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Abstract—A class of random time-series inputs for nonlinear
time-invariant systems that enable the analytical specification of
a set of operators on the input that are orthonormal over all
time to the Volterra operators for all orders and all lag sets is
introduced. The time-series in this class are cyclostationary and
complex-valued. One member of the class of inputs renders the
Volterra operators orthonormal to themselves, in which case the
Volterra series is a Fourier series. The orthonormal operators are
used to obtain an input-output type of crosscorrelation formula
for identifying the individual Volterra kernels of arbitrary order
for a nonlinear system of possibly infinite order and possibly
infinite memory. The real parts of the complex-valued inputs in
this class comprise a class of real-valued inputs for which the
same sets of specified operators apply. However, the orthogonality
for different orders holds for these real inputs only for Volterra
operators of order less than the order of the specified operator.
Thus, these real inputs can be used to identify Volterra kernels
only for finite-order systems. Frequency-domain counterparts of
the time-domain methods that can utilize an FFT algorithm also
are developed.

Index Terms—Volterra kernels, nonlinear system identification,
cyclostationarity

I. INTRODUCTION

HE VOLTERRA SERIES is one of the most intuitive

general representations for nonlinear time-invariant sys-
tems. Unlike other familiar representations, such as the Wiener
series [26] and the Cameron-Martin series [8], each term in
the Volterra series completely characterizes a particular order
of nonlinearity in the system. That is, the nth term, which
is a linear combination over the lags j, of the nth order
lag-products

Ak, 3, 2(-)) & [T 2(k = dn,) )
r=1

of the input z(k), characterizes the nth-order nonlinearity in
the system. In this expression, k represents discrete time and
takes on integer values and j,, represents the n.th of n lag
values and j, = [jn,,Jn,,---,Jn, ). Linear systems contain
only the first-order term, quadratic systems contain only the
first- and second-order terms, and so on. Thus, the Volterra
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series representation for a nonlinear time-invariant system with
input z(k) and output y(k) is given by

(o)

y(k):z Zhﬂ(jn)Aﬂ(k’jmz(')) )

n=1 k]
n

@

where the coefficient h,(-) in this linear combination is the
nth-order Volterra kernel. :

It is assumed that the finite-term counterpart of the symbolic
representation (2) converges as the number of terms indexed
by n in the series approaches infinity. For example, if a system
with input z(k) and output y(k) has the property that small
changes in z(k) result in only small changes in y(k), and
if this system has finite memory, then it follows from the
Stone-Weierstrass theorem that this system can be uniformly
approximated over a uniformly bounded set of inputs by
a Volterra series [22]. However, it is mentioned that the
assumption of convergence necessarily rules out application
to systems amenable to identification by other methods, such
as that of Wiener, Lee, and Schetzen [26], which are based on
other series representations such as the Wiener series, that do
converge in some instances where the Volterra series diverges.
For continuous time, the completeness of the Volterra basis
was first discussed and proved by Frechet in 1910 [9], and
the sufficiency for convergence of a fading memory was first
established by Wiener in 1958 [28, p. 41]. Wieners work was
explained and developed further by Schetzen in 1980 [26, pp.
334, 452], Sandberg, and others.

The theory of Volterra series has been applied to practical
problems in diverse fields of science and engineering, such
as discrete- and continuous-time systems, electrical circuits,
communication systems, fluid mechanics, rheology, hydrol-
ogy, structural engineering, and physiology (cf. [6], [15], [21],
[25], [26)).

Many methods that utilize crosscorrelations between the
output and transformations of the input to identify the Volterra
kernels are based on the use of stationary random time-series
as system inputs (cf. [6], [16], [29]). This can present difficul-
ties because the lag-product operators, or Volterra operators!

U1t is common to refer to the Volterra (and Wiener, Fourier, and other)
operators as functionals. But, the range of a functional is the reals, and since
we find it more appropriate here to interpret the quantities in the ranges of
these transformations as functions (or vectors) in the same function space
(or vector space) as the quantities in the domains of these transformations,
then we are obliged to call these transformations operators. When we speak
of the orthogonality of two operators we mean the orthogonality of the two
functions in their range corresponding to a given function in their domain,
viz., z(k). Since the nth term in the Volterra series is appropriately called the
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(1) in the Volterra series are generally not orthogonal to each
other,

Ak, kny 2()A5 (R, 5y 2(5)))) # 0, €

for n # m or k, # j,, for stationary inputs. (In (3), (-)*
denotes complex conjugation and (-) denotes average over the
integers k.) Moreover, no explicit® set of operators on the
input z(k) that is orthonormal to the infinite set of Volterra
operators is known (cf. [26], [27]). A popular approach to
circumventing this problem is to use an alternative series
representation that does have orthogonal operators and then,
after identifying the kernels for the operators in the alternative
series, to convert the identified kernels into Volterra kernels.
One of the most popular such approaches, that of Wiener, Lee,
and Schetzen, uses the Wiener series, which has orthogonal
operators when the input z(k) is a stationary white Gaussian
time-series [21], [26]. Other examples are discussed in [16],
[29] where the role of orthogonality is clarified. In general,
for an infinite-order system, all kernels in the alternative
series must be identified before any Volterra kernel can be
determined. Consequently, the system must be accurately
approximable by a finite-term series, and a number N of
terms that is adequate must be known. However, for a finite-
order system, there are operators on the input z(k) that are
orthogonal to all but the highest order Volterra operators. In
fact, this is one of the properties of the Wiener operators for
a white Gaussian input. Thus by identifying the highest-order
Volterra kernel and then subtracting its effect from the system
output, the same procedure can be used repeatedly to identify
all Volterra kernels down to the first-order. (This is proved as
a corollary to the main result in this paper.)

An alternative for finite-order systems is to specify a partic-
ular input (e.g., pseudo-random) over a particular time interval
(ideally assumed to be long enough that the input can be rich
enough to possess all orthogonality properties needed, but not
so long as to cause an unnecessary computational burden),
and to specify adequately large estimates of the system order
N and system memory L, and then to compute a set of
operators on this input that are orthogonal to all lag-product
operators (for all orders n < N and all L" lag-sets for
each order n) on the input that could occur in the linear
combination of terms that forms the Volterra series for the
output. This orthogonal set of operators can then be used
one at a time to identify each of the N Volterra kernels at
each of the L™ points in its domain by simply forming a
single inner product of the system output with the output of
the appropriate orthogonal operator on the input. Since the
orthogonalization of a potentially immense set of operators
(more than L") can be computationally prohibitive, research
is currently being pursued in an attempt to develop efficient
methods for adaptively determining a parsimonious subset of
the orthogonal operators [17], [18].

I, the lag-products in this term are more appropriately called the elementary
Volterra operators. These two operators are identical to each other only when

the Volterra kernel is unity for one lag set 7, and zero for all others. However,
for economy of terminology, the modifier elementary is omitted in this paper.

2Some such sets of operators are known implicitly. For example, if z(k)
is a white Gaussian time-series, then each operator in the desired set can be
expressed as an infinite series of scaled Wiener operators [26].

Another alternative is to directly identify the multi-
dimensional Fourier transforms of kernels, such as Wiener
kernels or Volterra kernels, using measurements of higher-
order cross spectra. Some computational savings can be
obtained in this way (e.g., [2], [10]).

In this paper, we consider a new approach. We introduce a
class of random time-series inputs for nonlinear time-invariant
systems that enable the analytical specification of a set of
operators on the input that are orthonormal over all time to
the Volterra operators for all orders and all lag sets. The
time-series in this class are cyclostationary [11], [14] rather
than stationary and are complex-valued. One member of the
class of inputs renders the Volterra operators orthonormal to
themselves, in which case the Volterra series is a Fourier series.
The orthonormal operators are used to obtain an input-output
type of crosscorrelation formula for identifying the individual
Volterra kernels of arbitrary order for a nonlinear system of
possibly infinite order and possibly infinite memory. The real
parts of the complex-valued inputs in this class comprise
a class of real-valued inputs for which the same sets of
specified operators apply. However, the orthogonality for
different orders for these real inputs holds only for Volterra
operators of order less than the order of the specified operator.
Thus, these real inputs can be used to identify Volterra kernels
only for finite-order systems.

Two specific examples of inputs in each of the two classes
are used to obtain explicit closed forms for the general
identification formula. One of these examples in each of the
two classes includes the option of a finite-state input. The close
relationship of the other of the two methods in each of the
classes to the classical Wiener-Lee-Schetzen crosscorrelation
method for identifying the Wiener (and Volterra) kernels of a
nonlinear system with white Gaussian input is explained.

To our knowledge, the methods introduced here for complex
inputs are the first methods to be able to identify an arbitrary-
order Volterra kernel for an infinite-order system. Unfortu-
nately, these methods can be used only when a complete
description of the input-output rule (such as a mathematical
model) that defines the system for complex inputs is available,
e.g., for simulation on a computer. Complex inputs cannot, of
course, be applied to physical systems. Nevertheless, methods
for identification of the Volterra kernels from mathematical
models have important practical applications, such as the
calculation of the performance of a communication system
with nonlinear components (cf. [3], [5]). Thus, the methods
introduced here can be viable alternatives to analytical meth-
ods that can be applied when a mathematical model of the
system is available (cf. [26]).

Although the methods for the real counterparts of the
complex inputs require that the system be accurately approx-
imable by a finite-term Volterra series with known number
of terms, the new finite-state methods require considerably
less correlation time for a given level of statistical reliability
than the method of Wiener-Lee-Schetzen. Furthermore, unlike
previously considered finite-state inputs (cf. [20], [24]), the
range of input values is a continuum rather than a finite set
of amplitudes. These finite-state inputs therefore appear to be
richer than the finite-amplitude inputs [24], [27].
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The approach to nonlinear system identification taken in this
paper was originally motivated by the theory of cyclostationary
time-series. The four specific methods given as examples of
the general method were originally derived in terms of cyclic
cross moments between the input and output of the system in a
step-by-step manner. That is, a formula for identifying the n-th
order Volterra kernel from cyclic cross moment measurements
was derived first for n = 1, then n = 2, then n = 3, and
so on until the general solution for arbitrary n was evident
[1]. Later, with insight gained from Yasuis interpretation [16],
[29] of the Wiener-Lee-Schetzen and other crosscorrelation-
based methods in terms of orthogonality, the concise, general,
and more transparent derivation presented in this paper was
developed.

The simplicity of the crosscorrelation formulas for iden-
tification of the time-domain Volterra kemels can be ex-
ploited to obtain by a straightforward method frequency-
domain counterparts for direct identification of the Volterra
transfer functions—the multidimensional Fourier transforms
of the Volterra kernels. This also is accomplished in this paper.

To put the new methods in perspective, it should be men-
tioned that there are quite a number of approaches to identifi-
cation of Volterra kernels and Volterra transfer functions that
are not based directly on crosscorrelating the system output
with transformations of a random input. These include methods
based on transient inputs (e.g., sums of shifted impulses)
and periodic inputs (sums of sinewaves or, in the frequency
domain, sums of shifted impulses) (cf. [3], [26]). There also
are the structurally constrained approaches that assume the
nonlinear system has a particular structure typically consisting
of cascade and/or parallel connections of linear subsystems
with memory and nonlinear subsystems without memory (cf.
[4], [7], [19]), and then identify the subsystems in the assumed
structure. The Volterra kernels can be computed directly from
the identified subsystems.

II. THE GENERAL METHOD

We shall use the framework of temporally random discrete-
time-series [11], [14], rather than the more commonly used
framework of stochastic processes [12], because the former
relates more directly to the way system identification methods
are implemented in practice (cf. [27]), whereas the latter
introduces irrelevant abstractions. We need only a few basic
results from the theory of temporally random time-series.

A stationary time-series z(k) is one for which infinite-time
averages of lag-products (and all other well-behaved time-
invariantor k-invariantfunctions of the time-series) exist and
are not all identically zero. A purely stationary time-series is a
stationary time-series for which the sinusoidally weighted lag-
products (and all other well-behaved time-invariant functions)
have infinite-time averages that are identically zero for all
noninteger sinewave frequencies [11], [13]. That is, the cyclic

' moments

R2(3n) # (An(k, G,, z(-))e™27F) @)

are zero for all noninteger real cycle frequencies «, all lag
variables j,, and all positive integers n. It follows that if

z(k) is purely stationary, then every k-invariant function of
z(k = ky),2(k — ks),-- -, z(k — k), say

Flkykn, 2()) = f(2(k = k), - -, 2(k — kn))
= f(0,kn — 1.k, z(-))

(where 1, is the n-dimensional column vector with all ele-
ments equal to unity) is purely stationary, e.g.,

(f(k,kn, 2())e™2*) =0, )

for noninteger «. If (4) is nonzero for some noninteger «,
then z(k) is cyclostationary (or exhibits cyclostationarity) with
cycle frequency (or frequencies) a [11], [13].

If the joint fraction-of-time amplitude densities [11]-[13] of
a time-series factor into products of the individual fraction-of-
time densities, then the time-series is said to be white (in the
strict sense); i.e., it is a sequence of statistically (temporally)
independent variables. It follows that if z(k) is a white time-
series, then its joint moments factor as follows:

<qu]1 2" (k — jm,)> = fI (z"1(k = jm,)),

¢=1

©

for distinct 1ags j;,, jm,, - *» Jm,- We shall consider first the
class of cyclostationary inputs of the form

z(k) = z(k)s(k), @)

where z(k) is a real-valued or complex-valued purely station-
ary time-series (not necessarily white although z(k) is white
in all specific examples presented), and s(k) is the trivial
cyclostationary time-series

S(k) - eiwk ,

®

for some real irrational w /2. (Rational w/2 are problematic
because for some nonzero integers n, ¢’“* and (e!“*)" are not
orthogonal.) Then, we shall consider real inputs of the form

z(k) = Re{z(k)s(k)}. )

We shall see that for some purely stationary time-series z (k)
we can find a set of k-invariant operators ¢, (k, kn, z(-)) for
a given z(k) that is orthonormal (reciprocal) to the set of
lag-product operators

n

M(ksGn, 2()) = [T 2(k = dn,) (10)
r=1
in the sense that
(An(k,dn, 2())en(k, kn, 2()) = & &, (11)

where j,, is any permutation of j,,, and is the n-dimensional
Kronecker delta (which is the product of n one-dimensional
Kronecker deltas: 6;, &, =1forj, =kn, and 6, ¢, =0
for jn, # kn,).

The preceding concepts and definitions in this section are
all that are needed to develop methods for identifying the
symmetrized kemels h,(j,) in the Volterra series represen-
tation (2) for the output y(k) of a nonlinear time-invariant

n
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system with input z(k). (The kernels of any system can be
symmetrized by averaging h,(j,) over all permutations j,
without affecting the output of the system [26].)

Theorem 1: Let the k-invariant operators v,, be defined by
Yok, kn, 2()) £ eIt (k ko, 2()),  (12)

where ¢, satisfies (11), 1/, denotes the transpose of the column
vector 1,,, and let z(k) be given by (7) (8). Then these
operators v,, are orthonormal over both the orders n and lag
sets k,, to the Volterra operators A, :

(/\m (k)jm» :l:())‘)/,:(k, kn, z())) = 6ﬂm6;nk,..

A proof of this theorem is given in the Appendix. As a
corollary, we have the following result on identifying Volterra
kernels.

Corollary: Given operators ¢, satisfying (11) and system
input specified by (7)-(8), the operators v,, defined by (12) can
be used to identify the Volterra kernels in (2) by performing
the crosscorrelation operation

h(kn) = ﬁ@(km(k,km 2O,

where P(k,) is the number of distinct permutations of the
elements of k,,. Specifically, if k, = [km,, -, kmys kmgy - *s
kmyy - km,, -+, km,] where kn,  is repeated n, times and
n1 + ny + +n, = n, then

13)

(14

n!

For the real inputs (9), we have
z(k) = %z(k)ei"’k + %z*(k)e_i‘“k (16

and, parallel to Theorem 1, we have the following theorem
(which is proved in the Appendix).

Theorem 2: Let the operators v, be defined by (12) mod-
ified to include the factor 2", where ¢, satisfies (11), and
let z(k) be given by (16). Then these operators v, are
orthonormal over both the orders n and lag sets k, to the
Volterra operators A, of orders m < n:

A (ks ms 2( D)7k kny 2()) = 6nmb; &, (D

Thus, parallel to the corollary, for an Nth-order Volterra
system (for which h,, = 0 for all m > N in (2)), (14) still
holds for n = N. After (14) is used to identify the N th-order
kernel, the Nth term in (2) can be subtracted off to produce
the output of an (N — 1)th-order system whose highest order
kernel hy_1(jn—-1) can then be identified. (If we use this
procedure, then we no longer require the sinusoidal factor s(k)
in (7) (i.e., we can simply use z(k) = z(k) for real z(k) in
(16)) because (13) can be satisfied for m < n with w = 0 in
(12). This is established next. Nevertheless, we shall see that
for finite-state inputs, the sinusoidal factor s(k) results in a
potential advantage.)

So, the only part of the identification scheme that is not
explicitly defined is the method for obtaining the reciprocal

set of operators ¢, (k, kn, 2(-)) which satisfy (11) for a given
purely stationary time-series z(-). We shall accomplish this for
the special case of white z(-).

Lemma: Let z(k) be a purely stationary white time-series
for which the powers z™(k) are linearly independent. In
general, there exists a set of univariate orthogonal operators
¥Yn(2z(k — k,)) that are orthonormal to the particular lag-
product operators A, (k, jm, 2(-)) = 2™(k — j,) for m < n,

(2" (k = jo)¥n(z(k = ko)) = Smnbiok,,  form<m,
18

and we can define operators to satisfy the orthonormality

property (11) and, for w = 0 in (12), to also satisfy the

orthonormality property (13) for m < n, as follows:

On(k, kn, 2(-)) & T] ¥n, (2(k — km,)),

=1

where n, is the number of times the lag k.,  is repeated.
This Lemma is proved in the Appendix.

19)

III. EXAMPLES AND DISCUSSION

Example 1 (PM): Let 2(k) = 0¢'®(¥) be a purely stationary
sequence of statistically independent (white) variables having
an M -ary discrete uniform circular temporal-probability distri-
bution (fraction-of-time distribution [11]-[13]), which results
from 6(k) having an M-ary discrete uniform distribution in
the interval [—=, 7). In this case, we can make the choice

Yn(2(k — 7)) 2072 (k — ) (20)

and satisfy (18) provided that nm is not a nonzero integer mul-
tiple of M. Therefore, a sufficient condition for identification
formula (14) to be valid is that n, in (19), which is used in
(14), be less than M. That is, the alphabet size M must exceed
the number of times any lag value is repeated at the point in
the domain of the kernel at which the kernel is to be identified.
(This restriction is a result of the fact that 2™ (k) are linearly
independent only for 1 < m < M.) This can be guaranteed
for arbitrarily high-order kernels, by letting M — co; ie., by
using a continuous uniform distribution for 6(k).

It follows from (20) that for the complex PM input, we
have

Yn(k, kn, 2(-)) = 07" An(k, kn, 2(*)) 20
and, therefore,
Yn(k, kn, 2()) = o7 An(k, kn, z()). 22)

Consequently, (13) reveals that lag-product operators are or-
thogonal for either different orders n and/or different lag sets
k.. Because of this, the Volterra series of operators is a Fourier
series when the system input is complex PM with an alphabet
size M that exceeds the order N of the system (since N is
the maximum number of times a lag value can be repeated
within a given kernel). This means that the approximation
obtained using only the N’ identified terms with the largest
time-averaged squared values, for any N’ less than N, has the
smallest time-averaged squared error, for this particular input,
between the outputs of the actual Nth-order system and the
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approximating N'’th-order system, among all approximations
with N’/ or fewer terms (assuming perfect identification of
each term, which requires infinite correlation time).

The real counterpart (9) of the input in this example is the
phase-modulated (PM) sinewave

z(k) = o cos (wk = 0(k)). (23)
It is important to recognize that for w # 0, both the complex
and real PM inputs take on values throughout a continuum (a
disk of diameter 20 for complex PM and an interval length
of 20 for real PM) even though the random sequence (k)
has only a finite number (M) of states for each k (the same
finite set of states for all k). For w = 0, the PM inputs take on
only a finite number (M) of values. Thus, for w # 0, the PM
input is apparently richer than it is for w = 0. Specifically,
it is a white input with a fraction-of-time amplitude density
equal to that of a sinusoid. This PM example is generalized
following Example 2.

Example 2 (AM): Let z(k) be a purely stationary sequence
of statistically independent real-valued Gaussian variables with
standard deviation ¢. In this case, the scaled (nonnormal)
Hermite polynomials

a Hn(z(k —7))

Ya(a(k =) , (242)
(It UENF) :

where

[n/2]
-y (_1)qn' n—2
Hn(z) £ ; pTrT e r TR (24b)
and

(Ha (k) = mlo™, (240)

and (24c) satisfy (18) (cf. [26]).

If we let w = 0 in (8), then (13) is valid for a white Gaussian
time-series z(k) only if the lag-product operators A, are
replaced with the Wiener operators. Thus, in this special case,
(14) with w = 0 in (12) identifies the Wiener kernels, not the
Volterra kernels, and is identical to the Wiener-Lee-Schetzen
method [26]. However, for a finite-order system, the highest
order Volterra kernel is identical to the highest order Wiener
kernel.

The real counterpart (9) of the input in this example is the
amplitude modulated (AM) sinewave

z(k) = z(k) cos (wk). (25)
The class of inputs (7)-(9) for which the general approach
developed herein applies includes, in addition to the AM and
PM examples considered, joint AM/PM with distributions for
the amplitude and phase other than the two considered here.

. For example, if the constellation of points in the complex plane
corresponding to the amplitude/phase pairs for an AM/PM
time-series with finite alphabet consists of concentric circles
centered at the origin, and if each circle contains a uniform
distribution of equally probable points, then (20) applies and
the condition n, < M discussed in Example 1 refers to the

minimum number, M, of points on any one circle rather than
to the overall alphabet size.

It is emphasized that the two distinct methods, complex AM
and complex PM (as well as complex AM/PM), can identify
any Volterra kernel in any nonlinear system that admits the
Volterra series representation, including infinite order and
infinite memory. However, it must also be emphasized that
because these two methods use complex-valued inputs z(k),
they can only be implemented when a complete description
of the input-output rule (such as a mathematical model) that
defines the system for complex inputs is available, e.g., for
simulation on a computer. Nevertheless, results in Section V
suggest that the PM (and presumably AM/PM) method can be
a computationally attractive alternative to other methods for
determining the Volterra kernels from a mathematical model
of a nonlinear system. Also, for physical systems that are
accurately approximable by finite-order Volterra series, the
simulation results in Section V suggest that the PM (and
presumably AM/PM) method can be an attractive alternative to
other methods, such as that of Wiener-Lee-Schetzen that uses
Gaussian inputs, since the PM method apparently requires less
averaging time to obtain statistical reliability. Nevertheless,
these apparent advantages have been seen in only the relatively
small set of simulations that have been done so far. More
work is needed to establish more firmly the advantages (and
disadvantages) of these new methods relative to other methods.

IV. FREQUENCY-DOMAIN COUNTERPARTS

Frequency-domain counterparts of the time-domain meth-
ods, which directly identify the multidimensional Fourier
transforms of the Volterra kernels (the Volterra transfer func-
tions) and provide for the use of computationally efficient FFT
algorithms in place of the many correlation operations required
by the time-domain methods, can be derived as follows. We
first take the n-dimensional Fourier transform of the nth-order
kernel over a hypercube domain

Holfn)= Y. ho(En)e= 27 n,

0<k <K

(26)

where 0 <k, < K means 0 < k,, < K fori=1,2,---,n,
and where K should be chosen to exceed the system memory
length L (but not excessively), for which h,(k,) = 0 for -
kn; > L for any i. Then, we substitute the kernel estimate
(14), with the averaging time for (-) reduced from inf to T,
into (26) to obtain the estimate

Hu(f,) =
OSZJSK<y(k)P—(iT)v;<k,kmz(-»)Te-”"f’n*n, an
Given that v, is k-invariant,
(b ks 2()) = 72 (0, kn — 1 — k1n,2()),  (28)
and observing that
P(k, — k1,) = P(kn), 29)
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we can reexpress (27) as

Ha(fa)= ). (y(k)w"(kn — k1,))pe =" nEn - (30)
0<k.<K

where
1
w(kp) = =70 (0, kn, 2(-)).
(k) = 5y (0 ko 2()
Now, by truncating each of y(k) and w(k, —k1,) to intervals
of length T, and denoting these truncated versions by yr(-)
and wr(-), we can closely approximate (30) for 7> K by

}jﬂ(fn)

€2Y)

2

>

0<E, <K

= [FWi£Ye ()| @ Ax() © -6 Ax(sa)

l:% Z yT(k)w;"(kn - kln)} 6-i21rf:‘kn,

k=—o0

(32
where
K/2 .

_ —ingk _ Sin[rf(K + 1)]
AK(f)_k=_Zk/2e ~ sin(xf) G
Yr(f)= Y y(k)e ¥, (34)

IKI<T/2
Wr(—f)= > w(kn)e™ nkn 35)
[ka|<T/2

The equality (32) is a direct result of the convolution theorem
for the Fourier transform.

For fixed K, in the limit as 7" — oo, the approximation
(32) becomes exact and, because of the corollary to Theorem
1, the limit of (32) equals the Volterra transfer function of the
system with finite memory length L < K. If the system has
infinite memory length, but its Volterra transfer functions exist
(the series (26) converges as K — oo), then the limit of (32)
as K — oo equals the Volterra transfer function of the system.

In summary, given the set of operators v,, defined by (12)
and (19), which are orthonormal to the Volterra operators, we
can use an FFT algorithm to compute (34) and (using (31))
(35); then we can multiply these transforms and perform an
n-dimensional convolution with the spectral window A(f)
to obtain the Volterra transfer function estimate (32). The
computational efficiency of the n-dimensional convolution
is greatly enhanced by replacing the window (33) with a
rectangular window of width on the order of 1/K. This can
also improve the fidelity of the estimate (32). ‘

Because of the factorization (19) of the factor v, in w(k,)
(cf. (31)), the n-dimensional Fourier transform of this factor
is simply the product of p < n one-dimensional transforms.
Thus, the transform (35) can be obtained (from the convolution

theorem) by convolving the transforms of the two factors

Yn and 1/P(ky) in (31). The transform of 1/P(k,) can be
computed in advance of experimentation since it does not
depend on the data z(k).

The additional factorizations (20) and (24) of ,(z) into
products of z in (20) and a sum of weighted products of z in

TABLE I
BiAas AND COEFFICIENT OF VARIATION FOR VOLTERRA KERNEL
ESTIMATES OBTAINED USING VARIOUS METHODS

Record Length = 1000 Record Length = 10000

Ibiasl coef. var Ibiasl coef. var
M 0.2% 0.002 0.07% 0.0002
M 03% 0.002 0.05% 0.0002
RPM 1% 001 0.4% 0.001
w=0
oM 0.8% 0.008 02% 0.0008
v 2.4% 0.03 0.3% 0.003
hav 0.4% 0.03 04% 0.004

(24) reveal that for both the PM and AM methods, the FFT’s
of the factor v, in w(k, ) can all be obtained from a few FFI’s
of the data z(k) (or shifted FFI’s of z(k)) and some of its
powers (e.g., powers n, from (19) for (20)).

V. SIMULATIONS

To verify that the new system identification methods do
indeed provide estimates of Volterra kernels that converge to
the correct values, and to obtain a preliminary indication of
convergence time for a specific system, we simulated a second-
order Volterra system consisting of a linear time-invariant
transformation described by the first-order difference equation

—0.898972(k — 1) + 1.898972(k) = z(k),
followed by a squaring operation
y(k) = 22 (k).

System inputs of both the AM and PM types were simulated
with sine-wave frequencies of w = 0 and 1 and, for PM,
alphabet sizes ranging from M = 3 to M = 12. All four
methods corresponding to real and complex versions of AM
and PM, as described in Examples 1 and 2 in Section ITI, were
tested. Single-precision input-data records, and algorithms
(including a uniform noise generator, and Gaussian noise
generator taken from [23]) coded in FORTRAN on a SUN
SPARCstation IT were used for the simulations. One hundred
Monte Carlo trials were used for each case, input-data record
lengths of 1000 and 10000 were used for each method, and
the bias and coefficient of variation (variance divided by
squared true-value) for the particular point (k; = 0, ks = 1)
in the domain of the second-order kernel hy(k1,ks) were
computed. The abbreviations RAM, CAM, RPM and CPM
are used in Table I for the real AM, complex AM, real PM,
and complex PM methods, respectively. (Note, however, that
RAM = CAM for w = 0.) Since the variations in bias and
coefficient of variation with respect to the alphabet size M
for PM were considered to be statistically insignificant (for
the small ensemble size of 100), only the average values of
these parameters (over the set of alphabet sizes) are recorded
in Table L
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It can be seen from the results in Table I that both bias
and coefficient of variation are quite small and decrease as
. the record length over which time averaging is carried out is
increased. For a ten-fold increase in averaging time, there is
a ten-fold decrease in coefficient of variation. The reduction
in bias, on the other hand, varies more from one method
to another. For the relatively small number of trials (100),
the statistical reliability of the values for the AM methods
(especially for the shorter record length of 1000) are suspect.?
Nevertheless, the approximate ten-fold (five-fold) reduction
in coefficients of variation of the CPM (RPM) method over
the AM methods for record lengths of 10000 is significant
and suggests that these finite-state-input methods converge
substantially more rapidly than the Gaussian-input methods
which include the Wiener-Lee-Schetzen method (RAM with
w = 0). Similar results were obtained in simulations of a third-
order Volterra system performed with different software on an
HP 9000-835 computer.

VI. CONCLUSION

A new approach to obtaining sets of operators that are
orthogonal to the Volterra operators for a class of input time-
series is described. It is shown how these orthogonal operators
can be used in a crosscorrelation-based method to identify the
Volterra kernels of nonlinear time-invariant systems. This class
of inputs includes both Gaussian and finite-state time-series,
and simulations suggest that methods used with the finite-state
inputs converge considerably more rapidly than the methods
used with Gaussian inputs, which includes as a special case
the method of Wiener, Lee, and Schetzen.

For complex-valued inputs, the new methods are believed
to be the only crosscorrelation-based methods known that
identify arbitrary order Volterra kernels of an infinite-order
system (with infinite memory). Such methods can be used to
compute the Volterra kernels of nonlinear systems that can be
simulated on a computer.

The computational efficiency of these new crosscorrelation-
based methods can be increased by using an FFT algorithm
to implement the frequency-domain counterparts developed
herein that are based on frequency-smoothed cross-spectra.

VII. APPENDIX
PROOF OF THEOREM 1, THEOREM 2, AND LEMMA

Proof of Theorem 1: Substituting (7) and (8) into (1) and
the result together with (12) into the left-hand side of (13)
yields

(13) = (Am(l, G, ()76 Tin)
= R) 1 (h, by, 2()))
= (Am(k, s 200)05 (5 En, 2())

eiu(m—n)k>eiw(1ly‘kn‘“llmjm), (A1)

30Other cases (w # 0) for the RAM method that were tested resulted in
biases as large as 25%. No explanation for this can be found.

Since An(k, 3, 2(-)) and ¢}, (k, ky, 2(-)) are k-invariant func-
tions of (z(k —j1), -+, z(k — jm)] and [2(k — ky), - -, z(k —
k,)], respectively, and z(k) is purely stationary, then

’\m(k)jm:z('))w;(k))

is purely stationary. Consequently, the average (A.1) is zero
for m —n # 0 since w/2x is irrational (cf. (5)). For m = n,
we have

Ak, Gy 2()) @i (k, kn, 2(-))) e 2nEn=in),

and (11) guarantees that this average is zero for j,, # k, and
is unity for j,, = k,, . Thus, we have verified (13). O

Proof of Theorem 2: Substituting (16) into (1) and the re-
sult together with (12) (modified to include the factor 2,,)
into the left-hand side of (17) yields the same result as (A.1)
except that the factor

A (k, Gy 2()) e (mF =0 m)

(A2)

is replaced with
D0 Ap(kydpy 2(9)X; (,dgy 2()) (=it 20da=150,)

ptg=m
0<p,g<m

Using the same reasoning as in the proof of Theorem 1, we
obtain the desired result (the right-hand side of (13)) provided
that p— ¢ —n = 0 only if p = n and ¢ = 0. The only way to
guarantee this is to impose the restriction m < n. a

Proof of Lemma: The set of operators v, (z(k)) satisfying
(18) for j, = k, can be obtained simply by applying the
Gram-Schmidt orthonormalization procedure to z™(k) (cf.
[16]). For j, # ko, (18) is then satisfied since z(k) is white
and, therefore, v, (z(k)) also is white.

Substituting (19) and the lag-product definition of A, (k, j,,,
z(-)) into the left-hand side of (11) yields

(11)=<Hz(k—an)1'[¢ k km,))> (A3)

v=1
Now, let us express the lag product of z in terms of its distinct

lagS jn = [july"’;juujuw"';jug;ju,.,"',ju,.] where ju,
is repeated ts times and £, +%5+ - -+t, = n. Then, we have

(11)=<H t(k—Ju)sz,., z(k— kmq))> (A4)

s=1

If j, = k,, then all the j,, and km, match up and (6) and
(18) used in (A.4) reveal that (11) = 1. But if j, # k,
and there is some j,, that does not equal any of the ki, ,
then (6) and (18) used in (A.4) reveal that (11) = 0. On the
other hand, if every j,, equals some k,y,,, then the assumption
Jn # k, requires that {t,} and {n,} not match up. (That is,
the numbers of repetitions of the k,, do not coincide with
the numbers of repetitions of j,,.) In this case, at least one
of the n, will exceed at least one of the t,, in which case the
corresponding factor in (A.4) will be zero, because of (6) and
(18). Consequently, (11) must be zero if 7, # k,. Observe
that this same argument proves that the right-hand side of
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(A.3) is zero if n is replaced with m < n. This verifies the
orthogonality

Gy Fae> 2() @l (ky ey 2())) = 6,,.,,65-",:",

which is (13) with w = 0 in (7)-(8) and (12). d

m<n,
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