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ABSTRACT

A summary of the results of an extensive comparative experimental
study of Fourier transformation and model-fitting methods of spectral
analysis of random time-series data is presented. It is illustrated that
Fourier transformation methods can be an essential companion to
model-fitting methods even for short data segments with underlying
sharp spectral peaks. The best spectrum estimates can be obtained
by taking advantage of the strengths of both types of methods. For
example, it is shown that detection and estimation of the frequencies
of spectral lines for short data segments can be best accomplished
using certain parametric methods in conjunction with Fourier trans-
formation methods to aid in model-order selection and identification
of spurious peaks in the parametric spectrum estimate, and that
estimation of amplitude and phase for sine-wave removal, given
frequency estimates, and spectrum estimation after sine-wave re-
moval can often be best accomplished with Fourier transformation
methods alone.

I. INTRODUCTION

During the last twenty-five years there has been a tremendous
amount of research work on parametric methods of spectral
analysis based on fitting models to data. The primary driving
force behind this work has been the promise of substantial
improvements in spectral resolution performance over that
obtainable with the older (sometimes called classical) non-
parametric methods based on Fourier transformation of data.
It has been found that the relative merits of the newer
(sometimes called modern) methods depend strongly on the
nature of the data being analyzed and the amount of advance
knowledge about the underlying ideal spectrum being esti-
mated. There have been two main classes of problems
studied. The one of interest in this article concerns the
estimation of an ideal spectrum of a theoretically infinite
temporal series using a finite time segment of data. The other
concerns the estimation of an ideal spectrum of a theoretically
infinite spatial series using a set of finite space segments
indexed by time. This latter problem area arises in applica-
tions involving arrays of sensors, such as geophones, hydro-
phones, radio antennas, and so on. The fact that the measure-
ments of the finite-length spatial series can be averaged over
time makes this spectral analysis problem significantly differ-
ent from the former problem where there is only one finite-
length time series and consequently no ensemble to average
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over.* Parametric methods of spectral analysis are usually
superior to nonparametric methods when high-resolution
spectral analysis of a time-indexed set of short spatial series is
desired. The reason is that although only a short segment (in
the lag parameter) of the autocorrelation can be measured,
these measurements can be highly accurate. However, for the
problem of spectral analysis of a single short time series, the
relative merits of parametric and nonparametric methods are
not at all clear cut and depend in a complicated way on what
is known and what is unknown about the physical phenom-
enon giving rise to the data and therefore about the ideal
spectrum to be estimated.

The primary objectives of this article are (1) to demon-
strate by experiment that when the ideal spectrum to be
estimated is truly unknown, the utility of parametric methods
can be greatly enhanced when used jointly with methods
based on Fourier transformation, and (2) to illustrate the
relative strengths and weakness of the various methods and
how to combine the strengths in a single hybrid method.

Because one of the most commonly referenced tutorial
presentations on modern methods of spectral analysis is that
of Kay and Marple [1], it was decided to adopt the same data
set as that used in [1] to illustrate the various methods of
spectral analysis described therein. This also enabled us to
confirm that our computer programs were functioning proper-
ly. (They apparently were since they produced the same
results as those presented in [1]). However, in order to
demonstrate the effects of variability for each of the spectrum
estimation methods studied, we needed more data than that
presented in [1]. Therefore we also generated our own data
set from a model described in Sec. II that is essentially the
same as that in [1]. After it was confirmed that our programs
produced the same results as those in [1] when operating on
the data set given in [1], we then used our own data set for the
experiments reported on here. This data set is published in
[2].

The data model is especially appropriate for the purpose at
hand because it does not give any particular method an unfair
advantage by being particularly well matched to that method.
That is, the model is not of the moving average (MA) type,
the autoregressive (AR) type, or the ARMA type, nor is it

* There are also applications where an experiment can be repeated in such a
way that the underlying ideal spectrum is the same for each repetition and,
therefore, an ensemble of time segments of data can be obtained for averaging.
We shall lump this type of problem together with the problem involving a
time-indexed ensemble of space segments.
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simply a sum of sine waves uniformly spaced in frequency.
This seems to be a reasonable approach for studying the kind
of spectral estimation problem where the ideal spectrum is
truly unknown.

All methods studied are described within a unifying con-
ceptual framework with unified notation in {2]. All but a few
of the methods studied are also described more briefly in [1].
Extensive lists of references to prior work on these methods
are given in [1] and [2]. Therefore, in order to minimize
repetition, detailed descriptions of these methods are not
given herein, and only the original sources are referenced.
However, the readers’ attention is drawn to the book by
Marple [3], where computer programs for many of these
methods are given.

Il. EXPERIMENTAL RESULTS AND DISCUSSION

A summary and brief discussion of the results of an extensive
experimental study are presented in this section. The methods
compared include the periodogram with zero-padding, with
and without data tapering, with and without frequency
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Figure 1.

smoothing, and with and without sequential sine-wave remov-
al and spectral-line reinsertion [2]; the minimum-leakage*
(Capon) method [1, 2, 4]; the Yule-Walker [5, 6], Burg [7],
and forward—backward least squares [8, 9] AR methods [1, 2];
the overdetermined-normal-equations method with biased and
unbiased correlation estimates [2, 10]; and a singular-value-
decomposition method [2, 11]. The relatively new signal-
subspace methods are not included because they are not truly
methods for spectral estimation. Rather they are primarily
methods for estimating parameters of signals in noise.

The data was generated using a model that has the ideal
spectrum and ideal autocorrelation shown in Fig. 1. Gardner
[2] gives a table of 1024 time samples from this model, and
graphs of data segments of lengths 64 and 256 from this data
set are shown in Fig. 2. The data consists of three sine waves

*The most appealing interpretation of the Capon method is not as a
model-fitting method, but rather as a data-adaptive Fourier analysis method in
which leakage effects are directly minimized by linearly constrained least
squares optimization of the set of bandpass filters used for Fourier analysis [2].
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(a) Ideal spectrum for data used in experimental study (spectrum smoothed with rectangle window of width 1/256; highest peak is 21

dB). (b) Ideal autocorrelation for data used in experimental study (200 lag increments shown).

DATA

TI M E
@

Figure 2.
from Gardner [2] (starting point is 256).

110 Vol. 4, 109-121 (1992)

wull

VVVWVUU

DATA
-
—F
—t
—_—
—
e
J—
P —
—
—
<:
=
——
—
——

T I M E

(b)

(@) Data segment of length 64 from Table 9-1 from Gardner [2] (starting point is 64). (b) Data segment of length 256 from Table 9-1



in additive highly-colored Gaussian noise, with a band-limited
Gaussian-shaped spectrum centered at 0.35/7T, Hz, where T,
is the time-sampling increment. The power of each of the two
sine waves at frequencies 0.20/ T, Hz and 0.21/T, Hz is —3 dB
(relative to unity), and the phases are 106.2° and 41.5°
respectively. The power of the third sine wave at 0.10/T, Hz
is —23 dB and the phase is 32.6°. The power of the colored
noise is —15dB.

For each method and each set of parameter values consid-
ered, three samples of spectrum estimates are shown superim-
posed. Thus resolution, leakage, and reliability properties are
all reflected in these graphical results. Although a set of only
three samples is insufficient for a quantitative study of vari-
ability, it is adequate for the qualitative study reported here,
especially because the three samples of the phase of the
oscillatory envelope of the data [which is shown in Fig. 2(b)]
are distributed throughout the period of oscillation in the set
of three samples. All methods are applied to two lengths of
data segments: a short length, N=64, and a long length,
N =256. The three statistical samples of data are obtained
from Table 9-1 in [2] using staring points of 64, 128, and 192
for N = 64, and 256, 512, and 768 for N = 256. It can be seen
from the segment of length 256 in Fig. 2(b) that the three
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Figure 3.

segments of length 64 that were selected provide a uniform
spread of starting phases for the strong beat-frequency en-
velope that modulates the data. None of the spectrum esti-
mates produced by the various methods were normalized in
any way. Thus the power-level estimation capability of each
method is also illustrated in the graphical results.

For all the parametric methods considered that require use
of a model-order-determining algorithm, the three methods
FPE, AIC, and CAT were studied [1, 2, 12-14]. However,
the performances of these methods were usually unaccept-
able. Trial-and-error experimentation revealed [by com-
parison with the ideal spectrum in Fig. 1(a)] that the order
M =16 was typically the best for N=64, and 16 <M <32
(usually M =32) was typically the best for N =256. Conse-
quently, results are presented for primarily M =16 and M =
32. But a few samples of spectrum estimates obtained with
estimated model orders are shown to illustrate their in-
feriority.

A. Fourier Transformation Methods. The first spectrum
estimate considered is the periodogram without data tapering,
time averaging, or frequency smoothing. This raw periodo-
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(a) Three periodograms for N = 64 data points each with K = 8 zero-padding factor and no data tapering. (b) Same as (a), but with

raised-cosine data tapering. (c) Same as (a), but with frequency smoothing (P =2). (d) Same as (b), but with frequency smoothing (P = 2).
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gram was obtained using a DFT algorithm with K =8 zero-

padding factor [i.e., (K —1)N zeros are added so that the
total number of points transformed is KN] and is shown in
Figs. 3(a) and 4(a) for the two data-segment lengths of N = 64
and N = 256, respectively. It can be seen that the two closely
spaced spectral lines are not reliably resolved for N = 64, but
are for N =256. These periodograms were then modified by
use of a raised-cosine data-tapering window (with height of 2),
and the results are shown in Figs. (3b) and (4b). All these
periodograms were then frequency smoothed using smoothing
parameter P =2 (PK DFT bins were averaged together), and
the results are shown in Fig. 3(c), 3(d), 4(c), and 4(d). It can
be seen that data tapering greatly reduces spectral leakage
and that frequency smoothing improves reliability (although
the amount of improvement is small for P =2), and that both
techniques degrade resolution. :

Since Figs. 3(a) and 3(b) suggested to us (pretending
ignorance of the true model) that there were spectral lines in
the vicinities of f=0.1/T, and f = 0.2/T,, the next method we
studied removed sine waves from the data and then the
preceding methods, corresponding to Figs. 3 and 4, were
repeated, except that P =4 for N=64 and P =8 for N =256
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Figure 4.

were used instead of P =2 to obtain more reliability. The
sine-wave removal was accomplished by using least squares
estimates of the frequency (in the vicinity of the peaks in the
raw periodogram), amplitude, and phase of each sine wave.
These estimates are easily obtained directly from the DFT of
the data [2]. Since a substantial spectral peak remained in the
periodogram after subtraction from the data of a sine wave
with frequency near 0.2/T,, the estimation procedure was
repeated in this vicinity and a second sine wave was removed.
Then the procedure was repeated in the vicinity of f=0.1/T,
since a spectral peak was clearly evident in the periodogram
with the leakage effects of the two peaks near f=0.2/T,
largely removed. With the three estimated sine waves sub-
tracted from the data, the periodogram was calculated for the
residual time series. Finally, spectral lines with one DFT
bin-width and with magnitude determined by the least squares
estimates of the sine-wave amplitudes were added to the
periodogram. The resultant spectrum estimates, which are
shown in Fig. 5 for N =64 and Fig. 6 for N =256, exhibited
greatly reduced spectral leakage as would be expected. Al-
though the variability of the pair of spectral lines in the
vicinity of f=0.2/T, is substantial for N = 64, it is very small
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(a) Three periodograms for N = 256 data points each with K = 8 zero-padding factor and no data tapering. (b) Same as (a), but with

raised-cosine data tapering. (c) Same as (a), but with frequency smoothing (P =2). (d) Same as (b), but with frequency smoothing (P =2).
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Figure 5. (a) Three periodograms with sine-wave removal and spectral-line reinsertion for N =64 data points each, and with K=38

zero-padding factor and no data tapering. (b) Same as (a), but with raised-cosine data tapering. (c) Same as (a), but with frequency smoothing

(P =4). (d) Same as (b), but with frequency smoothing (P = 4).

for N =256. Also, the variability of the single weak spectral
line at f=0.1/T, is quite small, even for N = 64.

B. Minimum-Leakage Method. The next spectrum esti-
mates considered are those provided by the minimum-leakage
(ML) method [1, 2, 4]. Four versions of this method were
studied. These include the original method by Capon and a
modified method that normalizes the power estimate by a
data-adaptive (rather than fixed) resolution bandwidth to
obtain a power spectral density estimate [2, 15]. Each of these
methods has two versions corresponding to use of either the
covariance-type data-correlation matrix (which prevents the
adaptive leakage-minimizing filter from running off the ends
of the finite segment of data) or the autocorrelation-type data
correlation matrix (which allows the filter to run completely
off both ends of the data) [2]. The best results were obtained
by the unmodified method using the covariance-type data-
correlation matrix. Results for this method only are pre-
sented. These results are shown in Fig. 7. For N = 64, it can
be seen that both resolution and reliability performance for
M =24 is definitely better than that provided by the periodo-

gram both with and without sine-wave removal. However, this
superior performance for N =64 is obtained with the unfair
advantage of knowing that the filter order M =24 yields the
best results. If the ideal spectrum were not known in advance,
then this choice for M would not necessarily have been made.
The ML spectrum estimates for M <20 were too smooth and
those for M >24 exhibited spurious peaks and excess vari-
ability. This is illustrated in Fig. 14. For N =256, the best ML
estimate, which is shown in Fig. 7(d), does not approximate
the ideal spectrum as accurately as does the Fourier trans-
formation method (with sine-wave removal) shown in Figs.
6(c) and 6(d).

C. Yule-Walker, Burg, and Forward-Backward Least
Squares AR Methods. The least squares autoregressive
spectrum estimates provided by the methods of Yule-Walker
(YW), or maximum entropy, Burg, and forward-backward
(FB) linear prediction [1, 2, 5-9] are presented in Figs. 8, 9,
and 10 for N =64 with M =16 and for N =256 with M =16
and M = 32. It can be seen that the YW method is consistent-

Vol. 4, 109-121 (1992) 113



20 7

10 ]

ESTIMATE

SPECTRUM
'
-
o

i

il i |

0 0.1 0.2 0.3 0.4 0.5
FREQUTETNTC CY

(@)

20

10 ]

ESTIMATE

SPECTRUM
'
—_
o

0 0.1 0.2 0.3 0.4 0.5
FREOQUENGCY

©

Figure 6.

20 7

10 1

ESTIMATE

SPECTRUM
'
—_
o

0 0.1 0.2 0.3 0.4 0.5
FREQUTETNT CY

(b)

20 7

10 1

ESTIMATE

S PECTRUM
'
—_
o

0 0.1 0.2 0.3 0.4 0.5
FRE GQGUTETNTC CY

(C)

(a) Three periodograms with sine-wave removal and spectral-line reinsertion for N =256 data points each, and with K=8

zero-padding factor and no data tapering. (b) Same as (a), but with raised-cosine data tapering. (c) Same as (a), but with frequency smoothing

(P =8). (d) Same as (b), but with frequency smoothing (P = 8).

ly inferior to the ML method shown in Fig. 7,* except in the
accuracy of the overall level of the spectrum estimate. For
N = 64, it barely resolves the peak at f=0.1/T, and does not
resolve the pair of peaks near f=0.2/T,, nor does it produce
as accurate an estimate of the continuous part of the spectrum
centered at f=0.35/T,. For N =256, both resolution and
variability are poorer than they are for both the ML method
[Fig. 7(d)] and the Fourier transformation method [Figs. 6(c)
and 6(d)]. The Burg method is also consistently inferior to the
ML method (except for the accuracy of the overall level and
the relative heights of the weak and strong spectral lines)
because of its higher variability. However, the Burg method is
superior to the Fourier transformation method [Figs. 6(c) and
6(d)] for N = 64. The FB method clearly does the best job of

* This result does not support the commonly held belief that in general the
YW method provides higher resolution than the ML method [1]. But previous
studies focused on the version of the ML method that uses the autocorrelation-
type data-correlation matrix, which yields lower resolution than the version that
uses the covariance-type correlation matrix.
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resolving the three spectral lines for N =64, and it is clearly
the best in terms of low variability in the locations of the
spectral lines. However, the Burg method is superior in terms
of the accuracy of estimating the relative heights of the weak
and strong spectral lines. For N =256, the same conclusions
apply in comparing the Burg and FB methods. However,
these two methods are inferior to the Fourier transformation
method [and the ML method in Fig. 7(d) except for the
accuracy of the overall level] for N =256. Comparison of
Figs. 9(b) and 9(c) and 10(b) and 10(c) with Figs 6(c) and 6(d)
reveals that the Fourier transformation methods provides
considerably more accurate estimates of the ideal spectrum
for the relatively long data segments (N = 256).

The superiority of the Burg and FB methods relative to the
Fourier transformation method for N = 64 must be tempered
by the fact that these two parametric methods were given the
unfair advantage of having the best model orders specified.
When this advantage is removed by using the estimated orders
produced by the model-order-determining methods AIC,
FPE, and CAT, both parametric methods become inferior to
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Figure 7. (a) Three minimum-leakage spectrum estimates with N = 64,

N =256, M =16. (d) Same as (a), but with N =256, M = 32.

the Fourier transformation method because the estimated
order is too high for N = 64, resulting in spurious peaks and
high variability.

Although all three order-determining methods, FPE, AIC,
and CAT, produced comparable order estimates for each
spectrum estimation method, these estimates were too low for
the YW method (5<M <11 for N =64 and 12 < N <22 for
N =1256) and too high for the Burg method (M >48 for
N=64 and M >84 for N=256) and for the FB method,
except for N =256 (M =24 for N =64, M =32 for N =256).
Unfortunately, in practice, where there is only one data
segment to analyze, there is apparently no way to determine
from these parametric methods alone which peaks are correct
and which are spurious. Sample spectrum estimates with
estimated orders are shown in Figs. 11-14 to illustrate their
inferiority.

D. Overdetermined-Normal-Equations AR Method. The
spectrum estimates provided by the overdetermined-normal-
equations (ODNE) AR method [2, 10] are shown in Figs. 15
and 16 for the parameter Q, which specifies the number of
normal equations, given by O =48. The cases included are
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M =16. (b) Same as (a), but with M =24. (c) Same as (a), but with

N =064 with M =16, and N =256 with M =16 and M =32.
The results shown in Fig. 15 were obtained using the biased
correlation estimates from the autocorrelation method of least
squares, whereas the results shown in Fig. 16 were obtained
using the corresponding unbiased estimates [1, 2]. As expec-
ted, the method that uses the unbiased estimates provides
better resolution but the increase in variability is surprisingly
small. For N =64, the overall performance of the unbiased
ODNE method is slightly inferior to that of the Burg method
and is strongly inferior to that of the ML and FB methods.
For N =256, the performance of the unbiased ODNE method
is comparable to that of the Burg and FB methods and is
therefore inferior to that of both the ML method [Fig. 7(d)]
and the Fourier transformation method [Figs. 6(c) and 6(d)].
Also, the accuracy of the overall level of the spectrum esti-
mate provided by both ODNE methods is poor.

E. Singular-Value-Decomposition Method. The spectrum
estimates provided by the singular-value-decomposition
(SVD) method [2, 11] are shown in Fig. 17. Since the data is
not from an AR model and does not consist of simply strong
sine waves in a white-noise background, the eigenvalues do
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Figure 8. (a) Three Yule—Walker AR spectrum estimates with N =

64, M =16. (b) Same as (a), but with N =256, M = 16. (c) Same as
(a), but with N =256, M = 32.

not partition into one set of relatively large values correspond-
ing to spectral features of interest and a remaining set of
negligible values or a set of small values corresponding to a
flat spectrum. As a consequence, the procedure of using a test
on the eigenvalue ratio p (sum of M largest eigenvalues
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Figure 9. (a) Three Burg AR spectrum estimates with N =64,
M =16 (highest peak is 33 dB). (b) Same as (a), but with N =256,

M =16 (highest peak =34 dB). (c) Same as (a), but with N =256,
M =32 (highest peak = 35 dB).

divided by sum of all Q eigenvalues) to determine a best rank
M [2] cannot be expected to perform well, particularly since
there will be no obvious way to set the threshold in such a
test. Therefore M was just chosen to be M =16 and M =32,
and the corresponding ratio p was calculated as an aside. For
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Figure 10. (a) Three forward—backward linear-prediction AR spec-
trum estimates with N=64, M=16. (b) Same as (a), but with
N =256, M = 16. (c) Same as (a), but with N =256, M = 32 (highest
peak is 39 dB).
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Figure 11. Sample of poor spectrum estimate obtained with the
forward—backward linear-prediction method with too high an order
(M =24) for N =64.
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Figure 12. (a) Sample of poor spectrum estimate obtained with the
Yule—Walker AR method with too low an order (M =7) for N =64.
(b) Same as (a), but with M =32, N = 256.
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Figure 13. (a) Sample of poor spectrum estimate obtained with the Burg AR method with too high an order (M = 48) for N = 64. (b) Same as

(a), but with M =90, N =256.
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Figure 14. (a) Sample of poor spectrum estimate obtained with the
Same as (a), but with too high an order (M = 32).

M =16, p=0.96 for N=64 and p =0.97 for N =256. For
M =32, p=0.99 for N =64 and N =256. It can be seen from
Fig. 17 that for both N =64 and N =256 the performance is
inferior to that of all other parametric methods as well as the
ML method and the Fourier transformation methods [Figs.
5(c), 5(d), 6(c) and 6(d)]. As with all parametric methods
studied, experimentation with the order M showed that the
best results were obtained with M =16 for N =64 and with
M =32 for N =256.

lll. CONCLUSIONS

The results and discussion in Sec. II illustrate that parametric
methods have a crucial weakness, and this is model-order
selection. When knowledge of the ideal spectrum cannot be
used to guide model-order selection, the spectrum estimates
produced by parametric methods with short data segments are
likely to yield either inadequate resolution (order too low) or
spurious peaks and/or high variability (order too high), and
without further experimentation the user who does not have
knowledge of the ideal spectrum cannot know if either of
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minimum-leakage method with too low an order (M = 12) for N = 64. (b)

these situations has occurred. If the application is such that
processing time and complexity are not constrained, then the
best approach would be to use a combination of direct Fourier
transformation (with various amounts of data tapering and
spectral smoothing, and possibly sine-wave removal) and
model fitting with various orders, and possibly even various
models, in an experimentation mode, until confidence is
gained that none of the sharp peaks retained are likely to be
spurious, and that smooth portions and deep valleys are
revealed as accurately as possible. To illustrate the quality of
spectrum estimates obtainable with such hybrid methods, the
FB method was used to detect spectral lines and estimate their
frequencies, and the DFT (with K =8 zero-padding factor)
was then used to estimate the amplitudes and phases of the
three corresponding sine waves; after subtraction of these
estimated sine waves from the data, the 32-point smoothed
periodogram (P =4 and K =8) was computed. The results
are shown in Fig. 18. This is clearly the most accurate of all
spectrum estimates considered for short data segments (N =
64).
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Figure 15. (a) Three overdetermined-normal-equations AR spec-
trum estimates obtained using biased autocorrelation estimates and
Q =48 normal equations with N =64, M = 16. (b) Same as (a), but
with N =256, M=16. (c) Same as (a), but with N =256, M =32.
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Figure 16. (a) Three over-determined-normal-equation AR spec-
trum estimates obtained using unbiased autocorrelation estimates
and Q = 48 normal equations with N =64, M = 16. (b) Same as (a),
but with N =256, M =16 (highest peak is 64 dB). (c) Same as (a),
but with N =256, M = 32.
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Figure 17. Three singular-value-decomposition spectrum estimates obtained using Q =48, N =64, M = 16. (b) Same as (a), but with M = 32.
(c) Same as (a), but with N =256, M = 16. (d) Same as (a), but with N =256, M = 32.
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Figure 18. Three spectrum estimates obtained using the hybrid
method described in Sec. Ill.
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