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I. INTRODUCTION

Many conventional statistical signal processing methods treat random sig-
nals as if they were statistically stationary, that is, as if the parameters
of the signal model do not vary with time. But for most manmade sig-
nals encountered in communication, telemetry, radar, and sonar systems,
some statistical parameters do vary periodically with time. In some cases
even multiple incommensurate (not harmonically related) periodicities are
involved. Examples of such periodicities include sinusoidal carriers in am-
plitude, phase, and frequency modulation systems, periodic keying of the
amplitude, phase, or frequency in digital modulation systems, periodic scan-
ning in television, facsimile, and some radar systems, and periodic motion
in rotating machinery. Although in some cases these periodicities can be ig-
nored by signal processors, such as receivers which must detect the presence
of signals of interest, estimate their parameters, and/or extract their mes-
sages, in many cases there can be much to gain in terms of improvements
in performance of these signal processors by recognizing and exploiting
underlying periodicity. This typically requires that the random signal be
modeled as cyclostationary, in which case the statistical parameters vary
in time with single or multiple periodicities. Cyclostationarity also arises
in signals of natural origin, due to the presence of rhythmic, seasonal, or
other cyclic behavior. Examples include time-series data encountered in
meteorology, climatology, atmospheric science, oceanology, astronomy, hy-
drology, biomedicine, and economics. This article introduces the principles
of the theory of cyclostationary signals and the exploitation of the cyclo-
stationarity property.

Let us be more specific about the nature of a cyclostationary signal. A
signal is cyclostationary of order n (in the wide sense) if and only if we can
find some nth-order homogeneous polynomial transformation of the signal
that will generate finite-strength additive sine-wave components, which re-
sult in spectral lines. For example, for n = 2, a quadratic transformation
(like the squared signal or the product of the signal with a delayed version
of itself, or the weighted sum of such products) will generate spectral lines.

For n = 3 or n = 4, cubic or quartic transformations (i.e., sums of weighted
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products of 3 or 4 delayed versions of the signal) will generate spectral lines.
In contrast, for stationary signals, only a spectral line at frequency zero can
be generated.

Another way to describe a cyclostationary signal, which is completely
equivalent to the first, but does not appear to be so upon first encounter,
is as follows. A signal is cyclostationary of order n (in the wide sense) if
and only if the time fluctuations in n distinct spectral bands with center
frequencies that sum to certain discrete nonzero values are statistically
dependent in the sense that their joint nth-order moment (the infinite-time
average of their product in which each factor is shifted in frequency to have
a center frequency of zero) is nonzero. In contrast, for stationary signals,
only those bands whose center frequencies sum to zero can exhibit statistical
dependence.

In fact, for a cyclostationary signal, each distinct sum of center fre-
quencies for which the nth-order spectral moment is nonzero is identical to
the frequency of a sine wave that can be generated by putting the signal
through an appropriate nth-order nonlinear transformation.

For the simplest nontrivial case, which is n = 2, this means that a signal
z(t) is cyclostationary with cycle frequency o if and only if at least some
of its delay-product waveforms, y(t) = z(t — 7)z(t) or z(t) = x(t — 7)z*(t)
(where * denotes conjugation) for some delays 7, exhibit a spectral line at
frequency a, and if and only if the time fluctuations in at least some pairs
of spectral bands of z(t), whose two center frequencies sum (for the case of
y(t)) or difference (for the case of z(t)) to a, are correlated.

If not all cycle frequencies a for which a signal is cyclostationary are
multiples of a single fundamental frequency (equal to the reciprocal of a
fundamental period), then the signal is said to be polycyclostationary (al-
though the term cyclostationary can also be used in this more general case
when the distinction is not important), which means that there is more than
one periodicity associated with the statistical parameters of the signal.

Let us now consider the utility of the property of cyclostationarity. Cy-
clostationarity can be used to enhance the accuracy and reliability of infor-
mation gleaned from data sets such as measurements of corrupted signals.

This enhancement is relative to the accuracy and reliability of information
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that can be gleaned from stationary data sets or from cyclostationary data
sets that are treated as if they were stationary. Such information includes
the following:

1. A decision as to the presence or absence of a random signal, or about
the number of random signals present in a data set that also contains
background noise and other modulated signals,

2. A classification of multiple received signals present in a noisy data set

according to modulation types,

3. An estimate of a signal parameter, such as carrier phase, pulse timing,
or direction of arrival, based on a noise-and-interference-corrupted
data set,

4. An estimate of an analog or digital message being communicated by a

signal over a channel corrupted by noise, interference, and distortion,
5. A prediction of a future value of a random signal,

6. An estimate of the input-output relation of a linear or nonlinear Sys-
tem based on measurements of the system’s response to random ex-

citation,
7. An estimate of the degree of causality between two data sets, and
8. An estimate of the parameters of a model for a data set.

In the first part of Section II of this article, the possibility of generat-
ing spectral lines by simply squaring the signal is illustrated for two types
of signals: the random-amplitude modulated sine wave and the random-
amplitude modulated periodic pulse train. Then in the second part of
Section II, it is explained that the property that enables spectral-line gen-
eration with some type of quadratic time-invariant transformation is called
cyclostationarity of order 2 (in the wide sense), and is characterized by
the cyclic autocorrelation function, which is a generalization of the conven-
tional autocorrelation function. Following this, it is shown that a signal
exhibits cyclostationarity if and only if the signal is correlated with certain
frequency-shifted versions of itself.
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In the third and last part of Section II, the correlation of frequency-
shifted versions of a signal is analyzed in the frequency domain and this
leads to the definition of a spectral-correlation density function. It is then
explained that this function is the Fourier transform of the cyclic auto-
correlation function. This Fourier-transform relation includes as a special
case the well-known Wiener relation between the power spectral density
function and the autocorrelation function. A normalization of the spectral-
correlation density function that converts it into a spectral correlation co-
efficient, whose magnitude is between zero and unity, is then introduced as
a convenient measure of the degree of spectral redundancy in a signal. For
example, if the spectral correlation coefficient is zero, then the associated
spectral components are not redundant, and if the spectral correlation co-
efficient is unity, then the associated spectral components are completely
redundant.

Continuing in the final part of Section II, the effects on the spectral-
correlation density function of several signal-processing operations are de-
scribed. These operations include filtering and waveform multiplication,
which in turn include the special cases of time delay and multipath prop-
agation, bandlimiting, frequency conversion, and time sampling. These
results are used to derive the spectral-correlation density function for the
amplitude-modulated sine wave, the amplitude modulated pulse train, and
the binary phase-shift-keyed sine wave. The spectral-correlation density
functions for some other types of phase-shift-keyed signals are also described
graphically. ‘

To conclude Section II, measurement of the (estimation of the ideal)
spectral-correlation density function is discussed and a particular algo-
rithm for this purpose is described and illustrated with a simulated phase-
shift-keyed signal. To complement similar treatments of this material [1,
2], attention is focused in Section II on discrete-time signals rather than
continuous-time signals?.

Section III describes some ways of exploiting the inherent spectral re-

dundancy associated with the spectral correlation in cyclostationary signals

_ 2For convenience, the notation herein is modified from that in [1, 2]: here, R2 and
Sg are used for continuous time and R¥ and S¥ are used for discrete time.
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to perform various signal processing tasks. These tasks include detecting
the presence of signals buried in noise and/or severely masked by inter-
ference; recognizing such corrupted signals according to modulation type;
estimating parameters such as time difference of arrival at two reception
platforms and direction of arrival at a reception array on a single platform;
blind-adaptive spatial filtering of signals impinging on a reception array; re-
duction of signal corruption due to cochannel interference and/or channel
fading for single-receiver systems; linear periodically time-variant predic-
tion and causality; and identification of linear and nonlinear systems from
measurements of the input and output. The task descriptions include brief
explanations of how and why the signal processors that exploit spectral re-
dundancy can outperform their more conventional counterparts that ignore
spectral redundancy or, equivalently, ignore cyclostationarity. References
to more detailed treatments are given throughout.

Finally, in Section IV, the principles of second-order cyclostationarity
that are surveyed in Section II are generalized to higher orders. It is shown
that, whereas temporal and spectral second-order moments play the central
role in the theory of second-order wide-sense cyclostationarity, temporal
and spectral cumulants arise naturally in the formulation of the theory of
higher-order wide-sense cyclostationarity. Some applications of the theory

of higher-order cyclostationarity are described.

II. PRINCIPLES OF CYCLOSTATIONARITY
A. SPECTRAL LINE GENERATION

A discrete-time signal z(t), for t = 0,+1,+2,43,..., contains a finite-
strength additive sine-wave component (an ac component) with frequency
a, say

acos(2mat 4+ 60) with a # 0, (1)

if the Fourier coefficient

Mg = (x(t)e™2mt) (2)
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is not zero, in which case Eq (1) gives

In Eq. (2), the operation (-) is the time-averaging operation

¥4

) 2 Jim = 3 g0

In this case, the power spectral density (PSD) of z(t) includes a spectral
line at f = a and its image f = —a. (The PSD is defined later in this
section.) That is, the PSD in the principal domain (—1/2,1/2] contains
the additive term®

|M2P[8(f — a) +6(f + )] ®3)

where §(f) is the Dirac delta (or impulse) function. For convenience in
the sequel, it is said that such a signal exhibits first-order periodicity with
frequency a.

Let z(t) be decomposed into the sum of its finite-strength sine-wave

component, with frequency «, and its residual, say n(t),
z(t) = acos(2wat + 0) + n(t), (4)

where n(t) is defined to be that which is left after subtraction of Eq. (1)
from x(t). It is assumed that n(t) is random. Here, the term random is used
to denote nothing more than the vague notion of erratic or unpredictable
behavior. If the sine wave is weak relative to the random residual, it might
not be evident from visual inspection of z(t) that it contains a periodic
component. Hence, it is said to contain hidden periodicity. However, be-
cause of the associated spectral lines, hidden periodicity can be detected,
and in some applications exploited, through techniques of spectral analysis.

This article is concerned with signals that contain more subtle types
of hidden periodicity that, unlike first-order periodicity, do not give rise
to spectral lines in the PSD, but that can be converted into first-order

periodicity by a nonlinear time-invariant transformation of the signal. In

3The strength of the spectral line is |MZ|? as indicated in Eq. (3) if and only if the
limit Eq. (2) exists in the temporal mean-square sense with respect to the time parameter
u obtained by replacing t with ¢t + u in Eq. (2) [1, Chapter 15, Exercise 6].
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particular, we shall focus in Sections I-III on the type of hidden periodicity
that can be converted by a quadratic transformation to yield spectral lines
in the PSD of the transformed signal. In Section IV, we shall consider
hidden periodicity that requires higher-order nonlinear transformations for
conversion into first-order periodicity.

The theory presented here is couched entirely in terms of time averages,
because time averages arise naturally in our inquiry into hidden periodicity.
Nevertheless, it is mentioned that this theory can be reformulated in terms
of stochastic processes. In fact, the theory presented here can be translated
to the alternative theory (cf. [3]) simply by following the rule*:

For all sinusoidally weighted time averages
<z(t)e—i21rat>

of time-series z(t), replace 2(t) by the expected value E{Z ()}
of the corresponding stochastic process Z (t) to obtain

<E{Z(t)}e—i27mt> .

Common examples of z(t) appearing in this presentation include lag prod-
ucts z(t) = z(t)a*(t — 7) and cross products z(t) = u(t)v*(¢).

The discussion begins with two motivating examples. In the conven-
tion used here, the PSD for z(t) is denoted by S,(f) and is periodic with
unity period. 5’2( f) denotes the PSD restricted to the principal domain
(=1/2,1/2], therefore, the PSD is given by

[ee)
Se(f)= D Su(f +n).
n=-—00
On occasion, continuous-time signals also are discussed herein. In such
cases it is assumed that the signal is time-scaled and bandlimited so that
the PSD is restricted to the band (~1/2,1/2]. Consequently, the PSD of the
discrete-time sampled version, restricted to the principal domain, will be
identical to the PSD of the continuous-time signal and the same notation,
S2(f), is used for both.

“When a = 0, the operation () can be omitted from (E{Z(t)}) only if Z(t) is purely
stationary, i.e., stationary and cycloergodic [3].
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Example 1: AM. Let a(t) be a random lowpass signal (say lowpass
filtered thermal noise) with the PSD S,(f) shown in Figure la, which
contains no spectral lines. If a(t) is used to modulate the amplitude of
a sine wave, we obtain the amplitude modulated (AM) signal

z(t) = a(t) cos(2 fot), (5)

whose PSD S, (f) is given by [1, Chapter 3, Sec. D]

Su(f) = 3847 + Jo) + 35a(F ~ o) (©)

as shown in Figure 1b.

Although the PSD is centered about f = fy and f = — fy, there is no
spectral line at fo or —fy. The reason for this is that, as shown in Figure
la, there is no spectral line in S,(f) at f = 0. This means that the dc
component

M2 2 (a(t)) (7)

is zero, since the strength of any spectral line at f = 0 is |[M2|%. Let us

now square z(t) to obtain

y(t) = (1)
= d*(t) cos® (27 fot)

- %[b(t) + b(t) cos(47 fot)] (8)

where .
b(t) = a?(t). 9)
Since b(t) is nonnegative, its dc value must be positive: My > 0. Con-

sequently, the PSD of b(t) contains a spectral line at f = 0, as shown in
Figure 1c. The PSD for y(t) is given by

Su(H) = 71N + g +200) + 35200 (10)

and, as shown in Figure 1d, it contains spectral lines at f = £2f, as well
as at f = 0. Thus, by putting z(¢) through a quadratic transformation
(a squarer in this case) we have converted the hidden periodicity resulting
from the sine-wave factor cos(27 fot) in Eq. (5) into first-order periodicity
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with associated spectral lines. This is particularly easy to see if a(t) is a
binary sequence that switches randomly between 1 and —1 because then

b(t) = 1 and y(t) in Eq. (8) is therefore a periodic signal:

1 1
y(t) = 5%3 cos(4m fot),

which clearly contains finite-strength additive sine waves. ]
Example 2: PAM. As another example, we consider the pulse-ampli-
tude modulated (PAM) signal

[o.e)

z(t) = Z a(nTy)p(t — nTy) (11)
n=—oo
where the pulse p(¢) is confined within the interval (—Ty/2,Tp/2) so that
the pulse translates do not overlap, as shown in Figure 2. For simplicity, we
consider a continuous-time signal in this example (to avoid aliasing). The
PSD of z(t) is given by [1, Chapter 3, Sec. D]

N 17~ 2 & -
5:N=7 [P X Balr - m/mo), (12)
0
m=-—00

where 50( f) is shown in Figure la, which contains no spectral lines, and
where P( f) is the Fourier transform of p(t). Since there are no spectral
lines in S4(f) (or P(f) since p(t) has finite duration), there are none in
33( f), as shown in Figure 3a, regardless of the periodic repetition of pulses

in 2(t). But, let us look at the square of z(t):

y(t) = 22(t) = _Z b(nTo)g(t — nTy), (13)
where
b(nTy) = a*(nTy) (14)
and
q(t) = p*(1). (15)

The PSD for y(t) is given by

Sn=g ] X s -mm), (16)

m=-—00
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(a) Salf)

Figure 1: (a) Power spectral density (PSD) of a lowpass signal. (b) PSD of
an amplitude-modulated (AM) signal. (c¢) PSD of a squared lowpass signal.
(d) PSD of a squared AM signal.
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Figure 2: A pulse-amplitude-modulated (PAM) signal with pulse width less
than pulse repetition time.

where Q( f) is the Fourier transform of q(t). Because of the spectral line
at f = 0 in Sy( f), which is shown in Figure lc, we have spectral lines
in S,(f) at the harmonics m/Ty (for some integer values of m) of the
pulse rate 1/7;, as shown in Figure 3b. Thus, again, we have converted
the hidden periodicity in z(t) into first-order periodicity with associated
spectral lines by using a quadratic transformation. This is particularly
easy to see if a(nTp) is a random binary sequence with values %1, because!
then b(nTp) = 1 and y(t) in Eq. (13) is therefore a periodic signal

(o]

yt)= > q(t-n/Ty),
n=-—-00
which clearly contains finite-strength additive sine waves. (]

B. THE CYCLIC AUTOCORRELATION FUN CTION

Although the squaring transformation works in these examples, a different
quadratic transformation involving delays can be required in some cases.
For example, if a(nTy) in Example 2 is again binary, but p(t) is flat with
height 1 and width Ty, as shown in Figure 4, then y(t) = 2?(t) = 1, which
is a constant for all t. Thus, we have a spectral line at f = 0 but none

at the harmonics of the pulse rate. Nevertheless, if we use the quadratic
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(b) Sy(f)

Figure 3: (a) Power spectral density (PSD) of a pulse-amplitude-modulated
(PAM) signal with 67% duty-cycle pulses. (b) PSD of the squared PAM
signal.
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transformation
y(t) ==z(t)a(t - 7) (17)
for any of a number of nonzero delays , we will indeed obtain spectral lines

at f = m/T,. That is,

M; <y(t)e—i21rat>

(z(t)z(t — T)e~2mt) £ 0 (18)

for o = m /Ty for some integers m # 0.
The most general time-invariant quadratic transformation for real sig-

nals is simply a linear combination of delay products

y(t) = Z h(7y,m2)z(t — m1)z(t — 72)
1,72

for some weighting function h(7y,72) that is analogous to the impulse-
response function for a linear transformation. This motivates us to define
the property of second-order periodicity as follows: The real-valued signal
z(t) contains second-order periodicity if and only if the PSD of the delay-
product signal z(t + 7, )z(t + 1) for some delays 7, and 7, contains at least
one spectral line at some nonzero frequency a. But, this will be so if and
only if the PSD of Eq. (17) for some delays (7 = 72 + ) contains at least
one spectral line at some nonzero frequency «, that is, if and only if Eq.
(18) is satisfied for some a # 0.

In developing the continuous-time theory of second-order periodicity it
has been found to be more convenient to work with the symmetric delay
product

y-(t) = z(t + 7/2)z*(t — 7/2). (19)

The complex conjugate * is introduced here for generality to accommodate
complex-valued signals, but it is mentioned that for some complex-valued
signals, the quadratic transformation without the conjugate can also be
useful [1, Chapter 10, Sec. C]. From Eq. (19), the fundamental parameter
Eq. (18) of second-order periodicity for continuous time becomes

Rg(r) 2 <:L‘(t+ 7/2)z*(t - T/2)e_i2"°’t> , (20)
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Figure 4: A binary pulse-amplitude-modulated (PAM) signal with full duty-
cycle pulses.

which is the Fourier coefficient M of the additive sine-wave component
with frequency a contained in the delay-product signal yr(t). However, for
discrete-time signals, delays that are not equal to multiples of the sampling

increment are not allowed (i.e. =7/2 for 7 odd). Nevertheless, since
(a:(t)w*(t _ T)e—i21rat> - Rt: (t)e—iwar

for continuous time, then we can define the fundamental parameter of

second-order periodicity for discrete-time as follows
Rﬁ(r) £ <:l:(t)z*(t _ T)e—i21rozt> eiﬂ'ar (21)

in order to maintain the strongest analogy between the continuous- and
discrete-time theories. Observe that since ¢t and 7 take on only integer
values, then R%(7) is periodic in a with period two, and also R3*!(7) =
R2()ei™.

The notation R%(7) is introduced for this Fourier coefficient because,

for o = 0, Eq. (21) reduces to the conventional autocorrelation function

Ry(1) = (a(t)a"(t = 7)),
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for which the notation R,(7) is commonly used. Furthermore, since R¥(7)
is a generalization of the autocorrelation function, in which a cyclic (si-
nusoidal) weighting factor e~*2"* is included before the time averaging is
carried out, R3(7) is called the cyclic autocorrelation function. Also, the
conjugate cyclic autocorrelation for complex-valued signals obtained from
Eq. (21) by deleting the conjugate,

Ry« (1) = (z(t)z(t - T)e_i2”“t> eimaT (22)

is a further modification of the conventional autocorrelation®.
We have given two distinct interpretations of RZ(t) = MY . In fact, we
have yet a third distinct interpretation, which can be obtained by factoring

e~#7e in order to reexpress Eq. (21) as

R (1) = <[:L'(t)e_imt] [m(t - T)ei""’(t'f)] *> . (23)

That is, R (7) is actually a conventional crosscorrelation function

Ruo(7) £ (u(t)o™(t - 7)) = R3(7), (24)
where
u(t) = z(t)e~imot (25)
and
v(t) = z(t)ei™t (26)

are frequency translates of z(t). Recall that multiplying a signal by etimat
shifts the spectral content of the signal by +a/2. For example, the PSDs
of u(t) and v(t) are

Su(f) = Sz(f + a/2) (27)
and

So(f) = Sz(f = a/2). (28)

5 Although some readers will recognize the similarity between the cyclic autocorre-
lation function and the radar ambiguity function, the relationship between these two
functions is only superficial. The concepts and theory underlying the cyclic autocorre-
lation function, as summarized in this article, have little in common with the concepts
and theory of radar ambiguity (cf. [1, Chapter 10, Sec. C]). For example, the radar
ambiguity function has no meaning relevant to ambiguity (in Doppler) when applied to
a real signal, or when applied to a complex signal without the conjugate.
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It follows from Egs. (24)—(26) that z(t) exhibits second-order periodicity
(Eq. (21) is not identically zero as a function of 7 for some a # 0) if and only
if frequency translates of z(t) are correlated with each other in the sense
that Eq. (24) is not identically zero as a function of 7 for some o # 0 in
Eqgs. (25)—(26). This third interpretation of R¥(7) suggests an appropriate
way to normalize R2(7) as explained next.

As long as the mean values of the frequency translates u(t) and v(t)
are zero (which means that z(t) does not contain finite-strength additive
sine-wave components® at frequencies £a/2 and, therefore, that S, (f) has
no spectral lines at f = +a/2), the crosscorrelation Ry,(7) = R3(7) is

actually a temporal crosscovariance Ky,(7). That is,

Ku(r) £ ([u(t) = (®)e(t - 7) = (ot = 1))
= (u(t)v*(t— 1)) = Ru(7). (29)

An appropriate normalization for the temporal crosscovariance is the ge-
ometric mean of the two corresponding temporal variances. This yields a
temporal correlation coefficient, the magnitude of which is upper bounded

by unity. It follows from Egs. (25)—(26) that the two variances are given by

K.4(0) = Ru(0) = (Ju(t)*) = Rz (0) (30)
and

K,(0) = Ro(0) = {Jv(t)|*) = Ra(0). (31)
Therefore, the temporal correlation coefficient for frequency translates is
given by

rrs el %0 (32)

[Ku(0)K,(0)]/2  Rz(0)
Hence, the appropriate normalization factor for the cyclic autocovariance
R2(r) is simply 1/R.(0) (and it is the same for the conjugate cyclic auto-
covariance).

This is a good point at which to introduce some more terminology. A
signal z(t) for which the autocorrelation R.(7) exists (e.g., remains finite

as the averaging time goes to infinity) and is not identically zero (as it

61t does contain infinitesimal sine-wave components.
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is for transient signals) is commonly said to be stationary (in the wide
sense). But we need to refine the terminology to distinguish between those
stationary signals that exhibit second-order periodicity (R%(7) # 0 for some
a # 0) and those stationary signals that do not (R%(7) = 0 for all a # 0).
Consequently, we shall call the latter for which R%(7) = 0 stationary of
second order (in the wide sense) and the former for which R2(7) # 0 for
some values of a that are integer multiples of a single fundamental frequency
1/T (corresponding to the period T) cyclostationary of second order (in the
wide sense). If there is more than one fundamental frequency, then we shall
call the signal polycyclostationary. We shall also call any nonzero value of
the frequency parameter a in the principal domain (—1/2,1/2] for which
R (1) # 0 a cycle frequency. The discrete set of cycle frequencies is called
the cycle spectrum. For example, if a signal is cyclostationary, the cycle
spectrum contains only harmonics (integer multiples) of the fundamental
cycle frequency, which is the reciprocal of the fundamental period. But
if the signal is polycyclostationary, then the cycle spectrum can contain
harmonics of each of the incommensurate fundamental cycle frequencies.

It should be clarified at this point that wide-sense theory deals with mo-
ments (and their combinations that form cumulants), whereas strict-sense
theory deals with probability distributions. A signal is cyclostationary of
order n in the strict sense if and only if its nth-order fraction-of-time prob
ability distribution changes periodically with time, whereas a signal is cy-
clostationary of order n in the wide sense if and only if its nth-order joint
moment function changes periodically with time (cf. Section IV).

We conclude this section by determining the cyclic autocorrelation func-
tion for the AM signal considered in Example 1.

Example 1 continued: AM. Let a(t) be a real random stationary

signal with zero mean:
{a(®)) =0, (33)
(a(t)a™(t - 1)) #£0, (34)
(a(t)a*(t — 7)e~7!) = 0 for all o # 0. (35)

Equation (35) guarantees that

(a(t)e™2m!) = 0 for all a # 0. (36)
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We consider the amplitude-modulated sine wave

z(t) = a(t)cos(2m fot + 0)
@ [ei(27l'fot+0) + e—i(21rfot+0)] . (37)

I

Because of Eq. (36), a(t) contains no finite-strength additive sine-wave
components and, therefore (together with Eq. (33)), z(¢) contains no finite-
strength additive sine-wave components. This means that its power spectral

density contains no spectral lines. However, the quadratic transformation

y=(t) = a(t)a*(t-7)

_ ia(t)a*(t —7) [ei21rfo-r 4 e~ i2mfor 4 oildmfot+20) ,—i2nfor

+ e—i(41rfot+20)ei27rfnf] (38)

does contain finite-strength additive sine-wave components with frequencies

a = %2 fo, since Eq. (34) renders one or the other of the last two terms in

the quantity
(yr(t)emizraty = iei%rfg-r (a(t)a*(t - T)e—i21rat>
+%e_i2”f°f <a(t)a*(t - T)e"iz’”’t> (39)
+iei206—i21rfor <a(t)a*(t _ T)e—iZ'/r(n«—2fo)t>
+%e-izoei2m¢ <a(t)a*(t _ T)e—i27r(a+2fo)t>

nonzero for a = +£2f,. That these are the only two nonzero cycle frequen-
cies a follows from the fact that Eq. (35) renders Eq. (39) equal to zero for
all a except @ = 0 and a = +2f,. Thus, the cycle spectrum consists of
only the two cycle frequencies @ = +2 fo and the degenerate cycle frequency
a=0.

Hence, the versions u(t) and v(t) of z(t) obtained by frequency shifting
z(t) up and down by a/2 = f, are correlated. This is not surprising
since Eq. (37) reveals that x(t) is obtained from a(t) by frequency shifting
up and down by fy; and then adding. In conclusion, we have the cyclic
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autocorrelation function (in the principal domain of a)

Let20R, (1) a==x2f,
RY(1) =4 3Ra(r)cos(2mfor) a=0 (40)
0 otherwise,

from which it follows that the temporal correlation coefficient is given by

LeEi2049(7) a==2f,
vo(r) = %’yg(r) cos(2nfor) a=0 (41)
0 otherwise.

Thus, the strength of correlation between z(t)e~*"** and (t — T)eime(t-")

which is given by

1
|’Y:(T)| = 5 |72(7-)| , a==x2f, (42)

can be substantial (as large as 1/2) for this amplitude-modulated signal.

As an especially simple example of a(t), we consider as before a random
binary sequence that switches back and forth between 1 and —1. If we set
7 =0 in Eq. (38), we obtain

Yo(t) |z (t)[? = la(t)|? cos® (2 fot + )

1 1
= 5 + -2- COS(47Tf0t + 20),

which clearly contains finite-strength additive sine-wave components wit]
frequencies a = £2fo. In fact, in this very special case, there is no random
component in yo(t). On the other hand, for 7 # 0,y-(t) can contain both
a sine-wave component and a random component.

To illustrate the conjugate cyclic autocorrelation Eq. (22), let us con-
sider the analytic signal for AM,

1 .
£(t) = ga(t)e 0.
For this signal, we have
Re.(7) & (2(t)z(t — m)e ity eimer
% <a(t)a(t - T)ei2"(2f°‘“)‘> e—il2n(fo—a/2)7~26]
{ %RG(T)CDG, for a = 2f

0, otherwise.
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Other examples of cyclostationary and polycyclostationary signals can be
similarly viewed as mixtures of stationarity and periodicity. Examples are
cited in Section I. Typical cycle spectra include harmonics of pulse rates,
keying rates, spreading-code chipping rates, frequency-hopping rates, code-
repetition rates, doubled-carrier frequencies, and sums and differences of
these [1, Chapter 12]. O

C. THE SPECTRAL-CORRELATION DENSITY FUNCTION

In the same way that it is beneficial for some purposes to analyze in the
frequency domain the average power (|z(t)|?) = R,(0) in a stationary ran-
dom signal, it can be very helpful to localize in frequency the correlation
(u(t)v*(t)) = (Je(t)|Pe=27t) = R2(0) of frequency-shifted signals u(t) and
v(t) for a cyclostationary or polycyclostationary random signal z(t). In the
former case of localizing the power, we simply pass the signal of interest
z(t) through a narrowband bandpass filter and then measure the average
power at the output of the filter. By doing this with many filters whose
center frequencies are separated by the bandwidth of the filters, we can par-
tition any spectral band of interest into a set of contiguous narrow disjoint
bands. In the limit as the bandwidths approach zero, the corresponding set
of measurements of average power, normalized by the bandwidth, consti-
.ute the power spectral density (PSD) function. That is, at any particular
frequency f (in the principal domain (~1/2,1/2]), the PSD for z(t) is given
by

S.(f) & ll;glo % <|h§(t) ® z(t)|2> , (43)

where ® denotes convolution and hg(t) is the discrete-impulse response
of a one-sided bandpass filter with center frequency f, bandwidth B, and
unity gain at the band center (see Figure 5).

In the latter case of localizing the correlation, we simply pass both of
the two frequency translates u(t) and v(t) of 2(t) through the same set of
bandpass filters that are used for the PSD measurement and then measure

the temporal correlation of the filtered signals (see Figure 6) to obtain

s:n2 g 2 ([Oeu0] phoeww] ), @
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Center Frequency = f

t = Sy(f)
LN SN [+12 > () | xl

Bandwidth = B

Figure 5: One channel of a spectrum analyzer for measuring the power
spectral density (PSD). (The symbol £ indicates that the output only ap-
proximates the ideal function S,(f) for finite T and B.)

which is called the spectral-correlation density (SCD) function. This yields
the spectral density of correlation in u(t) and v(t) at frequency f, which is
identical to the spectral density of correlation in z(t) at frequencies f +a/2
and f—a/2 (see Figure 7). Thatis, SZ(f) is the bandwidth-normalized (i.e.,
divided by B) correlation of the amplitude and phase fluctuations of the
narrowband spectral components in z(t) centered at frequencies f+a/2 and
f —a/2, in the limit as the bandwidth B of these narrowband components
approaches zero. For complex-valued signals, the conjugate SCD obtained
from Eq. (44) by deleting the complex conjugate is also of interest for som
signals [1, Chapter 10, Sec. C].

Strictly speaking, the SCD is not a valid density function in the usual
sense, since it is not nonnegative and, in fact, not even real-valued. How-
ever, its integral over all frequencies does equal the correlation of u(t) and
v(t) and, when u(t) and v(t) are decomposed into narrowband spectral
components, the correlation of the components centered at f is indeed the
SCD evaluated at f. Because of the lack of the nonnegativity property of
the SCD, the correlation of u(t) and v(t) can equal zero without the SCD
being identically zero because the integral of the SCD over all f can be zero
even though the SCD is not identically zero. Nevertheless, because of the
properties that the SCD does share with densities like the PSD, the term
density is retained.

It is well known (see, for example, [1, Chapter 3, Sec. C] for a proof
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exp(—imat)
BPF
~
Center Frequency =f < . ) = Sx (f)
Bandwidth= B T
QNN VA

exp(+imoat)

Figure 6: One channel-pair of a spectral correlation analyzer (or a cyclic
spectrum analyzer) for measuring the spectral correlation density (or cyclic
spectral density).

for continuous time) that the PSD obtained from Eq. (43) is equal to the

Fourier transform of the autocorrelation function,

o0
So(f)= > Ru(r)e /7, (45)
T=—00
Similarly, it can be shown (cf. [1, Chapter 11, Sec. C] for continuous
time) that the SCD (or conjugate SCD) obtained from Eq. (44) is the
Fourier transform of the cyclic autocorrelation function (or conjugate cyclic
autocorrelation),
o0
Se(f)= 3 Bi(r)e I, (46)
T=—00
and, therefore, RS (7) is given by the inverse transform

1/2
Ry(r) = B S2(f) eI d. (47)

Since R3(7) is periodic in a with period two, so too is S2(f). Also, since

7 takes on only integer values, then S& (f) is periodic in f with period
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X (V)

o
+2f

Figure 7: Illustration of spectral bands used in the measurement of the
spectral-correlation density S&(f). (v is a dummy frequency variable; the
‘shaded bands are the bands selected by the BPFs.)
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one. Furthermore, since increasing f + a/2 by +1 has no effect on the
spectral components at these frequencies, then it follows that S2(f) also
exhibits the periodicity Sg*!(f + 1/2) = S2(f). Consequently, the prin-
cipal domain for Sz (f) can be taken to be either the square with vertices
(fy&) = (£1/2,£1/2) or the diamond with vertices (f,a) = (0,£1) and
(£1/2,0). Relation Eq. (45) is known as the Wiener relation (see, for ex-
ample, [1, Chapter 3, Sec. C]), and Eq. (46) is therefore called the cyclic
Wiener relation [1, Chapter 11, Sec. C]. The cyclic Wiener relation includes
the Wiener relation as the special case of a = 0. (In the probabilistic frame-
work of stochastic processes, which is based on expected values [ensemble
averages| instead of time averages, the probabilistic counterpart of Eq. (45)
is known as the Wiener-Khinchin relation and, therefore, the probabilistic
counterpart of Eq. (46) is called the cyclic Wiener-Khinchin relation [4,
Chapter 12, Sec. 12.2].) Because of the relation Eq. (46), the SCD is also
called the cyclic spectral density function [1, Chapter 10, Sec. B].

It follows from Eq. (46) and the interpretation Eq. (24) of R¥(7) as
R,,(7) that the SCD is the Fourier transform of the crosscorrelation func-
tion Ry, (7) and is therefore identical to the cross spectral density function

for the frequency translates u(t) and v(t),

Sz (f) = Suu(f), (48)

where Sy, (f) is defined by the right hand side of Eq. (44) for arbitrary u(t)
and v(t). This is to be expected since the cross spectral density Sy, (f) is
known (cf. [1, Chapter 7, Sec. A]) to be the spectral-correlation density
for spectral components in u(t) and v(t) at frequency f, and u(t) and v(t)
are frequency-shifted versions of z(t). The identity Eq. (48) suggests an
appropriate normalization for S¥(f): as long as the PSDs of u(t) and v(t)
contain no spectral lines at frequency f, which means that the PSD of
z(t) contains no spectral lines at either of the frequencies f + /2, then
the correlation of the spectral components Eq. (48) is actually a covariance
since the means of the spectral components are zero [1, Chapter 11, Sec. CJ.
When normalized by the geometric mean of the corresponding variances,

which are given by

Su(f) = 8:(f +a/2) (49)
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and
So(f) = Sa(f — /2), (50)
the covariance becomes a correlation coefficient:
Su(f)  _ Sz (f)

L2 o
S DS T? ~ 5. rams—api? e
Since |p2(f)] is bounded to the interval [0, 1], it is a convenient measure of
the degree of local spectral redundancy that results from spectral correla-
tion. For example, for |p%(f)| = 1, we have complete spectral redundancy
at f + a/2 and f — a/2. For conjugate spectral redundancy of complex-
valued signals, Eq. (51) is modified by replacing the numerator with the
conjugate SCD. Let us now return to the AM example considered previ-
ously.

Example 1 continued: AM. By Fourier transforming Eq. (40) and
invoking the cyclic Wiener relation Eq. (46), we obtain the following SCD
function on the principal domain for the amplitude-modulated signal Eq.

(5):

1e=1205,(f), for @ = +2fp
S:?:I(f)= %Sa(f+f0)+}1'sa(f_f0)a fora=0 (52)
0, otherwise,

where it has been assumed that S,(f & fo) = 0 for |f| > 1/2 to avc
aliasing effects in the principal domain. The magnitude of this SCD is
graphed in Figure 8 as the height of a surface above the bifrequency plane
with coordinates f and a. For purposes of illustration, a(t) is assumed to
have an arbitrary low-pass PSD for this graph. Observe that although the
argument f of the SCD is continuous, as it always will be for a random
signal, the argument « is discrete, as it always will be since it represents
the harmonic frequencies of periodicities underlying the random time-series
(the sine-wave carrier in this example).

It follows from Eq. (52) that the spectral correlation coefficient is given
by

S, ( f) eti260

{[Sa(f + 2f0) + Sa(DNSalF) + Salf — 2f0)]}'/?

pe(f) = (53)
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Figure 8: Magnitude of the spectral-correlation density function for an AM
signal graphed as a height above the bifrequency plane with coordinates f
and a.

for @ = £2f;. Thus, the strength of correlation between spectral compo-
nent in z(t) at frequencies f + /2 and f — /2 is unity:

oz (F)] for |f| < fo and a = £2f, (54)

provided that a(t) is bandlimited to |f| < fo,

Sa(f) =0 for Ifl Z fO-

This is not surprising since the two spectral components in z(t) at frequen-
cies f £ a/2 = f £ fy are obtained from the single spectral component in
a(t) at frequency f simply by shifting and scaling. Thus, they are perfectly
correlated. That is, the upper (lower) sideband for f > 0 carries exactly
the same information as the lower (upper) sideband for f < 0. Techniques
for exploiting this spectral redundancy are described in Section III.

To illustrate the conjugate SCD, we consider the analytic signal z(t) for
AM:

> .
> R0

T=—00

_ { 15a(f)e®, for a =2f,

0, otherwise.

ng‘ (f)
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Before considering other examples of the SCD, let us first gain an un-[
derstanding of the effects of some basic signal processing operations on the
SCD. This greatly facilitates the determination of the SCD for commonly
encountered manmade signals.

D. FILTERING

When a signal z(t) undergoes a linear time-invariant (LTI) transformation,
(i.e., a convolution or a filtering operation),

z(t) = h(t)@z(t)

[oe)

2 ) h(u)a(t - u), (55)

Uu=—00
the spectral components in z(t) are simply scaled by the complex-valued
transfer function H(f), which is the Fourier transform

(o<}

H(f)= ) h(t)e2/t (56)

t=—o00

of the impulse-response h(t) of the transformation. As a result, the PSD
gets scaled by the squared magnitude of H(f) (see, for example, [1, Chapter
3, Sec. C] or [4, Chapter 10, Sec. 10.1] for continuous time)

S:(f) = [H(H)I*Sx()- (57)

Equation (57) can be derived from the definition Eq. (43) of the PSD.
Similarly, because the spectral components of z(t) at frequencies f + /2
are scaled by H(f £ a/2), the SCD gets scaled by the product H(f +

a/2)H * (f — a/2):
S:(f) = H(f +a/2)H"(f - «/2)S7(f). (58)

This result, called the input-output SCD relation for filtering, which can
be derived from the definition Eq. (44) of the SCD, includes Eq. (57) as
the special case of a = 0. Observe that it follows from Eq. (58) and the
definition Eq. (51) that

2 (NI = 1z (D] (59)
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That is, the magnitude of the spectral correlation coefficient is unaffected
by filtering (provided that H(f + a/2) # 0).

Example 3: Time Delay. As our first example of Eq. (58), we
consider a filter that simply delays the input by some integer to; then
h(t) = 6(t — to), where § is the Kronecker delta, and H(f) = e~i27/fto,
Therefore, for 2(t) = z(t — to), we obtain from the input-output SCD rela-
tion Eq. (58)

S2(f) = S2(f)e= w0, (60)

which indicates that, unlike the PSD, the SCD of a cyclostationary signal
is sensitive to the timing or phase of the signal. o

Example 4: Multipath Propagation. As a second example of Eq.
(58), consider a communication signal z(t) that undergoes multipath dis-

tortion during transmission to yield a received signal that is modeled by
z(t) = Z anz(t —t,),
n

where a,, and the integer t,, are the attenuation factor and delay of the nth
propagation path. The transfer function corresponding to the multipath

channel is given by

H(f)=) ape™ftn (61)
and therefore Eq. (58) yields
Se(f) = S%(f) Zana:ne-izw[f(t,.—tm)+a(t,.+tm)/2], (62)

Example 5: Bandpass Signals. As a third example of the utility
of the relation Eq. (58), let us determine the support region in the (f,a)
plane for a bandpass signal with lowest frequency b and highest frequency
B. To enforce such a spectrum, we can simply put any signal z(t) through
an ideal bandpass filter with transfer function (on the principal domain

(-1/2,1/2))
H(f):{ 1, forb<|f|< B

0, otherwise.

It then follows directly from the input-output SCD relation Eq. (58) that
the SCD for the output of this filter can be nonzero only for f > b and
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f < B:

0, for |Ifl —lal/2l S bor |f] +]al/2 > B

63
S%(f), otherwise. (63)

S3(f) = {
This shows that the support region in the (f, @) plane for a bandpass signal
is the four diamonds located at the vertices of a larger diamond, depicted
in Figure 9a. By letting b — 0, we obtain the support region for a lowpass
signal, and by letting B — 1/2, we obtain the support region for a highpass

signal. This is shown in Figures 9b and 9c. o
E. SIGNAL MULTIPLICATION AND TIME SAMPLING

When finite segments of two discrete-time signals are multiplied together,
we know from the convolution theorem that their Fourier transforms get
circularly convolved. From this, we expect some sort of convolution relation
to hold for the SCDs of signals passing through a product modulator. In
fact, it can be shown (cf. [1, Chapter 11, Sec. C] or [4, Chapter 12, exc.
41] for continuous time) that if z(¢) is obtained by multiplying together two
statistically independent” time-series r(¢) and s(t),

2(t) = r(t)s(t), (64

then the cyclic autocorrelation of z(t) is given by the discrete circular con-

volution in cycle frequency of the cyclic autocorrelations of r(t) and s(t):
Ry()= ) RInR{ (), (65)
BE(-1/2,1/2)

where, for each a, # ranges over all values in the principal domain
(-=1/2,1/2] for which R?(7) # 0. By Fourier transforming Eq. (65), we
obtain the input-output SCD relation for signal multiplication:

1/2
ss=[ T soss-na (@)

/2 ge(-1/2,1/2]

"Time-series are statistically independent if their joint fraction-of-time probability
densities factor into products of individual fraction-of-time probability densities, as ex-
plained in [1, Chapter 15, Sec. A].
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Figure 9: (a) Support region in the bifrequency plane for the spectral-
correlation density function of a bandpass signal. (b) Support region for
a lowpass signal. (c) Support region for a highpass signal (shown over a
small fraction of the diamond-shaped principal domain).

31



32 WILLIAM A. GARDNER AND CHAD M. SPOONER

which is a double circular convolution that is continuous in the variable f
and discrete in the variable a.
Example 6: Frequency Conversion. As an example of Eq. (66), if

s(t) is simply a sinusoid,
s(t) = cos(27 fot + ),

the product modulator becomes a frequency converter when followed by
a filter to select either the up-converted version or the down-converted
version of s(t). By applying first the input-output SCD relation Eq. (66)
for the product modulator (which applies since a sinusoid is statistically
independent of all time-series [1, Chapter 15, Sec. A]), and then Eq. (58) for
the filter, we can determine the up-converted or down-converted SCD. To
illustrate, we first determine the SCD for the sinusoid s(t). By substituting

the sinusoid s(t) into the definition of the cyclic autocorrelation, we obtain

3cos(2mfor), fora=0
Rg(T) — ieiﬂe’ for oo = :|:2f0 (67)

0, otherwise

on the principal domain of a. Fourier transforming then yields the SCD

18(f = fo) + 78(f + fo), fora=0
Se(f) =19 1eF2%(f), for a = £2f, (68)

0, otherwise

on the principal domain of f and @, which is illustrated in Figure 10a.
Using Eq. (66), we circularly convolve this SCD with that of a stationary
signal r(t), for which

Sr(f), fora=0

(69)
0, fora#0

SH(f) = {
on the principal domain (see Figure 10b). The result is that the SCD of
the stationary signal simply gets replicated and scaled at the four locations
of the impulses in the SCD of the sinusoid, as illustrated in Figure 10c
(provided that S,.(f % fo) = 0 for |f| > 1/2 to avoid aliasing effects in the
principal domain).



CYCLOSTATIONARY SIGNAL PROCESSING 33

Example 7: Time Sampling. Another important signal processing
operation is periodic time sampling. It is known that for a stationary signal
x(t), the PSD S, (f) of the sequence of samples {z(nT}) : n = 0,%1,+2,...}
is related to the PSD S, (f) of the continuous-time waveform by the aliasing
formula (cf. [1, Chapter 3, Sec. E] or [4, Chapter 11, Sec. 11.1])

1 = ;
S()=g 3 8lf—n/T). (70)
8 n=-—o0o
It is shown in [1, Chapter 11, Sec. C], [4, Chapter 12, Sec. 12.4] that this
aliasing formula generalizes for the SCD to
o _ 1 = ca+m/T,
Sa: (f) - T— Z Sz / (f - m/2Ts - n/Ts)' (71)

¥ mn=—oc0

Observe that, when z(t) is not stationary (i.e., when S¥(f) # 0 for o =
m/T for some nonzero integers m), the conventional PSD aliasing formula
Eq. (70) must be corrected according to Eq. (71) evaluated at a = 0:
1 & -
Se(f)=7 D> SP/T(f-m/2T. = n/Ty). (72)

¥ m,n=—o00

This reflects the fact that, when aliased overlapping spectral components
add together, their PSD values add only if they are uncorrelated. When
they are correlated, as in a cyclostationary signal, the PSD value of the sum
of overlapping aliased components depends on the particular magnitudes
and phases of their correlations. The SCD aliasing formula Eq. (71) is
illustrated graphically in Figure 11, where the support regions for the SCD
Sg(f) for the sequence of samples {z(nTs)} is depicted in terms of the
single diamond support region for a lowpass waveform z(t), which is shown
in Figure 9b.

When we subsample a discrete-time signal z(t) with sampling rate 1/7,
for some integer T to obtain the signal 2(t), we obtain the discrete-time
analog of Eq. (71)

s:() =g Y sz (L2 (73)
e qEPa 8

where P, is the set of all integers ¢ = 8T, — a for which o € (-1/2,1/2].
Similarly, when we resample a discrete-time signal z(t), by (effectively)
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(0]

-47 /3 — 4f/3

Figure 10: (a) Magnitude of the spectral correlation density (SCD) for a
sine wave of frequency fo. (b) SCD for a lowpass stationary signal. (c)
SCD magnitude for the product of signals corresponding to (a) and (b),
obtained by convolving the SCDs in (a) and (b).
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nterpolating back to a continuous-time waveform and then time sampling
at the new rate 1/T to obtain z(t), the SCD is given by

s:(f)= 3 S2tm/Te(f - m/2T, —n/T)), (74)
where 52(f) is the SCD S(f) restricted to its principal domain. m}

F. PERIODICALLY TIME-VARIANT FILTERING

Many signal processing devices such as pulse and carrier modulators, mul-
tiplexors, samplers, and scanners, can be modeled as periodically time-
variant filters, especially if multiple incommensurate periodicities are in-
cluded in the model. By expanding the periodically time-variant impulse
response in a Fourier series as explained shortly, any such system can be
represented by a parallel bank of sinusoidal product modulators followed
by time-invariant filters. Consequently, the effect of any such system on the
SCD of its input can be determined by using the SCD relations for filters
and product modulators. In particular, it can be shown (cf. [1, Chapter
11, Sec. D] for continuous time) that the SCD of the output z(t) of a
multiply-periodic system with input z(t) is given by

* - /@ -
S:)= 2 Galf+a/0G3(s - apsz (1-220) )
ByeA
where A is the set of sinusoid frequencies associated with the product mod-
ulators in the system representation, S;(f + 8) = 0 for |f| > 1/2 for all
B € A to avoid aliasing effects in the principal domain, and Gs(f) are
the transfer functions of the filters. More specifically, for the input-output
equation
(e o)
)= Y h(t,u)z(u), (76)
u=—00

the multiply-periodic impulse response h(t,u) can be expanded in the Fou-
rier series

h(t+71,8) =Y ga(r)e?™?, (77)
BEA
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o

2B+2/T

Figure 11: Illustration of support regions in the bifrequency plane for the
spectral-correlation densities that are aliased by periodic time-sampling.
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where the Fourier coefficients (for each 7) are given by
9p(7) = (h(t + 7,t)e~27FLY (78)

It follows from Egs. (76) and (77) that the filter output can be expressed
as

(t) =) [a(t)e®™"] ® go(t), (79)

BEA

where gg(t) are the impulse responses of the filters with corresponding
transfer functions Gg(f). Thus, periodically time-variant filters perform
time-invariant filtering on frequency-shifted versions of the input, such as
z(t)e?>™Pt. This results in summing scaled, frequency-shifted, and cycle-
frequency-shifted versions of the SCD for the input z(¢) to obtain the SCD
for the output z(t), as indicated in Eq. (75).

Let us now consider some additional examples of modulation types,
making use of the results obtained in the preceding paragraphs to determine
SCDs. However, in the interest of realism and for the sake of analytical
simplicity, continuous-time signal models are used.

Example 2 continued: PAM. Let {a,} be a stationary random se-
quence, and let us interpret these random variables as the time-samples of
a continuous-time random waveform, a, = a(nTy), with PSD S f). We

onsider the continuous-time PAM signal

o o)

z(t) = Z anp(t — nTp +€), (80)

n=-—0oo
where p(t) is a deterministic finite-energy pulse and € is a fixed pulse-timing
phase parameter. To determine the SCD of z(t), we can recognize that z(t)
is the output of a periodically time-variant linear system with input a(t),

and impulse response

oo

h(t,u)= Y p(t—nTp + €)8(u — nTp), (81)

n=—oo
where 6 is the Dirac 6. We can then use the continuous-time counter-
part of the input-output SCD relation Eq. (75), which is identical in form

except that continuous-time Fourier transforms are used (cf. [1, Chapt.
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p(t)
Filter
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Figure 12: Interpretation of PAM signal generator as the cascade of an
impulse sampler and a pulse-shaping filter.

11, Sec. DJ). Or we can recognize that this particular periodically time-
variant system is composed of a product modulator that implements an
impulse sampler, followed by a linear time-invariant pulse-shaping filter
with impulse-response function h(t) = p(t), as shown in Figure 12. We can
then use the continuous-time counterpart of the input-output SCD relation
Eq. (66), which is identical in form except the convolutions are linear (cf.
[1, Chapt. 11, Sec. C]), as it applies to impulse sampling, together wit’
the relation Eq. (58) for filtering. The result is

a(f) = %]213(1‘+a/2)f’*(f—a/2)

> SetmiTo(f —m /2Ty — n/Tp)e®™.  (82)

Using the SCD aliasing formula Eq. (71) for a(t) we can re-express Eq.
(82) as

. 1 - - )

Se(f) = P(f +a/2)P*(f ~ a/2)S5(£)e ™, (83)
where Sg(f) is the SCD for the pulse-amplitude sequence {a,}. Having

assumed that {a,} is stationary, and using the periodicity property

Sg‘(f):{ ga(f+a'/2), for a = k/Tp

otherwise,

(84)
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for k = 0,%1,%2,..., we can express Eq. (83) as

Tlop(f + a/2)P*(f — @/2)S.(f + a/2)e?™¢, for a = kT,
0, otherwise.

(85)
A graph of the magnitude of this SCD for the full-duty-cycle rectangular
pulse

Sg(f) = {

1, for |t| < Tp/2
t) = - 86
p(t) { 0, otherwise, (86)
and a white-noise amplitude sequence with PSD
Sa(f)=1 (87)

is shown in Figure 13.

It follows from Eq. (87) that for all & = k/T; for which S,(f+a/2) # 0
and P(f + a/2)P*(f — @/2) # 0, the spectral correlation coefficient p2(f)
is unity in magnitude:

loz(H)l = 1. (88)
Thus, all spectral components outside the band |f| < 1/2Tp are completely

redundant with respect to those inside this band. Techniques for exploiting
this spectral redundancy are described in Section III.

The conjugate SCD for the PAM signal Eq. (11) is given by Eq. (85) with
P*(f — a/2) replaced by P(a/2 - f) and Sg(f) replaced by S2,.(f). For a
real PAM signal, the conjugate SCD is identical to the SCD; however, for
complex PAM the conjugate SCD is, in general, different and is, in fact, zero
for the complex PAM that models the complex envelopes of most digital
QAM signals, including QPSK. This follows from the fact that (an@nim) =
0 for all m in such signals; consequently, S&,.(f) = 0 for all a.

By inverse Fourier transforming the SCD Eq. (82), we obtain the cyclic
autocorrelation function

(o o)
TLD z R (nTy)re(r — nTo)e?™¢, for a = k/T, (89)

0, otherwise,

R‘: (T) =

where

o (7) = /oo p(t+7/2)p*(t — 7/2)e” 2t g, (90)
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Figure 13: Magnitude of the spectral-correlation density for a PAM signal
with full-duty-cycle rectangular pulses.

For a white-noise amplitude sequence as in Eq. (87), Eq. (89) reduces to
3 1 )
RY(1) = =r2(7)e™ for a = k/Ty, (91)
To P

and, for a rectangular pulse as in Eq. (86), this yields the temporal corre-

lation coefficient

sin [FQ(TO - ITl)] i2wae
e
ﬂ’ClTo

F¥(r) = for |7| < To, (92)

which peaks for a = 1/Tj at t = Ty /2, where it takes on the value
172 (To/2)| = 1/7 for a =1/Ty. (93)

That is, the strongest possible spectral line that can be generated in a delay-
product signal (cf. remark made following Eq. (21)) for this particular PAM
signal occurs when the delay equals half the pulse period. In contrast to
this, when the more bandwidth-efficient pulse whose transform is a raised
cosine is used, the optimal delay for sine-wave generation is zero.

An especially simple example of a sequence of pulse amplitudes {a,} is
a binary sequence with values +1. If we consider 7 = 0 in the delay-product

signal, then we obtain

[e o]

Yo(t) = |z(t)|* = Z anamp(t — nTy + €)p(t — mTp + ).

n,m=—o00
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If the pulses do not overlap (i.e., if p(t) = 0 for |t| > Ty/2), this reduces to

(o]
Yl(t) = z a2p?(t — nTy + ¢)
n=-—00
= Z pi(t —nTo +¢),
n=-—00

which is periodic with period Ty and therefore contains finite-strength ad-
ditive sine-wave components with frequencies k/Ty (except when p(t) is flat
as in Eq. (86)). In this very special case where {a, } is binary and the pulses
do not overlap, there is no random component in yo(t); but, for 7 # 0, yr(t)
contains both sine-wave components and random components (even when
p(t) is flat). o

Example 8: ASK and PSK. By combining the amplitude-modulated
sine wave and the digital amplitude-modulated pulse train, we obtain the
amplitude-shift-keyed (ASK) signal

x(t) = a(t) cos(27 fot + 6), (94)
where o
a(t)= Y anp(t—nTo +e), (95)

and {a,} are digital amplitudes. By using the continuous-time counterpart
of the SCD relation Eq. (66) for signal multiplication and the result Eq.
(85) for the SCD of a(t), we can obtain the SCD for the signal Eq. (94) by
simply convolving the SCD functions shown in Figures 10a and 13. The
result is shown in Figure 14a, where the cycle frequencies shown are o =
+2fo+m /Ty and o = m /Ty for integers m, and where fo = 3.3/Ty. When
foTo is irrational, the ASK signal is polycyclostationary with fundamental
periods Ty and 1/2f,.

For a binary sequence with each a, = %1, this amplitude-shift keyed
signal, with the pulse Eq. (86), is identical to the binary phase-shift keyed
(BPSK) signal

z(t) = cos |2n fot + 6 + Z dap(t —nTp)|, (96)

n=—0oo
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where ¢, = (an — 1)/2, since shifting the phase of a sine wave by 0 or
m is the same as multiplying its amplitude by 1 or —1. Other commonly
used types of phase-shift-keyed signals include quaternary phase-shift key-
ing (QPSK) and staggered QPSK (SQPSK). The details of these signal
types are available in the literature (see, for example [1, Chapter 12, Sec.
E] or [4, Chapter 12, Sec. 12.5]). Only their SCD-magnitude surfaces are
shown here in Figure 14b, ¢, where again fo = 3.3/7.

It is emphasized that the three signals BPSK, QPSK, and SQPSK differ
only in their carrier phase shifts and pulse timing and, as a result, they
have identical PSDs, as shown in Figure 14 (consider a = 0). However,
as also shown in Figure 14, these differences in phase and timing result
in substantially different SCDs (consider a # 0). That is, the quadrature
component present in QPSI but absent in BPSK results in cancellation of
the SCD at cycle frequencies associated with the carrier frequency (viz., a =
+2fo+m /T, for all integers m) in QPSK. Similarly, the pulse staggering by
To/2 (between the in-phase and quadrature components) present in SQPSK
but absent in QPSK results in the SCDs being cancelled at a = £2 fo+m /T
only for even integers m, and at @ = m/Tp only for odd integers m in
SQPSK. This again illustrates the fact that the SCD contains phase and
timing information not available in the PSD. In fact, as formulas Eq. (52)
and Eq. (85) reveal, the carrier phase 6 in Eq. (5) and the pulse timing
€ in Eq. (11) are contained explicitly in the SCDs for these carrier- and

pulse-modulated signals. (|
G. MEASUREMENT OF SPECTRAL CORRELATION

The SCD function Eq. (44) is derived by idealizing the practical spectral
correlation measurement depicted in Figure 6 by letting the averaging time
T in the correlation measurement approach infinity and then letting the
spectral resolving bandwidth B approach zero. Consequently, the prac-
tical measurement with finite parameters 7' and B can be interpreted as
an estimate of the ideal SCD. This estimate will be statistically reliable
only if TB >> 1, and it will approach the ideal SCD only for sufficiently

large T and sufficiently small B. Numerous alternative methods for making
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=5/To — 5/To

Figure 14: Magnitude of spectral-correlation densities. (a) BPSK, (b)
QPSK, and (c) SQPSK. (Each signal has a rectangular keying envelope.)
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this practical measurement are described in [1, Chapter 13|, and compu-
tationally efficient digital algorithms and architectures for some of these
are developed in [5-7]. The statistical behavior (bias and variance) of such
estimates is analyzed in detail in [1, Chapter 15, Sec. B], [6,8-11]. For
the purpose of making the applications described in Section III more con-
crete, it suffices here to simply point out that because the SCD S&( f)is
equivalent to a particular case of the conventional cross spectral density
Suv(f) (cf. Eq. (48)), one can envision any of the conventional methods
of cross spectral analysis as being used in the applications. For example,
the Wiener-Daniell method [1, Chapter 7, Sec. D], based on frequency
smoothing the crossperiodogram of u(t) and v(¢) (the conjugate product of
their FFTs) can be used. This is equivalent to multiplying the FFT bin for
the data z(t) corresponding to the frequency f + a/2 times the conjugate
of the FFT bin corresponding to the frequency f — a/2 to obtain what is
called the cyclic periodogram for z(t), and then averaging in the parameter
f over a band of width B for each fixed « of interest. For an FFT length
of T', this yields a cycle resolution (resolution in @) of 1/T and a spectral
resolution (resolution in f) of B.

Example 9: QPSK. As an example, the result of using the Wiener-
Daniell method is illustrated in Figure 15 for a QPSK signal with carrier
frequency fo = 1/4T, and keying rate 1/Tp = 1/8T;, where 1/Ts is the
sampling rate. An FFT of length 128 (T = 1287}) was used in Figure 15a,
and only four frequency bins were averaged together (B = 4/T = 1/32T)
to produce each output point, whereas, in Figure 15b, the FFT length
used was 32,768 (T' = 32,768T;) and 1,024 bins were averaged together
(B =1,024/T = 1/32T5). 1t is easily seen by comparing with the ideal SCD
in Figure 14b that without adequate spectral smoothing the variability of
the SCD estimate can be very large. m]

III. APPLICATIONS OF CYCLOSTATIONARITY
A. SPECTRAL REDUNDANCY

The existence of correlation between widely separated spectral components
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> 10/To

-5/To —_— 5/To

10/To

-5/To —_— 5/To

Figure 15: Magnitude of a spectral-correlation density (SCD) estimate ob-
tained from a finite-length data record for the QPSK signal whose ideal
SCD is shown in Figure 14b. (a) Record length is 128 time samples, and
four adjacent frequency (f) bins are averaged together. (b) Record length is
32,768 and 1,024 adjacent frequency (f) bins are averaged together. (The
sampling rate in both (a) and (b) is 10/Tp, where 1/Tj is the keying rate
of the QPSK signal.)
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(separation equal to a cycle frequency @) can be interpreted as spectral re-
dundancy. The meaning of the term redundancy that is intended here is es-
sentially the same as that used in the field of information theory and coding.
Specifically, multiple randomly fluctuating quantities (random variables)
exhibit some redundancy if they are statistically dependent, for example,
correlated. In coding, undesired redundancy is removed from data to in-
crease the efficiency with which it represents information, and redundancy
is introduced in a controlled manner to increase the reliability of storage
and transmission of information in the presence of noise by enabling error
detection and correction.

Here, redundancy that is inadvertently introduced into signals by the
modulation processis to be exploited to enhance the accuracy and reliability
of information gleaned from the measurements of corrupted signals, but the
term information is interpreted in a broad sense. For instance, it includes
the eight examples outlined in Section I. In all of these examples, the per-
formance of the signal processors that make the decisions and/or produce
the estimates can be substantially improved by suitably exploiting spec-
tral redundancy. The degree of improvement relative to the performance
of more commonly used signal processors that ignore spectral redundancy
depends on both the severity of the signal corruption (noise, interference,
distortion) and the degree of redundancy in the signal x(t), as measured by
the magnitude of the spectral correlation coefficient (or its conjugate coun
terpart) defined in Section II. The degree of improvement also depends on
the amount of data available for processing (the collection time). The util-
ity of exploiting spectral redundancy can also be enhanced by intentionally
designing the signal to exhibit a sufficient amount of spectral redundancy.

The primary feature of spectral redundancy that enables it to be readily
exploited is that it is typically a unique signature for each unique signal
type. That is, most manmade signals exhibit spectral redundancy, but
most noise (all noise that is not cyclostationary) does not and, more im-
portantly, when multiple signals of interest and signals of no interest (in-
terference) overlap in both time and frequency, the spectral redundancy
functions (SCDs) of these signals are nonoverlapping in the cycle-frequency

domain: their cycle frequencies a are distinct. This results from signals
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-aving distinct carrier frequencies and/or pulse rates or keying rates, even
when occupying the same spectral band.

The uniqueness of the spectral redundancy signature makes signal-selec-

tive measurements possible. Specifically, for the received composite signal

L

z(t) =) se(t) + n(t), (97)

=1
where the set {s¢(t)}£_, includes both signals of interest and interference—
all of which are statistically independent of each other—and where n(t) is

background noise, we have the SCD (for measurement time T — o)

Sg(f) = _52(f) + S5(f)- (98)
=1

But if the only signal with the particular cycle frequency ay is si(t), then
(for T — o00) we have
S+ (f) = Sgx(f)s (99)
regardless of the temporal or spectral overlap among {s¢(t)}}_, and also
n(t). This perfect signal-selectivity of ideal SCDs implies that practical
measurements of SCDs or their parameters can be made signal-selective for
measurement times T" that are long enough.
Example 1: BPSK Signal in Multiple AM Interference and
Voise. To illustrate the concept of signal selectivity, let us consider the
situation in which a broadband BPSK signal of interest is received in the
presence of white noise and five interfering AM signals with narrower band-
widths that together cover the entire band of the BPSK signal. The noise
and each of the five interfering signals have equal average power. Therefore,
the total signal-to-interference-and-noise ratio (SINR) is approximately —8
dB. The BPSK signal has carrier frequency fo = 0.25/T, and keying rate
ap = 0.0625/T. It has full-duty-cycle half-cosine envelope, which results
in an approximate bandwidth of By = 0.1875/T;. The five AM signals
have carrier frequencies f; = 0.156/T%, f = 0.203/T%, f3 = 0.266/T5, f4 =
0.313/T, fs = 0.375/Ts, and bandwidths B; = 0.04/T;, By = 0.05/Ts,
B3 = 0.045/T;, B4 = 0.04/Ts, Bs = 0.08/T,. With the use of the same
measurement parameters (FFT length = 32,768) as in Example 9 in Sec-

tion II, the SCD for these six signals in noise was measured. The resultant




48 WILLIAM A. GARDNER AND CHAD M. SPOONER

SCD magnitude is shown in Figure 16a. Also shown in Figures 16b and 16/
are the SCD magnitudes for the BPSK signal alone and for the five AM in-
terferences plus noise alone. Although all six signals exhibit strong spectral
redundancy, the cycle frequencies @ at which this redundancy exists are
distinct because the carrier frequencies are all distinct. Thus, an accurate
estimate of the SCD for the BPSK signal is easily extracted from the SCD
for the corrupted measurements. Similarly, accurate estimates of the SCDs
for each of the five AM signals can be extracted. Consequently, any infor-
mation contained in these SCDs can be reliably extracted. In connection
with this example, let us briefly consider some of the signal processing tasks

outlined at the beginning of Section I. a
B. DETECTION AND CLASSIFICATION

We can see from Figure 16 that knowing the particular pattern of the SCDs
for BPSK and AM signals (see Figures 8 and 14) enables us to detect the
presence of six signals and to classify them according to modulation type.
This would be impossible if only PSD (SCD at @ = 0) measurements were
used. One approach to exploiting the spectral redundancy of a signal to
detect its presence is to generate a spectral line at one of its cycle frequen-
cies and then detect the presence of the spectral line (cf. Section II). It
has been shown that the maximum-SNR spectral-line generator for a signa

s(t) in additive Gaussian noise and interference with PSD S,,(f) produces

the detection statistic (cf. [1, Chapter 14, Sec. E] for continuous time)

1/2 ro Sg(f)*
/—1/2 % (f)Sn(f +a/2)S,(f — a/2) df (100)

for comparison to a threshold. In Eq. (100), $¥(f) is a crude estimate of

Zz =

Sg(f) obtained by deleting the time-averaging operation (-) and the limit-
ing operation from Eq. (44) and choosing B equal to the reciprocal of the
record length of z(t) (i.e., S%(f) is the cyclic periodogram). It can be shown
that Eq. (100) is equivalent to whitening the noise and interference using a
filter with transfer function [S, (f )]_1/ 2, and then correlating the measured
SCD for the noise-and-interference-whitened data with the ideal SCD of
the signal, as transformed by the whitener, to be detected [1, Chapter 14,
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Figure 16: Estimated spectral-correlation densities (SCDs). (a) SCD mag-
nitude for a BPSK signal corrupted by white noise and five AM interfer-
ences. (b) SCD magnitude for the BPSK signal alone. (c) SCD magnitude
for the white noise and five AM interferences. (The power levels, center
frequencies, and bandwidths for the signals and noise are specified in the
text; the record length used is 32,768 time-samples and 1,024 adiacent
frequency (f) bins are averaged together.)

49
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Sec. E]. Equivalently, for noise consisting of a white component plus strong
narrowband components, Eq. (100) corresponds to attenuating the narrow-
band components well below the white-noise component—that is, excising
the narrowband components—using a filter with transfer function 1/5,(f),
and then correlating the measured SCD for the narrowband-excised data
with the ideal SCD of the signal (untransformed by the excision filter).

A detailed study of both optimum (e.g., maximum-SNR and maximum-
likelihood) and more practical suboptimum detection on the basis of SCD
measurement is reported in [12], and receiver operating characteristics for

these detectors obtained by simulation are presented in [13-14].
C. PARAMETER ESTIMATION

Once the six signals have been detected and classified, their carrier fre-
quencies and phases and the keying rate and phase of the BPSK signal
can—with sufficiently long signal duration—be accurately estimated from
the magnitude and phase of the SCD (cf., fo and 6 in Eq. (52), and Ty and
€ in Eq. (85)) [14]. It is clear from the theory discussed in Section II that
SCD measurement is intimately related to the measurement of the ampli-
tudes and phases of sine waves generated by quadratic transformations of
the data. Thus, the fact that an SCD feature occurs at a = 2f, for each
carrier frequency fp is a direct result of the fact that a sine wave (spectr

line) with frequency a = 2fo and phase 20 can be generated by putting the
data through a quadratic transformation. Similarly, for the SCD feature
at a = 1/Tp, where 1/T; is the keying rate, a spectral line with frequency
a = 1/T, and phase € can be quadratically generated. Consequently, SCD
measurement is useful either directly or indirectly for estimation of synchro-
nization parameters (frequencies and phases) required for the operation of
synchronized receivers. The link between synchronization problems and

spectral redundancy is pursued in [15-16].
D. TIME-DIFFERENCE-OF-ARRIVAL ESTIMATION

The cross SCD S2,(f) for two signals z(t) and w(t) is defined in a way
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that is analogous to the definition Eq. (44) and Egs. (25)—(26) of the SCD
Sg(f). That is, z(t) in Eq. (25) is simply replaced with w(t). If we were to
compute the cross SCD for two sets of corrupted measurements obtained
from two receivers, then the cross SCD magnitude would look very similar
to that in Figure 16 (except that the low flat feature at o = 0, which repre-
sents the PSD of the receiver noise, would be absent), but the phase of the
cross SCD would contain a term linear in f for each value of a: where the
auto SCD of one of the six signals is nonzero. The slope of this linear phase
is proportional to the time difference of arrival (TDOA) of the wavefront
at the two receivers for the particular signal with that feature. That is, for
(t) from one receiver given by Eq. (97) and w(t) from the other receiver

given by .
w(t) =D ase(t — te) +m(t) (101)
£=1
where {t;} are the TDOAs, we have
Sux(f) = agSg,(f)e=2rtf+ea/Dte (102)

provided that s(t) is the only signal with cycle frequency a. Consequently,
accurate estimates of the TDOAs of each of these signals can be obtained
from the cross SCD measurement, regardless of temporal and spectral over-
ap or of the closeness of the individual TDOAs. In other words, the signal
selectivity in the o domain eliminates the problem of resolving TDOAs of
overlapping as well as nonoverlapping signals.

For example, it follows from Eqgs. (99) and (102) that

Swa(f) —i2n(f+a/2)te
—wr 'l —q o 103
Se(r) ~ (103)

over the support band of 52 (f). This suggests doing a weighted least

[4
squares fit, with respect to a, and t,, of a measurement of the left side of
Eq. (103) to the right side:

1/2 2
min /
Gg,te -1/2

df (104)

Wa(f) [‘z::—((ff)) - ace—iZW(Ha/z)t‘,]
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where W, (f) is some weighting function. After minimization with respect
to Gy, this reduces to

12 Sa Sua(f) -
2 Ywz i2n(f+a/2)ie
mzfx{/_l/zl O 5 ° ¥ } (105)

The two algorithms corresponding to the two choices Wo(f) = S(f)
(which yields the SPECCOA method) and W,(f) = 1 over some band
(which yields the SPECCORR method), along with several other related al-
gorithms are studied in detail in [14, 17, 18]. It is also shown in [19] that this
approach is easily generalized to the problem of multipath channel identifi-
cation where multiple ¢; and a, for a single signal are to be estimated using
the least squares criterion Eq. (104) with a sum over £ included (provided
that the multiple ¢, are resolvable, that is, spaced farther apart than the
width of the inverse discrete Fourier transform of |Wo (f)[25%,(f)/S2(f))-

E. SPATIAL FILTERING

Continuing in the same vein, we consider receiving these same six signals
in noise with an antenna array. Then we can use the signal selectivity in «
to blindly adapt (without any training information other than knowledge
of the cycle frequencies « of the signals of interest) a linear combiner of the
complex-valued outputs from the elements in the array to perform spatia
filtering. Specifically, by directing the linear combiner to enhance or restore
spectral redundancy (or conjugate spectral redundancy) in its output at a
particular cycle frequency a, the combiner will adapt to null out all other
signals (if there are enough elements in the array to make this nulling pos-
sible). This behavior of the combiner can be seen from the fact that the
spectral correlation coefficient for z(t) in Eq. (97) is (from Eq. (99))

55.(f)

P = S T af2)5.(f — a2l

(106)

where
L
S:c(f)=sn(f)+zss:=(f)a (107)
k=1
and, similarly, the temporal correlation coefficient for the frequency-shifted
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ersions of z(t) is

V2 (1) = R.(0) (108)
where L
Ry(0) = Ra(0) + Y R,, (0). (109)
k=1

Thus, nulling signals other than s¢(¢) in the output z(t) of the linear com-
biner and attenuating the noise n(t) in z(t) reduces the denominators in
Egs. (106) and (108) but not the numerators. Hence, lp2 (f)| and |y2 (7))
can be increased by attenuating the noise and nulling any of the signals
other than s,(t). Moreover, the linear combiner needs no knowledge of the
reception characteristics of the array (no calibration) to accomplish this at-
tenuation and nulling. To be more specific, let us consider the narrowband
model

2(t) = a(6)s(t) + 4(t)

for the vector of complex envelopes of the outputs of the array of anten-
nas, where a(6) is the direction vector for the array corresponding to the
plane wave signal s(t) arriving at angle 4, and i(t) consists of noise plus
interfering signals arriving at other angles. A training signal 3(t) is formed
by linearly combining the array output, using a prescribed complex-valued

Yight vector ¢ (which adjusts the magnitudes and phases of the complex

envelopes), and then time- and frequency-shifting the result to obtain
5(t) = cHa(t + 7)e—i2mot (110)

where (-)# denotes conjugate transpose. The output 5(t) of the spatial
filter is obtained by linearly combining the array outputs using the weight
vector w,

3(t) = whz(t).

where (-)! denotes transpose. The spatial filter weights w that minimize the
time-averaged squared error between the filter output 3(t) and the training

signal 5(t) can then be sought:

min <]§(t) - s'(t)|2> . (111)
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By setting to zero the partial derivatives of this error, with respect to eacl

of the weights in the vector w, we obtain the optimum weight vector
w = R;'Rs., (112)

where R is the autocorrelation matrix for (t) and Rj, is the crosscorre-
lation vector for 3(t) and z(t). Substituting Eq. (110) into Eq. (112) yields
the result

w = bR, ' R;., (113)

where the scalar b is given by
b2 ()P a(f)ei . (114)

The weight vector w in Eq. (113) is the scaled solution to the optimization
problem Eq. (111) with a perfect training signal 5(t) = s(t). Thus, as long
as the correlation coefficient v%(7) is sufficiently large and the prescribed
weight vector c is sufficiently colinear with a(6), so that the scalar b in Eq.
(113) is not very small, the data-derived training signal 5(¢) can be used in
place of s(t) to obtain the optimum spatial filter. In practice, the ideal time-
average (-) is replaced with a finite-length time-average and the correlations
in Eq. (112) therefore become finite-time estimates. The weight vector w
can be computed in block form using Eq. (112) directly, or the recursiv

least squares algorithm can be used. Alternatively, the solution Eq. (112,
can be approximated using the LMS algorithm. Although the prescribed
weight vector ¢ can be as simple as [1 0 0 0 ... 0]t, convergence to the
optimum filter Eq. (113) can be accelerated by adaptively adjusting ¢ as
well as w. A thorough study of this and other spectral-coherence-restoral
algorithms that perform blind adaptive spatial filtering is reported in [20]

and [21] and a tutorial discussion is given in [22].
F. DIRECTION FINDING

We can take this approach one step further if we do indeed have calibration
data for the reception characteristics of an antenna array because we can

then also exploit signal selectivity in a to perform high-resolution direction
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dnding (DF) without some of the drawbacks (described below) of conven-
tional methods for high-resolution DF, such as subspace fitting methods
[23], that do not exploit spectral redundancy. In particular, let us consider

the narrowband model

L
2(t) =Y a(fe)se(t) + n(?) (115)
=1
for the analytic signal (or complex envelope) z(t) of the received data vec-
tor of dimension r, where a(f,) is the direction vector associated with the
{th received signal s¢(t), and the function a(#) is specified by the calibra-
tion data for the array. Then, by working with the magnitude and phase

information contained in the r x r cyclic correlation matrix
R;(r) = R, (1) = a(6k) RS, (1)a™ (6x) (116)

for some fixed 7, instead of working with the information contained in the

conventional correlation matrix

L L
R,(0) =) R,,(0)+ R,(0) = > a(be)Rs,(0)a" (6,) + Ra(0), (117)
£=1 £=1

we can avoid the need for advance knowledge of the correlation properties
f the noise R, (0) and interference Ry, (0) for I # k, and we can avoid the
constraint imposed by conventional methods that the number of elements
in the array exceed the total number L of signals impinging on the array.
Also, by resolving signals in @, we need not resolve them in direction of
arrival. Consequently, superior effective spatial resolution is another ad-
vantage available through the exploitation of spectral redundancy. As an
example of a cyclostationarity-exploiting DF method, we can use the fact
that the r x r matrix in Eq. (116) has a rank of unity and the (r — 1)-
dimensional null space of this matrix is orthogonal to a(fr). Therefore,
we can choose as our estimate of §;, that value ék that renders a(ék) most
nearly orthogonal to the null space of an estimate of the matrix R (1)
obtained from finite-time averaging. Similar remarks apply to the conju-
gate cyclic autocorrelation matrix. A thorough study of this approach to

signal-selective DF is reported in [24] and [25], where various algorithms are
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introduced and their performances are evaluated, and a tutorial discussion
is given in [22].

In the preceding paragraphs of this Section III, the signal processing
tasks (with the exception of spatial filtering) involve making decisions or
estimating parameters, but do not involve estimating (or extracting) an en-
tire signal or an information-bearing message carried by the signal. Never-
theless, for the signal-extraction problem, the utility of spectral redundancy

is just as apparent, as explained in the following paragraphs.
G. SIGNAL EXTRACTION

Spectrally redundant signals that are corrupted by interfering signals can
be more effectively extracted in some applications by exploiting spectral
correlation through the use of periodic or multiply-periodic linear time-
variant filters, instead of the more common time-invariant filters. These
time-variant filters enable spectral redundancy to be exploited for signal ex-
traction, because such filters perform frequency-shifting operations (cf. Eq.
(79)) as well as the frequency-dependent magnitude-weighting and phase-
shifting operations performed by time-invariant filters. The utility of this is
easily seen for the simple example in which interference in some portions of
the spectral band of the signal is so strong that it overpowers the signal ir
those partial bands. In this case, a time-invariant filter can only reject both
the signal and the interference in those highly corrupted bands, whereas a
time-variant filter can replace the rejected spectral components of the sig-
nal of interest with spectral components from other uncorrupted (or less
corrupted) bands that are highly correlated with the rejected components
from the signal.

AM is an obvious example of this because of the complete redundancy
that exists between its upper sideband (above the carrier frequency) and its
lower sideband (below the carrier frequency). Although this redundancy is
exploited in the conventional double-sideband demodulator to obtain a 3dB
gain in SNR performance, it is seldom exploited properly when partial-band
interference is present. The proper exploitation in this case is illustrated

in Figure 17. Figure 17a shows the spectral content (Fourier transform
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magnitude of a finite segment of data) for an AM signal with partial-band
interference in the upper sideband. Figure 17b shows the spectral content
after the interference has been rejected by time-invariant filtering. The
signal distortion caused by rejection of the signal components along with
the interference can be completely removed by simply shifting replicas of
perfectly correlated components from the lower sideband into the upper
sideband, and then properly adjusting their magnitudes and phases, as
suggested in Figure 17c.

A less easily explained example involves two spectrally overlapping lin-
early modulated signals such as AM, PAM, ASK, PSK, or digital QAM
(quadrature AM). It can be shown that, regardless of the degree of spectral
and temporal overlap, each of the two interfering signals can be perfectly ex-
tracted by using frequency shifting and complex weighting, provided only
that they have either different carrier frequencies or phases (AM, ASK,
BPSK) or different keying rates or phases (PAM, ASK, PSK, digital QAM)
and at least 100% excess bandwidth (bandwidth in excess of the minimum
Nyquist bandwidth for zero intersymbol interference). A blind-adaptive
frequency-shift filter for separating such signals is described in [3].

In addition, when the excess bandwidth is (L - 1)100%, L spectrally
overlapping signals can be separated if they have the same keying rate but

fferent keying phases or carrier frequencies. Also, when broadband noise is
present, extraction of each of the signals can in many cases be accomplished
without substantial noise amplification. To illustrate the potential for signal
separation in this case, consider L digital QAM signals with (L -1)100%
excess bandwidth, all sharing the same carrier frequency and keying rate,
but with distinct keying phases. Then for any particular frequency f in
the Nyquist band the received spectral component at that frequency is a
weighted sum of the L spectral components of the L individual signals
at that same frequency f and the same is true at the L — 1 additional
frequencies separated by the keying rate, except that the sets of L weights in
each of these L weighted sums are distinct, although the L sets of L spectral
components are all identical in the sense that their spectral correlation
coefficients are unity in magnitude. Thus, for each frequency within the
Nyquist band, we have L equations with L unknowns (the L keying phases).
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(b)

Figure 17: Illustration of power spectral densities (PSDs) for cochannel-
interference removal with minimal signal distortion. (a) PSD for AM signal
plus interference. (b) PSD after interference removal by time-invariant
filtering. (c) PSD after distortion removal by frequency-shifting.
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.n practice, the L x L array of weights also will be unknown and will have
to be adaptively learned. This particular problem of separating multiple
digital QAM signals sharing the same carrier frequency (or baseband PAM
signals) and sharing the same keying rate is explored in [26].

A final example involves the reduction of the signal distortion due to
frequency-selective fading caused by multipath propagation. Straightfor-
ward amplification in faded portions of the spectrum using a time-invariant
filter suffers from the resultant amplification of noise. In contrast to this, a
periodically time-variant filter can replace the faded spectral components
with stronger, highly correlated components from other bands. If these
correlated spectral components are weaker than the original components
before fading there will be some noise enhancement when they are ampli-
fied. But the amount of noise enhancement can be much less than that
which would result from the time-invariant filter, which can only amplify
the very weak faded components.

Detailed studies of the principles of operation and the mean-squared-
error performance of both optimum and adaptive frequency-shift filters are
reported in [1, Chapter 14, Secs. A, B], [4, Chapter 12, Sec. 12.8], [27-29].

H. PREDICTION AND CAUSALITY

ff a signal is correlated with time-shifted versions of itself (that is, if it is not
a white-noise signal), then its past can be used to predict its future. The
higher the degree of temporal coherence, the better the prediction can be.
A signal that exhibits cyclostationarity is also correlated with frequency-
shifted versions of itself. Consequently, its future can be better predicted
if frequency-shifted versions of its past are also used, so that its spectral
coherence as well as its temporal coherence is exploited. For example, if
z(t) has cycle frequencies {aq,...,an_1} then we can estimate the future
value z(t + 7) for some 7 > 0 using a linear combination of the present and

past values of the N signals

z4(t) = 2(t)e’? ! for ¢ = 0,--- , N — 1. (118)
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That is, the predicted value is given by

M-1N-1
Be4+7)=> D ho(u)zy(t—u), (119)
u=0 ¢=0
where M is the memory-length of the predictor. The set of M N prediction
coefficients that minimize the time-averaged (over t) squared magnitude of
the prediction error (t+7) — z(t +7) can be shown to be fully specified by
the cyclic correlation functions for the N cycle frequencies. Specifically, the
set of M N coefficients {hy(u)} is the solution to the set of M N simultaneous
linear equations
M-1N-1
S 3 ha(w) B (¢ — w)ei @0 = B2 (4 4 r)einan(tn)
u=0 ¢=0
fort =0,---,M ~1and p=0,---,N — 1. Also, the percent accuracy of
prediction is determined solely by the temporal coherence functions Eq. (32)
for the frequency translates. It can be shown that for each cycle frequency
ag4 exploited, there is a corresponding increase in the percent accuracy of
the prediction.

In the same way that time-invariant autoregressive model-fitting of sta-
tionary time-series data is mathematically equivalent to time-invariant lin-
ear prediction [1, Chapter 9, Sec. B], it can be shown that frequency-shif
(or polyperiodic time-variant) autoregressive model-fitting is mathemati-
cally equivalent to frequency-shift linear prediction. Studies of this prob-
lem are reported in [30-41]. Also, the univariate prediction problem for
cyclostationary (not polycyclostationary) time-series is equivalent to the
multivariate prediction problem for stationary time-series [31]. This fol-
lows from the representation of univariate cyclostationary time-series in
terms of multivariate stationary time-series [4, Chapter 12, Sec. 12.6], [42,
43).

A measure of the degree to which one time-series causes another time-
series is the degree to which the present and past of the former can linearly
predict the future of the latter. If the two time-series are jointly cyclo-
stationary, then cyclic as well as constant causality is possible. In fact,

by considering only time-invariant predictors, it is possible to conclude for



CYCLOSTATIONARY SIGNAL PROCESSING 61

some pairs of time-series that no causality exists when, in fact, one time-
series is perfectly cyclically caused by the other. An example of this is
z(t) = z(t) and y(t) = 2(t — 7)cos(t), where t > 0 and z(t) is an inde-
pendent identically distributed sequence. The best linear time-invariant
predictor of y(t) using the past of z(t) is §(t) = 0, whereas the best linear
periodically time-variant predictor is §(t) = z(¢t — 7) cos(t) = y(t), which
yields perfect prediction. Moreover, if z(t) takes on values of only %1 it is

particularly easy to show for this example that

(@"(t = s)y™ (1)) = (2" (t - 5)) (y™(t))
for all positive integers m,n and s. Consequently, even the best nonlinear

time-invariant predictor is §(t) = 0.
I. NONLINEAR SYSTEM IDENTIFICATION

A popular approach to the identification of nonlinear dynamical systems
from input-output measurements is to model the system in terms of the
Volterra series, which is a generalization of the power-series (or polyno-
mial) representation of a memoryless system to systems with memory, and
then to identify one-by-one the Volterra kernels, each one of which charac-
terizes one term in the series representation. The first kernel is the impulse
.esponse of the linear part of the system. The second kernel is a two-
dimensional generalization of the impulse response for the quadratic part
of the system, and so on. Common approaches to identifying the kernels
are based on crosscorrelation measurements between the unknown-system
output and specially designed nonlinear functions of the system input.
Although the fundamental theory of this crosscorrelation approach to
nonlinear system identification is built on the foundation of stationary ran-
dom processes or time-series [44], it has recently been shown [45] that sub-
stantial advantages can be gained by using cyclostationary inputs to the
unknown system and cyclic crosscorrelations. In particular, desirable or-
thogonality (zero-correlation) properties between the system output and
nonlinear functions of the input that are not possible for stationary inputs
are possible for cyclostationary inputs, and this leads to particularly con-

venient designs for the inputs and the nonlinear functions. Moreover, this
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approach of exploiting cyclostationarity to identify time-invariant systems
has recently been generalized to identify polyperiodic nonlinear systems
[46]. In [45, 46], the basic theory of this new approach is presented for
both a time-domain method, which directly identifies the Volterra kernels
or their polyperiodic counterparts, and a frequency-domain method, which
directly identifies the multidimensional Fourier transforms of the kernels—
the Volterra transfer functions—and several examples of cyclostationary
inputs and corresponding nonlinear functions are given. This work exploits
higher-than-second-order cyclostationarity, the principles of which are given

in the next section.

IV. HIGHER-ORDER CYCLOSTATIONARITY
A. INTRODUCTION

In Example 8 of Section ILF it is shown that, for QPSK signals, spec-
tral lines with frequencies equal to the harmonics of the keying rate can
be generated by using quadratic nonlinearities, but that no quadratic non-
linearity can generate spectral lines with frequencies associated with the
carrier frequency—a quartic (4th-order) nonlinearity is needed. Similarly,
for some PSK signals with M > 4 states, a nonlinearity of order M is
needed to generate a spectral line with frequency associated with the car-
rier frequency (M times the carrier frequency). In Example 2 of Section
ILF, the SCD (83) for PAM signals is shown to depend on the product of

shifted pulse transforms:
P(f+a/2)P*(f —a/2), a=k/T.

Thus, if the pulse transform has support that is limited to the interval
[-1/2T,,1/2T5), all such products are identically zero except that for oo = 0,
which implies that the signal is second-order stationary in the wide sense:
no spectral lines can be generated by using quadratic nonlinearities. An
example of such a signal is the duobinary coded (or partial response) PAM
signal [47, 48]. However, a spectral line with frequency equal to the key-

ing rate can be generated from this kind of signal by using a fourth-order
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nonlinearity such as
Lo(t,T)a = z(t+ n)a(t + 7)a(t + 73)z(t + 74),

provided that the support of the pulse transform is not limited to the inter-
val [-1/4Tp,1/4T;) (that is, the bandwidth exceeds 1/4T;). Thus, in the
case of a QPSK signal with carrier frequency fo, there are some delay sets
T = [r--- 7]t such that8

(La(t, m)ae™?450t) 2 0,

whereas
(z(t+m)a(t+ n)e 2Rty = ¢

for all 71, 73, and k # 0. Similarly, in the case of a PAM signal with keying
rate 1/Tp and pulse transform that has positive-frequency bandwidth less

than 1/2T but greater than 1/47Tj, there are some delay sets T such that

<Lz(t, T)4e"i2”t/T°> #0,

whereas
<:1:(t +7)a(t+ rz)e“‘z“‘k/T°> =0

for all 7, 72, and k # 0.

The preceding observations motivate the study of both fourth-order
nonlinear transformations and of signals that produce spectral lines only
after undergoing nonlinear transformations of order no smaller than four
because we have seen in previous sections that regenerated spectral lines can
be utilized by signal processing algorithms to obtain superior performance
when compared to algorithms that ignore these spectral lines. But these
observations also motivate the more general study of spectral lines in the
outputs of higher-order nonlinear transformations such as the nth-order
delay product

Lo(t,7), 2 H z(t+75)

8The notation (-) is used throughout this section to denote the continuous-time coun-
terpart of the discrete-time-averaging operation defined in Section IL.A.
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and, for complex-valued signals,
n
Lo(t,m)n 2 [[aWi(+m),
Jj=1

where (x); denotes an optional conjugation for the jth factor a(t + 7).

There are also other important reasons to study the sine-wave compo-
nents (spectral lines) in the outputs of higher-order nonlinear transforma-
tions. For instance, to determine the performance of the algorithms de-
scribed in Section III, which exploit second-order cyclostationarity, higher-
order moments of cyclostationary signals are required (for example, the
variance of an SCD estimator depends on the spectral lines in the fourth-
order delay products). As another example, unintentional or unavoidable
nonlinearities (e.g., amplifier nonlinearities) in signal processing systems
involving cyclostationary signals can produce undesired spectral lines in
their outputs [49]. A complete analysis of the performance of such systems
requires an understanding of the effects of nth-order nonlinear transfor-
mations on the input signals. As a final example, nonlinear system iden-
tification can be accomplished by using specially designed cyclostationary
inputs, as described and illustrated in [45], and this entails measurement of
nonlinearly generated sine waves.

The preceding examples show that a case of primary interest occurs
when higher-than-second order nonlinearities are required to generate spec
tral lines with desired frequencies, or to generate any spectral lines whatso-
ever. However, it is also the case that if a signal is cyclostationary of order
two, then it is also cyclostationary of order 2n for all natural numbers n.
This is simply a result of the fact that if there are sine waves in second-order
delay products, then there are sine waves in some delay products with an
even number of factors, because sine waves multiplied by sine waves results
in sine waves. This observation suggests the following question: Is there
some part of the higher-order sine-wave strength that is not due to the
multiplication of lower-order sine-wave strengths? Or, rephrased: Can the
higher-order sine-wave strength be larger or smaller than the product of
lower-order strengths? If so, how can we characterize the difference? We
shall see that in the process of seeking an answer to this question, we are

led naturally to the central parameters of the theory of higher-order cyclo-
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stationarity, namely temporal and spectral camulants. Cumulants are also
a focal point in the study of the higher-order statistics of stationary signals
[50]-[54], which is currently a subject of considerable research effort, but
there cumulants are not derived, they are used as a tool in the design of
algorithms for the solution of signal processing problems.

A brief development of the principles of higher-order cyclostationarity
(originally introduced in [55]-[61]) is given in the remaining parts of this
section. To minimize distracting technical issues associated with discrete-

time, such as aliasing, the discussion is limited to continuous-time signals.
B. SPECTRAL LINE GENERATION

Let us consider, as motivation, all nonlinear signal processing operations
that can be expanded in a Volterra series (generalized in the sense that the

kernels are not necessarily causal):
(o <] oo
y(t)=>_ / / hn(T)Lo(t, ) d7,
n -0 — 00

where 7 = [r1-++ 7a)T, La(t,7)n is the nth-order delay product of the
input x(t)

(6, T = fI z(t+ 75), (120)

and h,(T) are the Volterra kernels. This series can be generalized for
complex-valued z(t) to include multiple terms for each order to accommo-
date conjugated factors in Eq. (120). Such generalized versions of Eq. (120)
are assumed henceforth.

We are interested in the finite-strength additive sine-wave components
present in y(t) but absent in z(t), that is, those sine waves that are gener-
ated by the action of the nonlinear operation on z(t), which is assumed to
exhibit cyclostationarity. For example, the strength of the sine wave with
frequency « in y(t) is given by

<y(t)e—z’21rart> — Z /_Z - /_o:o hn(T) <Lz(t, T)ne—i27rat> dT,
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where restrictions on z(t) that validate the interchange of operations are

assumed to apply. Thus, we need only study the statistical quantities
<Lz (t, T)ne—i21rat> ,

for arbitrary positive integers n, which are the strengths of the sine-wave
components contained in the nth-order delay products of z(t).

1. The Cyclic Temporal Moment Function.

The nth-order delay product is an elementary nth-order homogeneous
polynomial nonlinear transformation of z(t). This transformed signal can
be decomposed into a polyperiodic (periodic or multiply-periodic—also
called almost periodic [62]) part p(t,7), and an aperiodic residual part
m(t, T)n,

Lo(t,7)n = p(t, T)n + m(t, T)n,

where
(m(t,T)ne” 2™ =0, for all a. (121)

The polyperiodic portion of L. (¢, T), has associated with it the Fourier
series

p(t,T)n = Z R (T)n e'?met, (122)

where .
RY(T)n = (p(t,T)n e 27t). (123)

It is assumed herein that the partial sums in the Fourier series Eq. (122)
converge uniformly in ¢ for each 7 to p(t,7),. Then p(-,7), is an almost
periodic function in the mathematical sense [62], the limit Eq. (123) exists
for each 7, and the set of values of the real variable a for which R%(7), #
0 for each 7 is countable. That is, there is at most a countable set of
incommensurate periods in the polyperiodic function p(t,T), for each 7.
It is further assumed that the union over all 7 of the sets of values of « for
which R (7)n # 0 results in a countable set.

The delay-product signal Eq. (120) can be expressed as

Lo(t,7)n = Z R2(T)n 2™ £ m(t,7),, (124)



CYCLOSTATIONARY SIGNAL PROCESSING 67

vhere the sum is over the countable set of real numbers o for which
RZ(1)n #0. From Eqgs. (121) and (124), we have

RY(T)n = (La(t, T)n e 27t (125)

Each value of o in the representation Eq. (124) is called a cycle frequency of
order n, and R (T)y, is called the cyclic temporal moment function (CTMF)
of order n. Forn = 2, i, = 7/2, and 7» = —7/2, the CTMF is identical
to the continuous-time counterpart of the cyclic autocorrelation studied in
previous sections (cf. Eq. (20)).

The sum of all sine waves in L,(t,T), can be interpreted as the result of

applying the temporal expectation operator E{*} {-} to the delay product,
B L (t,m)a} =) RI(T)a e,

This temporal expectation operation is completely analogous to the prob-
abilistic expectation operation E{-} [3, 63]. The result of applying the
operator E{e} {-} to the delay product L,(t,T), is called the temporal mo-
ment function (TMF), and is denoted by R,(t,7)n,

R (t,7)n = EY{L(t,7),}. (126)

An individual sine-wave component of the TMF, such as R¥(7T),e'?™t, is
called a moment sine wave of order n (to distinguish it from a cumulant
sine wave of order n which is defined in Section IV.C).

If the signal z(t) exhibits second-order cyclostationarity, then at least
some of the fourth-order moment sine waves are composed (in part or com-
pletely) of products of second-order sine waves whose frequencies sum to
a fourth-order cycle frequency a. Generally, nth-order moment sine waves
can be composed (in part or completely) of products of lower-order sine
waves whose orders sum to n. In the following section, we remove these
product sine waves in order to reveal that part of the nth-order moment
sine wave that does not arise from sine waves contained in factors of the
delay product and is therefore uncontaminated by lower-order product sine
waves. If this sine-wave component is nonzero, it is called a pure nth-order

sine wave.
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2. Pure nth-Order Sine Waves.

For low orders n, it is easy to mathematically characterize a pure nth-
order sine wave in a way that matches our intuition. For notational sim-
plicity, we choose the case of no conjugated factors in Eq. (120). For n = 1,
the moment sine waves are, by definition, pure first-order sine waves. For
n = 2, all products of first-order moment sine waves can be subtracted from
the second-order moment sine waves to obtain the pure second-order sine

waves, which are denoted by o, (t,71,72)2,

os(t,m1,72), = Elo} {z(t+m)z(t+ )}
Bl ot 4+ n)} ECH a(t + 1)}
= Rz(t,T)g—Rw(t,Tl)l Rz(t,Tz)l.

There are several interesting points to be made concerning pure second-
order sine waves: (i) since Ry(t,7;)1,4 = 1,2, and R,(t,T); are first- and
second-order moments respectively, then o, (¢, 71, 72)2 is a temporal covari-
ance function; (i7) if R (¢, 7); = 0, then there are no lower-order sine waves,
and the second-order moment sine waves are equal to the pure second-order
sine waves; (4i1) if the variables z(t 4+ 71) and z(t 4 73) are statistically in-

dependent (in the temporal sense [63]), then
B ot + n)a(t + )} = Bl a(t + 7))} LY {a(t + 72)}

and therefore o, (t,71,72)2 = 0, that is, there is no pure second-order sin
wave for this particular pair of delays 7; and 7. An example of (ii7) is the
case of (poly)periodic z(t), say z(t) = sin(2n fit + 6).

The pure third-order sine waves are obtained next. From the third-
order moment sine waves, we want to subtract each possible product of
lower-order sine waves, but only once each. Thus, we subtract products
of pure second-order and pure first-order sine waves from the third-order
moment sine waves, rather than subtracting products of first- and second-
order moment sine waves:

3
ox(t,7)s = BT T[at+75) 3 — 0u(t, 71, 72)200(8 7)1

i=1
=05 (t,71,73)204(t, 2)1 — 02 (t, T2, 73)204(, 71 )1

-—Uz(t, Tl)la':c(ts TZ)laz(ta 73)1-
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Observe that there are no other possible products of pure lower-order sine
waves. The terms in the sum of products that are subtracted can be enu-
merated by considering the distinct partitions of the index set {1,2,3}. A
partition of a set G is a collection of p subsets of G, {v;}}_,, with the
following properties:

P
G=UVJ' and ujﬂukz(b for j # k.

Jj=1
The set P3 of distinct partitions of {1,2,3} is
p=1: {1,2,3}
p=2: {12}, {3} {1,3}, {2} {2,3}, {1}
p=3: {1},{2},{3}.
Thus, we can express the pure third-order sine wave o, (t, T)3 as a sum over

the elements of Ps:

P
0x(t,7)s = Ry (t,7)3 — Z H oz(t,Tu;)n; | »
P3| j=1

p#1
where 7,; is the vector corresponding to the subset of {; }:}=1 with elements
having indices in v, and n; is the number of elements in v;.

Notice that, as in the case of n = 2, if the first-order moment sine waves
are zero, then the third-order moment sine waves are equal to the pure
third-order sine waves. In this case, there are no products of lower-order
sine waves to subtract from the moment sine waves.

The formula for the pure nth-order sine waves is

p
O'I(t, T)n = Rm(t, T)n - Z H o'm(t, TVj)nj ’ (127)
P, |J=1
p#1
where P, is the set of distinct partitions of the index set {1,2,---,n}.
The pure-sine-waves formula Eq. (127) gives all the pure nth-order sine
waves associated with the delay set 7. A single pure nth-order sine wave

with frequency B can be selected by using the single-sine-wave extraction
operation

0P (1), 2Pt = <a, (¥, T)n e"i2”ﬂ(“'t)> , (128)
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and can be expressed in terms of pure lower-order sine waves by using the

Fourier series for each 0, (t,7,;)n; in Eq. (127):

oa(tywhe = Y ol (e, w=luwi-wll,  (129)
Bk

where the sum is over all cycle frequencies 8}, of order k. Thus,

Uf("')ﬂ = Rlz("')n - Z Z H ali (Tv;)ns | (130)

Py tB=p J=1
p#1 11B=s

where B is the p-dimensional vector of cycle frequencies [3; --- ﬂp]T and
1 is a p-dimensional vector of ones. Hence, the pure-sine-wave strength
oP(7), is given by the CTMF RZ(7), with all products of pure lower-
order sine-wave strengths, for sine waves whose frequencies sum to 3 and

whose orders sum to n, subtracted out.
C. THE TEMPORAL PARAMETERS OF HOCS

In this section, we show that the pure nth-order sine-waves function is,

in fact, an nth-order cumulant function.

1. The Cyclic Temporal Cumulant Function.
The nth-order temporal moment function R,(t,7), for the set of 1
variables {z(*)i(t 4 7j)}}=1 is defined by (126), and is also related to the

nth-order joint temporal characteristic function

B,(t,w), 2 Elo} {ef“”w(t)} (131)
2(t) 2 [ () 2O (o4 )]
as follows an
z\ly n = )" —— z t, n 1
R.(t,7) (?) o ---(%J,,(I) (t,w) oo (132)

The nth-order temporal cumulant function (TCF) for {z)i (¢ + i)} =1

is defined by analogy to (132), except that the characteristic function is

replaced by its logarithm (cf. [50])
Colt, T)n = (1)

In®,(t,w)n (133)
n

Owy -+ - Ow

w=0
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't can be shown (cf. [50, 65] for the analogous case involving the prob-
abilistic expectation E{-}) using only (131)-(133) that the TCF can be
expressed in terms of the TMF as follows

Colt,TIn =S {(_1);:—1(,, - )] R. (2, r,j)n,] . (134)

P, j=1
where
Ro(t,7y,)n, = B} { IT =™+ Tk)}. (135)
kGVj

Furthermore, this relation can be inverted [65] to obtain

Ro(t, )= [H Ca(t, Tuj)n,] (136)

P, |j=1
where
Cz(t,Ty;)n; = Cumulant {x(*)“ (t+ Tk)}keuj . (137)
By separating out the p = 1 term from the sum over P, in (136), we obtain
p
Colt,T)n = Ra(t,T)n — D Cao(t, Tu,)n, | - (138)
Pn | J=1
p#l

Comparing (138) with (127), it can be seen that the pure-nth-order-sine-

vaves function is identical to the nth-order TCF,
Co(t,T)n = 02(t, T)n. (139)
Since R,(t, Ty;)n; is (poly)periodic in t, so too is Cx(t,7)n. A Fourier
coefficient of this (poly)periodic function of ¢ is given by
CL(T)n £ (Cult, ) e™ ™) = 0f(7)n, (140)

and is called a cyclic temporal cumulant function (CTCF). The multivariate
relationships between moments and cumulants can be used to express the
CTMF and the CTCF in terms of lower-order CTMFs or CTCFs. For
example, from Eqgs. (134) and (140) we have

Co(n=RI(T)n+)_ |(=1P p-1)! 3 T]R(m0)n,| (141)

P ati=gj=1
p#1
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and, using Eqs. (123) and (136), we have

p
R ()a=C2(Mnt | >0 [TCH(ru)n |- (142)
1 LB "1=a
In (141) and (142), o and B are p-dimensional vectors of moment and
cumulant cycle frequencies, respectively, and 1 is a p-dimensional vector
of ones. Each sine-wave component of the TCF, C2(7),e27#!, is called a
cumulant sine wave to distinguish it from a moment sine wave. It can be
seen from Eqs. (128) and (140) that the CTCF is identical to the (complex-
valued) strength of the pure nth-order sine wave with frequency 3 that
is contained in the nth-order delay product L,(t,T), and, therefore, 3 is
called a pure nth-order cycle frequency (for the particular choice of optional
conjugations used in the delay product Eq. (120)). The CTMF in Eq. (125),
on the other hand, gives the strength of the entire sine wave with frequency
a that is contained in L,(t, T),, which can be called the impure nth-order
sine wave with impure nth-order cycle frequency o (for the particular set
of chosen conjugations).

It should be pointed out that this (i.e., [56]) is the first instance (to the
best of our knowledge) in which cumulants have arisen as the solution to a
practically motivated problem—namely the problem of pure nth-order sine
wave generation—rather than as a mathematical observation concerning

the characteristic function.
2. Properties of the Temporal Parameters of HOCS.

a. Signal Selectivity.
Let the time-series 2(t) consists of the sum of M statistically indepen-
dent signals {yn(t)}M_,,

M
2(t)= 3 ym(0) (143)

Then the addition rule for cumulants can be used to show that the nth-order
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TCF for z(t) is the sum of TCFs for {ym(t)},

M
Co(t, )= Cyp(t;T)n. (144)
m=1
Thus, the pure nth-order sine waves in the delay products of each ym(t)
add to form the pure nth-order sine wave in the delay product of z(t):

M
CE(T)n=")_ CE (T)n. (145)
m=1
The TMF does not, in general, exhibit this useful property. That is, the
nth-order TMF for z(t) is not the sum of nth-order TMFs for each y,,(t):

M
Ro(t,T)n # D Ry, (t,7)n.
m=1

An exception is the case of zero-mean signals and n < 3, for which moments
and cumulants are equal.

To illustrate how Eq. (145) can be applied in practice, consider the
situation in which {y,,(¢)}}_, represent M interfering signals that overlap
in time and frequency, but each y,,(t) possesses some distinct pure nth-

order cycle frequency, say (.. Then it follows from Eq. (145) that
Cf'"(‘r)n = Cf:(r),,, m=1,2,---,M.

This indicates that the presence or absence of each of the signals y,,(t) can
be detected by measuring (estimating) the CTCF's of z(t) for the pure cycle
frequencies {3, }.

As another application, let M = 2, y;(¢) be non-Gaussian, and y(t) be
Gaussian. Then Cy,(t,T), =0 for n > 3 and, from Eq. (144), we have

Cz(t,T)n =0y (t’T)m n > 3,

which indicates the detectability of y, () with no knowledge about ya(t)

except that it is Gaussian.
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b. Integrability.
It can be shown that both the CTMF and the CTCF are sinusoidal
jointly in the n variables 71,---, Ty,:

Cf(‘r +1A), Cf(r)neiz”ﬁA, (146)
RY(T4+1A), = R%(7)ne2"4, (147)

Hence, these functions are not absolutely integrable with respect to 7. This
periodicity suggests that we might reduce the dimension of the functions
and retain all the information present in the original functions. Reducing

the dimension by one yields the definitions?

Cow)n 2 CO(fu O)), and R(w)a 2 R2(fw O},

(where w = [uy---un—_1]), which are no longer sinusoidal. The value of
CB(7)n (R%(7),) for any T can be obtained from the value of CP(u),
(R%(u)n) by using Eq. (146) ((147)).

It is shown in [59] that the function R2(u), (the RD-CTMF) is not in
general integrable, whereas the function C2(u), (the RD-CTCF) is in gen-
eral integrable for signals possessing an asymptotic independence property
(mixing condition). That is, if the rate of decay of the RD-CTCF |C?(u),|
is sufficiently high, then C?(u), is absolutely integrable and, therefore,
Fourier transformable, whereas the RD-CTMF is not, in general, Fourie
transformable except in a generalized sense that accommodates Dirac delta

functions, and products of Dirac delta functions.
D. THE SPECTRAL PARAMETERS OF HOCS

The Fourier transform of R(u), (with the second factor conjugated) is
the power spectral density (PSD) of z(¢) and the Fourier transform of the
corresponding second-order cumulant C2(u)s is the PSD of z(t) with its
sine-wave components removed, that is, it is the PSD with the spectral
lines removed. The Fourier transform of a symmetrized version of R%(u)y

(with the second factor conjugated) for a # 0 is the spectral-correlation

9The reason for this particular choice of dimension reduction is made clear in Section
IV.D.
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density function (the discrete-time counterpart of which is studied in pre-
vious sections), and the Fourier transform of a symmetrized version of the
corresponding cumulant C2(u), is the spectral-correlation density function
for the signal z(t) with its first-order sine waves removed. Therefore, we
could define (by analogy) the spectral parameters of HOCS to be the mul-
tidimensional Fourier transforms of R2(u), and C%(u),, whenever such
transforms exist. These transforms are indeed the central spectral param-
eters of the theory of HOCS, but it is more natural to derive them from
a consideration of spectral moments and spectral camulants; that is, from
limiting versions (as bandwidth approaches zero) of moments and cumu-
lants of narrowband spectral components of z(t), and then to show that
they can be characterized as Fourier transforms of temporal moments and
cumulants.

It is assumed that z(t) is absolutely integrable on finite intervals. We
consider the complex envelope of the spectral component of a segment of

z(u) that is centered at ¢ and has width T

t+T/2
Xr(t, f) = /+ z(v)e™ 27 gy, (148)

t—T/2

The time-average of the set of n variables {X;,*)j (t, fj)};-‘=1 is defined by

Sar(f)n & <HX(T*”(t,fj)>, F=1hfall, (149)

i=1
and is assumed for the time being to exist. If we now let the integration

time T in Eq. (148) tend to infinity in Eq. (149), we obtain the spectral
moment function (SMF)

Sa(f)n = lim Ser(f)n. (150)

However, this limit exists only in a generalized sense that accommodates
products of Dirac delta functions. We shall see that Dirac deltas can be
avoided by working with the cumulant counterpart of this moment.

It can be shown [58, 59] that the SMF can be characterized in terms of
the transform of the RD-CTMF,

52(f")n 2 / / B (w)ne= 2 qu, 2 [fye- fua], (151)
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in the following way:

S2(f)ab(ff1-a), fl1=aq,
0, fl1#a,

for all nth-order cycle frequencies a of z(t) that correspond to the chosen

Sz(f)n = { (152)

conjugations, which can be reexpressed as
Sa(F)n =2 52(f)nb(f'1 - a). (153)

Equation (153) reveals that the SMF is a sum of components with impulsive
factors. Moreover, we can show that S2(f’), can also be a sum of compo-
nents with impulsive factors and even products of impulses (this is done at
the end of this section). Thus, neither the SMF nor the reduced-dimension
SMF (RD-SMF) Eq. (151) are well-behaved functions.

The spectral cumulant function (SCF) is better behaved than the SMF.
The simple cumulant of the variables {X;:)j (¢, f)}}=1 is given by'®

P
P-'ET(f)n £ Z (_l)p_l(p - 1)! ]___[ SXT(ij )"j ’ (154)

8 J=1

where f v; is the vector of frequencies with subscripts in vj. This function is
well-defined for finite T since each Sx,.(-) is finite. The spectral cumulant
function is formally defined to be the limit

Po(f)n S Jim Por(f)n. (155)

By analogy with the preceding argument for the SMF, it can be shown
[59, 58] that the SCF is equivalent to

Po(f)n =) P2(f)nb(f'1 - p), (156)
B

where

Pl(f)n = /_Oo /_°° CE(u)ne= ¥ I du (157)

[e.¢]

10The cumulant of the variables {X;f)j (t,fj)};.‘=1 is actually given by (154) with each
SXT(f,,j )n; replaced by a corresponding version given by (149) with (-) replaced by

Ete} {.}. Nevertheless, these more complex expressions reduce to those given by (150)
and (155) when T — oo.
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's defined to be the cyclic polyspectrum (CP) or cyclic polyspectral den-
sity function. The transform Eq. (157) does exist in general for signals
with asymptotically independent variables such that the reduced-dimension
CTCF decays sufficiently rapidly in all directions (cf. Section IV.C.2.b).

It is now easy to show that the RD-SMF S%(f’), can itself contain
impulses. From Eq. (142) we have

RY()n=Co(Ma+d | X [ICH(T)m,

oy [Bl1=a =1
By setting 7 = [u 0] and Fourier transforming in u, we obtain by definition:

S:(f ) = PX(f )+ (158)

p—1
S D0 P n, [T P2 (£),)n;8(1 F, = B))

P};zl B'i=a =1

where it is assumed that the partitions in Eq. (142) are ordered so that
vp always contains n. In Eq. (158), each coefficient P;’(-) is well-behaved,
which implies that there are no hidden impulse functions. For the case in
which there is no lower-order cyclostationarity (cyclostationarity of order
‘ess than n) associated with {z(*); (t+75)}}=1, the sum over P, in Eq. (158)
1s zero for a # 0. If z(¢t) exhibits cyclostationarity of order less than n so
that there is at least one B such that ,Btl = a, then the sum cannot be
identically zero as a function of f’. Since we know that PX(f'), is well-
behaved (contains no impulses), then the RD-SMF must contain impulses
or products of impulses and, therefore, so must the SMF.

In this section we have explained that the CP is in general the only
well-behaved spectral function in the theory of HOCS. The SMF S,(f).
and its reduced-dimension version S¢(f’), in general contain products of
impulses and are, therefore, not well-behaved functions. However, in the
special case where the lowest order of cyclostationarity of z(t) is n, the
impure nth-order sine waves (with strengths given by the CTMFs) are
identical to the pure nth-order sine waves (CTCFs) and, as a result, the
nth-order SCF is identical to the nth-order SMF P,(f), = Sz(f)n, which
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results in equality between the CP and the RD-SMF P2(f'), = S2(f').
In the case in which there is lower-order cyclostationarity, there can be
many values of f' such that Pf(f'),, # 0 and either one or more of the
weighting functions P2 ()n; in Eq. (158) is zero, or one or more of the
Dirac delta functions in Eq. (158) is zero which results in equality between
the CP and the RD-SMF for these f’. This fact can be exploited to yield
estimators of the cumulant-based CP Pf( F')n that actually estimate the
simpler moment-based RD-SMF S?2(f'), [58, 59, 67, 68].

E. APPLICATIONS OF HOCS

The problems considered in this section can be formulated in terms of the

following two-sensor received-signal model

z(t)

M
s(t) +ma(t) + ) _ik(t) (159)

k=1

M
Aos(t+do) +my(t) + ) Apik(t + di),
k=1

y(t)

where s(t) is the signal of interest (SOI), m,(t) and m,(t) are independent
white Gaussian noises, the {i1(t)} are signals not of interest (SNOIs), {4}
and {d.} are the relative attenuation factors and delays, respectively, be’
tween the signal components in z(t) and y(¢). As an example of the kind o1
problem considered here, suppose that M = 2 and the power levels of m,
and m, are time-varying. Further, assume that the SOI is weak and fourth-
order cyclostationary—but not second-order cyclostationary—with period
T, and the two interferers are second-order cyclostationary with periods T}
and T3 such that T} + 75 = Tp. The first problem is to detect the presence
of the SOI given a finite segment of z(¢). The second problem is to deter-
mine the parameter do given finite segments of both z(t) and y(¢). These
problems are difficult to solve using the stationary models of the various
signals (which leads to radiometry [12] for the first problem and general-
ized cross correlation methods [17, 70] for the second) because for detection
the nonstationary noise and interference complicates the threshold setting,

and for time-delay estimation the interference corrupts the relevant phase
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information in the cross spectrum. The theory of higher-order statistics is
not helpful here because its parameters are not signal selective: all of the
signals contribute to higher-order cumulants for a stationary non-Gaussian
signal model [58]. The theory of second-order cyclostationarity (SOCS) is
also not helpful because the SOI has no second-order cyclic features (cf.
Section IV.A). However, these two tasks can be accomplished by using the
higher-order cyclostationarity of the signal of interest.

Before discussing the signal selectivity of cyclic cumulants, we present
the nth-order CP for the continuous-time complex-valued pulse-amplitude-
modulated signal (cf. Eq. (11)). Specifically, the CP for the set of n variables
{x™i(t + 7;)}7_, is given by

n—1
C;(;n P((—)n[ﬁ - 1Tf/])(*)n H P((__)jfj)(*)jei2ﬂ'ﬂto, (160)

j=1

Pf(f/)nz

for B = k/To, where (—); is the optional minus sign corresponding to the
optional conjugation of the jth factor, and Cj, , is the nth-order cumulant of

the symbol variables. Thus, the CP is a scaled product of pulse transforms.

1. Signal Selectivity.

An important advantage of exploiting cyclostationarity in signal pro-
cessing tasks is that the cyclic parameters are signal selective in that the
parameters associated with the SOI can be estimated from data that also
contains noise and SNOIs. As the amount of data grows, the effects of
the noise and interference on the parameter estimate decrease. The na-
ture of the signal selectivity properties of higher-order cyclic moments and
cumulants is examined next (cf. Section IV.C).

Because the signals and noises in Eq. (159) are assumed to be statisti-

cally independent, the TCF for z(t) is given by the simple additive formula

M
Cx (t, T)n = C’S(t’ T)n + Cm; (t’ T)n + Z Cik (t, T)n,
k=1
which implies that if 3 is a pure nth-order cycle frequency for s(t), and is
not for any of the other signals, then C4(7),, = C?(7),. Similarly, if 8 is a
unique pure nth-order cycle frequency for iy (t), then C2+(7), = Cﬁ" (T)n.
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For moments, the signal selectivity property depends on the cycle fre-
quencies for all of the signals present for all orders m < n. This can be

seen by expressing the CTMF in terms of CTCFs (cf. Eq. (142)):

R;“(‘r)n=z Z HCff(T,,j),,j . (161)

Pn ﬂf1=a~ j=1

If there is a vector B in Eq. (161) such that at least one of its elements is
a cycle frequency that is associated with a SNOI, then the CTMF for z(t)
will not be equal to the CTMF for s(t). Nevertheless, it can happen that
the contributions to the CTMF from SNOIs do not affect the phase of the
CTMF but only its magnitude. This can happen, for example, if n = 4
and the interference and noise contribute only second-order cumulants for
Bj = 0to (161). For moments, then, there are two kinds of signal selectivity,
depending on what information in the moment is considered useful (magni-
tude or phase). Because of this potentially troublesome complication, the
signal-selectivity properties of cumulants are deemed more useful than those
for moments. Thus, the following sections describe algorithms in terms of
cumulants, but in most cases, an alternative algorithm can be created by
replacing cumulants with moments. The usefulness of these moment-based
alternatives depends on the cycle frequencies associated with the SNOIs,

which must be evaluated on a case-by-case basis.

2. Weak-Signal Detection.

In this section, the problem of detecting the presence of the signal s(t)
in a received data set z(t) as in Eq. (159) is considered. There are several
versions of the detection problem that are of interest. The first is called
the general search problem, in which a data set is analyzed to determine
if there are any cyclostationary signals present. No information about the
received data is assumed to be known in the general search problem. In
the second problem, called the known-cycle-frequency problem, a specific
pure cycle frequency/order pair (8,n0) is of interest, and it is desired to
determine if there is a signal present in the data corresponding to this pair.
In the third problem, called the known-modulation problem, the modulation

format of the signal of interest is known, and hence the cyclic cumulants of
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“the signal are known (in principle); it is desired to determine the presence

or absence of this particular signal.

a. The General Search Problem.

In this problem there is a maximum order NV of nonlinearity that is to
be used for processing. The goal of the processing is to produce a list of
pure nth-order cycle frequencies {3, } for each order n < N. This list {8}
for each n characterizes the detectable cyclostationarity of order n (and
only n) that is associated with z(¢). Thus, these lists are not contaminated
by entries that are due to lower-order sine wave interactions, which result
in false detections. To accomplish this task, the TCF is estimated for z(t)
for each order n. From the estimate of the TCF of order n, the cycle
frequencies {8,}, which are needed for the estimate of the TCF for order
n + 1, can be found. More explicitly, the general search problem can be

tackled by using the following algorithm:

0. Letn=1
p

L Gty =La(t,m)n— Y ] Calts Tu,)n,

P j=1

p#l

2. Y(f) =FFT; {C,(t,7)n}
3. Threshold detect the bins of Y to find {8,}
4. Chn(1), = <C‘L(t,‘r),, e_iz"ﬂ"t>

5. Co(t,m)n=  Clr(r)ne™n!
ﬁn
6. n —n+1; if n < N then go to 1.

In step 4, the interval over which the average (-) is performed is determined
by the amount of data available. If any of the detected cycle frequencies
are of particular interest, a cyclic polyspectral analysis can be performed
from which the modulation type can possibly be determined [58, 59].

b. The Known-Cycle-Frequency Problem.
In this problem, one or more of the signal’s modulation frequencies, such

as a keying rate or carrier frequency, is assumed to be known, but the exact
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functional form of the CTCF is unknown. The received-signal environment
is still assumed to be unknown and, therefore, the general search algorithm
is of interest. However, it can be improved for the known-cycle-frequency
problem by combining it with a least-squares estimation technique. Let
(B,m0) be the cycle frequency/order pair of interest. Use the general search
algorithm up to order ng — 1. Form C’(t,7),,, and use a least-squares
estimator to detect the presence of the signal of interest using a threshold
test on the statistic

Y = (0 € (t, 7)o e 2) = &6 (7).,

where
~! A A f
Cz(th)no = [Cz(tv'rl)"o "'Cz(thK)no] ’
. A A N t
CI(T)nO = [C:cﬂ(Tl)"o "'CE(TK)HO] ’
and where 1 is the unit-norm version of the least-squares weight vector

2> . (162)

Al .
W = arg min <|wTCz(t, T)ny — €' 2P

The solution to Eq. (162) is w = R'léf(‘r)no, where
R=(C.(t,)nCat, 7)),

in which H denotes conjugate transpose. Thus, the detection statistic is
Y = G (1)E R (T)a,

which is obtained by forming the particular linear combination of data sets
Colt, TDngs+, Colt, Tk

that optimally combines the regenerated sine waves with frequency 3 that
are present in each set, and then correlates this composite regenerated sine
wave with the stored sine wave 275t

An alternative is to use the maximum over 7 of |C’ (¢, 7),|? in a thresh-
old test.
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c. The Known-Modulation Problem.

In this problem, it is desired to determine if a signal with known modu-
lation type is present. In particular, the CTCF of s(t) for n = ng and pure
cycle frequency § is known. The general search algorithm can be used to
remove all lower-order sine waves up to order ng — 1. Then, from C'(t, T)no
the CTCF estimate C? (u),, for cycle frequency 8 can be determined by
computing the Fourier coefficient as in Eq. (140). The proposed detection
statistic is

{o o) (e o] _ _
Y= / / C8, (1)ne CP (w)?, du.
—o00 —00
The primary justification for this particular statistic is that when no signal

is present with pure nth-order cycle frequency 3, then C_'fT (#)n, — 0, which

implies that Y — 0; when the signal of interest is present, then

Y—)/_Z---/_Zlc_'f(u)n|2 du. (163)

Thus, Y is an asymptotically noise-free statistic on both the signal-present
and signal-absent hypotheses. Furthermore, the integral Eq. (163) is finite
(cf. Section IV.C). Hence, this statistic is the natural generalization of the
single-cycle detector that exploits SOCS and possesses several optimality
properties [11].

3. TIME-DELAY ESTIMATION.

Conventional approaches to the problem of estimating the time-delay
(or time difference of arrival (TDOA)) between signal components in data
from two sensors are collectively referred to as generalized cross correlation
(GCC) methods [70]. In the GCC methods, filtered versions of the sensor
outputs z(t) and y(t) in Eq. (159) are cross correlated, and the estimate of
do is taken to be the location of the peak in the cross-correlation estimate.
These methods suffer when spectrally overlapping interferers are present
(M > 1in Eq. (159)), because each interferer contributes a peak of its own
to the cross correlation function. This causes two problems. The first is
a resolution problem which, to be solved, requires that the differences in
the TDOAs for each of the signals be greater than the widths of the cross
correlation functions so that the peaks can be resolved. The second problem

is that it is difficult to correctly associate each peak with its corresponding
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signal. Both of these problems arise because the GCC methods are not
signal selective; they produce TDOA peaks for all the signals in the received
data unless they are spectrally disjoint and can, therefore, be separated by
filtering.

Signal-selective methods that exploit the SOCS of the desired signal,
which is assumed to be unique to that signal, are studied in [17, 18]. These
methods have been shown to outperform the GCC methods, and have been
shown to produce unbiased estimates with variance that is smaller than
the Cramer-Rao lower bound on the variance of TDOA estimators that are
based on the assumption that the signal and its environment are station-
ary. However, these methods are not applicable when there is no SOCS to
exploit. In this case, the theory of HOCS can be used to develop signal-
selective TDOA estimators. Following the approach in [17, 18] for SOCS,
the methodology considered here for HOCS is based on least-squares esti-
mation. The following two examples illustrate the methodology.

The cross cumulant between n-1 time-translates of x(t) and one time-
translate of y(t) is defined by

Cay(t,T)n = Cumulant {y(t + ), {a™i(t + Tj)};-';ll .

The Fourier coefficient of this cross cumulant for the pure nth-order cycle
frequency 3 for the signal model Eq. (159) (assuming that the noise and
interference do not exhibit nth-order cyclostationarity with pure nth-order
cycle frequency f3) is given by

ny("')n = (Czy(t"")ne—i%ﬂt>
= AoCl(T+ bndo)n,

where 8, is the unit vector along the nth coordinate, and the conjugates
in C? match those in ny. It is easy to show that the following relations
involving RD-CTCFs hold:

C_'fy(u)n = Aoéf(u - 1d0),,e"2"'3d°, C_'f(u),, = C—'f(u)n.

This suggests a least-squares fit of a measurement of C-’fy to a measurement

of C# over a region G of u-space of interest:

~ ~ i2wfd|2
112151/G|wa(u)n - AC? (u - 1d),e*™|" du,
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which leads to the following estimator of the delay dy:
dy = arg max R {/ C_'fT(u)nC_'fyT(u + 1d)7e'2Ad du} , (164)
G

where {-} denotes the real part of its argument. This estimator is a higher-
order generalization of the SPECtral COherence Alignment (SPECCOA)
algorithm for TDOA estimation [17, 18], which exploits SOCS and has been
shown to possess several optimality properties.

As an alternative, cross-sensor measurements can be avoided entirely
by noting that

Oy (W = AFCL ()%, C(u), = CB(u)n,
which suggests the following least-squares approach:

- . ~ = . 2

do = arg ILI%IL ICfT (), — A"CfT(u)ne’z"ﬂdI du.
The estimator for dy is given explicitly by

N -1 ~ = "
do = % angle {/G Cf,r (u),,CfT(u)n du}, (165)

which is a higher-order generalization of the SOCS-exploiting Cyclic Phase
Difference algorithm for TDOA estimation without Cross-sensor measure-

sents [17, 18]. It’s disadvantage relative to Eq. (164) is that dy can be
estimated modulo 1/4 only.

V. SUMMARY

In this chapter, we have given an introduction to the fundamental concepts
and basic definitions in the theory of cyclostationary signals, and we have
surveyed some of the many applications of this theory to signal processing
problems. We have presented theory and method for both second-order
cyclostationary signals, which is considered to be established but still ma-
turing, and higher-order cyclostationary signals, which is currently being
formulated. For readers interested in pursuing any of the topics discussed,

we have given references to more in-depth threatments.
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We have explained that the properties of cyclostationary signals that
enable the design of signal processing algorithms with unique performance
capabilities are the regenerative periodicity property, which enables the
generation of spectral lines from the signal by subjecting it to nonlinear
transformations, and the spectral redundancy property, which enables the
extraction of information about the signal in some subbands of its spec-
trum using measurements from other subbands. We have further explained
that these two properties are actuz;.lly different ways of interpreting a sin-
gle property, and that this property of cyclostationary signals results in
a kind of signal separability that can be used to counteract the masking
effects of noise and interference through the use of specially designed signal

processing algorithms.

VI. ACKNOWLEDGEMENTS

Mouch of the work surveyed in this chapter was supported by the following
programs: the Office of Naval Research under contract N00014-92-J-1218
(PIs: W. A. Gardner and S. V. Schell); E-Systems, Inc., Greenville Div.;
the Army Research Office under contract DAAL03-89-C-0035 sponsored by
the U. S. Army Communications Electronics Command Center for Signals
Warfare (PI: W. A. Gardner); the National Science Foundation under grant
MIP-88-12902 (PI: W. A. Gardner); and ESL, Inc. and the California Staf
MICRO Program.

References

[1] W. A. Gardner, Statistical Spectral Analysis: A Nonprobabilistic The-
ory, Prentice-Hall, Englewood Cliffs, New Jersey (1987).

[2] W. A. Gardner, “Exploitation of Spectral Redundancy in Cyclostation-
ary Signals,” IEEE Signal Processing Magazine 8, pp. 14-36 (1991).

[3] W. A. Gardner, “An Introduction to Cyclostationary Signals,” Chap-
ter 1 in Cyclostationarity in Communications and Signal Processing,

(W. A. Gardner, ed.) IEEE Press, New York (1993).



[4]

(5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

CYCLOSTATIONARY SIGNAL PROCESSING 87

W. A. Gardner, Introduction to Random Processes with Applications
to Signals and Systems, 2nd ed., McGraw-Hill, New York (1990).

R. S. Roberts, W. A. Brown, and H. H. Loomis, Jr., “Computation-
ally Efficient Algorithms for Cyclic Spectral Analysis,” IEEE Signal
Processing Magazine 8, pp. 38-49 (1991).

W. A. Brown and H. H. Loomis, Jr., “Digital Implementation of Spec-
tral Correlation Analyzers,” IEEE Transactions on Signal Processing
41, pp. 703-720 (1993).

R. S. Roberts, W. A. Brown, and H. H. Loomis, Jr., “A Review of
Digital Spectral Correlation Analysis: Theory and Implementation,”
Article 6 in Cyclostationarity in Communications and Signal Process-
ing, (W. A. Gardner, ed.) IEEE Press, New York (1993).

H. L. Hurd, “Nonparametric Time Series Analysis for Periodically Cor-
related Processes,” IEEE Transactions on Information Theory 35, pp.
350-359 (1989).

H. L. Hurd and J. Leskow, “Estimation of the Fourier Coefficient Func-
tions and Their Spectral Densities for ®-mixing Almost Periodically
Correlated Processes,” Statistics and Probability Letters 14, pp. 299—
306 (1992).

D. Dehay and H. L. Hurd, “Representation and Estimation for Peri-
odically Correlated and Almost Periodically Correlated Random Pro-
cesses,” Chapter 6 in Cyclostationarity in Communications and Signal
Processing, (W. A. Gardner, ed.), IEEE Press, New York (1993).

W. A. Gardner, “Measurement of Spectral Correlation,” IEEE Trans-
actions on Acoustics, Speech, and Signal Processing 34, pp. 1111-1123
(1986).

W. A. Gardner, “Signal Interception: A Unifying Theoretical Frame-
work for Feature Detection,” IEEE Transactions on Commaunications
40, pp. 897-906 (1988).

W. A. Gardner and C. M. Spooner, “Signal Interception: Performance
Advantages of Cyclic Feature Detectors,” IEEE Transactions on Com-
munications 40, pp. 149-159 (1992).

W. A. Gardner and C. M. Spooner, “Detection and Source Location
of Weak Cyclostationary Signals: Simplifications of the Maximum-
Likelihood Receiver,” IEEE Transactions on Communications 41,
(1993).



88

[15]

[16]

(17]

(18]

(19]

[20]

(21]

[22]

23]

[24]

WILLIAM A. GARDNER AND CHAD M. SPOONER

W. A. Gardner, “The Role of Spectral Correlation in Design and Per-
formance Analysis of Synchronizers,” IEEE Transactions on Informa-
tion Theory 34, pp. 1089-1095 (1986).

N. Blachman, “Beneficial Effects of Spectral Correlation on Synchro-
nization,” Article 2 in Cyclostationarity in Communications and Signal
Processing, (W. A. Gardner, ed.), IEEE Press, New York (1993).

W. A. Gardner and C. K. Chen, “Signal-Selective Time-Difference-of-
Arrival Estimation for Passive Location of Man-made Signal Sources in
Highly Corruptive Environments. Part I: Theory and Method,” IEEE
Transactions on Signal Processing 40, pp. 1168-1184 (1992).

C. K. Chen and W. A. Gardner, “Signal-Selective Time-Difference-of-
Arrival Estimation for Passive Location of Man-made Signal Sources
in Highly Corruptive Environments. Part II: Algorithms and Perfor-
mance,” IEEE Transactions on Signal Processing 40, pp. 1185-1197
(1992).

L. Izzo, A. Napolitano, and L. Paura, “Cyclostationarity-Exploiting
Methods for Multipath-Channel Identification,” Article 3 in Cyclosta-
tionarity in Communications and Signal Processing, (W. A. Gardner,
ed.), IEEE Press, New York (1993).

B. G. Agee, S. V. Schell, and W. A. Gardner, “Spectral Self-Coherence
Restoral: A New Approach to Blind Adaptive Signal Extraction,” Pro-
ceedings of the IEEE 78, pp. 756-767 (1990).

S. V. Schell and W. A. Gardner, “Blind Adaptive Spatio-Tempora/
Filtering for Wideband Cyclostationary Signals,” IEEE Transactions
on Signal Processing 41, 1961-1964 (1993).

S. V. Schell, “An Overview of Sensor Array Processing for Cyclosta-
tionary Signals,” Chapter 3 in Cyclostationarity in Communicalions
and Signal Processing, (W. A. Gardner, ed.), IEEE Press, New York
(1993).

S. V. Schell and W. A. Gardner, “High-Resolution Direction Finding,”
in Handbook of Statistics 10 (N. K. Bose and C. R. Rao, eds.), North
Holland, Amsterdam (1993).

S. V. Schell and W. A. Gardner, “Estimating the Directions of Arrival
of Cyclostationary Signals—Part I: Theory and Methods,” Technical
Report, Department of Electrical and Computer Engineering, Univer-
sity of California, Davis, CA, November 1991.



CYCLOSTATIONARY SIGNAL PROCESSING 89

[25] S. V. Schell, “Exploitation of Spectral Correlation for Signal-Selective
Direction Finding,” Ph.D. Dissertation, Department of Electrical and
Computer Engineering, University of California, Davis, CA, (1990).

[26] S. Roy, J. Yang, and P. S. Kumar, “Joint Transmitter/Receiver Opti-
mization for Multi-User Communications,” Article 1 in Cyclostation-

arity in Communications and Signal Processing, (W. A. Gardner, ed.),
IEEE Press, New York (1993).

[27] W. A. Gardner and W. A. Brown, “Frequency-Shift Filtering Theory
for Adaptive Co-Channel Interference Removal,” Proceedings of the

Twenty-Third Asilomar Conference on Signals, Systems, and Com-
puters, Pacific Grove CA (1989).

[28] J. H. Reed and T. C. Hsia, “The Performance of Time-Dependent
Adaptive Filters for Interference Rejection,” IEEE Transactions on
Acoustics, Speech, and Signal Processing 38, pp. 1373-1385 (1990).

[29] W. A. Gardner, “Cyclic Wiener Filtering: Theory and Method,” IEEE
Transactions on Communications 41, pp. 151-163 (1993).

[30] W. M. Brelsford, “Probability Predictions and Time Series with Peri-
odic Structure,” Ph.D. Dissertation, Johns Hopkins University, Balti-
more Maryland (1967).

[31] M. Pagano, “On Periodic and Multiple Regressions,” Ann. Stat. 6, pp.
1310-1317 (1978).

(32] A. G. Miamee and H. Salehi, “On the Prediction of Periodically Cor-
related Stochastic Processes,” in Multivariate Analysis—V, (P. R. Kr-
ishnaiah, ed.), North Holland, Amsterdam (1980).

[33] G. C. Tiao and M. R. Grupe, “Hidden Periodic Autoregressive-Moving
Average Models in Time Series Data,” Biometrika 67, pp. 365-373
(1980).

[34] H. Sakai, “Circular Lattice Filtering Using Pagano’s Method,” IEEE
Transactions on Acoustics, Speech, and Signal Processing 30, pp. 279—
287 (1982).

[35] H. Sakai, “Covariance Matrices Characterization by a Set of Scalar
Partial Autocorrelation Coefficients,” Ann. Stat. 11, pp. 337-340
(1983).

[36] H. Sakai, “Spectral Analysis and Lattice Filter for Periodic Autore-

gressive Processes,” Electronics and Communications in Japan 73, pp.
9-15 (1990).



90 WILLIAM A. GARDNER AND CHAD M. SPOONER

[37] H. Sakai, “On the Spectral Density Matrix of a Periodic ARMA Pro-
cess,” Journal of Time Series Analysis 12, pp. 73-82 (1991).

[38] A. V. Vecchia, “Maximum Likelihood Estimation for Periodic Au-
toregressive Moving Average Models,” Technometrics 27, pp. 375-384
(1985).

[39] J. T. B. Obeysekera and J. D. Salas, “Modeling of Aggregated Hydro-
logic Time Series,” Journal of Hydrology 86, pp. 197-219 (1986).

[40] W. K. Li and Y. V. Hui, “An Algorithm for the Exact Likelihood
of Periodic Autoregressive Moving Average Models,” Comm. Stat.,
Simulation Comput. 17, pp. 1483-1494 (1988).

[41] P. L. Anderson and A. V. Vecchia, “Asymptotic Results for Periodic
Autoregressive Moving Average Models,” Journal of Time Series Anal-
ysis 14, pp. 1-18 (1993).

[42] E. G. Gladyshev, “Periodically Correlated Random Sequences,” Soviet
Math. Dokl 2, pp. 385-388 (1961).

[43] W. A. Gardner and L. E. Franks, “Characterization of Cyclostationary
Random Signal Processes,” IEEE Transactions on Information Theory
21, pp. 4-14 (1975).

[44] M. Schetzen, The Volterra and Wiener Theories of Nonlinear Systems,
2nd ed., Krieger Publ. Co., Malabar FL (1989).

[45] W. A. Gardner and T. L. Archer, “Exploitation of Cyclostationar-
ity for Identifying the Volterra Kernels of Nonlinear Systems,” IEE
Transactions on Information Theory 39, 535-542 (1993).

[46] W. A. Gardner and L. Paura, “Identification of Polyperiodic Nonlinear
Systems,” Technical Report, December 1992, Department of Electrical
and Computer Engineering, University of California, Davis.

[47] A. Lender, “The Duobinary Technique for High-Speed Data Transmis-
sion,” IEEE Transactions on Communications and Electronics 82, pp.
214-218 (1963).

[48] J. G. Proakis, Digital Communications, McGraw-Hill, New York
(1983).

[49] J. P. A. Albuqurque, O. Shimbo, and L. N. Ngugen, “Modulation
Transfer Noise Effects from a Continuous Digital Carrier to FDM/FM
Carriers in Memoryless Nonlinear Devices,” IEEE Transactions on
Commaunications 32, pp. 337-353 (1984).



CYCLOSTATIONARY SIGNAL PROCESSING 91

[50] A. N. Shiryaev, “Some Problems in the Spectral Theory of Higher-

Order Moments — I,” Theory of Probability and Its Applications 5, pp.
265-284 (1960).

[51] D. R. Brillinger, “An Introduction to Polyspectra,” Annals of Mathe-
matical Statistics 36, pp. 1351-1374 (1965).

[52] D. R. Brillinger and M. Rosenblatt, “Asymptotic Theory of Estimates
of k-Th Order Spectra,” in Spectral Analysis of Time Series, (B. Har-
ris, ed.), Wiley, New York (1967).

[53] D. R. Brillinger and M. Rosenblatt, “Computation and Interpretation
of k-Th Order Spectra,” in Spectral Analysis of Time Series, (B. Har-
ris, ed.), Wiley, New York (1967).

[54] M. Rosenblatt, Stationary Sequences and Random Fields, Birkhauser,
Boston (1985).

[55] W. A. Gardner, “Spectral Characterization of N-th Order Cyclosta-
tionarity,” Proceedings of the IEEE/ASSP Workshop on Spectrum Es-
timation, Rochester New York (1990).

[56] W. A. Gardner and C. M. Spooner, “Higher-Order Cyclostationar-
ity, Cyclic Cumulants, and Cyclic Polyspectra,” Proceedings of the

International Symposium on Information Theory and its Applications
(ISITA), Honolulu Hawaii (1990).

[57) C. M. Spooner and W. A. Gardner, “An Overview of the Theory of
Higher-Order Cyclostationarity,” in Proceedings of the Workshop on
Nonstationary Stochastic Processes and Their Applications, (A. G. Mi-
amee, ed.), World Scientific, Singapore (1992).

[58] C. M. Spooner, “Theory and Application of Higher-Order Cyclosta-
tionarity,” Ph.D. Dissertation, Department of Electrical and Computer
Engineering, University of California, Davis CA (1992).

[59] C. M. Spooner, “Higher-Order Statistics for Nonlinear Processing of
Cyclostationary Signals,” Chapter 2 in Cyclostationarity in Commu-

nications and Signal Processing, (W. A. Gardner, ed.), IEEE Press,
New York, (1993) (in press).

[60] W. A. Gardner and C. M. Spooner. “The Cumulant Theory of Cy-
clostationary Time-Series, Part I: Foundation,” IEEE Transactions on
Signal Processing (in press).

[61] C. M. Spooner and W. A. Gardner. “The Cumulant Theory of Cyclo-
stationary Time-Series, Part II: Development and Applications,” IEEE
Transactions on Signal Processing (in press).




92 WILLIAM A. GARDNER AND CHAD M. SPOONER

[62] C. Corduneanu, Almost Periodic Functions, 2nd Edition, Chelsea, New
York (1989).

[63] W. A. Gardner and W. A. Brown, “Fraction-of-Time Probability for
Time-Series that Exhibit Cyclostationarity,” Signal Processing 23, pp.
273-292 (1991).

[64] T. N. Thiele, The Theory of Observations, (1903), reprinted in Annals
of Mathematical Statistics 2, pp. 165-308 (1931).

[65] V. P. Leonov and A. N. Shiryaev, “On a Method of Calculation of
Semi-Invariants,” Theory of Probability and Its Applications 4, pp.
319-328 (1959).

[66] M. J. Hinich, “Testing for Gaussianity and Linearity of a Stationary
Time Series,” Journal of Time Series Analysis 3, pp. 169-176 (1982).

[67] C. M. Spooner and W. A. Gardner, “Estimation of Cyclic Polyspec-
tra,” Proceedings of the Twenty-Fifth Annual Asilomar Conference on
Signals, Systems and Computers, Pacific Grove CA (1991).

[68] C. M. Spooner and W. A. Gardner, “Performance Evaluation of Cy-
clic Polyspectrum Estimators,” Proceedings of the Twenty-Sizth An-

nual Asilomar Conference on Signals, Systems and Computers, Pacific
Grove CA (1992).

[69] C. M. Spooner and W. A. Gardner, “Exploitation of Higher-Order
Cyclostationarity for Weak-Signal Detection and Time-Delay Estima-
tion,” Proceedings of the Sizth Workshop on Statistical Signal & Array
Processing, Victoria, British Columbia, Canada (1992).

[70] C. H. Knapp and G. C. Carter, “The Generalized Correlation Method
for Estimation of Time Delay,” IEEE Transactions on Acoustics,
Speech, and Signal Processing 24, pp. 320-327 (1976).





