies 0, 2 f;, and —2 f;.. Let’s examine the sine wave with
frequency 2 f;:

R¥:(1)y = (x(t + t)x(t + 1p)e "2F)

2
1 RO (), ol CRiIaml420) | BT (i On il +nl+20)

where we have assumed that a(¢) has zero mean,
E@ a@®)} =0.

Thus, there are two components that make up the second-order moment sine wave
with frequency 2 f. The first component
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1 . .

ZRB (T)g et(27rﬁ[1:1+rz]+20)612712ﬁt
does not result from the multiplication of any sine-wave components in either of the
factors of the lag product, whereas the second component

2
B_ei(27'rf,3[r1+rz]+29)ei2n2fct

4

isnothing more than the result of a sine-wave term in x (4 1;) multiplying a sine-wave
term in x (¢ + 17).

Identifying the pure and impure components of an nth-order moment sine wave
is not always so easy. Let’s consider the AM signal (13) with B = 0,

x(t) = a(t) cos2m fot +6), (14)
and a fourth-order lag product '
4
Le(t, Da =] [xt + . (15)
j=1
The sine wave with frequency 4/, in the lag product (15) is given by
4
R4fc (T)4 ei2ﬂ4fct — i < Ha(t _|__ T])> ei(znﬁ[fl+‘L’z+1’3+f4]+49)ei27r4fct (16)
X ]_6 .
j=1

Since
RY(1) = (a(t + T)a(t + 1)) ,
then the lag product for a(¢) can be represented by

a(t +)a(t + 1) = R)(t1, )2 + b(t, 11, 1) (17)
for which
(b(t, 71, 1)) =0
R(t, ), = RY(7),.

By making use of (17) in the fourth-order lag product for a(¢), we can begin to see
the pure and impure components of the fourth-order sine wave (16):

R (1)
1 )
= T¢ (IR, 212 + b1, 11, R (53, T4)a + b2, 13, 74)]) ! ATt ma il 40)

1 )
= T¢ [Ra(m, 2 RY(T, w2 + (b, 11, )b (2, 13, 14))] & Phlm bt nled)
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So, there are components of the fourth-order moment sine wave (16) that con-
sist of products of second-order moment sine waves, and there are—potentially—
components that are not. We say potentially because there are other products of
lower-order sine waves, namely those obtained by using a different factorization of
the fourth-order lag product, and we are unsure at this point if these other impure sine
waves are the only components of (b(¢, t1, 72)b(t, 73, T4)).

In the case of the second-order lag products of (13), we can purify the second-
order sine waves by operating directly on the data: We simply remove the sine-wave
component B cos(27 f.t + 0) from x(¢). In the case of the fourth-order lag products
of (14) (or (13)), we cannot purify the fourth-order moment sine waves by operating
on the data because there are no sine waves in the data. Furthermore, we cannot
simply subtract the second-order sine waves from the lag products x (¢ + 71)x (¢ + 72)
and x (¢ + 73)x (¢ 4 t4) because there are similar sine waves in other factorizations of
the fourth-order lag product. In the next section we show how to properly purify the
nth-order moment sine waves, thereby obtaining the pure nth-order sine waves.

2.3 Pure nth-Order Sine Waves

For low orders 7, it is easy to mathematically characterize a pure nth-order sine wave
in a way that matches our intuition. For n = 1, the moment sine waves are, by
definition, pure first-order sine waves. For n = 2, all products of first-order moment
sine waves can be subtracted from the second-order moment sine waves to obtain the
pure second-order sine waves, which are denoted by o, (¢, 11, 72)2 ,

ox(t, T, )2 = EWNx(t + v)x(t +m)) — B x(t + 1)} B {x (¢ + )}
= Ry (t, D2 — Ry (t, 11)1 Re (2, T2)1.

There are several interesting points to be made concerning pure second-order
sine waves.

1. Since R, (¢, 7;)1, i = 1, 2,and R, (¢, 7), are first- and second-order moments,
then oy (¢, 71, 72)2 18 a temporal covariance function.

2. If R, (¢, )1 = 0, then there are no lower-than-second-order sine waves, and
the second-order moment sine waves are equal to the pure second-order sine
waves.

3. If the variables x(¢# + 71) and x(¢f + 7,) are statistically independent
(in the temporal sense [35, 45]), then E© xt+)x(t + 1)} =
E® {x(t + 1)} E® {x(t + 1,)} and therefore o, (¢, 7, ), = 0, that is,
there is no pure second-order sine wave for this particular pair of lags 7,
and 1.

Arecursion can be used to compute the pure third-order sine waves. Each distinct
product of lower-order sine waves must be subtracted from the third-order moment
sine waves. Thus, products of pure second-order and pure first-order sine waves are
subtracted from the third-order moment sine waves:
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3
o (t, 73 =E [ [x(t + 1) 0:(t, 11, )2 00 (2, T3)1 — 02 (¢, 71, T3)2 0% (2, T2
Jj=1
—0x(t, 72, 13)2 0x (£, T1)1 — 0x(t, T1)1 0x (7, T2)1 O (F, T3)1 - (18)

Note that all possible products of pure lower-order sine waves appear in (18). The
terms in the sum of products that are subtracted can be enumerated easily by con-
sidering the distinct partitions of the index set {1, 2, 3}. A partition of a set G is a
collection of p subsets of G, {v;}/_,, having the following properties® [3]:

p
G =Uw.
j=1

vjmvk=® for j#k.
The set P; of distinct partitions of {1, 2, 3} is

p=1:{1,2,3})
p=2:{1,2}, {3} {1,3L{2} {2,3},{1}
p=3:{1} {2}, {3}.

Thus, we can express the pure third-order sine waves o, (¢, 7)3 as a sum over the
elements of Ps:

P
Ux(t7 T)3 = Rx(t7 7-)3 - Z l: ax(t, ij)nj j| s
j=1

Py

p#1
where 7, is the vector of elements of {rj}]3.=1 that have indices in v;, and #; is the
number of elements in v;.

Note that, as in the case of n = 2, if the first-order moment sine waves are
zero, E® {x(#)} = 0, then the third-order moment sine waves are equal to the pure
third-order sine waves. In this case, there are no products of lower-order sine waves
that can be subtracted from the moment.

Because there is a one-to-one correspondence between the set of distinct factor-
izations of a product of n factors and the set of distinct partitions of the set {1, 2, - - - , n}
(as illustrated for n = 3 above), the formula for the pure nth-order sine waves can be
expressed in terms of these partitions,

P
0x(t, D = Re(t, Da — Y [ [Toxt.7)n, } : (19)
Jj=1

PH
p#l

2The total number of distinct partitions of a set is called Bell’s number, which must be computed by
a recursion involving Stirling numbers of the second kind [73, 110]. This same recursion can be modified
to yield the partitions themselves.




October 18, 1993 09:33  876-ch2  Sheet number 20 Page number 110

110 Spooner

where P, is the set of distinct partitions of {1, 2, - - -, n}. The pure-sine-wave formula3
(19) gives all the pure nth-order sine waves associated with the lag vector 7. A single
pure nth-order sine wave with frequency 8 can be selected by computing the Fourier

coefficient ‘ ‘
of (D), €7 = (0 (u, ), PPV, 20)

and can be expressed in terms of pure lower-order sine waves by substituting the
Fourier series for each oy,

or(t, W = Y offwy e, @1)
Br

where the sum is over all pure cycle frequencies S of order £, into (19). Thus,

r
b =R, =Y | D [ @m | (22)
P, Bi1=p j=1
p#l
where 3 is the p-dimensional vector of pure cycle frequencies [B; - - ,BP]Jf and 1

is the p-dimensional vector of ones. Hence, the pure-sine-wave strength af (M) is
given by the CTMF R,’? (1), with all products of pure lower-order sine-wave strengths,
for sine waves whose frequencies sum to §, subtracted out.

The next step in the development of the temporal parameters is to introduce the
cumulant function for the set {x (z 4 rj)};’=1. Before doing this, a general introduction
to cumulants is provided.

2.4 Cumulants

The references cited in this and succeeding sections dealing with cumulants of random
variables, stochastic processes, and nonstochastic time-series are believed to be the
original sources where these quantities were first introduced.

2.4.1 Cumulants of a Single Random Variable

Let the real-valued random variable X have probability density function (PDF)
fx(u) and characteristic function ®y(w):

CDX(CU)Z/ frw)e'™ du.

It is well known that the moments of X can be obtained from the characteristic function
by differentiation,
n

ad
E(X") = (=)' =—

Dy (w) =m,.

w=0

3This approach to obtaining pure nth-order sine waves can break down in some special anomalous
cases involving degenerate time-series, which are described in the Appendix.
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The nth-order moment of X is, therefore, the coefficient of the term corresponding
to (iw)"/n! in the Maclaurin series expansion of the characteristic function:

()"
!

n:

(23)

Oy (w) = Z My
n=0

The characteristic function is a useful tool in the study of random variables, but it
does have a drawback. If Y is the sum of two independent random variables X; and
Xo

Y =X + X,

then the PDF for Y is the convolution of the PDFs for X; and X5,

Frw) = / Fa =) fru (W o,

which implies that the characteristic function for Y is the product of characteristic
functions for X; and X>,

Py (w) = Py, (@) P, (). (24)

By using (23) in (24), it can be shown that the nth-order moment of Y is explicitly
dependent on the moments of X; and X; of all orders # and lower.

If we transform the multiplication in (24) to addition by applying the natural
logarithm, we obtain the relation

In ®y (@) = In Dy, () + In Py, (). (25)

These new functions are called cumulative functions [14], a term that is due to Laplace,
and the coefficient of the term corresponding to (iw)"/n! in the Maclaurin series
expansion of the left side of (25) (provided that it exists), is called the nth-order
cumulant of the random variable ¥ [14]. The nth-order cumulant for Y is, therefore,
the sum of the nth-order cumulants for X; and X,. Note thatif X is a Gaussian random
variable, its cumulative function is a second-order polynomial in w and, therefore, all
higher-order (greater than two) cumulants of this random variable are zero:

n

s nex(@) =0, n=3.

2.4.2 Cumulants of a Set of Random Variables

The multivariate PDF for the set of » random variables {Xj}]’.=1 is given by

A 9"
Jx(@x) = FI— Fx(x), (26)
X r

Lo 0x

where Fx(x) is the multivariate distribution function defined by

Fx(x) = Prob { ﬂ[Xj < xj]} :
j=1
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The multivariate characteristic function is the multidimensional conjugate Fourier
transform of (26):

dx(w) :/w foo fx(x)ei“’Txdx.

The nth-order moment corresponding to the product

)

qj
[1x
Jj=1

where
B

qu =n, g¢;>1 forall j,
=1

is given by the coefficient of the term corresponding to

T 9j
PAl=19y

1_[;=1 q;!

in the multidimensional series expansion of the characteristic function. We need only
consider the case where r = n and therefore g; = 1 for each j. This is so because if
some of the g; are greater than one, we can simply consider a larger set of variables
{X]f Yi—1> where some of the XJ/ are identical according to the values of g;.

The cumulants are given by the coefficients in the series expansion of the cu-
mulative function In ®x (w). Since we consider only » = n, the resulting cumulants
are called simple cumulants. Thus, the nth-order simple cumulant for the variables
{X;}i_; is defined by

8}1
Cx = (—i)"————— In®x(w)
dwy - 0wy

@7n

w=0
2.4.3 Multivariate Moment and Cumulant Relations

For the set of random variables {X;}}_,, the simple moment is given by

RX:E{ﬁX,.}. (28)
j=1

Let v be some nonempty subset of the set of indices {1, 2, - - -, n}. Then the moment
of order n; = |vi| for those variables with subscripts in v is

Rx,vsz{]_[Xj}.

JEVk
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The nth-order simple cumulant for {X;}7_; can be expressed in terms of the simple
moments Ry ,, by using the distinct partitions P, of the index set {1, 2, - - -, n} [78]:

p
cx=Y [(—1)1’-1@ -] Rx,uj] : (29)

I Jj=1

Similarly, the nth-order simple moment Rx can be expressed in terms of lower-order
simple cumulants [78]:

V4
Rx=)_ [ | cx,v]} , (30)
J

P

where Cx,,,j is the simple cumulant of the variables {Xk}kevj. The relationships
between simple moments and cumulants (29) and (30) are valid for both real- and
complex-valued random variables [9, 99, 108].

An important and useful property of multivariate cuamulants is the independence
property. Consider the set of variables

(Znypor =X j=1,- -, Yeik=1,---,s}, n=r+s,

where the X; are independent of the Y. The nth-order joint PDF for these variables
factors
fxy@ = K@K, z=[x1x 3l

which implies that the characteristic function is the product of characteristic functions
for X and Y:
Pxy(w) = Px(w,)Py(w,).

Therefore,
In &xy (w) = In Px(w;) + In Py (wy)

and the n-fold derivative in (27) is zero. Thus, if there is a subset of variables in the
set {x;}"_; that are independent of the remaining variables, then the simple cumulant
for this set is equal to zero.

Another important property of multivariate cumulants is the following addition
rule. Suppose the set {Z,,}" _, is given by

Zszm+Ym7 m=1329“'7n7 (31)

where { X, } is statistically independent of {Y,,}. Then the cumulant of {Z,,} is given
by the sum of the cumulants of {X,,} and {Y,,}:

Cz = Cx + Cy. (32)

Finally, if the variables { X }j— are jointly Gaussian, then the cumulative function
In ®x(w) is a quadratic function of w and, therefore, the simple cumulants are zero
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for n > 3. Thus, multivariate cumulants can be used to measure the dependence
between random variables, and to test for the Gaussian property [59].

2.4.4 Cumulants of a Time-Series

The relations (29) and (30) are more accessible than the log-characteristic func-
tion expression (27) and are, therefore, used for the cumulants and moments of time-
series. Comparing equations (19) and (30), it is apparent that the relationship for
{x(+ rj)};’zl between the pure-sine-wave function o (¢, 7),, and the temporal mo-
ment function R, (¢, 7), is equivalent to that between the simple cumulant and moment
for {Xj};.‘zl. By using the sine-wave-extraction operation, which is an expectation
operation, we can reexpress the TMF in terms of lower-order simple cumulants:

Ry(t, T =Y { ﬁcx(z, wnj] (33)

B L =1

where C, (z, ij)nj is the simple cumulant of the 7 ; variables {x(t + Tk)}ke)j that is
obtained by using the sine-wave-extraction operation E@ {-}. Moreover, the relation
(29) can be used to obtain an expression for the simple cumulant in terms of the
lower-order simple moments:

D
Celt,Dn=) [(_1);:—1(1, - DI &, ij),,jJ . (34)

P, j=1

The function C, (¢, 7), in (34) is called the temporal cumulant function (TCF). Using
the equivalence between (19) and (33), we obtain

Cit, Dy = ox(t, Ty . (35)

That is, the pure nth-order sine-wave function o (t, T), isidentical to the nth-order
temporal cumulant function! The Fourier coefficient of this polyperiodic function of
t is given by

ClMn = (Cult, )y e 271)

P
=207 = Y[Ry, (36)

P, at1=p j=1

and is called the cyclic temporal cumulant function (CTCF) [42]. An individual
component of the TCF, C% (1),,/2#, is called an nth-order cumulant sine wave to
distinguish it from an nth-order moment sine wave. It can be seen from (20) and (35)
that the CTCF is identical to the (complex-valued) strength of the pure nth-order sine
wave with frequency 8 that is contained in the nth-order lag product L, (¢, 7),.

This instance is the first (to the best of our knowledge) in which cumulants
have arisen as the solution to a practically motivated problem, namely the problem of
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pure nth-order sine-wave generation [42], rather than as a mathematical observation
concerning the characteristic function [14, 68, 76, 113].

2.5 Properties of the Temporal Parameters of HOCS

We have seen that the TMF can be constructed from all of the CTMFs (cf. (12)),
that the TCF can be constructed from all of the CTCFs (cf. (22)), that the TMF can
be constructed from all of the lower-order TCFs (cf. (33)), and that the TCF can be
constructed from all of the lower-order TMFs (cf. (34)). Thus, any CTCF can be
obtained from all of the appropriate CTMFs, and vice versa. In other words, the set
of moment functions for orders 1 through n contains the same information as the set
of cumulant functions for orders 1 through #». How then should we determine which
set of functions to work with in the study of sine-wave generation? To assist us in
making the correct choice, we consider some important properties of these functions.

2.5.1 Signal Selectivity

Suppose our time-series x(¢) consists of the sum of M mutually independent

time-series,
M

X(6) =) ym(®). (37)
m=1
Then, from the addition rule for cumulants, the TCF for x (¢) is the sum of TCFs for
{ym (@)},

M
Ce(t, Da =Y Cy, (t, D (38)
m=1

Thus, the pure nth-order sine waves in the lag products of each of y,, (¢) add to form
the pure nth-order sine waves in the lag product of x (#). The TMF does not obey this

very useful cumulative relation.
To illustrate how (38) can be applied in practice, consider the situation where
{ym (O}, represent M interfering signals that overlap in time and frequency, but
which possess some distinct pure nth-order cycle frequencies, say {8, }_,. Then it

follows from (38) that

Chr(m)y =Clr(Dy, m=1,2,---, M.

This indicates that the presence or absence of each of the signals y,, (¢) can be detected
by measuring (estimating) the CTCFs of x (¢) for the cycle frequencies {8,,}, and that
parameters of each of the signals (on which these CTCFs depend) can be estimated.
As illustrated in [1, 35, 39, 41, 46-50, and 100] for second order and in Section 8
for higher order, this signal-selectivity property can be exploited in numerous ways
to accomplish noise-and-interference-tolerant signal detection and estimation.

As another application, let M = 2, y1(¢) be non-Gaussian, and y,(¢) be Gaus-
sian. Then C,, (¢, 7), = 0 for n > 3 and, from (37), we have

Cx(ta T)n - Cyl(t3 T)ny n Z 3,
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which indicates the detectability of y;(¢) with no knowledge about y,(¢) except that
it is Gaussian.

2.5.2 Mathematical Properties

It can be shown that both the CTMF and the CTCF are sinusoidal jointly in the
n variables T:

CHT+18), = CL (D)™™, (39)
RY(T+1A), = RI(1),e™™*". (40)

Hence, these functions are not absolutely integrable with respect to 7. The periodicity
of these functions suggests that we might reduce the dimension of these functions
without loss of information. Reducing the dimension by one yields*

Clwy, = CL(lwl 01N,
REw), = R([u' 01"),,

(where u = [u; - - - u,_;]7), which are not sinusoidal in general. The value of Cf (T
(R (7)) for any T can be obtained from the value of C’f (u), (Rg (u),) by using
(39) ((40)). This leads us to ask if these reduced-dimension (RD) functions are
integrable. We shall show that the function Rff (u), (RD-CTMF) is not in general,
whereas the function C_'ﬁ (u), RD-CTCF) is in general for time-series possessing an
asymptotic independence property. That is, consider the arbitrary two-set partition
T = [1p 1] and assume that the FOT density for the set of variables

x(6) = {x(t + 1)y = {x0(t) x:1(1))
factors asymptotically:

Jxo(¥) = faory (Vo) frun (Y1) as 1o — oo,

where 79 — 00 means that all of the elements of 7y are tending to infinity. This
asymptotic factorization implies that the TMF, which is a moment corresponding to
the PDF fy)(-), is asymptotically factorable as well,

ECHL(t, D) = E {Lo(t, 700y Lx(t, T, }
— B Lo(t, To)ny ) B {Lo(t, T1)ny} as o — 00
Thus the TCF is asymptotically zero

C.(t, Dy — 0 as Ty — 00,

4The reason for this particular choice of dimension reduction is made clear in Section 3.
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because of the independence property of cumulants (cf. Section 2.4.3), which implies
that each CTCF is asymptotically zero. Generally, then, the CTCF is asymptotically
zero as long as at least one of the n lag values—say 7,—is fixed, since the set
of variables associated with L, (¢, T9),, is asymptotically independent of the set of
variables associated with L (¢, 71),,, where 7y = [77 - 7,1]" and 7 = [1,]. On
the other hand, the cyclic temporal moment becomes

RE(D)y = (Re(t, To)ng Rut, Ty €27} as 1p — 00

= D RY(T0)ny RV (T,
Y

which is not necessarily zero. In fact, it is often nonzero.

If the rate of decay of the RD-CTCF is sufficiently large (e.g., O(||u||™2)),
then C %(u), is absolutely integrable and, therefore, Fourier transformable. The RD-
CTMF is not, in general, Fourier transformable except in a generalized sense that
accommodates (products of) Dirac delta functions, because it does not in general
decay as its arguments grow without bound, but rather it oscillates. We shall see in
Section 3 that the Fourier transforms of the RD-CTCF and RD-CTMF can be very
useful in characterizing a signal’s higher-order statistical behavior in the frequency-
domain. Before leaving the subject of temporal parameters, however, an example
that illustrates the temporal parameters is presented.

2.6 Example: Sine Waves in Noise

Let x(¢) be the sum of two sinusoids in broadband noise
x(t) = s@t) +m(t)

2
= Z Ajcosmgit +0;) +m(t).
=1

Since the sinusoids are statistically independent of the noise m(¢), the nth-order
cumulant for x (¢) is

Cx(t, T)I’l = Cs(t’ T)n + Cm(t7 T)n-
For n = 1, the TCF is given by
Cet, 1)1 = Re(t, 7)1 = s(t +7) + E® {m(t + 1)},

whereas for n > 1, C,(¢, T), is identically zero. This is proven next.
It is sufficient to compute the nth-order TCF for the time-series that consists of

only a single sine wave
y(t) — eiZﬂfct-H'G

because if y(¢) consists of the sum of M sine waves, then the nth-order TCF is the
sum of the nth-order TCFs for each of the M sine waves. This results from the fact
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that a sine wave is statistically independent of every time-series, including itself [35]
and, therefore, the addition rule for cumulants can be used. The first-order TCF for
y(@) is
Cy(t, )1 = E@ {y(t + 1)}

=yt +71)

— ei2ﬂﬁ(t+r)+i9 .
The second-order TCF is the second-order TMF with the product of first-order TMFs
subtracted off,

Cy(t, Do = Byt + w0yt + ) = E@ {1t + 1)} £ {y(t + )
= Byt + ) E® {y¢ + w)} — E@ {p( + o)} £ (3 + )
=0.

From (19), the nth-order TCF is given by

P
Cylt, D = Ry(t, Dn = Y [ [ ij),,]} :

'PII j=1
p#l

For n = 3, all the terms in the sum are zero except for the one that corresponds to
p = 3 because the pure first- and second-order sine waves are equal to zero. Thus,

3
Ry(t, D3 — [ Gyt

j=1

3 3
:E{a}{]—[y(wrzj} ]—[ [yt + 1)}
j=1

j=1

Cy(tv T)3

= 0.

By induction,
Ct, D=0 n=>2.

We can further conclude that the nth-order cumulant for any polyperiodic function
y(t) is zero for n > 2 because all such functions obey

EC Lyt Dn} = Ly(t, D
Now, back to our example. Forn > 1,
Cx(t’T)nZCm(t,T)n, n>1.

If m(¢) is Gaussian, then Cy, (¢, 7),, = Oforn > 2. The nth-order moment R, (¢, T), is
difficult to compute by straightforward calculation, but it can be more easily computed
by using the lower-order cumulants as in (33). Assuming that m () is a zero-mean
Gaussian signal, the third-order moment is given by
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P
R (t, )3 = Z |: ch(t, 'rvj)nji|

P3 Jj=1
p#l

= Cp(t, 11, )25 +13) + Cu(t, 71, T3)2 (1 + 12) 41)
+ Cp(t, 72, 13)2 st + 1) + Ls(t, T)3.
If m(¢) is also stationary and white, then
Cn(t,Tj, Tr)2 = Nod(Tj — ),

and

Rx(t, T)3
= Ny [8(t1—12)s(t + 13) + 8(t1 —13)s(t + 72) + 8(m2—13)s(t + )] + Ls(t, T3.

The impure third-order cycle frequencies for x (¢) for this m (¢) are £g1, =2, =1+ 2,
and +g; &+ g; £ g for any choices of 7, j, k € {1, 2}. There are no pure third-order
cycle frequencies, which means that the set of impure cycle frequencies {a} is quite
different from the set of pure cycle frequencies {8}. The CTMF for o = 3g; is given
by

R (s = (Rult, Pyse %)

3 (42)
_ 1 ei Q2r3gi[t+n+wil+301) )

8

Alternatively, if the broadband noise m (#) is a Gaussian polycyclostationary signal
[35], then it will contribute its second-order cycle frequencies to the TMF in (41) by
mixing with the cycle frequencies of s(¢) in the first three terms on the right side.

3 THE SPECTRAL PARAMETERS OF HOCS

The Fourier transform of Eg (u),.is the power spectral density (PSD) of x(¢) and the
Fourier transform of (:’2 (u), is the PSD of the centered version® of x(¢) (this is the
Wiener relation [116], cf. Section 4.2.1 and [35]). The Fourier transform of a sym-
metrized version® of Ri (u), for nonzero « is the spectral correlation function (cyclic
spectral density function), and the Fourier transform of a symmetrized version of
C‘g (1), is the spectral correlation function for the time-series x (¢) with its first-order
sine waves removed (this is the cyclic Wiener relation [35], cf. Section 4.2.1). There-
fore, the spectral parameters of HOCS could be defined to be the Fourier transforms
of Rg (u), and c':g (u),,, whenever such transforms exist. These transforms are indeed

Sx(t) — £0 {x(1)}
6(x(f +u/2)x*(t — u/z)e—ﬂnat)
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the central spectral parameters of the theory of HOCS, but it is more natural to derive
them from a consideration of spectral moments and spectral cumulants; that is, from
limiting versions (as bandwidth approaches zero) of moments and cumulants of nar-
rowband spectral components of x (¢), and then to show that they can be characterized
as Fourier transforms of temporal moments and cumulants.

3.1 Moments

It is assumed that x (¢) is absolutely integrable on finite intervals. We consider the
complex envelope of the spectral component of a segment of x (i) that is centered at

t and has width T':
t+T/2

Xr(t, 1) = f o x(v)e I gy, (43)
t._

The temporal moment of the set of n variables { X7 (¢, fj)};f:l is defined by’

Ser(fhn = <]‘[XT<r, Js->>, RV Al
j=1

| z/2n (44)
Z—oo / _2/211:! J

and is assumed for the time being to exist. If the integration time 7 in (43) is now
allowed to tend to infinity in (45), the spectral moment function (SMF)

Se(f)n = Jm Sy, ()
(45)

1 Z/2 n
= lim lim —/ Xr(t, f;)dt
is obtained. However, this limit exists only in a generalized sense that accommodates
products of Dirac deltas (impulse functions). We shall see that Dirac deltas can be
avoided by working with the cumulant counterpart of this moment.

To see that the SMF (46) is composed of products of impulse functions, we
proceed as follows. The function (45) can be expressed in terms of the CTMF as

follows
T/2 T/2 n '
SxT (f)n = / e l_[x(t + vj)e—l2ﬂ]3'(f+vj) dv

T/2 —T/2 51
o oo - (46)
= / f wr (), RO (0), 2 do,
—00 —00

71t would be more consistent to use £ {-} in place of (-) in the definition of S, (f),, but it is
easy to show that these two operations lead to the same function (45). Thus, we start with the time-average
operator (-).
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where

n
a= Y fi=f11,
j=1

wr @), = [ [ rect(v;/ 1),
j=1

s [ 1 p<1/2,

rect(?) = { 0, |f]>1/2.

Thus, Sy, (f). is nonzero only if the sum «q of the frequencies is equal to an im-
pure nth-order cycle frequency o of x(¢). Now, assuming that R (), is absolutely
integrable on the hypercube of size T on a side, we see that the Fourier transform
(47) exists and that (45) therefore exists. Assuming for the time being that R% (), is
Fourier transformable on the entire space

SEfn = / T f " R 7
(46) yields
Sothn= [ o[- T] 7 sincta) ds.
—o0 —o0 k=1
where )
sinc(f) = s1n(nf)'
nf

Thus, the finite-time spectral moment Sy, (f), converges to

St Jim S (D= [ [ ser-o ] Toen dg
- - k=1
(48)

= 8,

where 6(-) is the Dirac delta. Let us investigate this hypothetical Fourier transform
(47). Using the fact that R (), is sinusoidal in the translation variables (cf. (40)), it
can be shown, formally, that

SEn =SS =), = [fie- ful, (49)
where Sx‘" (f"), is the Fourier transform of the RD-CTMF

53 = _/ / R (w), e du, (50)
—00 —00

Thus, we have the formal result

S8 —a), fl1=aq,

S (f)n = { 0, le £a,

(D
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for all cycle frequencies o of x(¢). The SMF can, therefore, be reexpressed as

Sc(fn =D SE s (fM—a), (52)

which reveals that the SMF is a sum of components with impulsive factors. Moreover,
it is shown in the next section that S’x"‘ (f")n can also be a sum of components with
impulsive factors and even products of impulses. Thus, neither the SMF nor the
reduced-dimension SMF (RD-SMF) (50) are well-behaved functions.

3.2 Cumulants

The spectral cumulant function (SCF) is better behaved than the SMF. To establish
this fact, we proceed in a manner analogous to that used for the SMF to obtain a
characterization of the SCF in terms of the Fourier transform of the RD-CTCF. The
simple cumulant of the variables { X7 (¢, f]-)};‘=1 is given by

P (f)n = Cumulant {X7(¢, fj)}i,
(53)

P
=y [(—I)P‘l(p - D! Sx (fv,>n,,} :
P, J=1

This function is well defined for finite 7 since each moment S x, (+) 1s finite. The
spectral cumulant function is defined to be the limit

P(fln= lim P (f)n. (54)

Equation (47) can be used to reexpress Py, (f), in terms of lower-order CTMFs:

a e 0 o —inTu
PatP = kDT | [ [ o, R, e %, |
B =l | doe J-e

nj

where k(p) = (—1)?~!(p — 1)! and

Oljé Zﬁc

kEUj

From this expression we see that if for every partition in the set P, (except that for
p = 1), there is some «; that is not a cycle frequency of order n; = |vj], then the
function Py, (f), is equal to the function Sy, (f)n. If there is at least one partition
such that all the o; for that partition are cycle frequencies of order n 7, then the
function Py, (f), differs from S, (f),. This is important when considering methods
for measuring P, (f),, as in Section 7.
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The function P, (f), can be expressed more compactly as

o0 o0 p
For(n = / B / Zk(p) { l_[ wr (@), RY (ij)nj:l e 2 gy
- > B j=1
(55)

00 00 p
— / . / wT(”)n I:Z k(p) l_[ jo(vvj)an e—iZNfTvdv.
- —co P, J=1

By using (47), it can be shown that this last expression is equivalent to the Fourier
transform of the CTCF on a hypercube of size T on a side:

00 [e%e) . +
Py (f)n = / - / Wr (0),C2 (@), ¥ d, (56)
—00 —00
By analogy with the preceding argument for the SMF, the SCF is given by
P(f)n =Y PE(fud(f11-p), (57)
B

where - o
Pt [ [ e (58)

—0Q -0

is defined to be the cyclic polyspectrum (CP). The transform (58) does exist (in the
strict sense that excludes Dirac deltas) in general for time-series with asymptotically
independent variables such that the reduced-dimension CTCF decays sufficiently
rapidly in all directions so that C? (u), is absolutely integrable and, hence, Fourier
transformable (cf. Section 2.5.2).

It is now easy to show that the RD-SMF S'x“ (f")n can itself contain impulses.
The decomposition of this function in terms of lower-order CTCFs can be obtained
by computing the Fourier coefficient of the TMF given in (33):

P
RIMy=Ci@n+Y | D[] |- (59)

B | Bf1=a =1
p#l

Setting 7= [u 0] and Fourier transforming in u yields

- —_ - p_l - N
SIS =P+ | D PES I, [T P2 8T, — B | (60)
j=1

P, B 1=a
p#1

where it is assumed that the partitions in (59) are ordered so that v, always contains
n. In (60), each coefficient 135’ (+) is well behaved so that there are no hidden impulse
functions on the right-hand side. For the case in which there is no cyclostationarity
of order less than 7 associated with {x (¢ + rj)};’=1, the sum over P, in (60) is zero for
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nonzero values of «. If x(¢) exhibits cyclostationarity of order less than » such that
there is at least one 3 such that 371 = «, then the sum cannot be identically zero as a
function of f’. Since it is known that P;’c‘ (f')n is well behaved (contains no impulses),
then the RD-SMF must contain impulses or products of impulses and, therefore, so
must the SMF.

Because of the characterization (57) of the SCF, we see that the SCF is nonzero
only on the hyperplanes specified by f 1 = B, where B is a pure nth-order cycle
frequency of the time-series x (¢).

In this section we have seen that the CP is, in general, the only well-behaved
spectral function in the theory of HOCS. The SMF and its reduced-dimension version
S’x"‘ (f)), in general contain products of impulses and are, therefore, not well-behaved
functions. However, in the special case where the lowest order of cyclostationarity of
x(t) is n, the impure nth-order sine waves (with strengths given by the CTMFs) are
identical to the pure nth-order sine waves (CTCFs) for nonzero « and, as a result, the
nth-order SCF is identical to the nth-order SMF, which results in equality between the
CP and the RD-SMF. In addition, there can be many values of the frequency vector
f' for which the RD-SMF and the CP are equal even when x (¢) exhibits lower-order
cyclostationarity. For these f’, the CP can be measured by measuring the RD-SMF.
This is explained more fully in Section 7.

3.3 Example: Sine Waves in Noise

We reconsider the example of Section 2.6. The third-order RD-SMF for the signal
consisting of two sinusoids in noise,

2
x(t) = Z Ajcosmgit +0;) +m(t)
j=1

= s5(t)+m(),
for @ = 3g; is given by the Fourier transform of the RD-CTMF
3

Rg(uh — %ei(ZnSgl[ul-&-uz]-&-w])

obtained by setting 73 = 0 in (42). This Fourier transform is

A3
—LePUs(fi —3g1)8(f —3g1)

SE(f)s = 3

which demonstrates that the RD-SMF can be multiply impulsive. For Gaussian m (¢),
the nth-order CP for x(¢) is identically zero for n > 2. If m () is not Gaussian, then

Pg(f/)n = Pﬁ(f/)nv n>2,

which must be nonzero for some 8 and 7.
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4 DISCUSSION
4.1 Utility of the Theory

The theory of HOCS and, in particular, the theory of temporal and spectral cumulants,
is expected to be useful because it possesses the following attributes:

1. It characterizes the sine-wave components present in the output of nonlin-
ear transformations (both with and without memory) of polycyclostationary
signals.

2. It characterizes the statistical dependence between the amplitude and phase
fluctuations in distinct spectral bands, which can be useful for polyperiodi-
cally time-variant nonlinear filtering.

3. The cyclic cumulants and cyclic polyspectra are signal selective in the same
way that the second-order parameters, the cyclic autocorrelation and cyclic
spectrum, are signal selective.

4. The cyclic parameters depend (explicitly in some cases) on the phases or
timing references of the signal (for example, carrier phase and/or clock
timing).

5. The cyclic cumulants and polyspectra are well-behaved mathematical quan-
tities for signal models that are physically appropriate.

The theory is expected to be useful in the following specific ways:

1. Design and analysis of detection and parameter estimation algorithms for
polycyclostationary signals with weak or nonexistent second-order polycy-
clostationarity (cf. Section 8).

2. Performance analysis of any detector, estimator, or other signal processor
that operates nonlinearly on a polycyclostationary signal.

3. Study of the effects of unintentional or unavoidable nonlinearities in system
elements on polycyclostationary signals.

4. Optimization of sine-wave generation devices for synchronization purposes.

5. Modulation classification and recognition based on frequencies of generat-
able sine-wave and the orders at which the sine waves occur (cf. Section 8).

4.2 Special Cases of the Parameters

4.2.1 HOCS, the Cyclic Spectrum, and the Power Spectrum

In this section we examine the relationship between the parameters of HOCS
for n = 2 and the well-established parameters of second-order polycyclostationarity
(SOCS), which include the (nonprobabilistic) autocorrelation and power spectrum as
special cases.
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The autocorrelation function for a real time-series x (¢) is defined to be
Ri(v) = (x(t +/2x(t — 1/2)), (61)
which is obtained by using the time-averaging operation (), that is,
R.(t) = EOx(t + t/2)x(t — 7/2)}.

This function does not in general describe the second-order polycyclostationarity (if
any exists) of x(¢). To do that we need to use the sine-wave extraction operator to
obtain the second-order TMF for 7; = 7/2 and 7, = —1/2,

R.(t, 1) = E x(t + 1/2)x(t — 1/2)}. (62)

For a stationary time-series, (61) and (62) are identical, but for a polycyclostationary
time-series we have

Rx (f, ‘L’) = Z Rz(r)elﬁﬂat (63)
where
R3 (%) 2 (x(t +1/2)x(t — T/z)e—iZnat> 64)

and, therefore, R, (1) = Rg(t). Equations (63) and (64) define the central time-
domain parameters of SOCS for real time-series [35]. The function (64) is called

the cyclic autocorrelation function. We can easily relate the cyclic autocorrelation
function to the RD-CTMF for n = 2. Since

R-;[(u)z = (x([ + u)x(l«)e‘ﬂnat)
= (x(f + L{/z)x([ — u/z)e—iZNOlt> eiﬂau’

then the RD-CTMF for n = 2 is related to the cyclic autocorrelation by a sinusoidal
factor: B .
RE (1) = RY (u)e'™ . (65)

The spectral correlation function or cyclic spectrum is the limit as the bandwidth
tends to zero (7 — oo) of the time-averaged product of spectral components with
approximate bandwidth 1/ 7 and frequency separation a:

i 1
S:(f) = lim <FXT<z, S+e/DX7 [~ a/2)>. (66)
This function is the Fourier transform of the cyclic autocorrelation function (64),
o0 .
S4(f) = / R*(v)e 7 dr. (67)
—o0

The relation (67) is the cyclic Wiener relation, and it reduces to the Wiener relation
between the power spectrum and the autocorrelation for o = 0,
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00 .
SO(f) = / RY(r)e ™7 dr, (68)
—00

Combining (50), (65), and (67) yields

- o0 - 2 7

S¥(f 2 = / RS (u)y ™ du

—00

(69)
[e.¢] . . ,
= / RE (u)e' ™ e~/ dy

o0

= 83 —a/2),

which implies that the Fourier transform of the RD-CTMF, S’)‘j‘ (f")2, is related to
the cyclic spectrum by a frequency shift of «./2. Note that the function S;’ (f")2 can
contain impulses that are due to the first-order sine-wave components contained in
the data x (). In the development of the theory of SOCS, it is most natural to assume
that the data does not contain such finite-strength additive sine waves. In this case,
the moments and cumulants are equal, and S‘jj‘ (f")2 does not contain impulses,

R*(u)y = C%(u),,
PY(fN)2 = S%(f),
=SS —a/2)

Thus, in this special case, the CP is equal to the shifted cyclic spectrum, and the CP
for & = 0 is equal to the PSD, P%(f"), = SO(f’). We conclude that the parameters
of HOCS that are defined in this paper are consistent (to within a frequency shift)
with the previously developed second-order parameters for polycyclostationary time-
series, and are consistent with the notions of autocorrelation and power spectrum and
are therefore properly referred to as generalizations of the second-order parameters.
The same can be said of the parameters of HOCS and SOCS generalized from real
time-series to complex time-series as done in Section 5.1 for HOCS and in [35] for
SOCS.

4.2.2 HOCS and Higher-Order Stationarity

A signal is called kth-order stationary (in the wide sense, cf. Chapter 1) if its nth-
order moments (stochastic or FOT) forn = 1, - - -, k are translation invariant. Such
signals, within the stochastic-process framework, are the subject of the literature on
higher-order statistics [81, 83]. The cyclic polyspectrum for such signals is zero
except for 8 = 0. Thus, the stochastic (FOT) HOCS parameters of an nth-order
stationary signal match those of stochastic (FOT) higher-order statistics. But, there
is not, in general, a match between the same types of statistics from the two different
frameworks (cf. Chapter 1).
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Consider a zero-mean polycyclostationary ergodic stochastic process X (¢). If we
compute the theoretical FOT power spectrum for a sample path of the process and the
theoretical stochastic power spectrum for the stationarized stochastic process obtained
by phase randomizing (cf. Chapter 1), then we get the same function provided that
the phase randomization is done properly [36]. But the phase-randomized process is
not cycloergodic. In other words, it is possible for a polycyclostationary time-series
to be a sample path of a stationary stochastic process: if the power spectrum is the
only quantity of interest, this modelling discrepancy is not apparent. This is so simply
because of ergodicity: The « = 0 component in the FOT second-order moment (63)

R.(t,7) =)  RY(r)e™ (70)

must be equal (with probability one) to the stochastic second-order moment R x(7):
RY(t) = Ry(r) = E{X(t + T/2) X(t — t/2)}.

This actually occurs often in the literature on communications theory. Because of
this correspondence, the &« = 0 component in (70) is sometimes referred to as the
“stationary component” of the second-order moment.

Can this be generalized to higher-orders? What is the interpretation of the @ = 0
component of the nth-order TMF (12) or the 8 = 0 component of the nth-order TCF
(34)? The answer is that neither can be interpreted as a stationary component because
the = 0 and B = 0 components of the moment and cumulant, respectively, are not
in general equal to the moments and cumulants of a stationarized process. This is a
result of the fact that each of these quantities depends explicitly on lower-order cyclic
moments and/or cumulants (cf. (36) with 8 = 0). This is demonstrated in Section 7.

The relationships between all the parameters of higher-order cyclostationarity
are shown graphically in Fig. 1. In this figure, the labels on the lines represent
functional relationships between the quantities at the arrowheads. The portions of the
figure that correspond to the special cases of second-order stationarity, second-order
cyclostationarity, and higher-order stationarity are as indicated in the figure caption.

5 DEVELOPMENT OF THE THEORY
5.1 Complex Time-Series

To allow for arbitrary conjugations in the lag product of a complex-valued time-series
x(t), we use the following notation

Lo(t,mn = [ [x% (¢ + 7)., (1)
j=1

where (x); is either a conjugation * or nothing, that is, () ; is an optional conjugation
of the jth factor x(¢ + 7;). For each of the 2" different choices of conjugations in
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Temporal Moment

FT
Spectral RD
3 S —> RD-SMF
Moment
Spectral Cumulant
KEY:

FT  Fourier Transform

FC  Fourier Coefficient

M/C  Moment/Cumulant Relationship
RD  Reduce Dimension

Figure 1: A pictorial representation of the relationships between the parameters of
higher-order cyclostationarity. The parameters of higher-order stationarity as they are
typically defined correspond to the inner diamond (bold arrows) because in this case
the translation invariance of the time-domain quantities suggests the reduced-dimension
quantities. The quantities in the boxes A and B are equivalent for zero-mean signals
and n = 2 and 3 because in this case moments and cumulants are equal. Thus, box A
(or B) contains the relation between the cyclic spectrum and the cyclic autocorrelation

for zero-mean polycyclostationary signals, and as a special case contains the Wiener
relation (bold arrow).

(71) we define the CTMF by
R;l (T)l’l é <Lx (t7 T)l’le_iznat> ’
and its reduced-dimension counterpart by

RX(w), = R*(D),, T=[u0],

as in Section 2 for real time-series.
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In general, the 2" functions RZ (), are distinct. This is immediately clear in the
case of n = 2, where we have the functions

R (T)y = (x(t + 1)x (¢ + T2)e " 27),
RL (T2 = (x*(t + 1)x(t + ©)e”>™)
RL(T)2 = (x(t 4 1)x* (1 4 T2)e7 2™},
RE (7)y = (x* (1 + T)x*(t + T)e~"27).

For real time-series these four functions are equivalent provided that n = «. For
complex time-series they are not, and instead the following relations hold:

RY (11, 12)2 = R (11, 12)3
R} (11, 12)2 = R, (11, 02)3.

For certain complex-valued signal types and values of 7, the cycle frequency sets that
are associated with each choice of conjugation are distinct, as illustrated in [35] for
the case of n = 2.

For an arbitrary collection of time-series translates {y;(t + fj)};l:l, the cross
(joint) CTMF is defined by
n .
RY(T)n = < [ [+ rj)e"’z”"”>, (72)
j=1
and the cross SMF is defined by
Sy(f)n = lim < HYJ-TU, f,-)>. (73)
j=

We know from Section 3 that (73) can be nonzero only if f "1 = &, where « is an
impure nth-order cycle frequency of {y; (¢ + fj)}?=1 (i.e., (72) is not identically zero as
a function of 7 for this «), in which case (73) is the n-dimensional Fourier transform
of (72). '

For the choice of y;(f + 7;) = x™® (¢ + 1), the following is obtained,

+T/2 '
Yip(t, 1) = / x® (uye > du
1=T/2
t+T/2 OF
= [f x (u)e 2 i fju du:|
=T/2

= X7, (=), ),

where (—); is the optional minus sign associated with the optional conjugation (x);.
So, the SMF for {y;(t 4+ 1;)} can be expressed in terms of X7 (-, -) by

Sy(f)n = Jim_ < [Tx7¢ (—m;)>, (74)
j=1
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which is nonzero for f 1 = &. The RD-CTCF can be constructed in the same manner
as in Section 2 for real time-series, that is, by combining lower-order CTMFs. The CP
is the (n — 1)-dimensional Fourier transform of the RD-CTCEF, and is nonzero only for
11 = B where B is a pure nth-order cycle frequency for {x*) (¢ + 7)Y, Justasin
the case of the SMF (74), the SCF can be thought of as the limit (as 7 — oo) of the joint
simple cumulant of the set {Y; ;. (¢, fj)};?=l . Thus, the CP for the set {x ® (t + ‘Cj)};-’=1 is

characterized by the limit (as 7 — 00) of the cumulant of the set { X(T*)’ @, (=), fj)};?z1 ,
analogous to the characterization for real time-series in Section 3.

5.2 Signal-Processing Operations

In this section we obtain input-output relations for the higher-order moments and
cumulants of time-series subjected to the signal-processing operations of addition,
multiplication, convolution, and periodic time-sampling. The derived relations can
help in the calculation of higher-order parameters of modulated signals if such signals
can be represented as a series of operations on a simpler signal, for which the higher-
order parameters are known or are easily determined.

5.2.1 Addition

Let z(¢) be equal to the sum of two statistically independent time-series x (¢) and

y(1),
z(t) = x(t) + y(@).

In this case, the TCF for z(¢) is given by
Co(t, D = Cx(t, Dn + Cy(t, Tn, (75)
which implies that the CTCF is given by
Cl (D = CE(Dy + CE (D, (76)
and the RD-CTCF is given by
Cl@), = CL@)n + Ch(w),. a7
The CP is, therefore, given by
PE(f = PECf n + PECS ). (78)

No equally simple additive relations hold in general for the CTMF and SMF. The
results (75)—(78) can be extended by induction to the case in which z(¢) consists of
the sum of M statistically independent time-series.

5.2.2 Product Modulation

Let the time-series z(¢) be the product of two statistically independent time-series
x(t) and y(¢)
z(t) = x (@) y(1).
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The statistical independence [35, 45] of x(¢) and y(¢) implies that
n n m
EC S [T e+ [o™ e+ vk)}

j=1 k=1

n m
j=1 k=1

for all values of n, m, T, and ». The TMF (12) for z(¢) is simply

n
Ro(t, 7y, = B { [T+ rﬂ}
=1

Il

E@ { ]—[x<*>f t + ) y™ (t + rj)}
j=1
= Rx(t7 T)nRy(t7 -

Using (12), the TMF can be expressed in terms of CTMFs,

R(t, 1)y = ) R (1),

B [Z R (T)ne"z””t} [Z Ry (T)neiz”V’J :
n

14

which implies that the CTMF for {z(z + rj)};’zl is given by

RE(T)y = (R:(t, Dye ")

(79)
= Y RIDRE(D),
n

=Y RV (DuRY(D, (80)
14

which are discrete convolutions, where o« — 7 is equal to an impure nth-order cycle
frequency for y(¢) in (80), and o — y is equal to an impure nth-order cycle frequency
for x(¢) in (80). The TCF and CTCF for {z(¢z + rj)};le can be constructed by using
(34), (36), and (80) or (80). The SMF can be obtained from (80) using the convolution
theorem for the Fourier transform,

SEfm=3 / / STV (f — £)aS] ()adg, (81)
y J—o0 —00

which is a joint continuous and discrete convolution. No equally simple input-output
relations hold for the CTCF and CP if both x (¢) and y(¢) are random. However, if one
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of these time-series is nonrandom (which in the FOT framework means it is constant,
periodic, or polyperiodic [35, 45]), say x(¢), then its lag product is identically equal
to its TMF:

Ri(t, T = E®N{Ly(t, Da} = Lot D

In this case, there is a simple formula for the temporal and spectral moments and
cumulants for z(¢), which is obtained next. Expressing the TCF for z(¢) in terms of
the TMFs for x () and y(¢) yields

P
C:(t, Dn =y [(—l)p‘l(p - D] R, n,)m}

B Jj=1
P p
=) [(—1)1’—‘(;9 — 1! { []& rvj)n,.} { []& . mm” .
By Jj=1 k=1

Because x () is nonrandom, the product of lower-order TMFs for x (¢) is equal to the
nth-order TMF for x () for every partition and can, therefore, be factored out of the
sum, which leaves the cumulant of y(¢):

C.(t, " =L, (@, T)ncy(tv Tn = Ry (t, T)ncy(ta T)n-

Thus, in the special case where x () is nonrandom (polyperiodic), the formulas (80)—

(81) hold with R;, S;, R, S, replaced by C., P;, C,, P,, respectively.
5.2.3 Linear Time-Invariant Filtering

Let z(¢) be equal to a filtered version of x(z),

2(t) = /oo h(\)x(t — ) dA,

oo

where the impulse-response function /4(-) is assumed to be absolutely integrable. It
is easy to show that the CTMF for {z (¢ + tj)};?zl is given by

R (1), = /Oo /Oo {]‘[H*”(m} RE(T—=A)dA, A= [y 2,00
—0o0 —00 j:1

Assuming that it exists, the spectral moment function can be obtained by using the
convolution theorem for the Fourier transform,

S:(f)n = { I1 H“*((—»f,»)} Sc(fns (82)
j=1

where

H(f)= / ” h(t)e 2 dy

oo
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is the transfer function of the filter. The input-output relation (82) is intuitively
pleasing since the effect of filtering x (¢) is to scale the spectral component in x (¢) with
frequency v by the complex number H (v). Thus, the individual spectral components

that are averaged to form the SMF are each scaled by the appropriate value H ) ’) )"
It follows from (34) and (54) that the effect of filtering on the CTCF and the CP'is
the same as that for the CTMF and SMF:

Ch(m), = /oo [th),- (xh)} CP(T— N)pd, (83)

j=1
and
n—1
PE(f)n = {H%((—)n[ﬁ 1D H‘*)f((—)jﬁ)} PE(fn. (84)
j=1
Thus, the effect of filtering is conveniently represented in terms of both cumulant and
moment functions.
5.2.4 Periodic Time-Sampling
Let z(¢) be the product of an impulse train and the time-series x (¢):
z(t) = y()x(@),
[e¢]
¥ty = Y 8t —mTy),
m=—00

where T is the sampling increment, and f; = 1/ 7Ty is the sampling rate. Since y(¢)
is periodic it is statistically independent of x(¢), and the results of Section 5.2.2 can
be used to find the nth-order statistical parameters for z(¢). The nth-order RD-CTMF
for z(¢) is given by (cf. Section 5.2.2)

RE(u), =Y RY(w), R (u),.
2
By using the formal identity

00 00
Z 8(f—st):fg Z ei2nmtfx’

m=—00 m=—00

it is straightforward to show that the RD-CTMF for y(¢) is given by
R;’)(u)n = fr Z [exp {i27[fsuTm’} k(m'1f, — ]

where
m=[my-myl" m = [my--m,_ ],
and
1, x=0,
"(x)_{ 0, x#0.

Thus, the RD-SMF for z(¢) is given by
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S =AY [Zx(mflfs —a+y)SU(f — m/mn} L ®9)

y m
Because y(¢) is periodic, the cumulant for {z(¢ + tj)};’zl is given by (cf. Section

5.2.2):
Cz(t’ T)n = Ry(t: T)ncx(tv T)nv

and therefore the analysis above for the RD-CTMF holds also for the RD-CTCEF,

Clay, =) Clw), RE~"(w),,
n
and for the CP,

PE(fY =S [Zx(m* 1fi—B+y)PL(f - m’mn] . (86)

14

The formulas (85) and (86) show that there are two kinds of aliasing effects due to
sampling: (i) frequency aliasing, which is due to the overlapping of images of the
CP (RD-SMF) with the same cycle frequency that occurs when y = B (y =a)in
the sum and, (ii) cycle aliasing, which is due to the overlapping of images of the CP
(RD-SMF) with cycle frequencies other than 8 («).

6 DIGITAL QUADRATURE-AMPLITUDE
MODULATION

6.1 Cumulant Formulas for QAM

In this section, we present the higher-order parameters for real- and complex-valued
pulse-amplitude-modulated (PAM) signals, which provide useful models for the
classes of digital baseband and quadrature-amplitude-modulated (QAM) si gnals. The
PAM time-series is given by

o0

X(O) = Y anp(t+mTy+1o), (87)

m=—0oQ

where {a,, } is an independent and identically distributed (IID) symbol sequence, 1/ T
is the symbol rate,  is an unknown constant that represents the absolute timing of
the waveform, and p(¢) is the pulse function with Fourier transform given by P(f),

P(f)= / N p()e™ >/ dr.

It is desired to calculate the CTCF and CP for {x ™) (z + tj)}jzl.
The higher-order cumulants for PAM time-series can be derived by using the
results of Section 5. This derivation is sketched next. The cumulants for arbitrary
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PAM signals can be derived from the cumulants for PAM signals that have rectangular
pulses (or any other pulse with duration limited to an interval with length equal to
the reciprocal of the symbol rate). These latter cumulants can be shown [110] to be
given by

Cy(t, Ty = Cumulant {(x* (¢t + 7))}]_,

o (88)
= Ca,n Z np(t+mTO+Tj),
m=—00 j=1
where C, , is the nth-order cumulant of the symbol sequence, and is given by
Com= ), [(—1)1’*1@ - D! HRa,v,} ,
Py j=1
in which
A 1 XK: I )
R,, = lim a’. (89)
j K—00 2K +1 Kok gev;
The RD-CTCF and CP follow directly from (88):
_ c o0 A=l : :
Cf(u),, _ Lan / p(l‘) Hp(t + uj)e—ZZnﬁt dtelznﬁto, (90)
TO —00 j=1
B C n—1 )
PR = = PB =10 [[ (e, o1
0 =1

for B = k/ To.
An arbitrary PAM time-series (87) can be represented as a filtered product of an
impulse train with a time-series a(f):

o0

x(t) = Z am p(t +mTy + tp)

m=—0Q

m=—0o0

[a(f) > 8<r+mTO)}®p(r+ro>

y(@) ® p(t + o),

where ® represents the convolution operation, and a(¢) is a rectangular-pulse PAM

signal of the type just analyzed. The cyclic cumulants and cyclic polyspectra for y(¢)

can be determined by using the results of Section 5.2.4, and the results of Section 5.2.3

can then be applied to determine the effect of filtering on these cyclic parameters.
The CP for y(¢) follows from (86):

Ph(fn=T5" [ZK(’"TI/TO - B+V)PL(f — m//To)n} .92
Y

m
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where m = [my---m,], m = [my---my_1], and «(-) is the Kronecker delta
function. The form of (92) implies that the pure nth-order cycle frequenc1es for y(¢)
are { = k/ Ty} for all integers k. It can be shown that the function P” S(fnis a

constant function:

5B
P(f)n— To'

The effect of filtering the time-series y(¢) is easily determined by using (84) with the
filter transfer function

H(f) = f " pl+ e dr = P(f)eI

o0

Thus, the nth-order CP for x(¢) is given by

n—1
(B =1 DO [T P((=), f)®reo, (93)

j=1

PE(f, =

which reduces to the following simpler form for real-valued time-series (no conjuga-
tions):

PR(f), = Sor 7 Pe -1 H P(f)e>Po. (94)
j=1
Inverse Fourier transforming (93) yields the RD-CTCF for PAM:

- Con [ 51 . ‘
Clw), = T / P O[] p™ (¢t +upe P ar o, g =k/Ty. (95)
oo i

6.2 Real-Valued PAM

In the case of binary symmetric real PAM, the symbols take on the values &1 with
equal FOT probability. For #» = 2, the cumulant for the symbol variables is

Cin=1
Therefore, the second-order RD-CTCF is given by
- 1 o8 . .
Clap = — / PO p(t +uye” P dr &0 B =k/ Ty,
0 J—o00

and the second-order CP is given by

_ 1 .
PA(f), = 7P~ FIP(f)e¥Po,

which for 8 = 0 reduces to the well-known formula for the PSD of a unit-power
PAM signal,

_ 1
PUf)a= PP
0
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For n = 4, the cumulant for the symbol variables is given by
Cas = Ras — 3R}, —4R,3R,1 + 12R, 2R} | — 6R
= R,4— 3R, =-2,
where R, is given by

K
Ra,k -

K—>oo 2K +1 Z

Thus, the fourth-order RD-CTCEF is given by

= -2 OO - —i2m i2m
Chlu), = 0 /_Oo p(t)l—[p(t + uj)eHBl gt o2,

j=1

The magnitude of this function for #3 = 0 is shown in Figs. 2 and 3 for 8 = 0 and
B = 1/ T, for two different pulse shapes. The pulse shape for Fig. 2 is rectangular,

1, |t] < To/2,
0, otherwise,

p(t) = {

and the pulse shape for Fig. 3 is the inverse transform of the bandlimited pulse

transform
L | fl <1/2T,

0, |fl>1/2Tp, ©6)

P(f) = {
which is a sin(x)/x shaped pulse.
6.3 Complex-Valued PAM

Consider the complex PAM signal (87) with symbol constellation {1, +i} (equally
probable), and a pulse with transform given by (96). This is a model for the complex
envelope of a bandwidth-efficient quaternary-phase-shift-keyed (QPSK) signal. This
signal has no second-order cyclostationarity because for » = 2 and the choice of no
conjugations (or for two conjugations) C, » = 0, and for the choice of one conjugation,
C,2 = 1. But because of (96), the RD-CTCF is zero:

o0
/ PO p*(t +w)e P dt

[es)

= [ POIP = pre e =0, f=g/Ty, g £0,

o0

Nevertheless, this PAM signal exhibits fourth-order cyclostationarity for two choices
of conjugations. In the first case there are no conjugations and therefore

Caa = Rya — 3R}, —4Ry3Rq1 + 12R,2R2 | — 6RY,
= Ry4—3R.,=Ros=1,
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Figure 2:  Surface and contour plots of the theoretical RD-CTCF for a real-valued
binary PAM signal with a rectangular pulse shape.

which implies that

C’ﬁ(u) _i/oo
LR

[e9] j:1

In the second case, two variables are conjugated, that is, the set of variables under

consideration is

3
p(l‘) Hp(t 4 uj)e—i27r,3t dteiZﬂ,Bto’ ,8 — k/T()

{x(t + 1) x(t + ) X*(t + 13) x*(t + 14)}.

In this case, the cumulant for the symbol variables simplifies to C, 4 = —1, and the

cumulant for the PAM time-series is given by
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Figure 3: Surface and contour plots of the theoretical RD-CTCF for a real-valued
binary PAM signal with a Nyquist-shaped pulse.

_ —1 0 . .
CY ) = Tof PO P& +1u) plt +u2) p* (¢ +uz)e 2P dte P = k/ Ty,
—00

Note, however, that a different symbol distribution (e.g., uniform over the 8th roots
of unity) could render C, 4 = 0 in both of the preceding cases, but some higher-order
cumulant (e.g., » = 8) would be nonzero.

7 MEASUREMENT OF THE PARAMETERS
OF HOCS

7.1 The Flavor of the Measurement Problem

The measurement of HOCS parameters from a single finite-length data record is
considered in this section. This study is motivated by the need for such estimates that
is demonstrated by the applications of the theory that are considered in Section 8.
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The measurement problem as formulated here may be somewhat confusing be-
cause the ideal parameters to be measured are all mathematically derived from a
single infinite-length time-series, whereas the more familiar estimation problem in-
volves using a single finite-length data record to estimate an ideal parameter (e.g., a
stochastic polyspectrum) of a stochastic process of which the single data record is
assumed to be a sample path. The estimation methods described here can be viewed
as the result of “backing off” from the limits that define the ideal parameters (e.g.,
FOT cyclic polyspectrum) and then manipulating the resulting expressions to derive
various estimators.

Measurement of the polyspectrum for strictly stationary stochastic processes
is considered in detail in [11, 94, 99, 122], and to some extent estimation of the
cyclic polyspectrum is similar. Because a natural first step in constructing estimators
for HOCS parameters is to generalize this work, e<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>