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Detection and Source Location of Weak
Cyclostationary Signals: Simplifications
of the Maximum-Likelihood Receiver

William A. Gardner, Fellow, IEEE, and Chad M. Spooner, Member, IEEE

Abstract—The problem of dual-receiver interception of low-
SNR signals, which includes detection of the presence of a
particular signal type and location of its source, is considered.
In particular, source-location based on time-difference-of-
arrival (TDOA) measurements is considered, and the low-
SNR maximum-likelihood receiver for joint detection and
TDOA estimation is taken as a starting point. By explicitly
revealing the way in which this receiver exploits the spectral
correlation properties of the cyclostationary signal, several
partial implementations with optimality properties of their
own are proposed. These greatly simplified implementations,
which require only a one-dimensional search over the TDOA
parameter, are shown by simulation to perform competitively
with the relatively complicated maximum-likelihood receiver,
which requires a two- or three-dimensional search for PSK
signals.

I. INTRODUCTION

URING the last decade, it has been established and

is now generally agreed upon that the detection and
analysis tasks of interception of low-SNR signals are often
best accomplished by exploitation of cyclic features, which
are features due to underlying periodicities such as sinewave
carriers, pulse-trains, chipping and hopping operations, etc.
The pioneering work in this area was carried out in the mid-to-
late 1970’s, and a review of a variety of ad hoc cyclic-feature
detectors is given in the unpublished report [1]. Since that
time, the cyclic-feature detection/estimation approach has been
put on a firm theoretical foundation. The theory of spectral
correlation in cyclostationary signals developed in [2] and
[3] has been shown to provide a unifying conceptual and
mathematical framework for signal detection based on cyclic-
feature exploitation [4]. It has been shown that the great
majority of cyclic-feature detectors/estimators, including ad
hoc schemes such as delay-and-multiply chip-rate detectors,
filter-squarer carrier-doublers, and various hop-rate detectors,
as well as optimum detectors/estimators such as weak-signal
maximum-likelihood receivers, maximum-SNR spectral-line
regenerators, and maximum-deflection detectors, and also in-
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cluding ambiguity plane and Wigner—Ville time-frequency
plane techniques, can be understood, analyzed, and compared
in terms of a general approach called either cyclic spectral
analysis or spectral correlation analysis [2]. Moreover, this
approach has led to an especially general and flexible cyclic-
feature detector/estimator, called the cyclic spectrum analyzer
or spectral correlation analyzer, that (with postprocessing) can
emulate all of the above techniques as well as more general
and powerful techniques for detection, classification according
to modulation/coding type, and modulation/coding parameter
estimation [5], [6].

In this paper, the spectral correlation approach is generalized
from single-receiver interception to dual-receiver interception
for which the primary tasks are not only to detect the presence
of a particular signal type but also to estimate the location of
its source.

To locate the source of a detected signal, the time-difference-
of-arrival (TDOA) of that signal at two spatially separated
receivers can be used to determine a hyperboloidal surface
on which the source lies. If this is repeated for a second
pair of receivers (or a single moving pair at a later time),
then the intersection of the second hyperboloidal surface with
the first further narrows down the location of the source to
a curved line. If, in addition, the source lies on a surface of
known location (e.g., the earth’s surface), the intersection of
the curved line and the known surface further narrows down
the location to one or two points.

For this approach to source location, it has recently been
shown that the spectral correlation properties of low-SNR
signals can be used to great advantage by providing a basis
for the design of signal-selective TDOA estimation algorithms
that are highly tolerant not only to noise but also to cochannel
interference from sources not of interest that are either near
to or far from the source of interest [7]. In this paper, one
of the best performing ad hoc spectral-correlation-exploiting
TDOA-estimation algorithms presented in [7] is shown to be
a partial but much simpler implementation of the relatively
complicated weak-signal maximum-likelihood TDOA estima-
tor. Similarly, the relatively simple single-receiver spectral-
correlation-exploiting detector was shown in [4] to be a partial
implementation of the single-receiver weak-signal maximum-
likelihood detector. This same approach of decomposing the
maximum-likelihood receiver for weak signals into a multicy-
cle detector and considering the performance of single-cycle
detectors obtained therefrom has been pursued in [13] for
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the case of single-sensor reception in white non-Gaussian
noise. Generalizing on this, it is shown in this paper that
the weak-signal maximum-likelihood joint detector and TDOA
estimator is made up of a multiplicity of components that can
be partitioned into a variety of detectors and estimators, each
of which is optimal in either a maximum-likelihood sense or
a maximum-SNR sense. The results of extensive simulations
that compare the performances of some of these alternative
detectors and estimators are then presented, and it is concluded
that the performance of the relatively complex maximum-
likelihood joint detector/estimator, which requires a two- or
three-dimensional search over phase and timing parameters
(for PSK signals, these include the carrier phase [for BPSK
only], chip timing, and time-difference-of-arrival), can be
closely approximated in many cases (for data record lengths
that are normally used in weak-signal detection and source
location) by much simpler suboptimum detectors/estimators
that avoid all parameter searches for detection, and reduce the
search to one dimension for TDOA estimation.

In Section II, the low-SNR maximum-likelihood receiver
for joint detection and TDOA estimation is presented and char-
acterized in terms of spectral correlation measurements. This
general result is then made more specific for the case of PSK
signals. In Section III, several optimal detectors and TDOA
estimators are presented and shown to exactly match individual
terms in the sum of terms that comprise the maximum-
likelihood receiver. Suboptimal implementations of these
component detector/estimators are proposed as practical
alternatives. In Section IV, performance evaluations obtained
from extensive simulations are presented and used to draw
conclusions about the relative performances of the complicated
maximum-likelihood receiver, its optimum components, and
their simplified implementations.

II. THE MAXIMUM-LIKELIHOOD RECEIVER

We consider the following model for reception at two
separate locations indexed by g:

Hy: z4(t) = s(t — 8,) + ng(t), [t < T/2, g=1,2
(1a)
Hozg(t) =mg(t), | <T/2, q¢=12 (Ib)

where H; and H, are the signal-present and signal-absent
hypotheses, 1" is the data collection time, §; and 6, are
times of arrival of the zero-mean real-valued random signal
s(t), relative to some arbitrary reference time, and n,(t)
and ny(t) are independent white Gaussian noises (WGN)
with power spectral density N,. For sufficiently low” SNR,
the log-likelihood ratio can be closely approximated by a
quadratic functional of the data {z,(t): |t| <T,q=1,2}.
This functional can be derived by replacing the continuous-
time model with its discrete-time equivalent, then expanding
the likelihood ratio in a Taylor series, retaining only the first
few terms (cf. [11]). Finally, the truncated Taylor series for
the discrete-time model can be replaced by its continuous-
time counterpart by simply replacing sums over discrete time
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with integrals over continuous time. The resultant statistic is
given by the sum of three terms

YLLR = Y12 + Y11 + Y22, 2

where

T/2

Nig // Rs(u —01,v — 02)z1 (u)z2(v) du dv (32)

-T/2

>

Y12

1>
—_

e, // Ry(u— 61,0 — 01)z1 (w)z1 (v) dudv  (3b)

T/2
1
2 2 gz [ Bulu= 03,0 0)z(w)zs(o) dudo
0

—T/2

>

B9

and R,(u,v) is the autocorrelation for the zero-mean random
signal s(t)

Rs(u,v) = E{s(u)s(v)} . Q)
For a PSK signal, we have the model
s(t) = Z p(t —nTo — 63) cos(2r fet — 04 — @), (5)

where p(t) is the keying envelope, Ty is the keying interval,
63 is the keying clock phase, f. is the carrier frequency, 64
is the carrier phase, and {¢,} is the M-ary random message
sequence (possibly spread encoded), which is modeled as an
independent and identically distributed sequence. (3 and 6,
contain an additive component that is the arbitrary reference
time for §; and 6,.) We shall assume that the four parameters
© = {01,02,03,04} are unknown but that the keying (or chip)
rate 1/Tp, carrier frequency f., and keying (or chip) envelope
p(t) are known. Nevertheless, we shall also consider some sub-
optimum detectors/estimators that require knowledge of only
the keying rate or the carrier frequency. The autocorrelation
for the model (5) is given by

(o)

1
R (u,v) = 5 nzz-oop(u —nTy — 63)p(v — nTy — 63)
- (cos[27 fe(u + v) — 204] + cos [27 fe(u — v)])
(©)
for BPSK, and it is given by
1 [eo]
Ri(u,v) = > nzz_oop(u —nTy — 03)

-p(v —nT, —03) cos2m fe(u—v)]  (7)

for QPSK, as well as M-ary PSK with M = 4z (z = integer).

Since R,(u,v) depends on the two unknown parameters 63
and 6,4 for BPSK (but only 3 for QPSK) and the other two
unknown parameters 6; and 6, appear in (3), then in order to
obtain the maximum-likelihood estimate of the TDOA 67 — 6,
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we must jointly maximize yrr r With respect to all four (three
for QPSK) parameters © = {61,6,63,64} :

ymr = Max YLLR , ®

and to detect the presence of the signal s(t), we must compare
(8) to a threshold «y
H,
ymL = - ®
Ho
Thus, (8) and (9) with (2), (3), and (6) or (7) substituted in is
the weak-signal maximum-likelihood receiver.
In order to explicitly reveal the effects of the cyclostation-
arity of the signal, we can expand its autocorrelation function
in a generalized Fourier series

Ry(t+7/2,t—7/2) = RZ(r)emet (10)
where
1 Z/2 .
RX(1) £ lim = Ry(t+7/2,t — 7/2)e™ 27t gt
Z—oo 4 |_ /2
(11)

is called the cyclic autocorrelation function [2], [3] and where,
in general, the cycle frequency o ranges over all integer
multiples of all fundamental frequencies 1/7} corresponding
to incommensurate periods T%, for £ = 1,2,3,---, of cy-
clostationarity. For BPSK, assuming that the period of the
carrier and the keying period are incommensurate, we have
only two fundamental cycle frequencies, 1/77 = 1/7, and
1/T> = 2f.. For QPSK, there is only one fundamental cycle
frequency 1/T; = 1/T,. Substituting (10) into (32) by making
the change of variables u = ¢t + 7/2, v = t — 7/2, and then
executing the integral over ¢ yields

Y12 = N2 Z/ RO‘(T) R12T (’T +6; — 02) d'reiﬂ'a(el+92),

(12)
where R, is the cyclic cross-correlogram [2], [3] for z;(2)
and z2(t):
L1 @l o
525 [ /et - /et e
=(T-ImN/2

(13)

for |[r| < T, and Rf, (1) = 0 for |7| > T. Applying
Parseval’s relation to (12) yields the alternative expression

y12_NQZ/ Sa f) 512T( )

. 6127rf(91—92) df enra(<91+62) , (14)
where
& .
sap 2 [ R ar 1)
—00
is called the cyclic spectral density function and
St (N2 [ B e a9

is called the cyclic cross-periodogram for z1(t) and z5(t) [2],
[3]- The frequency domain expression (14) for the component
y12 of the likelihood statistic yrrr can be better understood
by using the alternative expressions [2], [3], [6]

z/2 4
W T |y W

CE{Sw(t, f + a/2)Si(t, f —a/2)}dt (17)

S5(f) =

and

Ste () = Xoa (f +0/DX5,(F~0f2) (19

where X, is the finite-time Fourier transform of the data
Zq (t)>
T/2 )
X, ()= / zo(t)e™ " dt (19)
-T/2
for ¢ = 1,2, and similarly Sw (¢, f) is the sliding finite-time
Fourier transform of s(t),

t+W/2 _
s(u)e™ 2™ gy,

swit.f)= [

t—W/2

(20)

We see from (17) that the cyclic spectral density S%(f) is
the limit, as the bandwidth (1/W) approaches zero, of the
time-average bandwidth-normalized correlation between the
spectral components of s(t) in the bands of approximate width
(1/W) centered at f+ /2 and f —a/2. Consequently, S¢(f)
is also called the spectral correlation density function [2], [3],
[6].

The other two components y1; and y22 of the statistic yr 1 r
can similarly be expressed as

T [ R ‘o
v =3 5z [ SH0S5, (Dd e @
0 J—oo
for ¢ = 1, 2. Thus, the weak-signal ML (maximum-likelihood)
detector/estimator can be expressed as

YML = max{ / Sa ) SlZT(f)
. 127rf(91—92) df imra(61+62)
+ Z Z/ Soc qT (f) df einoqu} .
q=1 a Y7
(22

For the BPSK and QPSK signals, the spectral correlation
density function is given by [2], [3], [6]

S2(360,09) = g [P(F + fo+ o/DP"(f + fo = a2
+P(f - fe+/2)
3 P*(f _ fc _ a/Z)] e—i27ra03,

a=k/Ty (232)
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for £k =0,+1,4+2,£3,---, and for the BPSK signal only we
also have

S3(f:63,04) = Z%P(f:l: fo+a/2)

. p* ( FFfe— a/2>eii294,

a= F2f, (23b)

and
S2(f100,00) = 7 P(F o+ /2P (£ 7o - a2)

-exp{ " ![27(a £ 2£.)03 F2604]},
a= F2f. + k/To (23¢)

for k = +1,£2,+3,---, where P(f) is the keying envelope
transform
oo

P(f) = / p(t)e=2F* dt

—00

In (23a)—(23c), we have introduced the notation SZ(f;63,04)
to explicitly denote the dependence of S&(f) on 63 and 4.
The maximum-likelihood receiver for BPSK or QPSK signals
is simply (22) with S&(f) replaced by S%(f;6s,64), and
the set © to maximize over is {61,02,65} for QPSK and
{61,02,05,0,} for BPSK. It is important to note that the
dimensionality of these searches can be reduced by taking
0,,62,03, or 84 as the arbitrary timing reference referred
to at the start of this section. This can be accomplished
simply by setting, say, ¢; equal to zero in the expression
for the ML statistic. For instance, if we choose #; as the
timing reference, then the parameters to be estimated are
transformed to 6] = 61 —6; = 0,6} = 6, —60;(= the TDOA),
9, = 63 — 601, and 0y = 64 — 2w f.0;. Then the search
for BPSK signals is over 3 timing parameters, whereas for
QPSK it is over 2 timing parameters. We retain the general
form of the ML statistic throughout the paper for reasons
of completeness. The simulations reported in Section IV,
however, take advantage of this reduction in dimensionality.

‘We now turn to a discussion of the various components in
the ML receiver (22) in terms of their optimality properties
and suboptimal implementations.

24)

III. COMPONENTS OF THE ML RECEIVER

Although it is not immediately obvious, each individual term
in 712 can be used to optimally estimate the TDOA 62 — 61,
and every individual term in the ML statistic (22) can be used
to optimally detect the presence of the signal s(t). Moreover,
there are five groups of terms that are themselves each an
ML statistic. The first and second groups of the ML statistic
(22) that are actually ML statistics themselves are simply the
a = 0 terms of y1; and ya9,

oo
wava= [ SNS% (N, ()
—0o0
for which no maximization is necessary since the PSD S%(f)
does not depend on ©. This is the single-receiver weak-
signal ML detector for a stationary signal model, obtained by
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randomizing the phase f3 and 64, and is called the optimum
radiometer [4]. Both yrap,1 and yrap 2 are components of
the third group,

ynzs = max {2 | )t enen g

616,
2
+'Z ?JRAD,q} )

q=1

(26)

-which is the dual-receiver weak-signal detector/estimator for

a stationary signal. The fourth and fifth groups are y;; and
Y22 themselves,

ymeDe = I, {Z/_ ST(f) S, (N of eﬂmee} .
@)

These statistics are called multi-cycle detectors (MCD), and
are the single-receiver weak-signal ML detectors for cyclosta-
tionary signals in WGN [4]. Let us now consider the optimality
properties of the individual terms indexed by « in yi11, ¥22,
and Yi2-

It is shown in [2], [3], and [9] that the quadratic processor
that generates a maximum-power spectral line at frequency o
from a signal s(u — ), using data z4(u) over the sliding
time interval [t — T'/2,¢ + T'/2], subject to the constraint that
the spectral density of the output noise at the frequency «,
due to WGN at the input, not exceed some specified level,
is given by (after down-converting the output from the center
frequency « to zero)

o= [ S8, (1 p) dr et

—00

(28)
where Sg‘qT (t, f) is the sliding cyclic auto-periodogram

s2, (t.f)2 %XQT (tf+0/2X; (6 F—a/2). (29)

We see that for ¢ = 0, this maximum-SNR spectral line statistic
(28) is exactly the same as each single-cycle statistic in y1; and
y22 (2) in the likelihood statistic (2). Similarly, it can be shown
that the quadratic processor for z1(t) and z2(t) [which uses
the crossproduct z1 (¢ —u)z2(t — v) instead of the autoproduct
z1(t — u)z1 (t — v)] that generates the maximum-SNR spectral
line produces the statistic

A2 = / SE(f)" 5%, (¢, )2 r1=02) g gimalbrt6a)
(30)

where Sf,_(t, f) is the sliding cyclic cross-periodgram for
z1(t) and z2(t). Again, we see that for ¢ = 0, the statistic
(30) is exactly the same as each single-cycle statistic in y;2 in
the likelihood statistic (2). It can be seen from (23a)—(23c)
that for the cycle frequencies of interest for BPSK and
QPSK, the dependence of S%(f) = S&(f;6s,6s) on the
keying phase f; and carrier phase 4 is just a frequency-
independent phase factor, which can be factored out of the
integral over frequency in (28) and (30). Thus, neither of these
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single-cycle statistics requires maximization over 3 or ;.
Detection using the single-cycle detector (SCD) (28) requires
no maximization at all, and detection or TDOA estimation
using the cross single-cycle detector/estimator (CSCD/E) (30)
requires a maximization over the TDOA 65 — 6, only.

Because each of the terms composing 12 is optimal in the
sense of maximum-SNR, the statistic y; 2 is itself a good candi-
date for further investigation. We call the detection/estimation
statistic

Yomcp/E = max {y12} (31)
the cross multi-cycle detector/estimator (CMCD/E). We sus-
pect that it may have advantages over the MCD and ML
because it does not contain terms that correspond to a single
sensor; such terms (especially the a = 0 term) are particu-
larly susceptible to variable broadband background noise and
interference.

As shown in [4] and [8], a single o # 0 term such as (28)
can be superior to the a = 0 term for detection when variable
noise and/or cochannel interference is present. Similar results
are obtained for TDOA estimation performance in [12], except
that in this case the single-a term in y;9 is approximated by
replacement of the assumed-known spectral correlation density
function S%(f;6s,64) with the estimate

1

Stie(Nag = |7 X1 (f +@/2) X7, (f ~ a/2)| @ W(f)

(32)

(where ® denotes convolution), which converges to S¢(f; 03,
f4)e"%272% a5 T — oo (and the width Af of the smoothing
window W (f) is then allowed to approach zero) assuming
only that z;(¢t) = s(¢t—61) + ni(t) where ny(t) is any
signal or noise that does not possess the cycle frequency o
[2]. The substantial advantage of using only a single-cycle
statistic is that the two- or three-dimensional search over ©
can be reduced to a one-dimensional search over the TDOA
62 — 61 (using one term from y;2) or no search at all for signal
detection (using the magnitude of one term from y1; or y22).

Another advantage of deleting the o = 0 statistics is that
they are much more strongly corrupted by a variable noise
level (in y1; and y22) and by cochannel interferences (in y12),
which can exhibit TDOA’s of their own that can interfere
with the estimation of the TDOA of the signal of interest.
Of course, the reason that the likelihood statistic can be
improved on is that neither variable noise-level nor cochannel
interference is included in the model (1) from which the
likelihood statistic is derived. Furthermore, generalizing the
model to include cochannel interference greatly complicates
the problem (typically ruling out an analytical solution) and
requires that the receiver have knowledge of the interference
type.

An advantage of modifying the likelihood statistic, by
replacing in either y;2 or yj;1 or yo the assumed-known
spectral correlation density of the signal s(¢) with an estimate
such as (32), is that the only knowledge about the signal that
is then required by the detector and/or TDOA estimator is one

(or more) cycle frequencies, such as the keying rate or the
doubled carrier frequency.

As explained in [2] and [4], when S&(f) is not known, it
can be replaced with the estimate Sg‘qT (¢, f)asforg=1or2
[cf. (32)]. In this case, the optimum single-cycle statistic (28)
is approximated by (letting ¢ = 0)

= [ S Da] o, (33)

—0o0

which we call the spectral correlation magnitude detector
(SCMD). For a known cycle frequency «, the SCMD is a
useful detector that is tolerant to all noise and interference
that does not possess the cycle frequency «. When graphed
versus f and «, the integrand of the SCMD is useful for
modulation recognition, as well as detection [2], [4]. Since
using the estimate (32) correctly matches all three phases 63,
84, 6, in the yg, term (21), we can perform the sum over all

o in (33) without a search over any parameters. This yields
what is called the multi-cylce SCMD (MCSCMD)

oo
qu:E:/
o -0

A simpler version of the CMCD/E statistic (31) can be
constructed by setting §; equal to zero (cf. Section II) and
replacing each ideal spectral correlation function SZ(f) with
the estimate S5 (f),; and each cyclic cross-periodogram
575, (f) with the frequency-smoothed version Sf,(f);
(this is equivalent to letting 6; be the arbitrary reference phase
referred to in Section II). In this case, we obtain the multi-cycle
SCPD/E (MCSCPD/E) receiver

2
SREN (34)

YMCSCPD/E = X Re{ Z/ S55r (F)ay Stor(Hay
@ -0

. ei27rf92 df eiwa92} . (35)
The addition in (35) is coherent (unlike the MCSCMD)
because when the signal is present and 3 is equal to the
TDOA, each statistic in the sum tends to a positive real number
with increasing T', whereas when the signal is absent this is
not the case.

A single term from (35) is

Z15(62) = Re{ /_ S3or (f)Zf Sto, (f)Af

. ei27rf92 df eiﬂ'o:ez} , (36)

which is called the spectral correlation product detec-
tor/estimator (SCPD/E). By maximizing Z{, over the unknown
TDOA parameter 6, we obtain a useful detection statistic.
Moreover, the maximal value of f; is a powerful TDOA
estimate as shown in [7] and [12], where this same estimate is
derived from an ad hoc least-squares optimality criterion, and
is shown with simulations to perform very well in a variety of
severe noise and interference environments.
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To simplify detection prior to TDOA estimation, we can
mimic the auto-SCM detector to obtain the cross-SCMD
(CSCMD) detector

oo 2
a%= [ |She(Da| o 37
or the cross-MCSCMD (CMCSCMD) detector
s} 2
ba=3 [ It (D] @, (39)

which require no maximization over the TDOA parameter.

The preceding components of the ML receiver and their
approximate implementations can now be summarized in a
compact form by using the following definitions:

— @
- Zzpq

o

(39

Ypq

2% = / S;’ (f)*quT (f)T ei27rf(9p—0q) df eira(0p+9q)
(40)

(1)

A e
Ypqg = Z Zpq
[e3

Zpg = / Saan (FVapSpay (F)ag € Crm00) df eime(Cetta)
= (42)

2

df . (43)

O

o0
pq:/
—0oC

w

S;J!qT (f)Af

In terms of these definitions, the thirteen detectors and joint
detector/estimators derived in this section can be expressed as
follows:

Maximum Likelihood

yvr = max {2y12 + Y11 + Y22}, =0 (44)
62,83,64
Maximum Likelihood for Stationary Signal
YMLS = H};;‘X{zz(l)z + 29 + 3202}91=0 45)
Cross Multicycle Detector/Estimator
Yemep/e = max {912}, 0 (46)
2,03,04
Multicycle Detector
ymep = max {ygq} (47)
qs 3,04
Cross Single-Cycle Detector Estimator
Ycscp/e = max Re{272}4,—0 (48)
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Single-Cycle Detector

yscp = |2g| (49)

Radiometer

YRAD = 7y (50)

Multicycle Spectral Correlation Product Detector/Estimator

YMCSCPD/E = T0AX Re{f12}¢, -0 (51)
Spectral Correlation Product Detector/Estimator
Yscpp/E = max Re{Z(3}4,0 (52)
Multicycle Spectral Correlation Magnitude Detector
(33)

YMCSCMD = z |5,
[e3

Cross Multicycle Spectral Correlation Magnitude Detector

YcmcscMp = Z Wy (54)
[e3
Cross Spectral Correlation Magnitude Detector
Ycsomp = Wio (55)
Spectral Correlation Magnitude Detector
ysomp = |25,| - (56)

The ypq and §p, are multicycle (MC) statistics, whereas
the zp, and Z7, are single-cycle (SC) statistics. Those with
subscript pg with p # ¢ are cross (C) statistics, whereas
those with pp or gq are autostatistics. Those with the tilde,
Upq and Z,, use estimated spectral correlation (SC) functions,
whereas those without the tilde, y,q and 25, use ideal spectral
correlation functions. With the addition of the symbols M for
magnitude, P for product, D for detector, and D/E for joint
detector/estimator, we can form all the acronyms in (44)—(56),
except for M L (for maximum likelihood), M LS (for ML for
the stationary model), and RAD (for the radiometer, which is
MLS for a single receiver). For simplicity of notation, we use
the designation M L, from this point forward, for the receiver
described by (39), (40), and (44), even if the sum over « in
(39) contains only a subset of all the cycle frequencies of the
signal.

In summary, every individual term for @ # 0 in the
likelihood statistic in (22) is an optimum detection and/or
TDOA estimation statistic in its own right; each of these
single-cycle statistics circumvents the search over three or all
four of the parameters in ©; and each of these single-cycle
statistics for a # 0 admit approximations that avoid the need
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for any knowledge of the spectral correlation function S%(f),
other than the value of the cycle frequency «. Furthermore,
the multicycle counterparts of these approximated single-
cycle statistics avoid the search over either three or all four
of the parameters in ©. Also, for ¢ = 0, the sum of
the three terms from yi2,%11, and ygo is the likelihood
statistic for joint detection/estimation using the stationary
model of the signal, and the @« = 0 term from either y1;
or Yoo alone is the likelihood statistic (namely, the optimum
radiometer) for detection for the stationary model of the
signal at a single receiver. In addition, the ¢« = 0 term
from y;2 alone is the likelihood statistic for TDOA estimation
for the stationary model of the signal, namely, the optimum
generalized cross correlator [10], which filters the data with the
low-SNR Wiener filter prior to cross correlation. These results
motivate a comparative simulation study of the detection and
TDOA estimation performance of the maximum-likelihood
receiver (22) and the various simpler single-cycle and multi-
cycle receivers.

IV. COMPARATIVE SIMULATION STUDY

In this section, we present the results of a computer simu-
lation study designed to compare the relative performances of
the ML receiver, some of its optimal components, and their
suboptimal implementations. Since the computational com-
plexity of the suboptimal components is much less than that
for the ML receiver itself (due to the avoidance of the search
over multiple unknown timing parameters), it is of practical
interest to determine the point, in terms of data collect length,
at which these components attain performance comparable to
that of the ML receiver. A second objective of the simulation
study is to determine the relative importance of the various
terms indexed by o that make up each detector/estimator.
That is, we want to determine which values of « in the sum
dominate performance. The results obtained may be different
for the different detector/estimators and for different signal
environments.

Two signal environments are simulated: signal plus white
Gaussian noise (WGN) with a fixed spectral density Ny, and
signal plus WGN with variable Ny having a coefficient of
variation (variance divided by squared mean) of 1/10. Results

- obtained for the latter environment are roughly representative

of the performance for many environments containing broad-
band or multiple narrowband interference. Although the results
are not generally representative for a small number of strong
isolated narrowband interferences, this type of interference is
easily removed using spectral excision techniques.

For fixed Ng, the performance ordering between the detec-
tor/estimators is relatively clear for it is in this environment
that the ML and MCD are optimal in the maximum-likelihood
sense when all terms indexed by « are included. Hence, we
are concerned primarily with the collection-time crossover
point mentioned previously, and secondarily with the relative
influences of the different terms indexed by « that compose the
estimator. For variable Ny, none of the estimators is optimal
in the ML sense, so the performance ordering is unknown
and therefore of interest. Since the & = 0 terms are more

TABLE I
a-SETS USED IN SIMULATIONS

-~

A;

{0}

{1/To}

{2fc}

{07 l/To, ch}
{1/Tv,2fc}
{0,1/Tp,2fc+1/To}
{0,1/To, 2%, 2fo £+ 1/To}

NN AW

heavily influenced by a variable Ny than the oo # 0 terms,
the primary interest here is the relative performance of each
of the terms composing the estimator. Some prediction of the
nature of the dependence of performance on the particular
set of cycle frequencies used is possible on the basis of
the relative strengths of the corresponding cyclic features, as
measured by the maximum attainable SNR which is realized
by the single-cycle detector for each cycle frequency. These
maximum SNR’s, which are proportional to

oo

e 2 / S (F)I2df, (57)

—o0

are given in [8] for BPSK, QPSK, and other PSK signals.
Nevertheless, comparisons of signal detection performance, as
measured by either probability of detection (Pp) for a given
probability of false alarm (Pg 4 ), or by the root-mean-squared
error (RMSE) for TDOA estimation, cannot always be made
by comparing SNR’s; thus, we must in the final analysis relay
on the simulations performed.

With these objectives in mind, we turn now to a description
of the simulation parameters. This is followed by a graphical
presentation of the results, which are the Pp for a Pr of
1/10 for the detection problem, and for the TDOA estimation
problem. The results are discussed in terms of the goals of
the study.

To begin with, each (possibly infinite) sum over the cycle
frequency « in the simulated detector/estimators is replaced by
a finite sum over a selected set A; of cycle frequencies . The
seven sets of cycle frequencies used are shown in Table I, and
include only the cycle frequencies corresponding to the five
largest 74, which in order of descending 7, are a = 0, 2f., '
1/T,,2f.+1/T,,2f.—1/T,; the first two are of equal strength
and the last three are of equal strength. Negative values of «
are not considered because they add no new information to the
statistic. This can be deduced from the symmetries exhibited
by both ideal and measured spectral correlation functions

S7H(f) =S3(f),

Sxp(f) = 8%, (f)"-
Thus, for every term in the ML receiver (or in the MCD or
CMCD/E or MCSCPD/E), there is a conjugate term, which
renders all these receivers real-valued, which in turn validates
the maximization operation. This operation is therefore equiv-
alent to using only nonnegative o’s and maximizing the real
part of the resultant statistic.
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Since the first three a-sets are singletons, the detectors are
single-cycle detectors there. The signal of interest (SOI) is
BPSK with rectangular pulse envelope, a symbol rate 1/7;
equal to 1/16 the sampling rate, and a carrier frequency f. of
1/4 the sampling rate. WGN is added to the SOI to obtain an
SNR (in the SOI band) of 0 dB. Collect times ranging from

8 to 128 symbols are used for detection; the longest of these.

collect times is typical for weak-signal detection. For TDOA,
collect times up to 256 symbols are used.

For the MCSCMD and MCSCPD/E receivers, spectral-
smoothing window-widths are equal to 1/10 of the symbol
rate. Monte Carlo simulations were performed with 500 trials
for each case of signal present and signal absent, except
for the ML receiver for which 250 trials were used in each
case because of the severe computational requirements of
simulating this receiver. For the collect time of 256 symbols,
only the CMCD/E and MCSCPD/E are simulated. To ensure
reliability of the estimated RMSE’s for this larger collect, it
is necessary to increase the number of trials used to 1500
for the CMCD/E and 2000 for the MCSCPD/E. The grid of
carrier phase search points is made finer (CMCD/E only) by
increasing the number of values of carrier phase from 36 to 72.
For the collects of 512 and 1024 symbols, only the MCSCPD/E
is simulated (2000 trials). '

For the ML and CMCD/E receivers, maximization over the
carrier phase 64, the symbol timing 63, and the TDOA 6,—#6 is
necessary. This is accomplished by an exhaustive search over
36 values of the carrier phase evenly spaced over the range
[0,27), and 32 values of the symbol timing parameter evenly
spaced over the range [—To/2, To/2). The TDOA search
parameter is restricted to kT, where k ranges from 0 to 75,
and T is the sampling increment. For the MCSCPD/E, only
the search over the TDOA is necessary; and for the MCSCMD,
no search is necessary. For each of the ML, MCSCPD/E, and
CMCDVJE, the result of each Monte Carlo run is a detection
statistic and a TDOA estimate, whereas for the MCSCMD and
MCD it is only a detection statistic.

The detection performance is measured by the value of Pp
where Prs = 1/10. By normalizing the set of Monte Carlo
statistics and choosing a large set of thresholds, many (Pp,
Pr ) pairs can be computed. Only the pair with Pr4 = 1/10
is reported herein. The TDOA performance is measured by
computing the RMSE of the collection of estimates for the
signal-present case, normalized by the true TDOA, which is
A = 21T. The results are graphed versus the a-set number
(2 corresponding to A; is the abscissa) for both detection and
TDOA estimation results.

A. Detection Performance

1) No Noise Variability: To be absolutely clear, noise vari-
ability equal to zero means that the value of Ny from trial
to trial is constant. The detection performance for this case is
shown in Figs. 1-5, which correspond to collect times ranging
from 8 symbols to 128 symbols in powers of 2, respectively.
From Fig. 1, we see that the performance ordering for the
shortest collect can be symbolically denoted by

ML > CMCD/E > MCD > MCSCPD/E > MCSCMD
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MCSCPD/E ©—
CMCD/E +4—
ML &= -

MCD ‘X -
MCSCMD &\

0 1 1 1 1 1

1 2 3 4 5 6 7

Fig. 1. Pp for Pr4 = 0.1, T = 8T, noise variability = 0.

Pp

MCSCPD/E - -
CMCD/E =4—
ML &=

MCD -Xx- -

0.2 MCSCMD & e

0 1 1 ! 1 1
1 2 3 4 5 6 7

Fig. 2. Pp for Pr4 = 0.1, T = 16T, noise variability = 0.

for all A; except A2 (which includes only the symbol rate
{1/To}). The performance is poorest for each detector for
As, and MCSCPD/E performs slightly better than the MCD
and the CMCD/E for A,. This can be explained by the fact
that A, includes only the weakest cyclic feature (smallest
7). The performance of each detector increases for all A;
as the collect time is increased, but the performance ordering
remains unchanged. For the collect time 64Tp, detection is
nearly perfect for all detectors and for all A; except A;
and Ay; and for T = 1287, all methods perform equaily
except the MCSCMD, which nevertheless delivers very good
performance. :

The most useful cycle frequencies are a = 0 (4;) and
o = 2f. (A3). These correspond to the strongest cyclic
features (largest 7,). The best performance for all devices
typically occurs for A3 or A4. Thus, for the case of zero
noise variability, the performance of the ML detector using
a large a-set can be closely approximated by using the
ML detector modified to exclude all but a small subset of
values of «, which in turn can be closely approximated by
the MCD or by the MCSCMD for collect times that are
typically used in weak-signal detection (large T'). For very
small collect times (e.g., T' = 8T}), the ML detector provides
a substantial detection-performance advantage over all of the
other detectors, especially the MCSCMD and the MCSCPD/E,
for all a-sets except Aa, which results in poor detection for all
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CMCD/E +—
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Pp
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Fig. 4. Pp for Pr4 = 0.1, T = 64Ty, noise variability = 0.
0.8 4
0.6 |- -
Pp
0.4 MCSCPD/E &— -
CMCD/E +—
ML &=
MCD -X--
0.2 b MCSCMD A 4
0 1 1 1 1 1
1 2 3 4 5 6 7

Fig. 5. Pp for Pr4 = 0.1, T = 1287y, noise variability = 0.

methods, and except for CMCD/E for As. We recall the fact
that for singleton a-sets, the MCD requires no maximization
over any parameters—it is the single-cycle detector (SCD) [4]
and its magnitude is the detection statistic. Thus, the best ML
performance can be closely approximated by the SCD with
As (or A;) for large collect.

2) Noise Variability of 1/10: Here the value of Ny is cho-
sen at random for each Monte Carlo trial as a sample of
the square of a Gaussian random variable designed such
that the variance of N, divided by its squared mean is
equal to 1/10. The performance of the detectors for this

T
MCSCPD/E &
CMCD/E —+—

ML &=
MCD X -
MCSCMD A

0.8 -

Pp

0 | ) L 1 !
1 2 3 4 5 6 7

Fig. 6. Pp for Pr4 = 0.1, T = 8Tp, noise variability = 0.1.

signal environment is shown in Figs. 6—10. In contrast to
the previous case, we find here that the performance ordering
of the detectors is dependent upon the a-sets. For the ML
and MCD detectors, the best performance is for a-sets As;
and As, whereas for the CMCDJE it is best for Ag and A-.
For the MCSCMD and MCSCPD/E, the performance is very
poor for the smaller collects, but their performance patterns
match with those of the ML detector. The main influence
here is the presence of an estimate of an autospectrum in the
detection statistic, that is, the presence of @ = 0 in the -
set combined with the presence of a single-receiver term in
the detection statistic. These measured autospectra are heavily
influenced by the variable WGN, whereas both cyclic cross
spectra and cyclic autospectra, as well as the noncyclic cross
spectrum, are not. There are no such autospectral estimates
in the CMCD/E, and so the presence of the @« = 0 term
does not cause its performance to degrade. All of the other
detectors do contain measured autospectra and, therefore,
deliver weak performance for all A; containing oo = 0. For
all a-sets except Aj, this problem can be overcome with
large enough collect time because although the conditional
variances of the detection statistic continue to be influenced
by the variability in the noise as the collect is increased,
the conditional means move apart, allowing good detection
to occur (Fig. 10). However, the MCD is affected adversely
even for T as large as 128T75. So, in the case of nonzero noise
variability, all the detectors are effective for a-sets containing
2fc and not containing 0, and the CMCD/E can be very
effective for a-sets ¢ = 3 and above. The best performance
of any of the detectors in this environment can be closely
approximated with a single-cycle statistic without any search
over unknown parameters, as is also true in the case of zero
noise variability.

B. TDOA Estimation Performance

1) No Noise Variability: The TDOA estimation perfor-
mance of the ML, CMCD/E, and MCSCPD/E receivers for
T = 32T, 64Ty, and 1287 is shown in Figs. 11-13,
respectively. The general performance ordering is

ML > CMCD/E > MCSCPD/E




914

l T T T 1 T -
i i
0.84 X.... B
06k X 4

MCSCPD/E <~

Pp 9 CMCD/E ~+—
04} ML &=

MCD~2~~

D. v
28 MCSCM
R Co e AN o
02K A A a4
0 1 L 1 1 1

1 2 3 4 5 6 7

Pp CSCPD/E <—
CMCD/E ~+—
0.4 | A ML &= g
o MCD -X:-
MCSCMD 4
024 A A A A A
0 1 1 1 1 1
1 2 3 4 5 6 7
Fig. 8. Pp for Pr4 = 0.1, T = 32Ty, noise variability = 0.1.
14 -
08% .
0.6 MCSCPD/E <©—
CMCD/E ——
Pp ML &=
MCD X -
04 MCSCMD & =
_ A
o.2zx~-'A A 'A~~"5>
0 1 1 1 1 1
1 2 3 4 5 6 7

Fig. 9. Pp for Pr4 = 0.1, T = 64T, noise variability = 0.1.

with the performances of the ML and CMCD/E being close,
and that of the MCSCPD/E being far behind. The dominant
cycle frequencies are 0 and 2f.; A4 and Ag or A7 deliver the
best performance for the ML and MCSCPD/E, whereas any
A; containing o = 0 delivers good performance for CMCD/E.
Fig. 13 reveals that for long collect, the CMCD/E and ML are
very good estimators for A4 and Ag, whereas the MCSCPD/E
delivers relatively poor estimates for all A;. The MCSCPD/E
needs about twice the collect of the ML or CMCDJ/E to attain
a similar performance mark.
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Fig. 11. Normalized RMSE of TDOA estimate, T' = 32T,, noise vari-
ability = 0. '

1 T T T T 1
MCSCPD/E & 1
CMCD/E =+— 1
ML &= ]

i
RMSE
== 0.1_

0.01 I I L I L
1 2 3 4 5 6 7

Fig. 12. Normalized RMSE of TDOA estimate, T = 64Ty, noise vari-
ability = 0.

Unlike detection, the ML performance is not closely ap-
proximated by a much simpler partial implementation for
the relatively short collects considered here: the performance
advantage of the ML over the MCSCPDJE is substantial for
all A; and all collects considered.

2) Noise Variability of 1/10 The basic performance pat-
terns of the estimators is the same in this case as in the previous
case (Figs. 14—18). The MCSCPDJE is barely affected by
the variability in the noise. The CMCDJE is affected most
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Fig. 13. Normalized RMSE of TDOA estimate, T = 128Tp, noise vari-
ability = 0.
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Fig. 14. Normalized RMSE of TDOA estimate, T' = 3270, noise vari-
ability = 0.1.

strongly for the A; that contain 0, and in particular for A4 and
Ag. However, the performance of both the CMCD/E and ML
estimators is very good for ¢ = 4 and above for long collect
(Fig. 16). As in the case of zero variability, the performance
of the ML is not approached by the MCSCPD/E even for
the longest collect considered. Nevertheless, as Figs. 17 and
18 illustrate, the performance of the MCSCPD/E, which
requires only a single-parameter search, continues to improve
at roughly the same rate as the CMCD/E which, like the ML,
requires at least a two-dimensional and in some cases a three-
dimensional search. (In Fig. 17, the CMCD/E produces no
errors for A7, thus the curve points straight down at Ag, since
the log rmse is —oo for A7.)

To conclude, TDOA estimation is enhanced by adding
values to the a-set for all three estimators considered here;
larger a-sets deliver better performance in general. both the
ML and the CMCD/E perform well in both environments,
and the MCSCPD/E has an RMSE ranging from about 5
to 10 times that of the ML even for the longest collect
considered. For example, for the specific signal and noise
model considered here, if a normalized RMSE in the range of
1/10 to 1/100 is acceptable, then the computational simplicity
of the MCSCPD/E renders it competitive with the ML and
CMCDEE, even though a relatively long collect is required to
achieve this performance. The same conclusion holds for lower

l T T T T T o
MCSCPD/E <— ]

CMCD/E ~— 1
ML &= ]

0.01 1 1 I 1 1
1 2 3 4 5 6 7

Fig. 15. Normalized RMSE of TDOA estimate, T' = 64T}, noise vari-
ability = 0.1.
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Fig. 16. Normalized RMSE of TDOA estimate, T' = 1287y, noise vari-
ability = 0.1.
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1

Fig. 17. Normalized RMSE of TDOA estimate, ' = 25670, noise vari-
ability = 0.1.

RMSE provided that the required collect length is acceptable.
On the other hand, the added complexity of the CMCD/E can
be warranted when the collect length is limited.

V. CONCLUSIONS

It is shown that the weak-signal maximum-likelihood joint
detector and TDOA estimator for dual-receiver signal inter-
ception can be decomposed into a variety of optimal detec-
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Fig. 18. Normalized RMSE of TDOA estimate, noise variability = 0.1.

tors and TDOA estimators. It is also shown that suboptimal
implementations of the component detectors and estimators
can be substantially less computationally intensive than the
maximum-likelihood detector/estimator. The results of exten-
sive Monte Carlo simulations show that the performance of the
relatively complicated maximum-likelihood detector/estimator
can in many cases be closely approximated by the per-
formances of the much simpler suboptimum detectors and
estimators, and for short collects with variable noise level some
suboptimum detector/estimators actually perform better than
the ML detector/estimator (which actually provides maximum
likelihood only for fixed noise level).
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