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Abstract. A nonstochastic alternative to the stochastic process framework for conceptualizing, modeling and analyzing
time-series encountered in communications, radar and telemetry systems is proposed. Wold’s isomorphism between a single
time-series and an ergodic stationary stochastic process is generalized to accommodate time-series with periodic structure
and corresponding cycloergodic cyclostationary stochastic processes. This reveals the existence of a nonstochastic theory for
single time-series with periodic structure that completely parallels the theory of cycloergodic cyclostationary stochastic
processes. In particular, the concept of a nonstochastic stationary fraction-of-time probability (temporal-probability) model
for a single time-series, which is closely associated with Wold’s isomorphism, is generalized to cyclostationary and almost
cyclostationary nonstochastic temporal-probability models for time-series with periodic structure corresponding to a single
period and to multiple incommensurate periods, respectively. Gaussian time-series are considered as a specific illustrative
case. Applications to signal processing are cited.

Zusammenfassung. Eine nichtstochastische Alternative zur Beschreibungsweise mit stochastischen Prozessen wird vorges-
chlagen, wie sie fiir die Konzeptualisierung, Modellierung und Analyse von Zeitreihen dient, die man in Nachrichten, Radar-
und Telemetriesystemen vorfindet. Der Woldsche Isomorphismus zwischen einer einzelnen Zeitreihe und einem ergodischen
stationdren Prozess wird verallgemeinert, sodaf3 er Zeitreihen mit periodischer Struktur und die entsprechenden zykloergodis-
chen zyklostationdren stochastischen Prozesse umfaft. Dadurch wird die Existenz einer nichtstochastischen Theorie fiir
einzelne Zeitreihen mit periodischer Struktur aufgezeigt, die der Theorie zykloergodischer zyklostationirer stochastischer
Prozesse vollkommen parallel ist. Insbesondere wird das Konzept eines Modells fiir eine einzelne Zeitreihe, das auf einer
nichtstochastischen stationiren fraction-of-time Wahrscheinlichkeit (zeitliche Wahrscheinlichkeit) beruht und eng verkniipft
mit dem Woldschen Isomorphismus ist, auf zyklostationire beziehungsweise fast zyklostationire nichtstochastische zeitliche
Wahrscheinlichkeitsmodelle fiir Zeitreihen verallgemeinert, deren periodische Struktur eine einzige Periode beziehungsweise
mehrere inkommensurable Perioden aufweist. Zur Illustrierung werden GauBsche Zeitreihen als ein spezifischer Fall betrachtet.
Anwendungen in der Signalverarbeitung werden erwéhnt.
\ .
Résumé. Nous proposons une alternative non stochastique a la construction basée sur les processus stochastiques utilisée
" pour conceptualiser, modéliser et analyser les séries temporelles rencontrées dans les systémes de communication, de radar
et de télémétrie. L’isomorphisme de Wold entre une séries temporelle isolée et un processus stochastique stationnaire ergodique
est généralisée afin de prendre en compte les séries temporelles 4 structure périodique et les processus stochastiques
cyclo-ergodiques et cyclo-stationnaires correspondants. Ceci révéle I’existence d’une théorie non stochastique pour les séries
temporelles isolées a structure périodique qui établit un paralléle complet avec la théorie des processus stochastiques
cyclo-ergodiques cyclo-stationnaires. En particulier, le concept de modéle de probabilité de type ‘fraction de tempts’
(probabilité temporelle) non stochastique stationnaire pour une série temporelle isolée, qui est étroitement associé 2
Iisomorphisme de Wold, est généralisé aux modéles de probabilité temporelle cyclo-stationnaires et presque cyclo-stationnaires
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pour des séries temporelles ayant une structure périodique correspondant respectivement 4 une période unique et a des
périodes multiples incommensurables. Nous considérons a des fins d’illustration spécifique des séries temporelles gaussiennes.

Nous citons des applications au traitement du signal.

Keywords. Cyclostationary time-series, temporal probability.

1. Introduction

Wold’s isomorphism [31] (developed here in
Section 3) between a single persistent time-series—
an ongoing function of time—and an ergodic
stationary stochastic process—a time-indexed
family of random variables with joint probability
distributions that are invariant to time transla-
tion—is of fundamental conceptual importance in
justifying the use of theoretical probabilistic
models for some empirical time-series and the use
of empirical time-average interpretations of theo-
retical expected values for some stochastic proces-
ses. It provides the basis for bringing together the
two otherwise disparate philosophies that give rise
to the functional models of time-series, in which
statistics are obtained from finite time averages,
and the stochastic models, in which statistics are
obtained from finite ensemble averages (and also,
in some cases, finite time averages) [18].

The ergodic theorem (which concerns the con-
vergence of time averages of random variables)
and the law of large numbers (which concerns the
convergence of ensemble averages of random vari-
ables) enable us to say that in the limit, as the
number of time-samples (with fixed spacing) in
the time average of a given measurement on a
single time-series from an ergodic stationary pro-
cess approaches infinity, and in the limit, as the
number of random samples in the ensemble
average of the same measurement approaches
infinity, the time average and ensemble average
are both equal to the same quantity, the expected
value. However, this equality is true only with
probability equal to unity. That is, this equality
requires that we conceive of the time-series as one
sample path of the stochastic process. Thus, with
this approach we are conceptually locked into the
abstract probabilistic framework of stochastic pro-
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cesses. Nevertheless, Wold’s isomorphism affords
us more flexibility of thought since it establishes
that although there is an isomorphism between the
time-series and the stochastic process that leads to
completely dual theories, we are not forced to think
of the time-series as one of many possible sample
paths of a stochastic process. This can be important
when the mechanics of the theory of stochastic
processes is useful, but the concept of a stochastic
process is inappropriate because it is physically
inappropriate to conceive of an ensemble of time-
series. A fairly complete development of the frac-
tion-of-time probabilistic theory of stationary and
related time-series based entirely on time averages
is presented in [23], and the duality between this
theory and its more popular stochastic counterpart
is a major theme in [8].

Wold’s isomorphism also provides some justi-
fication for the somewhat indiscriminate use of
both time averages and expected values that some
engineers and other practically oriented analysts
use to facilitate analytical derivations of formulas
for model parameters such as the autocorrelation
function and the spectral density of average power
(where average can mean time average, ensemble
average, or both).

The purpose of this paper is to show how to
generalize Wold’s isomorphism and the non-
stochastic fraction-of-time probabilistic theory to
accommodate time-series with periodic structure,
including both a single periodicity and multiple
incommensurate periodicities. This generalization
is needed, for example, in applications involving
signals arising in communication, radar and
telemetry systems in which random (meaning
unpredictable or erratic, but not necessarily
stochastic, i.e., not necessarily deriving from a
probability space involving an ensemble of
samples) information-bearing messages modulate
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periodic sine-wave carriers and periodic pulse-
trains [8]. Additional periodicities can arise in such
applications due to periodic multiplexing of multi-
ple signals into one signal, and periodic spectrum-
spreading and other coding operations to enhance
the signal’s tolerance to noise and interference and
to increase utilization of transmission channel
capacity.

The contribution of this paper is intended to be
primarily conceptual and to be accessible to a wide
audience. Consequently, mathematical tech-
nicalities are minimized and the level of rigor in
derivations and demonstrations is kept relatively
low. Questions of existence of mathematical quan-
tities, such as limits, are dealt with only by giving
examples. Proofs are not attempted. Although this
is somewhat uncommon for papers dealing in a
nonsuperficial way with concepts of ergodicity and
mathematical isomorphisms for stochastic proces-
ses, it is justified by the fact that the concepts dealt
with here are of considerable value to practically
oriented engineers and scientists, many of whom
would not appreciate a more rigorous and
necessarily more technical treatment. The most
complete study of nonstochastic probabilistic
models for single time-series in the engineering
and applied mathematics literature is the chapter
by Hofstetter [23], which is devoted entirely to the
subject of fraction-of-time probabilistic models of
stationary and related time-series. The style adop-
ted in this paper is much like that in [23]. Although
the mathematical discussion is not rigorous, in
many cases the heuristic or formal arguments that
are given serve as guidelines along which rigorous
proofs can be constructed.

In Section 2, an explicit version of Wold’s
isomorphism is described, and in Section 3 it is
generalized to accommodate time-series with peri-
odic structure corresponding to a single period. In
Section 4, the stochastic framework is set aside
and the concept of sine-wave-component extrac-
tion is introduced and used to obtain nonstochastic
temporal probability models for time-series with
periodic structure corresponding to multiple
incommensurate periodicities. In Section 5, these

general concepts are made specific for the case of
Gaussian real- and complex-valued time-series. In
Section 6 the discrete-time counterparts of the con-
tinuous-time temporal probability models are pre-
sented and the relationships between these two
types of models, when the discrete time-series is
obtained by time sampling a continuous time-
series, are explained.

The objective of this paper can be interpreted
as that of presénting the strict-sense theoretical
counterpart of the wide-sense theory of non-
stochastic modeling of time-series that exhibit
cyclostationarity, which was first presented in [9].

2. Wold’s isomorphism

An isomorphism is a distance-preserving trans-
formation between two metric spaces. Wold [31]
introduced the concept of an isomorphism'
between a set of time-series, here obtained from a
set of measurement functions applied to an under-
lying persistent time-series, and an analogous set
of jointly ergodic stationary stochastic processes,
here obtained from the same set of measurement
functions applied to an underlying ergodic station-
ary process. The set of measurement functions
considered here is the set of all finite-mean-square
(where mean refers to time average) functions of
finite sets of time translates of the underlying time-
series, say x(t). An example of such a time-series
obtained from a measurement function is

y(t)=g[x(t+1t), x(t+1)]
=x(t+t)x(t+1,),

! Wold [31] worked with only discrete time-series, but we
shall consider their continuous-time counterparts in this paper.
More importantly, Wold established that there is a complete
duality between the second-order functional theory of single
stationary time-series and the second-order stochastic theory
of stationary processes, and he called this duality an isomorph-
ism, but he did not specify any isomorphic mapping between
time-series and stochastic processes, as we shall do in this
paper. He also did not point out that both the duality and the
isomorphism apply for any finite order, not just second order.
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provided that

1 (22
(y*(1))# lim —J y(t) de <o (1)
Zeo 7 ~z/2

The metric for the set of time-series is the root-
mean-square difference, i.e, the distance between
y(t) and z(t) is

(Ly(1)=2() ).

The same set of measurement functions gener-
ates the set of stochastic processes of interest here.
For example, for the underlying stochastic process
X (1), the analog of the preceding example is

Y(t)=g[X(t+1), X(t+1,)]
=X(+1)X(t+1,),
provided that
E{Y?*()} <o, (2)

where E{} denotes probabilistic expectation.
Using the fundamental theorem of expectation,
the finite-mean-square condition (2) can be
expressed in terms of the joint probability densities
for {X(t+1t), X(t+t),..., X(t+1ty)} In this
example, for which M =2, we have

E{Y*(1)}= H g (v, w)

fo(t+t1)X(t+t2)(U9 w) dv dw,

where fx(ire)x+1(0, W) is the joint probability
density function for X (¢+1t,) and X (¢+1t,). This
function is independent of t because of the
assumed stationarity of X (¢). The metric for this
set of stochastic processes is the root-mean-square
difference (where mean refers to expected value),
i.e., the distance between Y(¢) and Z(t) is

E{[Y(1) - Z()P}"2

The isomorphic mapping between these two
metric spaces maps a single time series y(t) into
an ensemble of random samples {y(t, s)} (indexed
by s) of a hypothetical stochastic process Y(1).
The mapping is simply

y(t, s)=y(t+s). (3)

Signal Processing

Assuming for the moment that {y (¢, s)} can indeed
be interpreted as an ensemble of random samples,
and invoking the law of large numbers for a set of
random samples, we conclude that the ensemble
average for the process Y(t) equals its expected
value (with probability equal to unity):
v/2

lim — (¢, s) ds =E{Y?(¢)}. (4)

Voo -v/2
If y(t) were a sample from an ergodic stationary
process Y (t), then the validity of (4)—the left
member of which is actually a time average because
of (3)—is guaranteed (with probability equal to
unity) by the ergodic theorem.

To show that (3) produces an isomorphism, we
must show that it preserves distances. We can
denote the time-series obtained by taking the
difference of two time-series y,(t) and y,(t) by y(¢)
and, similarly, Y ()£ Y,(t)— Y,(t). We need to
show that

E{Y?*(1)} =(y*(1)). (%)

It follows from (1), (3) and (4) that this is
equivalent to showing that

(t+ )= (6)

That is, we must show that the time-average is
independent of time translation. This is verified
under mild conditions on y(t) in [30] (viz., that
the autocorrelation (y*(t+ 7/2)y*(t—17/2)) exists
and is continuous at 7=0).

Examples of time-series x(¢) for which the pre-
ceding is valid for all measurement time-series y(t)
in the class considered include (with probability
equal to unity) any of the sample paths of any
ergodic stationary stochastic process. A class of
examples that is specified independently of
stochastic processes is presented in Section 5 (see
also [23].)

To gain more insight into this isomorphism, we
observe that by considering the particular time-
series of measurements (again letting M =2 as an
example)

z(t)é{

1, x(t+t)<v and x(t+1t,)<w,
0, otherwise;

(7)
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in the metric space, we obtain a mean-square value
(z%(t)), which is equal to the mean value

(z(1) =

in this case, that has the interpretation of being
the fraction-of-time that x(¢+¢%)<v and x(t+
t,) < w.Thatis, ﬁx( t)x(1»(0, W) is a valid joint cumu-
lative probability distribution function [23]. Thus,
the isomorphism reveals that we have a one-to-one
correspondence between the probability distribu-
tions, such as Fx(,,)x(,(v, w), and the fraction-of-
time distributions, such as Is‘x(,l)x(,z)(v, w).

As an example, we consider the pulse-ampli-
tude-modulated signal

x(t) =Y a,p(t—nT),

x(tl)x(tz)(v w) (8)

where P(f), the Fourier transform of p(t), is given
by

[1+cos(afT)], |fI<1/T,
0, fI>1/T.

A time-series representing this signal is shown in
Fig. 1(a), and the measurement time-series z(¢) in
(7) and its average value (8) are shown in Fig. 1(b)
for v=1/2, w=-1/2, =0 and t,= T/2. This
average value can be interpreted as one point on
the surface above the v-w plane described by the
function ﬁx(,l)x(tl)(v, w) for fixed ¢, and t,.

The derivative of the cumulative joint prob-
ability distribution,

P(f)= {

> A A
av_aw Fx(tl)x(tz)(v, W) é.f;c(tl)x(tz)(u’ W), (9)

is a valid joint probability density function,
Moreover, (7)-(9) yields the following characteriz-
ation of time averages:

(glx(t+1), x(t+ 1)1
= JJ g(0, W) Frciein(v w) dodw.  (10)
That is, the time-average of a measurement on a

time-series can be interpreted as an expected value
with respect to the fraction-of-time density. This

x(t)
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VARRWATAY)

2 1z(t)
1
ol
0 16 48 80 112 144 176 208 240 272 t
-1
P (o)
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o
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Fig. 1. Illustration of measurement time-series and its com-
ponents: (a) pulse-amplitude-modulated signal x(¢) with
period T=16; (b) measurement time-series z(t) in (7), for
t,=0,t,=T/2, v=1/2, w=—1/2, and its average value (con-
stant component) (z(#))=0.388; (c) measurement time-series
z(t) in (7) and the real part of its sine-wave component (z(t))* =
0.0655 with frequency a =1/ T (two different scales are super-
' imposed in this graph).

can be verified formally by substituting (7) into
(8), the result of this into (9), and the result of this
into (10); that is, by first reexpressing (7) as

z()=u[v—x(t+t)]u[w—x(t+1,)], (7"
where u( ) is the unit step function

b

v>0
v=0;
Vol. 23, No. 3, June 1991
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we obtain from (7)-(9)

JJ’ g(va W).fx(tl)x(tz)(v, W) dov dw

rr

82
= v, W
] ] g(v, )auaw

(u[v—x(t+1)]

Xu[w—x(i+1t)])dvdw

= || g(v, w)blvo—x(t+1)]

X 8[w—x(t+1t)])dodw

<JJ g(v,w)d[v—x(t+1)]

x 8[w—x(t+1,)]dv dw>

=(glx(t+1), x(1+ )], (11)

where 8(v) =du(v)/dv is the Dirac delta. This is,
of course, only a formal manipulation since we
have freely interchanged the order of execution of
limits and integrals, not to mention our use of the
Dirac delta.

The characterization (10) emphasizes the com-
plete duality of concepts (and theory) that exists
between time-averaged measurements on a single
time-series and expected values of measurements
on an ergodic stationary stochastic process. It
enables us to conceive of a complete probabilistic
model for a single time series and to apply prob-
abilistic concepts and probability theory to single
time-series. Moreover, the characterization (10)
does not require the existence of the isomorphic
stochastic process in (our explicit version of)
Wold’s isomorphism, since this characterization
exists in its own right as long as the time averages
it involves exist. Thus, it totally frees the mind
from the abstract stochastic framework. This idea
is fully developed in [23]. The objective in this
paper is to generalize both Wold’s isomorphism
and the characterization (10) (for arbitrary finite
dimension M) from stationary time-series to time-
series that exhibit cyclostationarity with either a
single period or multiple incommensurate periods.
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3. Wold’s isomorphism——generalized

If a persistent time-series of interest contains
periodic structure with period T, we can obtain an
isomorphism analogous to (our explicit version of)
Wold’s from the mapping

y(t, s)=y(t+s),

s=nT for n=0,£1,£2,....

(12)

In this case, (4) must be replaced with

N

Jim —— S/TE_N y2(t, s) =E{Y*(1)}, (13)

and (1) must be replaced with

N

lm s X YT =0 (4
It is obvious that (12)-(14) satisfy the isomorphic
property: B{Y?(t)}=(»*(t))r provided only that
(y*(t+5))r=(¥*(t))1 for s = nT analogous to (6).
However, in this case, the isomorphic stochastic
process is cycloergodic [4] (period-synchronized
time-averages of random variables, such as (14),
from the process converge with probability equal
to unity) and cyclostationary with period T [8]
(probability distributions are invariant to only
translations that are integer multiples of the period
T), rather than ergodic and stationary. For
example, E{Y?*(t+s)}=E{Y?(¢)} in general only
for s =nT. Also, the fraction-of-time distributions
are nonstationary in the same sense, that is, they
are cyclostationary rather than stationary. For
example,

ﬁx(t1+nT)x(t2+nT);TE Ax(tl)x(tz);T, (15)
n=0,%x1,£2,....,
where (using (7) as in (8))
ﬁx(tl)x(tz);T(Ua w)
1 N
A lim —— Y z(t+nT). (16)

N->x2N+1 n=—N

If there is no underlying periodic structure with
period T in x(t), then the cyclostationarity of the
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model degenerates into stationarity:

Fx(t1+t)x(t2+t);TE Fx(tl)x(tz);T’
(17)
—00 < t <00,

But if there is indeed periodic structure present,
then (17) is in general invalid except for ¢t =nT as
in (15).

The cyclostationary fraction-of-time model (16)
and the concept of cycloergodicity were in use
explicitly in the field of communications at least
as early as the mid 1950s (cf. [3]) and are currently
being used explicitly in both analytical and experi-
mental studies of the statistical behavior of com-
munication systems (cf. [27]). However, the only
attempt at a general theory of cycloergodicity,
which accommodates multiple incommensurate
periodicities, did not appear until recently [4].

Unfortunately, this straightforward method of
generalizing Wold’s isomorphism and fraction-of-
time distributions does not work for time-series
with multiple incommensurate periodicities. Only
one periodicity can be reflected in the fraction-of-
time model obtained in this way. Furthermore, this
method does not apply to discrete time-series with
only a single periodicity unless the period T is an
integer multiple of the time increment T, between
discrete-time samples in the series. In the next
section, these limitations are circumvented by tak-
ing another approach. This alternative approach
also circumvents the need for the existence of an
isomorphic stochastic process.

4. Fraction-of-time probability—generalized

Let us now set aside the concept of a stochastic
process, and pursue the dual concept of non-
stochastic fraction-of-time probability. As briefly
explained in Section 2 (and thoroughly explained
and illustrated in [23]), we can in principle obtain
a complete fraction-of-time probabilistic model for
a persistent time-series in terms of the finite-order

joint fraction-of-time distributions defined by

ﬁx(,)(v)é< 11 u[vm—x(t+s+tm)]>, (18)

m=1
M=1,2,3,...,

where () is the continuous average over the tem-
poral phase parameter s and

x()={x(t+1), x(t+1t),..., x(t+t,)}

The corresponding finite-order joint fraction-of-
time densities are given by
aM

Frn(@) =3 Foo(o). (19)

01802 A SUM
The average value of any (finite mean-square) finite
dimensional measurement function

y(1)=g[x(1)]

can be obtained using the following fundamental
theorem of averaging:

(glx(D)] =J' g(v)fcn(v) do. (20)

Under mild conditions on y(t) [30] (continuity of
the autocorrelation of y*(t)), all such averages are
independent of time translation. That is, the frac-
tion-of-time probabilistic model is stationary:

.f:t(t+s) Ef;:(z), —00 < § << 00,

One way to generalize this idea from stationary
models to models that exhibit cyclostationarity is
to reinterpret the averaging operation as a con-
stant-component-extraction operation, and then
generalize this to sine-wave-component extraction.
This is accomplished in the remainder of this
section.

4.1. Constant-component extraction

The time-averaging operation

1 (22

(y(t))= lim —J y(t+s)ds 21)
z>0Z ) 7z (

extracts the constant component of its argument.

Vol. 23, No. 3, June 1991
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That is, the residual time-series
r() £ y(1) = (y(1))

contains no constant component in the sense that
it is orthogonal to all constant time-series,

1 w/2
lim — J‘ r(t)cdt=0, c¢=constant.

W00 —w/2
Furthermore, if we assume that the integral in (21)
converges in temporal mean square,

1
lim lim —
Z->00 W0 W

w/2 1 z/2 2
xj [EJ y(t-l—s)ds—(y(t))] dt=0,

-w/2 -z/2

to its pointwise limit (y(¢)), then it can be shown
[12, Chapter 5] that the spectral density of the
time-averaged power, or time-average power spec-
tral density, of the residual contains no spectral
line (no Dirac delta) at zero frequency.

From this observation, we see that the theory of

stationary fraction-of-time probability (or tem-
poral probability) deals with nothing more than
the constant components of measurements y(t) =
g[x(t)] on a time-series x(t). In fact, the time-
average counterpart (20) of the fundamental
theorem of expectation is really a fundamental
theorem of constant-component extraction. Given
knowledge of the Mth order fraction-of-time
density function (or temporal probability density
function) for a time-series x(t), we can extract the
- constant component of any (finite mean-square)
M-dimensional measurement function g[x(¢)] by
performing the integration (20).

As an example, the constant component of the
measurement time-series (7) for the pulse-ampli-
tude-modulated signal described in Section 2 is
shown as the dashed line in Fig. 1(b).

4.2. Sine-wave-component extraction

For time-series with periodic structure, we are
often interested not only in constant components
of measurements, but also in sine-wave com-
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poneﬂts. For example, in the study of modulated
signals, the sine-wave components of the lag-
product measurement

glx()]=x(t+7/2)x(t—17/2)

are quite important since they can be exploited for
various signal processing tasks, such as timing
synchronization [11], detection [16], time-
difference estimation [20], source-direction esti-
mation [29], and signal waveform extraction [1,
5] (cf. [12, Chapter 14]). Consequently, let us
define the sine-wave extraction operation for
frequency « as follows:

zZ/2

w2 tim L[y

-z/2

x exp(—i2was) ds. (22)

It can easily be shown (by substituting r(¢) into
(22)) that the residual time-series

r(t) £ y(0) = ()"

contains no sine-wave component with frequency
« in the sense that it is orthogonal to all sine waves
of frequency «, regardless of their phase ¢;

1 (W2
lim W J r(t) exp(i2mat+i¢) dt=0.

—-w/2

Furthermore, if we assume that the integral in (22)
converges in temporal mean square to its pointwise
limit, then it can be shown that the time-average
power spectral density of the residual contains no
spectral line at frequency « [12, Chapter 15].

By analogy with the definition (18) of the M-th
order fraction-of-time distribution function, or
temporal distribution function, for constant-
component extraction, the Mth order temporal
distribution function for sine-wave-component
extraction is defined by

M

1:"5<t)(v)é< II u[vm—x(t+t;n)]> . (23)

m=1
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Although F 2() is not a valid probability distribu-
tion function (except for a =0, since {)°=()), it
is a valid complex-valued distribution function. (It
takes on values only in the unit disc in the complex
plane and has a magnitude that is a nondecreasing
function that ranges from zero to unity.) Moreover,
it does yield a fundamental theorem of sine-wave
extraction analogous to (20). That is, the sine-wave
component with frequency a of any (finite mean-
square) finite-dimensional function g( ) of x(¢) can
be extracted by performing the integration

o

<g[x<t>]>a=f_ g(0) fi(v) do, (24)
where
Freolo) 2 5 (o). (25)

A formal verification of the validity of (24) follows
by analogy with the formal verification (11) given
in Section 2.

As an example, the real part of the sine-wave
component, with frequency a=1/T, of the
measurement time-series (7) for the pulse-ampli-
tude-modulated signal described in Section 2 is
shown in Fig. 1(c).

4.3. Periodic-component extraction

Although the sine-wave extraction operation
does lead to a fundamental theorem of sine-wave
extraction, it does not provide us with a temporal-
probability model for the time-series. But we can
obtain such a model by combining individual-sine-
wave extraction operations into a composite-sine-
wave extraction, or periodic-component extrac-
tion, operation as follows:

Y()r L), (26)

where the sum ranges over all integer multiples p
of the fundamental frequency 1/ T corresponding
to the period T of interest (¢ =p/T).

Another expression for (26) can be obtained
from the following formal manipulation®:

o zZ/2
e I

=—c0 -z/2

x exp(—i2wps/ T) ds

1 (22
= lim EJ y(t+s)

Z—>00 -z/2

x Y exp(—i2mps/T)ds

p=—00

T (22 o
=limzj y(t+s) Y 8(s—nT)ds

Z—>00 -z/2 n=—co

N

= i +nT).
MmNt 2, et (27)

From this, we see that (26) is the Fourier-series
expansion of (27).

Unfortunately, the periodic-component-extrac-
tion operation (27) cannot be applied to a discrete-
time-series with sampling increment T, unless T
and T, are commensurate. However, the alterna-
tive but equivalent operation (26) (with the integral
in () replaced by sum) can indeed be applied
regardless of the values T, and T. The discrete-time
counterpart of (26) is

A .
)T = lim
alr pe[—TE/:z,T/z) K-02K+1

K
X X Ynei exp(=i2mpk/T).  (28)

This is pursued in Section 6.

The Mth order joint temporal-probability distri-
bution for a time-series x(¢), based on the periodic-
component-extraction operation (26)-(27), is
defined by

ﬁx(t);T(v)é< ﬁ:l u[vm_x(t+tm)]> (29)

T
and it is cyclostationary (under mild conditions
on the argument of ( );) in the sense that it varies

2 A more rigorous derivation of this synchronized averaging
identity (27) is given in [12, Chapter 10].
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periodically in ¢ with period T ((29) is identical
to (16) for M =2). It yields the following funda-
mental theorem of periodic-component extraction:

(glx(n)])r= j g(0) fr(0) do,  (30)
where

ry A_iM_ﬁ‘ (31)

fx(t);T(”)—avl Oty x(t);T(v)-

A formal verification of the validity of (30) can be
obtained by analogy with the formal verification
(11) given in Section 2.

As an example, if x(¢) were a sample path from
a cycloergodic cyclostationary stochastic process,
then (29) would equal (with probability equal to
unity) the stochastic-probability distribution for
the process [4]. However, if x(t) were a sample
path from an ergodic stationary process, then (29)
would yield the stationary distribution of that pro-
cess, regardless of the value of T. Also, if x(t) were
a sample path from a cycloergodic cyclostationary
process with period incommensurate with 7, then
(29) would yield the stationary component
(average over the time-translation, or phase, para-
meter) of the cyclostationary stochastic-proba-
bility distribution (cf.[12, Chapter 15]). Analogous
remarks apply to the class of Gaussian time-series
that are defined independently of stochastic pro-
cesses in Section 5.

We see that for a given time-series with periodic
structure, we can in principle define either a
stationary temporal-probability model based on
the constant-component extraction operation () or
a cyclostationary temporal-probability model
based on the periodic-component extraction
operation ()r. Furthermore, we can obtain the
former from the latter by time averaging since

(1) = (2) (32)

The validity of (32) can be seen by substituting
(22) into (26) and the result into the left member
of (32), and then interchanging the order of the
sum over {a} and the operation ().

Signal Processing

As a result of (32), we obtain

ﬁx(t)(v) = <ﬁx(t);T(v)>

= llm J’oo ﬁx(t+s);T(v)f(s; Z) dsa (33)

Z 00

where

1/2, |s|<Z/2,

1s; Z)é{o, Is|>z/2.

We can interpret I:"x(,ﬂ);T(v) as a phase-condi-
tional probability distribution and f(s; Z) as the
conditioning probability density. Then, from the
definition of conditional probability, the integrand
in (33) is a joint probability from which the mar-
ginal probability is obtained by integration over
the phase parameter s. This technique of obtaining
the stationary model from the cyclostationary
model is called phase randomization and is useful
when the periodic structure in the time-series is of
no interest (cf. [7]).

4.4. Almost-periodic-component extraction

A function a(t) that is the sum (or limit of partial
sums) of periodic functions with incommensurate
periods is said to be almost periodic® [6]. Such a
function can be represented by a Fourier series

a(t)=Y a, exp(i2wat) (34)

(when this series converges), where a ranges over
the integer multiples of each and every funda-
mental frequency 1/ T corresponding to each and
every fundamental period T. The Fourier
coeflicients in this series are given by

1 (27
a,=lim — J a(s) exp(—i2mwas) ds. (35)
Z> -z/2 .

If a time-series x(t) exhibits periodic structure
with multiple incommensurate periods (e.g., x(f) =
a(t)b(t), where b(t) is a sample path from an
ergodic stationary process), then we can define a
distinct  cyclostationary  temporal-probability

> The generalized definition that includes discontinuous
functions is needed here.
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model for each period T, as well as a stationary
temporal-probability model. Moreover, we can
define a composite almost cyclostationary model
that takes into account all periodic structure in the
time-series. This is accomplished through use of
the composite-sine-wave extraction, or almost-
periodic-component extraction, operation defined
by

YOYTET (1), (36)

where in contrast to (26) the sum in (36) ranges
over the integer multiples of each and every funda-
mental frequency 1/ T associated with the sine-
wave components of y(z).

By decomposing the sum (36) into component
sums, each of which ranges over only the integer
maultiples of one fundamental frequency, we obtain
the identity

YN =GOy, (37)
where

(y(t))mé(J’(t))ﬂ“;[<y(t)>r—<y(t)'>], (38)

in which the sum ranges over all incommensurate
periods {T} associated with the periodic com-
ponents of y(t). The a@ =0 term (y(t))=(y(1))° is
subtracted from each periodic term since it would
otherwise be included in the overall sum more than
once.

Either (36) or (38) can be used to define an Mth
order temporal-probability distribution through
use of (23) and (29). Specifically, the definition

M {a}
ﬁi‘?%(v)é< II u[vm—X(t+tm)]> (39)

m=1
leads to

Flh () =Y F2(v), (40)

and the equivalent definition

ﬁx(,);m(v)é<ﬁ M[Um—x(t+lm)]>{ } (41)

m=1

leads to
ﬁx(t);{T}(”) = ﬁx(r)(l’)
+3 [Fo.r(0) = B (0)]. - (42)
T

Since it is by no means obvious that either (40) or
(42) is indeed a valid probability distribution
function, a proof of this proposition is given in
Appendix A.

The almost cyclostationary temporal-probability
model (40) or (42) for a time-series x(t) character-
izes all sine-wave components of all (finite mean-
square) finite-dimensional functions g() of time
translates {x(¢+t,,)}. This follows from the funda-
mental theorem of almost-periodic-component
extraction, which is embodied in the formula

<g[x<t>]>{“>=j g(0)fh(v) do. 43)
As before, a formal verification of the validity of
(43) can be obtained by analogy with the formal
verification (11) given in Section 2.

As generalizations of the identity (32), we have
the three identities

(D)) = (D)), (44a)
(D)) =y (), (44b)
(y(epth = ()™ (44c)

The identity (44b) reveals that we can obtain a
cyclostationary model from the almost cyclo-
stationary model by averaging:

ﬁx(l);T(v) = (ﬁx(o;{r}(l’»r

— l'
e IN+1

N A
X Z Fx(t+nT);{T}(v)~ (45)
n=—N

By reexpressing (45) as

o0

ﬁx(z);r(l’) = ;1_1)130 J ﬁx(t+s);{T}(v)fT(S; Z) ds,

_ (46)
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where fr(s; Z) is defined by

1
(s 2y 2171z T 2 06Ty IsI=2/2,

0, otherwise,
(47)

in which [Z/ T] is the integer part of Z/ T, we can
interpret 13,( +s):{73(v) as a phase-conditional prob-
ability distribution and fr(s; Z) as the condition-
ing probability density, Then, from the definition
of conditional probability, the integrand in (46) is
a joint probability from which the marginal is
obtained by integration over the phase parameter
s. This is a phase randomization procedure.
Similarly, identity (44a) reveals that we can obtain
the stationary model from the almost cyclostation-
ary model by phase randomization, as in (33):

Foty(0) = (g (0))

= lim J‘ FA‘x(t+s);{T}(v)f(s’ Z) dS, (48)

Z»o ) _
where

1/Z, |s|<Z/2,

fs;2) é{0, Is|>Z/2.

This subsection is concluded with a few words
about terminology. If I:"x(,); r= 13;(,)$ 0 for all
periods T, then x(¢) is said to be a purely stationary
time-series (of order M), and if ﬁx(t);T?é 13,(,) for
one and only one fundamental period T, then x(?)
is said to be purely cyclostationary (of order M).
Otherwise, x(t) is said to be almost cyclostationary
(of order M), assuming Fy,,(ry#0.

4.5. Temporal independence

By analogy with the definition of statistical
independence for stochastic processes, two time-
series x,(t) and x,(t) are said to be temporally
independent if and only if all their joint temporal-
probability distributions factor according to

Fe0,e0:m(0, W)
= xl(t);{T}(v)sz(t);{T}(w) (49)

for all orders M and N and all sets of time points

Signal Processing

{ti,ta,..., tary and {s1, 55, ..., sy} for x,(¢) and
x,(t), respectively. It follows from the almost-
periodic-component-extraction definition (41) and
the fundamental theorem of almost-periodic-
component extraction £43) that (49) implies that

(gl[xl(t)]gz[xZ( t)]){T}
= (gl[xl(t)]){T}<g2[x2(t)]>{T}, (50)

which simply means that the almost periodic com-
ponent of the product of any (finite mean-square)
finite-dimensional functions g,( ) and g,( ), of the
time-series x,(t) and x,(t), is equal to the product
of corresponding almost periodic components.
Since the almost periodic component of the prod-
uct of an almost periodic function and any other
function is the product of the almost periodic
function and the almost periodic component of
the other function, it follows from (50) that every
almost periodic (not just almost cyclostationary)
time-series is temporally independent of every
time-series, including itself. The stochastic-proba-
bility counterpart of this is that every stochastic
process that equals any deterministic function with
probability equal to one is statistically independent
of every stochastic process, including itself.

It must be stressed that temporal independence
relative to a temporal-probability model for a given
time-series that incorporates a certain set of sine-
wave frequencies S, ={a} does not imply temporal
independence relative to a temporal-probability
model for the same time-series that incorporates
a proper subset S,< S, of sine-wave frequencies.
This follows from the fact that conditional
independence does not imply unconditional
independence. Thus, for example, two time-series
can be temporally independent relative to their
cyclostationary temporal-probability model while
being temporally dependent relative to their
stationary temporal-probability model.

4.6. Examples

Product modulation
Let us consider the product time-series

x(1)=a(t)b(1), (51)
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where a(t) is a positive-valued almost periodic
function. Then a(t) is temporally independent of
b(t) and can, therefore, be treated as a time-variant
scale factor in which case we have*

fx(z);r(l’)
B 1
Ta(t+t) o a(t+ty)
A (2 Unm
>(f"(')<a(t+t1)"'"a(t+tM)>' (52)

If we desire the stationary temporal-probability
model, we can simply average (52) as in (33), or
if we desire a cyclostationary model corresponding
to a specific period T, we can simply synchronously
average (52) as in (45). The two time-series a(t)
and b(t) are not temporally independent with
respect to the stationary model or the cyclostation-
ary models unless a(t) is constant or periodic
(period = T), respectively.

Almost periodic time-series
Let us consider the almost periodic time-series

x(t)=a(t)=Y a, exp(i2mat). (53)

The event indicator function

202 TT ulom—x(i+ )]

m=1

is almost periodic in this case. Thus, it equals its
own almost periodic component,

A

F.(h.iry(v) = z(1).

Formal differentiation yields
” M
Fewyry(©) =TI 8[vp, —x(1+1,)]. (54)
m=1
Using the scaling property of the Dirac delta,

s(v—a)= (1/]al)8(v/a—1), shows that this result
agrees with the result of the previous example for

4 This result is derived more methodically in [12, Chapter
15]. :

the special case b(¢t)=1, in which case

Joy(w) = T=I1 8(wy —1).

If we desire a stationary model for x(t), then we
obtain a nondegenerate temporal-probability
density by substituting (54) into (33). For instance,
if x(t) = ag+ a; sin w,¢, then it can be shown that

fo<t)(U)
_ {“[“Hv a1,

o, otherwise.

v— <
| aOI iallg (55)

It is clear from this simple example that very
different temporal-probability models can be
obtained from the same time-series, depending on
how the periodic structure is dealt with. To illus-
trate this, the first-order cyclostationary model (54)
(with M =1) for this sine-wave-plus-a-constant
time-series is graphed in Fig. 2(a), and the corre-

1 1?X(t);T(V) (a)
—7 t
v
£ (b)
/ t
>V

Fig. 2. Graphs of first order probability density functions: (a)
for the cyclostationary model (54); (b) for the stationary model
(55).
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sponding stationary model (55) is graphed in Fig.
2(b).

4.7. Generalized fundamental theorem of almost-
periodic-component extraction

For some applications, measurement functions
change with time; that is, g[x(t)] becomes
g[t, x(¢)]. Fortunately, the fundamental theorem
of almost-periodic-component extraction, (43), can
be generalized to accommodate almost periodic
time-variation of g(¢, ) with ¢. To demonstrate this,
we proceed as follows with the right member of
(43), generalized by replacement of g( ) with g(¢, ),
to obtain

J g(1,v) fith(v) dv

(f o M {a)
= g(t,v)<H 6[vm—x(t+tm)]> do

m=1

oJ —

[ oo M {a}
- <g<t,v> i stum—x<t+tm>]> do

oJ —co m=1

(* oo

M {a}
= <g[t,x(t)] ]__[ 8[vm—x(t+tm)]> do

o/ —00

o {a}
<g[t, x(t)]J S[v, —x(t+1t,)] dv>
=(g[1, x()]). (56)

In (56), we have followed the same steps as in the
formal verification (11), except that in order to
obtain the second equality in (56), we invoked the
result (cf. Section 4.5) that the almost periodic
component of the product of any time-series
(ZZ:I 8[v,, —x(t+1t,)] in this case) and an almost
periodic time-series (g(f, v) in this case) is the
product of the almost periodic time-series and the
almost periodic component of the other time-
series.

It is emphasized that generalizations of the
fundamental theorems of component extraction
(20), (24) and (30) that are analogous to (56) are,
in general, not valid. That is, g( ) must, in general,
be time-invariant in (20) and (24), and it must be
periodic with period T in (30).

Signal Processing

5. Gaussian almost cyclostationary
temporal-probability models

In this section, we demonstrate that fraction-of-
time probability models exist, independently of
stochastic processes, by specifying a particular
class of models without any reference to stochastic
processes.

5.1. Real-valued time-series

An almost cyclostationary time-series x(t) is
defined to be Gaussian if and only if for every
positive integer M and every M time points
{t:, t5,...., tp}, every linear combination of the
M time translates {x(t+1t;), x(t+¢),...,x(t+

tM )}, say

YO = Y omx(t+ 1) = w'x(D), (57)

m=1

has a first-order Gaussian temporal-probability
density defined in terms of ( );7:

N 1
Sroum(v) OV

X exp{—_—[—gg;?t(Tt)]z}. (58)

It can be shown (cf. [8, Chapter 2]) using (58) that
(59a)
(59b)

(1) =y (),
(1) =[y() - O],

which are the almost periodically time-variant tem-
poral mean and temporal standard deviation of
the time-series y(¢). From this definition, it is easily
shown [12, Chapter 15] that the joint temporal
characteristic function for x(t), defined by

P (@) 2 (expli @'x(0)])n, (60)
is given by

P, (@) =explio' My~ oK@}, (61)
where the M-vector Mx(,) has pth element

M, (p) 2 (x(1+1,))1, (62)
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and the M x M matrix I?x(,) has pg-th element

K.o(p, @) 2{[x(t+18,)— My(p)]
X [x(t+t,) — My (@) Diry,  (63)

which are the almost periodically time-variant tem-
poral means and temporal covariances of x(t),
respectively. From the joint temporal characteristic
function, we can obtain the joint temporal-proba-
bility density by M-dimensional Fourier transfor-
mation (cf. [8, Chapter 2]). Also, we can obtain
all the temporal moments for x(¢) by differenti-
ation of @x(,)(w) (as is well-known in probability
theory, cf. [8, Chapter 2]), and these moments are
given explicitly in terms of (62) and (63) by Isserlis’
formula [8, Chapter 5]. Thus, the temporal-proba-
bility model for a Gaussian time-series is fully
specified by specifying only the temporal mean
(62) and temporal covariance (63).

This particular definition of a Gaussian time-
series makes it obvious that the Gaussian property
is preserved under linear transformation such as
(57). That is, given that x(¢t) is a Gaussian time-
series, so is y(¢) (not just to first order as in (58)).
By taking the limit as M - oo, this property can be
used to show that continuous-time time-variant
linear transformations such as

y(t)= Jw h(t, u)x(u) du, (64)

also preserve the Gaussian property of an almost
cyclostationary time-series, provided that h(t, t —
7) is almost periodic in ¢ for each .

From the preceding, we see that the theory of

Gaussian almost cyclostationary time-series is -

completely dual to the theory of Gaussian stochas-
tic processes that are almost cyclostationary or, as
special cases, cyclostationary or stationary (cf.
[8]). However, it is emphasized that these three
types of temporal-probability models are mutually
exclusive. That is, if the almost cyclostationary
model for x(t) is Gaussian (and is not degenerate
in the sense that it is not purely cyclostationary or
purely stationary), then neither the cyclostationary
models nor the stationary model for x(¢) can be

Gaussian (because uniform mixtures of noniden-
tical Gaussian variates are non-Gaussian—cf. (33)
and (46)). This fact illustrates that the ubiquitous
assumption that time-series can be modeled as
Gaussian can be contradictory especially when
phase randomization techniques (such as (33) and
(46)) are used as is often done with stochastic
process models for modulated signals [7].

As an example of one of the pitfalls of in-
appropriate Gaussian modelling, it is shown in [5;
12, Chapter 15] that the measurement time-series
at the output of a running (sliding-window) spec-
trum analyzer, with a Gaussian almost cyclo-
stationary time-series that does not exhibit spectral
lines at the input, exhibits spectral lines that cannot
be predicted using the stationary Gaussian model.
Furthermore, it is shown that the variability of the
measurement time-series can be substantially
different from that predicted with the stationary
Gaussian model [5;10; 12, Chapter 15]. Other
pitfalls associated with phase-randomization tech-
niques are described in [13].

Example: modulated Gaussian time-series

It follows from the preceding discussion that if the
time-series factor b(t) in the product modulation
example in Section 4 is Gaussian, then so is the
modulated time-series x(¢) in (51). The temporal-
probability density for b(z) can be obtained from
(61)-(63) (with x(t) there replaced by b(t)) and
the temporal-probability density for x(¢) can be
obtained from (52).

5.2. Complex-valued time-series

Analysis in the field of signal processing is often
simplified considerably through the use of complex
envelope and analytic signal representations. Con-
sequently, the models described up to this point
need to be generalized from real-valued to com-
plex-valued time-series. In principle, this requires
nothing more than reinterpreting complex-valued
time-series as ordered pairs of real time-series, in
which the elements of the pair are the real and
imaginary parts. Nevertheless, it is shown in [5]
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that this process of reinterpretation can be handled
in a particularly convenient way through the use
of the unitary transformation

1[ 1 1
Ji— =JH 65
-ﬁ[41iJ : (65)

where I is the M x M identity matrix and J " is
the Hermitian transpose of the inverse of J. The
transformation, when applied to the complex
extended vector

1 [ x(2) ]
t(1) & — 66
202 [x* o (66)
consisting of x(¢) and its conjugate x*(¢), produces
the real extended vector

s[5 @
that is,

#(1) = JE(1) | (68)
and

(1) = JH%(e). (69)

The required generalization of the temporal-proba-
bility models for real-valued time-series described
in the previous sections to the corresponding
models for complex-valued time-series is carried
out in [5]. Only the special case of Gaussian com-
plex-valued time-series is briefly discussed here. It
can be shown that the characteristic functions for
the extended vectors are related by

1f’;z(z)(w) = 'f’f(t)(J*w), (70)

and for a Gaussian time-series (real and imaginary
parts jointy Gaussian) this yields

‘f’f(z)(w) = CXP{_%W/KE(:):;*(:)W +iw,Mi(r)}, (71)

where
Ea 1 i“' % IA(
K- o A xﬁt)x (1) . x(t) ] 7
COEO) 2[ K%  Kiowo (72)
and
. 1 [ M,
M. A2 — Ax(t)]_ 73
0 ‘/E[Mf(t) ( )

Signal Processing

In (72), ﬁx(,) and I?x(,)x*(,) are defined by
Koo 2 (x(0)x (1)) — Moy M), (74)
Ry 2 (x(D' (0 — MMy (75)

In the Gaussian stochastic-probability models
typically found in the literature (e.g., [24-26, 28]
it is assumed that the cross-covariance (75) is zero,

Kx(t)x*(r) =0, (76)
in which case the model is completely specified by
only I?x(,) and Mx(,). However, it is shown in [5]
that assumption (76) is invalid for various
Gaussian almost cyclostationary time-series. This
has an important impact on the study of almost
cyclostationary Gaussian time-series. For example,
the cross-covariance (75) plays an important role
in the power spectral density formulas for Rice’s
representation (cf. (33)-(35) in [14]). Also, it plays
an important role in the theory of optimum linear
filtering, as described in [5].

6. Discrete-time temporal probability

The discrete-time counterparts to the temporal
probability models defined in Section 4 are based
on the following four definitions of component-
extraction operations:

Constant component:

K
A lim —— - 77
() Jim g B e (77)

by analogy with (21).
Sine-wave component:

K
a A q:
A .
) lim S X Yavk

x exp(—i2mwak), (78)

by analogy with (22).
Periodic component:

SR 2 D Y ¢ LN (79)

pel—T/2,T/2)

by analogy with (26).
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Almost periodic component:

& T ("

ae[-1/2,1/2)

= (}%)“‘ET: [(yn>T _<yn>]

£ Ind(ys (80)

by analogy with (36)-(38).
Specifically, the stationary model is defined by

M

Fxn(v)é< H u[vm_xn+k+nm]>’ (81)
m=1

where () is the discrete-time average over the tem-

poral phase parameter k, by analogy with (18); the

distribution for sine-wave component extraction is

defined by

M a
F;:,,(v) é< H u[vm _xn+k+nm]> 5 (82)
m=1
by analogy with (23); the cyclostationary model is
defined by

M

Fx,.;r(v)é< H u[vmvxn+k+nm]> ) (83)
m=1 T

by analogy with (29); and the almost cyclostation-

ary model is defined by

M {e}
F{x‘:}(v)é< H u[vm_xn+k+nm]> >

m=1

M
= < H u[vm _xn+k+n,,,]>
m=1 {T}

LE, (v (84)

by analogy with (39) and (41).

It follows by analogy that the discrete-time
counterparts to the fundamental theorems of com-
ponent extraction; (20), (24), (30), (43) and (56)
are valid.

When a discrete time-series y, is obtained by
time sampling a continuous time-series y (),

yn=J’(t)|:=n, (85)

we can relate the discrete-time component extrac-
tion operations (77)-(80) to their continuous-time

counterparts. Specifically, we can show that
(yn>“=[ X <y(t)>“+”] ) (86)
p=— t=n

which  reflects the well-known aliasing

phenomenon. It follows that

Y =@ ()| i=n (87a)

is valid only if y(¢) is bandlimited to less than half
the sampling rate of unity, so that

(Y(N*=0 fora=1/2,
or if
(£))*™P=0 forall p#0 (87b)

happens to hold for some particular a. However,
even if a time-series x(¢) is bandlimited, some

measurement time-series y(t¢), such as
» M
y(@)= 11 ulv,—x(t+t,)],

m=1

will be nonbandlimited (because of the discon-
tinuous behaviour of u( ) in this instance). Thus,
in general, (87a) does not hold for all a.

It follows from (86) with a =0 that

<y,,>=[ D <y<t)>"] . (88)

p=—c =n
Thus, again
)= (D i=n (89a)
is valid only if
(y()YY=0 for p#0. (89b)

It follows from the definition (79) and the
property (86) that

<yn>r=[ ¥ §<y<t>>f’/”‘l] .
pe[-T/2,T/2) g=— t=n
(90)
Thus,
(yn>T=<y(t)>T|t=n (913)

is valid only if either y(t) is bandlimited to less
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than half the sampling rate of unity, or if
T =integer. (91b)

In spite of the general invalidity of (87a), (89a)
and (91a), we do have the general identity

) = () = (92)

It follows from (92) that the discrete-time almost
cyclostationary temporal probability model can
aIways be obtained from the continuous-time
model simply by time-sampling

EY(0) = F(0)] o (93)

Unfortunately, the same simple relation does not
hold in general for the cyclostationary and station-
ary models because of the general invalidity of
(89a) and (91a).

7. Conclusion

The appropriateness and utility of probabilistic
models that exhibit cyclostationarity for applica-
tions involving modulated signals, which arise in
communications, radar and telemetry systems, is
becoming widely accepted. However, the abstract
concept of a stochastic process is not always desir-
able or appropriate. In this paper, it is shown how
in principle to obtain nonstochastic temporal-
probability models for single time-series that
exhibit cyclostationarity with either a single period
or multiple incommensurate periods. This renders
probabilistic concepts and the theory and method
of probability applicable to single time-series
without the need for introducing the conceptual
artifice of an ensemble of random samples and an
associated stochastic process defined on an
abstract probability space. The utility of temporal-
probability models that exhibit cyclostationarity is
amply demonstrated in [12, Part II] where a com-
prehensive theory of spectral correlation measure-
ments on single time-series is developed. Spectral
correlation is a characteristic property of second-

Signal Processing

order cyclostationarity. Numerous applications of
spectral correlation to timing synchronization,
detection, parameter estimation (including time-
difference and source-direction) and waveform
extraction are described in [12, Chapter 14] (see
also [1; 5; 8, Chapter 12; 11; 16; 20; 29]), and
explicit formulas for almost periodically time-
variant autocorrelation functions and their corre-
sponding spectral correlation density functions are
derived for many types of modulated signals in
[15; 22; 12, Chapter 12]. Tutorial treatments of
spectral correlation theory and its applications are
given in [9, 19], which can be viewed as the wide-
sense theoretical counterpart of the strict-sense
theory of nonstochastic modelling of time-series
that exhibit cyclostationarity, which is presented
in this paper. The utility of temporal-probability
models that exhibit higher-than-second-order
cyclostationarity is demonstrated in [2], where they
are used to develop new methods for identification
of nonlinear systems, and in [17,21], where the
theory of cyclic cumulants and cyclic polyspectra
isintroduced and applied to the problem of charac-
terizing nonlinear spectral-line regenerators.

Appendix A

In order to prove that the almost cyclostationary
temporal probability model (40) is indeed a valid
M-th order probability distribution function, we
must prove that

(1) it is nonnegative:
Fi$)(v)=0 for all v;
(2) it is nonincreasing:

Fih(v)=Fl(u) ifv=u

(ie., if v,,=u, form=1,2,3,..., M); and
(3) itis consistent in the sense that the probability
distribution function for any subset of the vari-
ables {x(t+t,)|m=1,2,3,..., M} can be
obtained by letting v,, > % in Fi‘?,})(v) for all
m not contained in the index set for this subset.
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(1) Fi‘(’,})(v) is the almost periodic (a.p.) com-
ponent, call it p(t), of the zero-one indicator
function

z(t) = ﬁ ul[v,, —x(t+1t,)],

m=1

that is,

p(1) =X (z(2))".

We want to show that p(¢)= F{?}(v) is non-
negative. Let r(t)2z(t)—p(t) be the residual,
which contains no a.p. component. Then we have
0=<z(t)=p(t)+r(t)
=[p(t)+q()]-q()+r(t), (A1)

where g(t) is the magnitude of the negative part
of p(1):

0, p(t)=0
—p(1), p(1)<O0.

We let y(t) be the zero-one indicator function

y(t)=u[q(1)]=0,

q(t)=g[p(t)]é{

where

u(v)é{(l)’

>

v>0
v=<0.

Then since p(t)+q(t)=0 when y(t)#0, and
q(t)y(t) = q(t), the inequality
0<y()[p()+q()]-y()q(t)+y(t)r(z)

obtained from (A.1) by multiplying by y(¢) reduces
to

0<—q(0)+y(0)r(z),

which is equivalent to

y(@)r(t)=q(t)=0. (A.2)

Since g(t)=g[ p(t)] is a memoryless function of
the a.p. function p(t), then q(¢) also is an a.p.,
function and, since it is nonnegative, its average
value must be strictly positive unless it is identically

zero, q(t)=0. It follows from (A.2) that

y()r(1))>0 (A3)

if q(¢)%0.

But, since y(t) is a memoryless function u[ ] of
an a.p. function q(t), then it is also a.p. (in the
general sense that allows for step discontinuities).
Consequently, (A.3) reveals that r(t) contains an
a.p. component if g(z) 0.

But since r(t) by definition contains no a.p.
component, then by contradiction we must have
q(t)=0. Hence p(t)= Fi‘i‘,})(v) is nonnegative.

(2) We want to show that Fi‘f,})(v)=p(t) is a
nondecreasing function of v. When the argument
v=v; is increased to v,, the corresponding
indicator function z(t)£ z,(t) will be non-zero
over a superset of the set of values of ¢ for which
z(t) £ z,(t) was non-zero before v was increased.
Therefore

2,(t) = z,(t) + z12(2),

where z,,(¢) is a zero-one function with support
that is disjoint from the support of z,(¢). The a.p.
component of z,(¢) can therefore be expressed as

Fi?z})(vz) =po(t) =pi(1) + p(1),

where
F,{\:?t})(vl) =P1(t)

and where p,,(¢) =0 as proved in (1) above. Thus
Fi?t})(vz) = Fi‘?t})(vi)-

Hence F{))() is nondecreasing.

(3) We want to show that when v,, > for m
in some subset S, of the set S={1,2,3,..., M},
then F i‘z,})(v) reduces to the joint probability distri-
bution for v,, for m in the complement S, of S,
relative to S. Since u[v,—x(t+t,)]=1 when
Uy = 00,

z(t)= II ulv,—x(t+1t,)]

meS

= H_ u‘[vm _x(t+tm)]’

meS,
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when v,, » o for m € S, and, therefore, the result
follows immediately. [
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