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High-Resolution Direction Finding*

Stephan V. Schell and William A. Gardner

1. Introduction

Although the term direction finding can refer to determining which way to
travel, this act often involves estimating the direction from which some
information arrives. For example, humans instinctively use a two-sensor acous-
tic array —the ears-to determine the direction in which to look when a
signal — a shout - is received, and one might then decide to run toward or away
from the source depending on the attractiveness or offensiveness of the
message and its sender. This direction-finding mechanism works fine when only
one transmitter (speaker) is present or, if many transmitters are present, when
‘hey are widely separated. One need only stand in the thick of a crowded room
of people to experience its failure. Although the underlying direction-finding
algorithm, which is implemented in the brain, cannot be consciously modified,
much research on the design of improved algorithms for man-made direction-
finding systems is being conducted. '

In this chapter, direction finding refers to the process of estimating the
directions of arrival of propagating signals as they impinge upon a man-made
receiver (see Figure 1). The signals of primary interest are acoustic or
electromagnetic, and the sophisticated electronic control and processing that
can be applied to such received signals have resulted in a wide variety of both
techniques and applications. Some of these applications are listed in Table 1.
.Due to the abundance of applications and correspondingly enormous number
of algorithms, only a small subset of direction-finding techniques are discussed
here. Starting points for more detailed investigations include Pillai (1989),
Gabriel (1980), Johnson (1982), Wax (1985), Roy (1987), Barabell et al.
(1984) and the references therein.

The problem of particular interest here is to estimate the directions of arrival
of propagating signals from two or more closely-spaced sources, that is, to
perform high-resolution direction finding. The methods discussed here perform
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Fig. 1. Example of a sensor array receiving a plane wave arriving from angle 6.

passive direction finding, in contrast to active methods which transmir a known
signal to illuminate the region of interest and then process the reflected signals.
Emphasis is placed on techniques that use an array of closely-spaced sensors
having known locations and assume that the array response does not vary
significantly over the bandwidth of the signals — a property that loosely charac-
terizes the narrowband assumption, which is described in more detail in
Section 3.1 - although a brief discussion of methods for wideband signals also
is included. Within this already restricted scope, only a few representative
approaches are considered in this chapter.

Wherever possible, the direction-finding (DF) methods are presented in the
heuristically pleasing yet rigorous framework of linear combining, that is,
discrete spatial filtering, which includes beamforming and null-steering. It is
shown how this framework leads naturally to subspace fitting, which is preva-
lent in the recent research literature. It should be noted that the explanations
based on the framework of spatial filtering are not presented as replacements
for those based on the framework of subspace fitting but are intended to offer

Table 1
Example application areas for direction finding and corresponding references
Application Description References _
Intelligence Covert location of transmitters Wiley (1985), Ball (1989)

and signal interception
RADAR Air traffic control Evans et al. (1982),

and target acquisition Haykin (1980, 1985)
Commercial Multipath in mobile radio Matthews and Mohebbi (1989)
communications
Geophysics Seismology Justice (1985),

Atmospheric electromagnetics Hayakawa et al. (1990)
Astronomy Radio astronomy Readhead (1982)
SONAR Source localization Wagstaff and Baggeroer (1983)
Signal extraction Adaptive antenna arrays Van Veen and Buckley (1988),

Compton Jr (1988),
Monzingo and Miller (1980)
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an alternate motivation for the newest super-resolution methods and to give an
alternate insight into why the newest super-resolution methods can perform
better than other methods. It is believed that this alternate approach can be
valuable not only to the nonspecialist as an accessible description of high-
resolution direction finding but also to the specialist as a means for unifying
many diverse methods. It should also be noted that although the interpreta-
tions in terms of spatial filtering involve linear operations on the data (i.e.,
data from different sensors are linearly combined to enhance signal com-
ponents arriving from some directions and/or to attenuate signal components
arriving from other directions), the weighting factors applied to the data before
summing are nonlinear functions of the data. Although the concept of subspace
fitting has suggested many new algorithms and analytical techniques, its
abstract nature tends to mask the more physically motivated concept of spatial
filtering. Some review of spatial filtering is presented, and the reader interested
in more detail on this is referred to the wide body of array signal processing
literature including Widrow and Stearns (1985), Monzingo and Miller (1980),
Haykin (1980), Compton Jr (1988), Marr (1986), Van Veen and Buckley
(1988), Gabriel (1976, 1986), and references therein. Unnecessary abstraction
is further avoided by using the time-average framework rather than the
probabilistic (ensemble-average) framework for deriving methods that use data
correlations (cf. Gardner, 1987b).

In Section 2, systems that do not use sensor arrays and systems that use
time-difference of arrival (TDOA) for a pair of sensors are discussed briefly to
put the array-based systems treated in this chapter in perspective. In Section 3,
the mathematical model of the narrowband signal and a brief review of spatial
filtering, antenna patterns, and directional ambiguities are presented. In
Sections 4 and 5, several high-resolution direction-finding algorithms are
discussed with emphasis on those exhibiting super-resolution. In Section 6,
some results on performance limits for narrowband direction-finding algorithms
are discussed. In Section 7, several departures from ideality, in which prior
knowledge required by the algorithms is in error or unavailable altogether, are
considered. Finaily, a brief summary of the chapter and topics of continuing
research interest are presented in Section 8.

2. Possible approaches

Before narrowing the scope to array-based high-resolution DF algorithms,
several alternate approaches which could be more appropriate in some applica-
tions are discussed. First, spinning DF, multilobe amplitude comparison, and
phase interferometry systems, which typically require less signal processing
than do array-based high-resolution methods, are considered. Then, systems
that use the time-difference of arrival (TDOA) of a received signal between
two widely-spaced sensors are discussed briefly.

Spinning DF systems use a rotating directional antenna to estimate directions
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of arrival by estimating the received power as a function of direction: directions
in which locally maximum power is received are then taken to be the direction
estimates. Since the antenna cannot simultaneously scan in all directions of
interest, some transient signals can escape detection. However, if the width of
the beam were widened to accommodate a wider angular range and to reduce
the chances of missing a signal, the ability to resolve two closely spaced sources
would decrease. Due to the physical size and weight of some spinning DF
antennas, these systems are more likely to be found in land- or ship-based
installations rather than, say, airplanes or satellites. For example, a typical
naval ship unit, the AS-899F, is seven feet high, three feet in diameter, and
weighs 270 pounds (Wiley, 1985). Although the signal processing requirements
consist mainly of estimating the power of a signal, mechanical constraints on
durability and vibration must be met.

In contrast, multilobe amplitude comparison systems use several (typically
four or eight) fixed directional antennas each pointing in a different direction.
Given a signal impinging on the antennas, the two antennas having the largest
and next largest responses are identified. Then, the ratio of the two responses
(along with knowledge of the antenna patterns) is used to interpolate between
the two pointing directions of the antennas to obtain the direction estimate.
Although this approach entails more computation than the spinning DF
approach, it does not have as many mechanical requirements and is less prone
to missing transient signals.

Yet another approach is two-sensor phase interferometry for DF which
obtains the direction estimate from the relative phase between two sensor
outputs. Consider two sensors separated by a distance d that receive a
single-tone (sinusoidal) signal having frequency f and arriving from angle 6 (see
Figure 1). The relative phase between the two sensors is given by

¢=2¢r]—cdsin(0). 1)

C

The DOA estimate is then obtained simply by inverting the relationship (1). It
can be seen from (1) that ambiguity can result if the distance d is greater than
half of the wavelength c/f.

As with the multilobe amplitude comparison approach, phase interferometry
needs no moving parts and is responsive to transient signals. However, the
amplitude ratio or phase relationship on which these two methods are based no
longer holds if the signal paths to the two sensors are radically different, or if
multiple signals or interference are present, or if the received signals are not
nearly sinusoidal, thereby necessitating other approaches.

For some applications (e.g., astronomy) that require very long baselines to
achieve the desired resolution and in others (e.g., underwater acoustics) in
which the propagation medium can alter the attenuation or phase shift of one
signal path relative to another, methods based on measuring the TDOA of the
received signals can be useful (Carter, 1981). For example, the generalized
cross correlation (GCC) method (Knapp and Carter, 1976) is based on the
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property that the cross correlation between a signal and a delayed version of
the signal is maximized when the lag used in the cross correlation equals the
TDOA. However, this property does not hold in the presence of interference
and multiple signals of interest. Since the peak in the cross-correlation function
occurs at the TDOA when a single signal is present, and since the width of the
peak is approximately equal to the coherence time of the signal, it follows that
the peaks due to multiple signals merge into one peak if the spacing between
adjacent TDOAs of the signals is less than the coherence times (reciprocal
bandwidths) of the signals. Consequently, since the TDOAs are proportional
to the separation between sensors, one solution to this problem is to increase
the separation. However, the separation between sensors can be fixed in some
applications (e.g., the sensors are mounted on one aircraft), or the separation
required to resolve the signals can be otherwise prohibitively large. Thus,
multiple signals of interest can be difficult (or impossible) to accommodate.
Nonetheless, the GCC method can still operate properly in some environments
because, before correlating, it can, effectively, filter the received data to reject
out-of-band interference. Of course, this technique does not perform the
desired interference rejection if the interference and desired signals are
completely spectrally overlapping. However, TDOA methods that exploit the
cyclostationarity that some desired signals (such as communication and tele-
metry signals) exhibit can alleviate these problems by being signal-selective
even for signals that are spectrally overlapping. Therefore, these methods
apply to much more difficult environments (Gardner and Chen, 1991; Chen
and Gardner, 1992). Also, even in environments in which conventional
methods can operate properly, the methods that exploit cyclostationarity can
yield more accurate TDOA estimates.

3. Narrowband sensor arrays

Array-based approaches to the DF problem exploit properties of the received
data that are different than those exploited by simple energy detectors such as
spinning DF systems or by long-delay estimators such as TDOA systems. Here,
the properties of interest are the relative amplitudes and phases of the sensor
outputs as a function of direction of arrival (DOA). The mathematical model
for these and for the data are briefly summarized here. Also, as with most
successful models, an intuitive approach to DF (the conventional beamforming
method) is suggested by the model and is used here to convey underlying
concepts shared by all of the array-based methods considered, namely, the
concept of weighting and summing the sensor outputs to amplify some received
signals and attenuate others.

3.1. Narrowband model

The direction-finding behavior of each technique depends explicitly on the
model presented here, which describes the received data at the sensor outputs
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as a function of the impinging signal waveforms, directions of arrival, and
sensor characteristics. In addition, array-based DF depends on the array
geometry because it, too, affects the vector x(n) of output signals
x,(n), ..., x,,(n) from the individual sensors. Before proceeding to models for
realistic signals, the special case of an array receiving a sinusoidal signal is
considered, since the subsequent models are based on this simple case.

Consider the analytic signal (which contains only the positive-frequency
component) exp(j(wt + ¢)) corresponding to a real sine wave having frequency
o and phase ¢ and arriving at the array from angle 6. For simplicity, assume
that the sensors in the array and the signal source are coplanar so that ordered
pairs and a single angle suffice to describe the positions of the sensors and the
direction of arrival of the signal, respectively. If the propagation medium does
not significantly affect the signal as it propagates from one end of the array to
the other, then the signal received at one sensor differs from the signal
received at another sensor only by a delay. As suggested by Figure 1, the
dependence of the delay on the geometry of the sensors and on the angle of
arrival can be determined by using elementary geometry. Specifically, if we
assume that the coordinates of the M sensors are (q,, r;), ..., (qy, ry), then
it can be shown that the delay ¢,, of the signal at the m-th sensor relative to the
signal at the origin of the coordinate system can be expressed as
t,,=—lq, sin(@) + r,, cos(8)]/c, where c¢ is the propagation speed and 6 is
measured clockwise from the r axis. However, since the signal is sinusoidal, the
propagation delay ¢, is equivalent to a phase shift by the amount ¢, = —w¢,,
which is in turn equivalent (since the signal is a complex sinusoid) to multipli-
cation by exp(ji,,). Thus, the signal received by the array can be expressed in
the vector form

xl(t) el
oHk
x(2) el¥m
where
¥, (w,0)=][q,,sin(8) +r,, cos(8)]w/c. 3)

More generally, the sensors can have differing directional and frequency-
dependent characteristics, which can be modeled by applying differing gains
and phases to the elements of the vector in (2). Denoting the gain and phase of
the m-th sensor by g, (w, 8) and ¢, (w, 8), respectively, the analytic signal at
the outputs of the sensors can be expressed as

— ej(wt+¢) — a(w7 9) ellorte)

xl(t) gl(w 0) ei¢1(w)9) ei%(w"’)
b
idpr(@,0) o @.0)

@] | g, 0)e

(4)



High-resolution direction-finding 761

In the more general (and interesting) case in which multiple nonsinusoidal
signals arrive at the array, the data can be modeled by decomposing it in the
frequency domain and using linear superposition:

x(w) = El a(w, 6)s,(0) + i(o)

=[a(@, 6,) " a(@, 6,)][s,()* s.(@)]" + i(w)
= A(w, 0)s(w) + i(w) (5)

where L signals s,(w),...,s,(w) arrive from angles 6,,...,6, and i(w)
represents interference and noise components (e.g., thermal noise from the
sensors and associated electronics, background noise from the environment,
and spatially diffuse sources of man-made interference such as cities). That is,
the array data is linear with respect to the signals and is linear (in the
frequency domain) with respect to the vector a(w, #). The vector a(w, 8) is
referred to in this chapter as the array response vector, but the terms aperture
vector, array vector, array manifold vector, DOA vector, direction vector, and
steering vector also appear in the literature. The collection of array response
vectors for all angles 6 and all frequencies w of interest is referred to as the
array manifold. '

However, if only a relatively narrow frequency band is of interest (e.g., if
prior knowledge regarding the center frequencies and bandwidths of the signals
of interest is available to select the narrow band of interest), then it is
advantageous to reject signal components and noise that lie outside the band.
If this band is sufficiently narrow that the array response vector a(w, 6) is
approximately constant with respect to @ over the band of interest for all
angles 6 (e.g., if the reciprocal of the time required for the signal to propagate
across the array is much less than the bandwidth of the signal, and if the sensor
characteristics do not vary significantly across this bandwidth), then the depen-
dence on w can be dropped and the array data can be modeled in the time
domain as the analytic signal

x(t) = 2 a(8,)s,(1) + i(?)

=[a(0,) - a(@)][s:(1) -+ s (O]" + i(2) (6)
=A(O0)s(t) +i(1),

where s(¢) and i(f) are analytic signals. Although the signals s,(¢) are not
sinusoids, the spatial characteristics of the array response can be approximately
modeled as if they were. A more detailed discussion of the conditions under
which this assumption is valid, as well as a detailed investigation of the
representation of wideband array data, can be found in Buckley (1987).
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In this chapter and in much of the literature on direction finding, the
sampled complex envelope of the array data is used in the description and
analysis of the various algorithms because the algorithms are typically im-
plemented on a digital computer and therefore operate on sampled data. Since
the complex envelope of a bandlimited analytic signal can be obtained by
performing a complex down-conversion (i.e., by multiplying the data by
exp(—jwt) for some appropriate w), the corresponding model for the sampled
complex envelope is essentially the same as in (6), except that x(¢), s(¢), and
i(¢) denote the complex envelopes of the array data, the signals, and the noise,
respectively, and ¢ is replaced with n:

L

x(n) =2 a(6)s,(n) + i(n) = A(©)s(n) + i(n) . (7

=1

In practice, the array manifold is approximated using calibration data taken
at discrete angles, although it can be known analytically in some situations
(e.g., a uniform linear array (ULA) of identical sensors). Note that, in general,
a search over the array manifold will be required in the application of a DF
method because typically no analytical expression for DOA as a function of
array response is available.

Since one objective of high-resolution DF is to distinguish among signals
from several different directions, the array manifold must be free of ambiguity.
For example, if the array response due to a signal from 6, is identical to the
response due to a signal from 6,, then a DF method is unable to distinguish
between two signals arriving from angles 8, and 6,, respectively, and might
even conclude erroneously that only one signal is received. Also, even if only
one signal arrives, this ambiguous array response prevents a DF method from
determining whether a single signal arrives from 6, or 6,. This type of
ambiguity is a rank 1 ambiguity. In general, a rank K —1 ambiguity (cf.
Schmidt, 1981) exists if and only if there exist angles 6,, . . . , 6, such that the
corresponding array vectors are linearly dependent, and no lower rank am-
biguities exist. For example, a uniform linear array (ULA) of M sensors can be
shown to be free of rank M ambiguities in the range 6 €[—90°,90°] if the
interelement spacing is less than half of the wavelength of the highest fre-
quency in the receiver band. This requirement for a ULA can be interpreted as
a spatial analogue of the Nyquist sampling criterion that allows the reconstruc-
tion of a continuous time waveform from its discrete-time samples. The lack of
ambiguities is a desirable property because ambiguities reduce the number of
signals that can be properly accommodated by a DF algorithm.

In addition to there being possible ambiguities in the array manifold,
partially or fully correlated signals can arrive from different directions due to
multipath propagation (e.g., the signal propagates from the emitter to the
sensor array by multiple spatially distinct paths) or smart jamming (e.g., a
hostile emitter receives the desired signal and retransmits a possibly corrupted
version so as to reduce the likelihood that the intended receiver can properly
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demodulate the signal), thus creating another source of difficulty for a DF
algorithm. The temporal properties of the received signals are typically ignored
by the DF algorithms discussed in this chapter (i.e., the algorithms operate as
if the data samples are independent), so two signals are said in this chapter to
be fully correlated if and only if they are scaled versions of each other. If one
signal is a delayed version of the other, then the correlation between the two
signals is only partial.

3.2. Conventional beamforming

Before discussing the conventional beamforming method of direction finding,
the basic concepts of discrete spatial filtering, of which beamforming and
null-steering are examples, are reviewed.

Given knowledge of the array manifold (and, at the least, assuming it to be
free of low-rank ambiguities), an array can be steered electronically just as a
fixed antenna can be steered mechanically. However, the array pattern can
change shape in addition to changing orientation. A weight vector w can be
used to linearly combine the output signals from the sensors to form a single
output signal y(n),

y(n)=w"x(n), (8)

where superscript H denotes the Hermitian (conjugate transpose) operation,
and the response of this spatial filter can be described by its effective antenna
pattern P(8),

P(0) = |w"a(0)|*. )

That is, P(6) equals the average power of the output of the spatial filter when a
single, unity-power signal arrives from angle . To perform beamforming or
null-steering, the gains and phases in w can be adjusted so that beams can be
formed in some directions and nulls in others. For example, the effective
antenna pattern shown in Figure 2 (and discussed in more detail later in this
section) contains beams at 0 degrees and near +40 degrees and contains nulls
near =25 degrees and +55 degrees. Thus, a signal arriving from an angle near
25 degrees (one of the nulls) would be attenuated or completely rejected,
whereas a signal arriving from an angle near 0 degrees would be amplified.
Note that the effective array pattern differs radically from the patterns of the
individual sensors, which in this example are isotropic (i.e., the gains of the
individual sensors are flat horizontal lines when plotted as a function of
direction of arrival).

The total average power in the output of the spatial filter can be expressed as

Ptotal = <|y(n)‘2>N
= w (x(n)x"(n)) yw (10)

_ . H
=w R, w,
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Fig. 2. Antenna pattern of 5-element ULA beamformed to 0 degrees.

where (- ), denotes time averaging over N time samples, and R, is the
measured spatial autocorrelation matrix of the received data defined in (10).
This expression for the total average received power plays a central role in the
DF algorithms described below because the spatial autocorrelation matrix R,
contains information about the array response vectors and the signals that can
be interpreted and used in a variety of ways:

R, = (x(n)x"(n))
= ((A(0)s(n) + i(n))(A(O)s(n) + i(m))") 1n
—A(O)R, A" (@) + R, for N—>.

Unlike the spinning DF systems, which scan the angular region of interest by
physically rotating an antenna, the conventional beamforming technique scans
the angular region electronically. In doing so the technique explicitly exploits
some properties of the underlying narrowband-signal model.

For any particular direction §,, the antenna pattern formed using the weight
vector w, = a(f,) has the highest gain in direction 6, of any possible weight
vector of the same magnitude. This is so because w, aligns the phases of the
signal components arriving from 6, at the sensors, causing them to add
constructively, and optimally adjusts the amplitudes. Mathematically, this can
be shown using the Cauchy-Schwarz inequality:

[w"a(6,)]” < [lwl|*la(6p)II’ (12)

for all vectors w, with equality holding if and only if w is proportional to a(6,).
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In the absence of a rank-1 ambiguity, the effective pattern (9) will have a
global maximum at 6,.

Thus, one approach to DF is to scan such a beam over the angular region of
interest and to identify those angles where the received power exhibits local
maxima. Specifically, in the conventional beamforming approach, the beam is
scanned over an angular region of interest (usually in discrete steps), and for
each look direction 6 the average power output P, (6) of the steered (beamfor-
med) array is measured, where

Py(6) = (].Vb(”)IZ)N
= (lwyx(n)|*)

=wyR, W, (13)
=a"(0)R,,a(6) . (14)

Locations of locally maximum average power output are then taken to be
direction estimates, just as they are in the spinning DF systems.

This method has some important advantages over the spinning DF systems.
Note that R, need be computed only once and can then be processed as
desired. Computing P, () for one range of 8 does not prevent the algorithm
from subsequently computing P, (0) for another range using the same data: the
spatial characteristics of the data for all directions are compactly represented
by R .. Thus, the conventional beamforming method does not have blind spots
in time during which transient signals away from the look direction can appear
intermittently and fail to be detected. Another advantage is that by steering the
antenna electronically rather than mechanically, mechanical design constraints
are more easily met, and the speed of the scan through a region of interest is
limited by computational speed instead of mechanical speed.

However, this approach exhibits many of the same drawbacks as the
spinning DF systems in addition to some new ones. The width of the beam and
the height of the sidelobes limit the effectiveness when multiple signals are
present because the signals over a wide angular region contribute to the
measured average power at each look direction. For example, a local maxi-
mum of average output power can be shifted away from the true DOA of a
weak signal by a strong interferer in the vicinity. Alternatively, two closely
spaced signals can result in only one peak, or two barely discernible peaks in
the wrong locations, in the average output power. This phenomenon is
illustrated by a computer simulation of a ULA, having 5 elements with
interelement spacing equal to half of the carrier wavelength, receiving two
signals each having 10 dB SNR and arriving from 0 and 15 degrees. As shown
in Figure 2, when the antenna is beamformed in the direction of the signal
from 0 degrees, it still exhibits significant gain in the direction of the signal
from 15 degrees. Consequently, the power from the signal at 15 degrees
contributes to the measured power at 0 degrees, thereby yielding a low
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Fig. 3. Average output power obtained by conventional beamforming method for two signals
having 10 dB SNR arriving from 0 and 15 degrees (denoted by dashed lines).

angular-resolution measurement of average power at 0 degrees, as shown in
Figure 3. So, despite the fact that the antenna array is forming the strongest
possible beam in any given direction as it scans, the conventional beamforming
method is unable to resolve the two closely spaced signals. Incidentally, the
measured average power shown in Figure 3 (and in all subsequent figures
unless stated otherwise) is idealized since the averaging time N is allowed to
approach infinity. That is, no effects due to measurement error or finite
averaging time are present; these effects are discussed briefly in Section 7.1.

Although it can be easier to add sensor elements to decrease the beam width
in the array-based approach than it would be to increase the physical size or
alter the geometry of the fixed antenna in a spinning DF system, increasing the
number of sensor elements increases the number of receivers and the amount
of storage required for the calibration data. Furthermore, the need to store
array calibration data is not shared by the spinning DF system.

4. A high-resolution array-based approach

One source of performance degradation in the conventional beamforming
approach results from the (not-always-correct) notion that the strongest beam
in a particular direction yields the best estimate of power arriving from that
direction. That is, this approach uses all available degrees of freedom (equal in
number to one less than the number of sensors) to strengthen the beam in the
look direction, the motivation being that the output power is maximized when
the look direction coincides with the true direction of arrival of the signal. This
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is appropriate when there is only one signal present. However, when multiple
signals are present, a more accurate estimate can be obtained by using some
degrees of freedom to form a beam in the look direction and simultaneously
using the remaining degrees of freedom to form nulls in other directions in
order to reject other signals. In terms of the array processor output power,
forming nulls in the directions from which other signals arrive can be accom-
plished by minimizing the output power and simultaneously constraining a
beam (or at least maintaining unity gain) in the look direction to prevent the
processor from using the trivial solution w =0. Thus, for a particular look
direction, Capon’s method (Capon, 1969, 1979) uses all but one of the degrees
of freedom to minimize the array processor output power while using the
remaining degree of freedom to constrain the gain in the look direction to be
unity:

min {|y(n)]*)y subject to w'a(6)=1. (15)

The weight vector chosen in this way is often referred to as the minimum-
variance distortionless-response (MVDR) beamformer since, for a particular
look direction, it minimizes the variance (average power) of the array pro-
cessor output signal y(n) while passing a signal arriving from the look direction
with no distortion (unity gain and zero phase shift). The resulting weight vector
w,(0) can be shown to be given by

w.(6) = (@"(9)R,; a(6)) 'R, a(6) . (16)

In order to estimate the DOAs, Capon’s method searches over 6 to find the
directions for which the measured received power,

P,(6) = w. ()R, w.(0)
=(a"(0)R_a(0)) ", (17)

is maximized. Although it is not the maximum likelihood estimator of 6,
Capon’s method is sometimes referred to as Capon’s maximum likelihood
method for the following reason. For any choice of 6, P,(6) (evaluated using
the estimated autocorrelation matrix) is the maximum likelihood estimate of
the power of a signal arriving from angle 6 in the presence of temporally white
Gaussian noise having arbitrary spatial characteristics (Capon, 1979) (see also
exercise 15 in chapter 6 of Gardner, 1987b). In other words, P.(8) is the
point-wise maximum likelihood estimate of the spatial spectrum or angular
density of received power.

The performance improvement of Capon’s method relative to the conven-
tional beamforming method is illustrated here with a computer simulation. For
the same environment used for Figure 3, Capon’s method successfully resolves
the two signals, as shown in the plot of measured (N— ) power in Figure 4.
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Fig. 4. Average power output of Capon’s method for two signals arriving from 0 and 15 degrees
with 10 dB SNR.

As predicted by the preceding analysis, Capon’s method succeeds in this
example because it severely attenuates the signal arriving from 15 degrees
while it is looking in the direction of the signal from 0 degrees, as shown by the
antenna pattern in Figure 5. However, if the signals are spaced only 10 degrees
apart, then Capon’s method cannot resolve them, as revealed in Figure 6. As
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signals arriving from 0 and 15 degrees.
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Fig. 6. Average power output of Capon’s method for two signals arriving from 0 and 10 degrees

with 10 dB SNR. Only one peak is présent, located at 4 degrees.

illustrated in Figure 7, although the method attenuates the signal from 10
degrees while it looks in the direction of the signal from 0 degrees, the location
of the beam is noticeably displaced from the look direction. Furthermore,
when the look direction is between 0 and 10 degrees neither signal is nulled,
creating the broad peak shown in Figure 6.
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Fig. 7. Antenna pattern of Capon’s method for look direction of 0 degrees in the presence of

signals arriving from 0 to 10 degrees.
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Capon’s method also fails if other signals that are correlated with the signal
of interest are present because it inadvertently uses that correlation to reduce
the processor output power: the processor attenuates or even cancels the signal
of interest without having to spatially null the signal. Thus, despite having
unity gain in the direction of the desired signal, the processor uses remaining
degrees of freedom to obtain a low output power in this case; consequently,
the method yields an inaccurate estimate or fails altogether.

This behavior is illustrated as follows. For the same environment as that used
for Figure 4, the two signals arriving from O and 15 degrees are now made
perfectly correlated (i.e., they are scaled versions of each other). Therefore,
Capon’s method does not spatially null either signal because it can simply add
them destructively to reduce the final output power. As shown in Figure 8, the
peaks in the average power output in Figure 4 merge to form a single peak
halfway between the true DOAs, due to the failure of the method to spatially
null either signal. The antenna pattern corresponding to the 0-degree look
direction is shown in Figure 9 to illustrate this.

Capon’s method can be interpreted as a method for estimating the spatial
spectrum (an angular decomposition of average power received by the array)
and is related to a high-resolution spectrum estimation method (for estimating
the frequency decomposition of average power in a signal) of the same name.
Other high-resolution spectrum estimation techniques that have application to
the DF problem include the maximum entropy method (Burg, 1972; Kesler,
1982; Burg, 1967) and various other autoregressive (AR) modeling and linear
prediction techniques (e.g., Tufts and Kumaresan, 1982). A survey of spectrum
estimation methods can be found in Haykin and Cadzow (1982) and, within the
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Fig. 8. Average power output of Capon’s method for two perfectly correlated signals arriving from
0 and 15 degrees with 10 dB SNR.
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perfectly correlated signals arriving from 0 and 15 degrees.

time-average framework used in this chapter, in Gardner (1987b). The applica-
tion of high-resolution spectrum estimation methods to the DF problem is
explicitly addressed in Gabriel (1980), Johnson (1982).

5. Super-resolution array-based approaches

The failure of the previously discussed methods in the presence of closely-
spaced sources or correlated sources can be traced to two causes. First, the
received-data autocorrelation matrix is composed of a full-rank autocorrelation
matrix of the interference and noise plus a lower-rank autocorrelation matrix
due to the desired signal components. By ignoring this structure, these
methods must make a three-way tradeoff among beamforming in a look
direction, attenuating other signals, and maintaining low sidelobes to attenuate
noise. This is analogous to the tradeoff among passband gain, rolloff, and
stopband attenuation in finite-impulse-response temporal filters (e.g., see
Oppenheim and Schafer, 1975). Second, by not distinguishing between signal
rejection due to spatial nulls and signal rejection due to correlated signals from
different directions being combined destructively, the previous methods per-
form poorly or fail completely when highly correlated signals are present (e.g.,
when multipath or smart jamming occurs).

Methods for transcending the preceding resolution limits can attain even
higher resolution than that of Capon’s method and are sometimes referred to
as super-resolution methods. A commonality among them is that they all
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exploit the structure of the autocorrelation matrix and jointly estimate DOAs
of all signals of interest rather than estimating them one at a time. Further-
more, in doing so, some of them perform beamforming and nulling in
subspaces, restricted spaces, or transformed spaces of the received data space
instead of operating directly on the data. Certain of these methods can also
operate properly in the presence of multipath and smart jamming, both of
which can result in highly or perfectly correlated signals.

Although these methods are derived here from the perspective of spatial
filtering, the resulting algorithms lead naturally to derivations based on the
concept of subspace fitting. Recently, it has been shown (Viberg and Otter-
sten, 1991) that most of the existing super-resolution methods (including those
described here) are special cases within a general subspace-fitting framework.
The concept of vector space and the properties of eigenvalues and eigenvectors
(and singular values and singular vectors) are used heavily in the literature in
deriving these methods and understanding their performance, but their inter-
pretation in terms of the more physically motivated actions of beamforming
and null-steering, which is emphasized here, is usually not mentioned.

5.1. MUSIC

One of the earliest methods proposed for superresolution DF is the currently
popular multiple signal classification (MUSIC) method (Sehmidt, 1979, 1986,
1981; Bienvenu and Kopp, 1980). Although MUSIC is often motivated in the
literature solely by some observations regarding the properties of the eigen-
values and eigenvectors of the spatial autocorrelation matrix of the received
data, it is shown here that the MUSIC algorithm can be obtained using the
aforementioned idea of locating signals using beamforming and nulling in a
restricted data space.

Consider the case of a known autocorrelation matrix R;; of the interference
and noise. Substracting R;; from the autocorrelation matrix R, of the received
data leaves only the components due to the desired signals. Thus, for any given
weight vector w, the processor output power P due only to the desired signals
can be expressed as (cf. (11))

P=w"(R,_ —R,)w=w"A(@)R, A" (O)w. (18)
Given a set of K weight vectors w,, . . . , wg, the sum of the average powers of

the K corresponding processor outputs due only to the desired signals can be
expressed as

K
P = 2 P =tr{W 'R = R)W} (19)
k=1
where tr{ -} denotes the matrix trace operation and W={[w, --- wg]. As

mentioned before, simultaneous beamforming and null-steering can limit res-
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olution (analogous to limiting the narrowness of the transition band of an FIR
temporal filter by imposing simultaneous passband and stopband
requirements.) The alternate approach used here is to attempt only one of
these tasks. For example, consider the approach of nulling all of the signals
simultaneously. That this is possible can be seen as follows. Since the power P
is computed in this restricted signals-only data space, it is as if there were no
interfering signals and noise present. Consequently, if fewer than M signals are
present and none of them are fully correlated (so that they can be rejected only
by forming spatial nulls), weight vectors can be chosen that perfectly null all of
the signals simultaneously. Since only K= M — L such vectors can be found
while still being linearly independent of each other, at most K such vectors
need to be found. Therefore, to implement this approach it is necessary to find
an M X K matrix W for which each column w,, for k=1, ..., K, nulls all of
the desired signals. This can be accomplished by minimizing the total average
output power P, subject to the constraint that the columns of W be linearly
independent (to prevent trivial or redundant solutions). The constraint is
typically expressed by the more specific constraint W"W = I, which yields a
convenient solution (and is often the normalization chosen in the analysis of
principal components, e.g. (Johnson and Wichern, 1988), which is closely
related to the action of the MUSIC method). That is, the resulting method is
summarized by choosing W, equal to the solution of

min P,
W total

> m“i,n tre{W*(R,_, — R,,)W} subject to W'W=1. (20)

The angles of arrival can now be estimated by searching over 6 for those array
vectors a(f) for which

||W§1Ha(0)“2=0, (21)

that is, by searching for those directions where a null is present simultaneously
in all K= M — L, weight vectors.

Alternatively, to find the W for which the total average output power P, is
maximized, corresponding to beamforming simultaneously in all desired-signal
directions, choose W,,,. equal to the solution of

€eam

mvf,lx Ptotal

= max tr{W"(R,, — R,,)W} subject to W'W=1, (22)

where K = L. Then, the angles of arrival can be estimated by searching over 0
for those array vectors a(6) for which ||Wi., a(6)||* is maximized, that is, by
searching for those directions in which the cumulative array pattern

|WiL. . .a(6)|* exhibits a beam.
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In order to implement this method, means of determining W, , and/or W, ,,
are required. The solutions to these two optimization problems can be ex-
pressed in terms of the eigenvalues and eigenvectors of the signals-only spatial
autocorrelation matrix:

Wom=1leL1 - eyl (23)

and
Woeam =[e1 =+ €], (24)
where {e,,} are the eigenvectors defined by the equation

(Rxx - Rii)em = )‘me (25)

m >

and are ordered according to the associated eigenvalues A, which are real and
nonnegative,

MZH= A > A = =2y, =0, (26)

In practice, the noise-and-interference autocorrelation matrix might be
known only to within an unknown multiplicative constant o, say R,, = o°Q,;.
Then the eigenvalue problem is more appropriately expressed as

Rxxem = )thiiem > (27)
where the ordered eigenvalues satisfy
MEALZ = > A ==y =0 . (28)

Thus, the MUSIC algorithm is often described in the literature as consisting of
the following steps. First, the ideal (N— ) spatial autocorrelation matrix R,
is estimated (using finite N). Second, the equation (27) is solved. Finally, the
DOA estimates are given by either the maxima of

W teama(0)]| (29)
or the minima of
lleuua(f’)llz . (30)

An important point to note here is that the maximization of (29) and the
minimization of (30) can be shown to be mathematically equivalent, which
refutes the often-advanced argument that nulls are sharper than beams and
should therefore yield higher resolution.
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The conditions needed for the MUSIC method to work properly can be seen
to include the requirements that (i) the number L of signals be less than the
number M of sensors, (ii) R, be known to within a multiplicative constant, and
(iii) the autocorrelation matrix of the transmitted signals have full rank,
rank{R_} = L. Otherwise, (i) no weight vectors exist that null all of the
signals, (ii) the modified data-space in which the nulling or beamforming
occurs is not the signals-only data space, and (iii) signals can be effectively
nulled without being spatially nulled, respectively.

A significant conceptual difference between MUSIC and the previously .
discussed methods is that MUSIC finds the weight vectors of interest first and
then searches for beams or nulls in the resulting antenna patterns, whereas the
previous methods must compute a new weight vector for each search direction.
Thus, in some sense, MUSIC jointly processes all of the desired signals and
then applies some simple post-processing to locate them, whereas the previous
methods estimate the direction of one signal and then ignore that information
while searching for other signals. However, it should be noted that although
the nulling vectors are all found simultaneously (which is characteristic of a
multidimensional optimization problem), the search over 6 proceeds in one
dimension. This notion of joint processing helps to explain the superior
performance of MUSIC (and the other methods presented in this section) as
compared with the performance of Capon’s method and conventional beam-
forming.

To illustrate this superiority, consider the environment processed by Capon’s
method corresponding to Figures 6 and 7. In this environment, the cumulative
antenna patterns |W'. a(9)||* and ||W}.,a(8)||* found by the MUSIC method
are shown in Figures 10 and 11, respectively. Clearly, the null-steering pattern
shows that MUSIC resolves the two signals; although it is not visible from the
plot of the beam-steering pattern, there are indeed two peaks and they are
located at the true DOAs. In fact, given the ideal (N— «) spatial autocorrela-
tion matrix and perfect calibration data as in the examples presented so far in
this chapter, MUSIC can resolve two signals regardless of how close together
they are, in stark contrast to the resolution limits of Capon’s method and the
conventional beamforming method.

If the user wishes to avoid estimating the directions of undesired signals,
then the MUSIC algorithm requires a description of the undesired signals,
namely, their spatial autocorrelation matrix Q. In the example above, if 0,
were taken to be I +10a(0°)a"(0°), then the DOA of only the signal arriving
from 10 degrees would remain to be estimated because the spatial characteris-
tics of the signal arriving from 0 degrees having 10 dB SNR are included in 0
and are thus excluded from W, and W_,. On the other hand, if @, is in
error, the performance of the MUSIC algorithm can be severely degraded
because MUSIC is no longer beamforming and null-steering in the signals-only
data space — interference and noise are also present.

An alternate interpretation of MUSIC is that of subspace fitting. Under this
interpretation, the signals-only component of the autocorrelation matrix de-
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Fig. 10. Cumulative null-steering antenna pattern of MUSIC in the presence of two signals arriving
from 0 and 10 degrees.

fines a signal subspace which is spanned by the eigenvectors W,., , and the
orthogonal complement of that subspace is sometimes referred to as the noise
subspace which is spanned by the eigenvectors W,_ . If R__ is of full rank, then

the signal subspace is also spanned by the array vectors of the desired signals,
and consequently the noise subspace is orthogonal to these array vectors. Thus,
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Fig. 11. Cumulative beam-steering antenna pattern of MUSIC in the presence of two signals
arriving from 0 and 10 degrees. (Although it is not clearly visible here, there are indeed two peaks
at the true DOAs).
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the MUSIC algorithm searches for those DOAs for which the array vectors
span the signal subspace, which corresponds to the simultaneous beamforming
interpretation. In fact, each column of W, is a linear combination of
conventional beamformers. Equivalently, it searches for those DOAs for which
the array vectors are orthogonal to the noise subspace, which corresponds to
the simultaneous null-steering interpretation. In other words, MUSIC attempts
to fit an estimated signal subspace (which is spanned by the array response
vectors corresponding to the estimated DOAs) to the observed signal subspace
(which is derived from R ).

These two interpretations can also be helpful for understanding the behavior
of MUSIC in the presence of fully correlated multipath or smart jamming.
Under the beamforming/null-steering interpretation, simultaneous nulling can
occur without forcing a spatial null by destructively adding the correlated signal
components, just as in Capon’s method. This type of signal rejection is not
detectable merely by examining the magnitude of the antenna pattern, and
thus creates the impression that there are actually fewer signals impinging on
the array. Alternatively, under the subspace-fitting interpretation, the reduc-
tion in dimension of the signal subspace causes an identical increase in
dimension of the noise subspace, so fewer linearly independent array vectors
can be found that are orthogonal to the noise subspace. Again, this creates the
impression that fewer signals are impinging on the array.

Several modifications to MUSIC that enable it to operate properly in the
presence of fully correlated sources have been proposed. The spatial smoothing
approach (Shan et al., 1985; Reddi, 1987) requires that the array have a
uniform linear geometry and reinterprets the array as a set of identical
overlapping subarrays. By averaging the spatial autocorrelation matrices of
these subarrays, a spatially smoothed autocorrelation matrix is formed in which
the signals are no longer fully correlated. The standard MUSIC algorithm can
then be applied to this smoothed autocorrelation matrix. Another approach,
suggested in Schmidt (1981) and developed more fully in Zoltowski and Haber
(1986), increases the dimensionality of the MUSIC search to allow for linear
combinations of array vectors being orthogonal to the noise subspace. Yet
another modification Haber and Zoltowski (1986) depends on the array being
in motion to impart a unique Doppler shift to each signal. Averaging over
several Doppler cycles essentially decorrelates the signals and allows MUSIC
to be applied to the averaged spatial autocorrelation matrix.

5.2. ESPRIT

One of the acknowledged problems with the MUSIC algorithm is the need to
obtain, store, and periodically check the calibration data, or to know the
analytical expression for the array manifold. To sample the array manifold
every 0, degrees in azimuth and elevation over the whole sphere of possible
arrivals with B-bit accuracy for the real and imaginary parts for each of M
elements requires (16200)(M)(B/6%) bytes. For example, with spatial resolu-

Ies
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tion of 0.1 degree, 16-bit accuracy, and an array of 10 sensors, the resulting
requirement of measuring, storing, and accessing 250 megabytes of data can be
quite costly if not impractical. Although sampling only in azimuth substantially
reduces the storage to (90)(M)(B/6,.,) bytes, the parameters in the preceding
example still yield a requirement of 144000 bytes. Also, the actual array
manifold can fluctuate over time due to perturbations of the sensor locations,
weather, nearby reflective and absorptive bodies, and so forth. Furthermore,
DOA estimation requires a search over that calibration data, and this can be
computationally expensive.

The technique for the estimation of signal parameters via rotational in-
variance (ESPRIT) (Paulraj et al., 1985; Roy, 1987; Roy and Kailath, 1989)
avoids these requirements by imposing a particular structure on the array
geometry and then exploiting that structure to great advantage. Specifically,
the array is assumed to consist of two identical subarrays, one of which is
spatially translated by a known distance with respect to the other. If the
direction of translation is unknown, then the resulting DOA estimates will all
be shifted by the same unknown amount from the true values. Examples of this
doublet geometry are shown in Figure 12.

A simplified interpretation of ESPRIT is that it is a generalized interferome-
ter that accommodates multiple signals by using more than two sensors. From
Section 2 recall that two-sensor interferometry for the narrowband signal
model in the absence of noise consists simply of measuring the phase between
the two sensor output signals, say x,(n) and x,(n), and obtaining the DOA
directly:

= AR (31)

xqxq X1Xg 2
sub-array #1

le . ® ® ®l® ®

sub-array #2

® ®
d ® ®
sub-array #2
® ®
® ©®

sub-array #1

Fig. 12. Two examples of the doublet geometry. One array consists of two overlapping subarrays,
whereas the other consists of two identical and disjoint subarrays.
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where the DOA 6 can be found by inverting the relation
A= U
= exp\ j2m p dsinf). (32)

This idea can be extended to accommodate two subarrays, having sensor
output signals x,(n) (for subarray 1) and x,(n) (for subarray 2), as follows.
First, as in the MUSIC algorithm, L spatial filters W, (22), (24) that
maximize the average processor output power (where L is the number of
signals present) are found. As discussed previously, each column of W, _is a
weighted sum of conventional beamformers, where the conventional beamfor-
mer is defined for the doublet geometry as [a'(0), a”(8)exp(j2m(f/c)
d sin 0)]", in which a() is the array response vector for subarray 1, and thus
aligns the phases and adjusts the gains of a desired signal at the different
sensors. That is,

_| A©)
Wbeam - [A(@)(D(@)]T (33)
for some L X L full-rank matrix T, where @(®) is the diagonal matrix induced
by the doublet geometry and has elements of the form (32),

P(O)= diag{exp(jZ'rr Jg d sin 0,)}L . (34)

When only one signal is present and two sensors are used (so that A(®) and T
are both scalars), the phase difference @(®) is similar to the phase difference
in the usual two-sensor interferometer, and can thus be inverted to obtain the
estimated DOA of the desired signal. When multiple signals are present and
more than two sensors are used, a more complicated procedure for obtaining
the estimated DOAs is required.

The beamforming matrix W,,,,, can be expressed as

eam

E
Wbeam = [E::l > (35)

where E, and E, are (M/2) X L matrices, and M is the total number of sensors.
Using the fact from (33) that A(@)= E,T ', it can be shown that

E,=E,T '®(O)T=E, V¥, (36)

where ¥ =T '®(@)T. Thus, since #(@) and ¥ are related by a similarity
transformation, they have the same eigenvalues, which then yield the DOAs.
However, since E, and E, are replaced in practice by their estimates £, and E,,
respectively, typically no matrix ¥ will satisfy

E,=E, V. (37)
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Therefore, a least-squares solution is required. Unlike the conventional least
squares problem, both matrices E, and E, contain errors. Following Golub and
van Loan (1989), the total least squares (TLS) solution for the L X L matrix ¥
can be found by computing the singular value decomposition

, A1 o ~ $1 0 A11 A12
[El EZ]_[Ul Uz][o AZ][VM sz] (38)

and forming
= —‘712‘72_21 : (39)

The eigenvalues of ¥ are the TLS-ESPRIT estimates of DOAs of the desired
signals. That is, the eigenvalues can be interpreted loosely as being the phase
differences from a generalized interferometer.

Notice that no search over 6 is required, which means that no calibration
data (apart from the doublet spacing d) is needed and that less computation
can be required than for MUSIC. In addition to these implementation benefits,
ESPRIT can outperform MUSIC in some environments (Roy, 1987; Roy and
Kailath, 1989).

In contrast to the preceding interpretation which is based on spatial filtering,
the subspace-fitting interpretations in Roy, (1987), Viberg and Ottersten
(1991) show that TLS-ESPRIT fits a set of array response vectors to the signal
subspace of the received data. However, rather than being constrained to lie in
a completely known array manifold, the set of array response vectors is
constrained only to have the form

[ AA(D] ’ | (40)

where @ is an L X L diagonal matrix having entries of the form (32).

The freedom from performing a search over @ does not come without
disadvantages. One drawback of ESPRIT is the restriction that the array
geometry be of the doublet variety. Difficulties in fabricating pairs of identical
sensors and in placing numerous such pairs to form a doublet geometry can
prevent ESPRIT from operating properly, akin to the performance degra-
dation of MUSIC in the presence of calibration errors. Another limitation is
that ESPRIT, like MUSIC, fails in the presence of fully correlated sources
because of correlated signals from different directions being combined destruc-
tively by the spatial filters or, equivalently, because of loss of rank of the signal
subspace.

5.3. Maximum likelihood

MUSIC and ESPRIT can in principle perform quite well in many signal
environments and entail either a search having dimension equal to the number
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of parameters per signal to be estimated (e.g., one for a search over azimuth
only) or no search, respectively. However, the probability of failure increases
as the degree of correlation among signals increases, and, in the presence of
perfectly correlated signals, the algorithms fail entirely. As mentioned before,
the signal nulling due to correlated signals from different directions being
destructively combined (spatial-filtering perspective) and loss of dimension of
the signal subspace (subspace-fitting perspective) preclude proper operation of
MUSIC and ESPRIT under these conditions.

Motivated by this drawback, a different approach to superresolution DF is
described here. This alternative approach is also presented from the spatial-
filtering perspective but again leads naturally to a subspace-fitting point of
view.

Given the received data sequence {x(n)}, it is desired to reconstruct the
components of the data due only to the desired signals. The parameter values
for which the reconstruction approximates the received data with maximal
accuracy are then taken to be the DOA and desired-signal waveform estimates.
The approach taken here is to subtract from x(n) an estimate A(®)3(n) of the
signal components A(@)s(n). If the estimates @ and §(n) are sufficiently good,
then the residual x(n) — A(®)§(n) will consist primarily of noise and interfer-
ence (cf. (7)). Thus, one would expect that minimizing the energy in this
residual by proper choice of @ and §(n) would result in accurate estimates of @
and s(n). In fact, this technique does perform well even in the cases where
transmitted signals are perfectly correlated. To see why this should be so,
consider a single signal s(n) impinging on the array from two different
directions 6, and 6, (e.g., zero-delay specular multipath),

x(n) = [a(6,) + a(6,)]s(n) + i(n) . (41)

Unless there exist ambiguities in the array manifold, there is no scalar 6 for
which a(8) = a(6,) + a(6,), thus preventing the interpretation that fewer signals
are impinging on the array. Therefore, despite the reduced dimension of the
signal subspace (i.e., one instead of two), only the appropriate choice of two
angle-estimates can account for all signal components in x(n).

The method can be stated mathematically in a least-squares form as

min ([x() - A@)5()[).. (“42)

for which the best least-squares fit between the received data and a reconstruc-
tion of the signal components of this data is sought. It can be shown that the
solution for §(n) in terms of any @ is given by
§(n) = (4"(6)A4(0))"4"(6)x(n) ,
=W'x(n), (43)
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which is the output of a spatial filter. Substituting this signal estimate back into
the residual and minimizing over the vector of DOA estimates 6 can be shown
to be equivalent to maximizing a matrix trace as follows:

max tr{P,(O)R,..} , (44)

where P, (@) is the projection matrix for the space spanned by the columns of
A(6),

P,(8)=A(6)(A"(6)A4(6))"'A"(6). (45)

As predicted, for @ = @ the reconstructed data A(®)$(n) is equal to the true
signal components (since P,(®)A(@)=A(0) when O = @) plus residual
noise,

x(n) — A(0)$(n) = x(n) — P,(0)x(n)
= (A(0)s(n) + i(n)) — (A(@)s(n) + P,(@)i(n))
= - P,(0))i(n). (46)

Assuming that the interference and noise i(r) is spatially uncorrelated (which
rules out the usual type of interference of interest), R, =1, then the average
power in the residual is the minimum attainable value compared with that
obtained from using any other choice of @. Notice that the pitfall of destruc-
tively combining correlated signals arriving from different directions to reduce
the average power in the residual is avoided here. That is, the elimination of
energy in the residual due to a signal component a(6,)s,(n) cannot be accom-
plished by subtracting a signal component a(6,)s;(n) from a different direction,
even if 5,(n) and s;(n) are perfectly correlated. However, unlike the preceding
methods, the DOAs must be found jointly (by means of a multidimensional
search as indicated by (44)) instead of individually (by means of a one-
dimensional search).

The natural progression to the framework of subspace fitting suggested by
the appearance of the projection matrix yields the interpretation that the
method fits to the received data a subspace spanned by vectors from the array
manifold. However, the goodness of fit is measured differently here than in
MUSIC and ESPRIT.

Another interpretation is that @ and §(n) obtained by this method are the
maximum likelihood (ML) estimators of @ and s(n) under the assumption that
i(n) is a zero-mean white Gaussian time series. An advantage of this statistical-
ly oriented interpretation is that many existing analytical techniques and results
can be applied to evaluate the bias and root mean-squared error (RMSE) of
the estimates. In addition, this facilitates the computation of a lower bound on
the RMSE of the estimates obtained by any algorithm that yields unbiased
estimates when applied to this model of the received data, as discussed in
Section 6.
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Fig. 13. Surface plot of the ML function in (44) for two uncorrelated signals arriving from 0 and 10
degrees.

The ability to operate properly in the presence of closely spaced signals is
illustrated here by an example. The same environment used to create Figures 6
and 7 is used here: two uncorrelated signals arrive from 0 and 10 degrees with
10dB SNR. The function to be maximized in (44) is evaluated over its
two-dimensional domain in which 0 and 0 range from —90 to 90 degrees. The
result is shown as a three- dlmensmnal surface and as a contour plot in Figures
13 and 14, respectively, and the antenna patterns formed by w, and w, are
shown in Figure 15. The two peaks in the surface correspond to angle estimates
of (0, 10) and (10, 0), order not being important. One of these peaks is
marked by the intersection of the dashed lines in the contour plot in Figure 14.
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Fig. 14. Contour plot of the ML function in (44) for two uncorrelated signals arriving from 0 and
10 degrees. The intersection of the dashed lines marks the peak at (0, 10).
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Fig. 15. Antenna patterns of the ML processor for two uncorrelated signals arriving from 0 and 10
degrees (denoted by the dashed lines).

Notice that each antenna pattern in Figure 15 exhibits high gain in the direction
of one signal and a null in the direction of the other signal, a strategy which is
referred to in Section 5 as one that potentially limits resolving capability.
However, the fact that Capon’s method is unsuccessful at using this strategy
whereas the ML method succeeds is due largely to the signal-by-signal action of
Capon’s method, in contrast to the joint estimation technique of the ML
method. That is, Capon’s method estimates the DOA of only one signal at a
time and forgets about prior estimates as it continues to scan for more signals.
In contrast, the ML method simultaneously estimates the DOAs of all signals
so as to best account for the spatial characteristics of the data as represented by
R,..
If, instead, the two signals from 0 and 10 degrees are perfectly correlated,
the ML processor is still able to resolve them, as shown in Figures 16-18.
Notice that the two peaks in the surface are not as prominent as in the case of
uncorrelated signals. Also, as shown by the antenna patterns, the resulting
waveform estimates §,(n) and §,(n) are not maximum-SNR solutions. The
maximum-SNR processor would exploit the correlation between the two
signals to improve the SNR, whereas the ML processor does not, as illustrated
by the spatial null in each pattern in the direction of one of the signals. Since
the ML method cannot reduce its average residual output power by destruc-
tively combining correlated signals, the fact that the signals are perfectly
correlated does not prevent the ML method from choosing the correct DOA
estimates, unlike Capon’s method, MUSIC, and ESPRIT.

As is obvious from the figures, a major drawback of the ML algorithm is the
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Fig. 16. Surface plot of the ML function in (44) for two correlated signals arriving from 0 and 10
degrees.
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need to perform a multidimensional optimization which can be prohibitive in
environments containing even a few signals. Furthermore, the matrix inversion
(or QR decomposition) needed to compute P,(@) for each new estimate @
complicates matters. However, in Ziskind and Wax (1988) an efficient algo-
rithm based on the alternating directions approach to multidimensional optimi-
zation is presented. This algorithm takes advantage of certain properties of
projection matrices to eliminate the need to recompute P, (@) from scratch at
every new iteration on the estimate ®. However, the multidimensional search
must still be performed, and the alternating directions approach is not guaran-
teed to be convergent in general to the global maximum in (44). Alternatively,
the optimization problem can be reexpressed to allow a modified Gauss—
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Fig. 17. Contour plot of the ML function in (44) for two correlated signals arriving from 0 and 10
degrees. The intersection of the dashed lines marks the peak at (0, 10).
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Fig. 18. Antenna patterns of the ML processor for two correlated signals arriving from 0 and 10
degrees (denoted by the dashed lines).

Newton method to be applied as suggested in Viberg and Ottersten (1991), and
this can greatly accelerate convergence but requires a good initial estimate.

An alternative approach that works well for ULAs is the iterative quadratic
maximum likelihood (IQML) algorithm in Bresler and Macovski (1986), which
exploits the fact that the ML DOA estimates for a ULA are given by the roots
of a polynomial.

5.4. Weighted subspace fitting

Although the MUSIC, ESPRIT, and ML methods seem to approach the DF
problem very differently regardless of whether one interprets the methods from
the spatial-filtering perspective or from the subspace-fitting perspective, each
method can in fact be obtained as a solution to a special case of the basic
subspace-fitting problem (Viberg and Ottersten, 1991)

min||D - A(O)T||}, (47)
e.T

where D is an M X g matrix that is obtained from the data (e.g., it can be the
data itself, a choice that can avoid explicit computation of the autocorrelation
matrix and can yield better performance when SNR is low), O is the p x 1
vector of DOA-estimation variables, and T is a p X q¢ matrix of variables.
Using standard methods, this problem can be shown to be equivalent to

max tr{P,(®)DD"} . (48)
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In other words, the basic subspace-fitting problem seeks the DOA estimates @
that adequately describe the spatial characteristics of the data. In Viberg and
Ottersten (1991) it is shown that different choices of D or DD, the dimension
p of @, and the form of A(®) can yield the ML, MUSIC, and ML-ESPRIT
methods and others, including the conventional beamforming method. For
example, choosing DD" = R__ and setting p equal to the number L of signals
yields the ML method, whereas choosing D =W,_,, (the signal subspace
eigenvectors of R ) and setting p =1 yields the MUSIC method.

These seemingly diverse methods are unified still further, for it is shown that
the ML estimator (44) has the same asymptotic distribution as the estimator

max tr{P,(O)E (A, — e’ )ET} , (49)

where E,=[e,---e;]| (the signal subspace eigenvectors of R, ) and A =
diag{A,--- A, } (the corresponding eigenvalues). Since MUSIC and ESPRIT
already lend themselves naturally to the description

max tr{P, (O)E,WE"} , (50)
(¢}

the result (49) implies that , asymptotically, each subspace-fitting method can
be expressed in the form of (50) for a particular choice of weighting matrix W,
dimension p of ©, and constraints on A(®).

A distinct advantage of this unified subspace-fitting perspective is that
analyses of consistency and asymptotic covariance of estimator error for
general W can be performed and the results can be specialized to the method of
interest by the appropriate choice of W. Consequently, it is possible to find the
optimal W which minimizes the asymptotic covariance of estimator error. In
Viberg and Ottersten (1991) it is shown that the optimal W is given by

Wyse (A - 2I)zAs_l (51)

or any consistent estimate thereof, and the algorithm (50)—(51) is referred to
as the weighted subspace fitting (WSF) method. It seems unlikely that this
optimal W could have been derived from the spatial-filtering perspective,
further substantiating the usefulness of the subspace-fitting concept.

5.5. Methods for cyclostationary signals

In light of the optimality of the WSF method, one might question the need to

investigate alternatives. However, by noting that the answers to questions such

as

e Is performance degraded when R, is unknown or unequal to o’I?

® When the amount of data available is limited, can other methods out-
perform the WSF method?

@ Does the method fail when there are fewer sensors than signals?
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® Must the method estimate the DOAs of all signals even if the DOAs of only

a subset of signals are desired?
are affirmative for all previously discussed methods, then it becomes clear that
alternative approaches are still required for some applications.

One class of methods addresses the above problems by being signal-selective
to discriminate against undesired signals, interference, and noise. In particular,
the methods discussed here are applicable to signals of interest that exhibit a
time-domain statistical property known as cyclostationarity or, equivalently, a
frequency-domain statistical property known as spectral correlation. Detailed
treatments of the theory of cyclostationary signals are given in Gardner (1987b,
1989), Gardner and Brown (1991) and a brief tutorial survey is given in
Gardner (1991). The great majority of communication and telemetry signals,
including digital quadrature amplitude modulated (QAM) signals, phase-shift
keyed (PSK) signals, frequency-shift keyed (FSK) signals, and others, exhibit
this property as a result of periodic keying, gating, sampling, and mixing
operations in the transmitter. Analyses of this property for specific modulation
types for both analog and digital messages are given in Gardner (1987a),
Gardner et al. (1987), and Gardner (1987b).

Briefly, a signal that exhibits second-order cyclostationarity has a period-
ically time-varying autocorrelation (which is equal to the additive periodic
components of the lag product of the data) instead of the time-invariant
autocorrelation that is characteristic of stationary signals, and the frequencies
of this variation are referred to as the cycle frequencies of the signal. Equiva-
lently, such a signal exhibits spectral correlation, meaning that the signal is
correlated with frequency-shifted versions of itself; that is, the amplitude and
phase fluctuations of narrowband signal components separated in frequency by
a cycle frequency are correlated. For example, the cycle frequencies of digital
communication signals can include the keying rate, the doubled sine-wave
carrier frequency, and sums and differences of these.

Several DF algorithms that exploit cyclostationarity by discriminating among
signals with different cycle frequencies are described next. More detailed
discussion, including derivations and finite-time performance results, is given in
Schell (1990, 1993 and references therein). Also, these techniques for DF and
others for blind adaptive spatial filtering are the subject of a patent application
(Gardner et al., 1988).

5.5.1. Cyclic MUSIC

The first signal-selective method that exploits the cyclostationarity property is
the Cyclic MUSIC method (Gardner, 1988; Schell et al., 1989; see also Schell,
1990, 1993) and can be motivated from either the subspace-fitting perspective
or the spatial-filtering perspective. By exploiting the fact that the signals with
cycle frequency @ contribute to a measurement of spectral correlation for
frequencies separated by a while other signals, as well as noise, eventually
become decorrelated in such a measurement, Cyclic MUSIC is able to select a
subset of signals on which to perform the DF task as follows. Given a signal
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s(n) with cycle frequency a, the cyclic autocorrelation function R%(7) can be
estimated using the finite-time average of the sinusoidally-weighted lag product

Ri(7) = (s(n + 7/2)s*(n—71/2) e >™") (52)

and this converges to a non-zero complex value (for each value of lag 7 within
some range) in the limit as the sample size N goes to infinity. Moreover, if
additive noise-and-interference i(n), independent of s(n), is present

x(n) = s(n) + i(n), (53)

and is not cyclostationary with cycle frequency «, then the cyclic autocorrela-
tion function still converges to the same value,

RL(1) = Ri(7) + Rii(7)
=R(7), (54)

§
since R;;(7)=0 for N— . This signal-selectivity property can be generalized
to accommodate the vector signal at the antenna array receiver output as
follows, under the assumption that the narrowband approximation holds. If a
number L, of signals s,(n), ..., s, (n) with cycle frequency « impinge on the
array along with other signals, interference, and noise i(n) not exhibiting
cyclostationarity with cycle frequency « (e.g., amplifier noise, signals with
other keying rates, etc.), then the cyclic autocorrelation matrix R? (7) is given
by
R (1) = (x(n + 7/2)x"(n — 7/2) e ™),

—A(O)R:(T)A™ (@) as N—>o (55)

where A(@) is an M X L, matrix and R;,(7) is an L, X L, matrix. It should be
noted that the often-used but overly strict single-tone idealization of the
narrowband assumption (cf. Section 3.1) is inconsistent with the concept of
spectral correlation, which inherently involves more than one frequency.
However, all that is typically required for the conditions of the narrowband
assumption to be satisfied is that the bandpass bandwidth of the received data
be much less than the reciprocal of the propagation time across the array. For
example, simulations of Cyclic MUSIC for a 7-element uniform linear array
receiving two signals having different cycle frequencies indicate that the
relative bandwidth (the bandpass bandwidth of the receiver divided by the
carrier frequency) can be as large as 50% without substantial degradation in
performance.

The most important property of R{_is that it converges to (55), which does
not contain any contributions from undesired and interfering signals and noise.
Therefore, R (7) can be used as R, — R, is used in conventional MUSIC to
find weight vectors that null certain signals. That is, weight vectors w can be
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found to simultaneously null all of the signals that have cycle frequency «,
w'RE (T)w=0. (56)

Since L, signals are to be nulled simultaneously, M — L, linearly independent
weight vectors can be found.

From the subspace-fitting perspective, if Rj(r) has full rank (e.g., no
perfectly correlated multipath), then the M — L _-dimensional null space of
R? (7) is orthogonal to the L, columns of A(@) corresponding to the desired
signals, analogous to the similar result that holds for the M — L-dimensional
noise subspace in conventional MUSIC. Cyclic MUSIC finds the set of array
response vectors that are orthogonal to the space spanned by the null-space
eigenvectors of R; (7). Thus, the Cyclic MUSIC method solves

R, (Dw,=\w,, m=1,..., M, (57)

where the eigenvalues are ordered as
|A1|>"'>|ALQ|>|ALH+1|="'=|’\M|=0’ (58)

and searches for the DOAs for which the array vectors are orthogonal to the
null space,

méinHWI:una(é)”z ) (59)

where the null space W, is given by W, =[w, ,, - w,]. Equivalently,
Cyclic MUSIC searches for the DOAs for which’ the corresponding array
vectors lie entirely within the cyclic signal subspace spanned by W, =
[w,---w, ]. Note that the columns of W, are not directly analogous to
those of W,_, . of conventional MUSIC because the former are not orthogonal
in general (R, is not Hermitian) whereas the latter are guaranteed to be so
(R, is Hermitian by definition). However, the singular vectors obtained from
the singular value decomposition of R;, can (and typically should) be used
instead of the eigenvectors, in which case the columns spanning the signal
subspace are analogous to those of W,.,, of conventional MUSIC.

However, unlike conventional MUSIC, Cyclic MUSIC does not require
knowledge of R, to obtain the desired signals-only correlation matrix and can
be even more selective because, for a particular choice of «, only those signals
having a cycle frequency equal to a contribute to (55).

The implications of this signal selectivity are numerous. For example, if the
received signals can be grouped into sets of signals having the same cycle
frequency, and each set contains fewer than M signals, then Cyclic MUSIC can
be applied for each a of interest to cumulatively resolve many more signals
than there are sensors. This works because each application of Cyclic MUSIC
must null only the desired signals for that particular value of a, which it can do
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as long as there are fewer of them than there are sensors. Also, DF can be
performed simultaneously on multiple signals with different values of a by
adding their cyclic autocorrelations, provided that there are fewer such signals
than sensors. Another implication is that the amount of post-processing of the
DOA estimates to eliminate those due to undesired signals is reduced or
eliminated.

Yet another benefit of signal selectivity is an expanded notion of resolution,
above and beyond the usual meaning. A conventional algorithm can exploit
only spatial processing to resolve two closely spaced signals (present in the
same spectral band and in the same time interval), even if only one of those is
a desired signal, and thus can fail when the angular separation between the
signals is small since angular resolution is limited by the amount of available
data (cf. Sections 6 and 7). However, if the signals have different cycle
frequencies, then Cyclic MUSIC must process only one signal at a time in the
spatial domain — the signals are actually resolved in the cycle frequency domain
(regardless of temporal and spectral overlap). Although cycle resolution is also
limited by the amount of useful data available, this is essentially independent
of the angular separation. Furthermore, Monte Carlo simulations have shown
that the amount of data needed for cycle resolution can be much smaller than
that needed for angular resolution (see Schell, 1990, and Schell et al., 1989).

In many applications involving communication and telemetry systems, L, =
1 for each « of interest. That is, multiple signals often do not share the same
sine-wave carrier frequency, although there are important exceptions like code
division multiplexing, in which both the sine-wave carrier frequency and the
keying rate are the same for all users, and some other systems in which
multiple users share the same keying rate but might have different sine-wave
carriers (e.g., in frequency division multiplexing). When L, =1, tremendous
simplifications result in Cyclic MUSIC (and in other algorithms to be described
subsequently).

As an example of the ability of Cyclic MUSIC to operate properly when
more signals are received than there are sensors, consider a five-element ULA
receiving six signals all having 10 dB SNR. Three of the signals have a cycle
frequency «; and arrive from —27°, 0°, and 10°. The other three signals have a
cycle frequency «, and arrive from —47°, —3°, and 35°. The first group of
signals does not have cycle frequency a,, and the second group does not have
cycle frequency «,. For example, the signals in the first group are digital radio
signals that all have keying rate equal to «;, and the signals in the second group
have keying rate equal to «,, where «; and @, are unequal and are not
harmonics of each other. The Cyclic MUSIC algorithm is applied with the cycle
frequency parameter a equal to «;. The antenna pattern resulting from the
null-space eigenvectors of R is shown in Figure 19. Clearly, only the three
signals having cycle frequency «; (denoted by the dashed lines) are nulled,
whereas the other signals (denoted by dotted lines) are ignored. Similarly, if
is set equal to «,, then only the three signals having cycle frequency «, are
nulled. Thus, the Cyclic MUSIC algorithm successfully estimates the DOAs of
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Fig. 19. Null-steering antenna pattern of the Cyclic MUSIC processor for six uncorrelated signals

arriving at a five-element array. The signals arriving from —27, 0, and 10 degrees (denoted by

dashed lines) all have cycle frequency «,, and the signals arriving from —47, —3, and 35 degrees

(denoted by dotted lines) do not have cycle frequency «,. The cycle frequency parameter a in
Cyclic MUSIC is set equal to a, to obtain the pattern shown here.

all six signals by processing only smaller subsets of signals. In contrast, the
conventional MUSIC algorithm (without knowledge of the correlation matrix
R;; that incorporates some of the signals of interest) is guaranteed to fail
because it can accommodate at most four signals. However, in order to obtain
some results for comparison, MUSIC is operated under the assumption that
there are four signals present, and the eigenvector corresponding to the
smallest eigenvalue of R, is treated as if it were the noise subspace eigenvec-
tor. MUSIC does obtain four estimates that are in the neighborhood of the
true DOAs but clearly does not obtain satisfactory results, as shown in Figure
20.

These benefits of signal selectivity are also shared by the additional four
cyclostationarity-exploiting DF algorithms described next.

5.5.2. Phase-SCORE Cyclic MUSIC

The Phase-SCORE' Cyclic MUSIC method (see Schell, 1990, and Schell et al.,
1989) is based on the following observation. For statistically independent
zero-mean signals with cycle frequency «, both the cyclic and conventional
autocorrelation matrices are diagonal, because both cyclic and conventional

! The acronym SCORE stands for spectral coherence restoral and represents a class of algorithms
originally designed for blind adaptive signal extraction rather than DF (Agee et al., 1990). The
Phase-SCORE method for signal extraction derives its name from the fact that it exploits the phase
as well as the magnitude of the spectral coherence.
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Fig. 20. Null-steering antenna pattern of the MUSIC processor operating in the same environment
as used for Figure 19. Four signals are assumed to be present to render operable the MUSIC
algorithm, although six signals are being received.

correlations between different signals are zero. Therefore, the cyclic autocorre-
lation matrix is proportional (via a diagonal matrix) to the conventional
autocorrelation matrix,

R (1) =R, A. (60)

However, each sensor receives some linear combination of the signals, so this
property does not hold if s(n) is replaced by x(n). Replacing s(n) by y(n),
where y(n) is output vector of the matrix processor W' x(n), might allow the
desired property to hold,

R, (1) =R, A, (61)

if the set of spatial filters described by the columns of W is chosen appropri-
ately. Furthermore, since additive noise and interference destroy this property
by contributing only to the right-hand side of (61), then restoring this property
to the output of the receiver processor ought to extract good estimates of the
waveforms of the cyclostationary signals. This property restoral (61) requires
the following equality to be enforced,

WURZ (W =W"R,_WA, (62)

and this can be accomplished by solving the eigenvalue equation

R (Dw,, = AR _.w m=1,...,M. (63)

mTxxm 2
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It can be shown (Schell et al., 1989) that these eigenvectors can be used in the
same manner as those in Cyclic MUSIC with the added benefits that the signal
waveform estimates §, (n) = wox(n), m=1, ..., L,, using the signal subspace
eigenvectors achieve nearly the maximum attainable signal-to-interference-and-
noise ratio (Schell and Agee, 1988) without using any knowledge of the array
manifold. Also, it can be shown that (63) is equivalent to applying Cyclic
MUSIC to the spatially whitened data R_}’’x(n), which implies that strong
interfering signals are suppressed prior to the application of the Cyclic MUSIC
algorithm. However, this also implies that strong desired signals are also

suppressed.

5.5.3. Cyclic ESPRIT

A simplification of the ESPRIT method by exploitation of cyclostationarity to
obtain signal selectivity was proposed in Gardner (1988) for the special case in
which the number L, of signals having cycle frequency « is equal to one.
However, its use of a generalized eigenvalue equation in which both matrices
are singular creates difficulties in implementation. To address this problem and
to obtain a method that can accommodate L, > 1, the total least squares (TLS)
ESPRIT method (which accommodates multiple signals and is numerically
well-behaved) is generalized here to exploit cyclostationarity. Instead of com-
puting the conventional autocorrelation matrix R, of the sensor output signals
x(n) and computing its eigenvalue decomposition to obtain W, , the cyclic
autocorrelation matrix R (7) is estimated, and its singular value decomposi-
tion is computed to obtain W, ., .. By using L in place of L in the remainder of
the TLS-ESPRIT procedure, the eigenvalues of the resulting total least squares
solution for ¥ yield the estimated DOAs of only those signals having cycle
frequency a. Thus Cyclic ESPRIT can be interpreted as a generalized inter-
ferometer that accommodates multiple signals by using multiple sensors but,
unlike conventional TLS-ESPRIT, discriminates against interference and noise
that does not have the desired cycle frequency.

As with the aforementioned DF methods that exploit cyclostationarity,
Cyclic ESPRIT can obtain better performance than conventional TLS-ESPRIT
when closely spaced signals have different cycle frequencies, and when noise
and interference have unknown spatial characteristics. Also, since the number
L, of signals having cycle frequency « is often less than the number L of all
signals present and in many cases is equal to one, Cyclic ESPRIT can often
require much less computation and post-processing to classify the DOA
estimates than conventional TLS-ESPRIT.

As with conventional TLS-ESPRIT, Cyclic ESPRIT requires the sensor
array to have a doublet geometry and does not require any calibration data
except for the translation vector separating the two subarrays. Also, it does not
operate properly when perfectly correlated signals having the specified cycle
frequency arrive from different directions, which can be caused by multipath
propagation or smart jamming.
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5.5.4. Cyclic Least Squares

The Cyclic MUSIC methods are attractive because they retain the computa-
tional simplicity of the one-dimensional search (like MUSIC) while addressing
the many problems associated with the lack of signal selectivity inherent in
MUSIC and almost all other algorithms that do not exploit cyclostationarity.
Similarly, the Cyclic ESPRIT method avoids the search over the array man-
ifold, but unlike conventional TLS-ESPRIT, exploits cyclostationarity to ob-
tain better performance in some environments. However, these methods fail in
the presence of fully correlated sources for essentially the same reasons that
MUSIC and ESPRIT do, although failure occurs in the cyclostationarity-
exploiting algorithms only when the signals having the specified cycle frequency
are fully correlated. In response to this shortcoming, the Cyclic Least Squares
(CLS) method exploits the cyclostationarity of the desired signals in a sub-
space-fitting approach more akin to that of the conventional ML method. That
is, CLS attempts to estimate the DOAs and signal waveforms so as to minimize
the average power in the residual between the received data and a frequency-
shifted reconstruction of the cyclostationary signal components of the received
data,

(g)nfi(g)< lx(n) — A(B)s(m) e *™" ") , (64)

where §(n) = W"x(n). In Schell (1990) and Schell and Gardner (1990c) it is
shown that the resulting W is given by

W=R_R;'A™(6)(A(6)A™(6) (65)
and extracts estimates §(n) with maximum signal-to-interference-and-noise

ratio when the signals are uncorrelated. The resulting simplified optimization
problem can be expressed as

max tr{P, (O)RLR R} (66)
[©]

and bears a resemblance in form to the conventional ML algorithm (cf. (44)).
In return for its ability to estimate DOAs even when signals are perfectly
correlated, the algorithm suffers from the same complexity due to multi-
dimensional optimization as WSF, ML, and others. However, unlike these
methods, the CLS algorithm is applicable when R, is unknown or unequal to
o’I and needs only the weaker condition L, <M. Furthermore, since CLS
estimates the DOAs of only the signals with cycle frequency «, the dimension
and complexity of the multidimensional search is reduced correspondingly. For
example, as discussed in Section 5.5.1, L, =1 is common in practice.

5.5.5. Cyclic DF method of Xu and Kailath
Although the Cyclic MUSIC and CLS methods can operate properly on data
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that is not strictly narrowband, performance can be degraded nonetheless.
Also, it is not obvious how to exploit the cyclic correlation associated with
multiple lag values 7, which can be necessary when desired signals having the
same keying rate but different modulation types or keying envelopes are
present. A method that is asymptotically exact for wideband data and efficient-
ly exploits the cyclic correlation associated with multiple lag values is presented
by Xu and Kailath (1992). This method is the generalization of the earlier
Cyclic Phase Difference (CPD) method (Gardner and Chen, 1992) from two
sensors to an array of sensors. That is, if the array contains only two sensors,
the DF method of Xu and Kailath reduces to the. explicit solution

AL c « as
9 =sin 1(—- rad angle{; Rxlxl('T)RxeZ(T)}> , (67)

where c is the propagation speed and d is the distance between the two sensors.
Equation (67) is the CPD algorithm, which implements the solution to a
least-squares phase-fitting problem.

This method differs from the previously discussed methods because it does
not perform beam- and null-steering to enhance some signals and reject others,
nor does it require cross-correlations between the data at different sensors.
Instead, it operates as a type of multi-sensor TDOA method, except that the
TDOA is not measured directly but is measured indirectly through the
differences in phases of additive sinewave components (at frequency «) that
appear in the lag products of the data, which are reflected in the phase
differences of the cyclic autocorrelation, and the TDOA is explicitly parame-
terized by the direction of arrival. The method exploits the property that the
cyclic autocorrelation of a delayed signal y(¢) = x(t—t,) is a phase-shifted
version of the cyclic autocorrelation of the original signal x(¢):

RS (1) = R: (1) exp(—j2mat,) . (68)

Under the assumption that each signal received at one sensor is merely a
delayed version of a corresponding signal received at another sensor, the phase
differences between the cyclic autocorrelations at two or more sensors can be
used to estimate the delay(s) and thus to estimate the direction of arrival.

When L, signals having cycle frequency « are present, the vector of cyclic
autocorrelations at the sensors can be expressed as a linear combination of L,
induced array response vectors,

. d, .
R:, (1) . exp(—j2ma ?1 sin 6))

R

I

Lcl
R, (1) = 2 b(6)R: (7) -
I1=1

~
I
-

a d
RS () exp(—j2ma TM sin 6,)
(69)
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Notice that the cycle frequency « plays the role of the center frequency in the
induced array response vectors b(6,), and that these vectors describe the phase
characteristic induced by the property (68), where the values (d,,/c)sin 6, play
the role of the TDOA ¢,. More importantly, this representation resembles the
narrowband signal model (with the left-hand side playing the role of the
received data, the induced array response vectors playing the role of the usual
array response vectors, the cyclic autocorrelations of the desired signals playing
the role of the desired signal waveforms, and the lag value 7 playing the role of
the time index n) in the absence of interference and noise. Consequently,
measuring the cyclic autocorrelations at the sensors for K different lag values

Ty, - . ., T¢ and collecting them into a matrix
R)Dcllxl (TI) e R;‘lxl(TK)
R= - (70)
xMxM(Tl) T xMxM(TK)

yields a matrix whose columns span the same space as the induced array
response vectors.

In practice the matrix R must be estimated, and the relation (69) no longer
holds exactly. Consequently, a least-squares fit of induced array response
vectors to the column space of the estimated matrix R can be used to find the
estimated angles of arrival:

min|[RW = [6@0) -+ 5@, ]I (71)

This minimization problem can be shown to reduce to the simpler maxi-
mization problem:

méaX”[u1 Tt uLc,]Hb(é)“2 ) (72)

where wu;,...,u; are the left singular vectors corresponding to the L,
significant smgular “values of R. The L, highest peaks in the objective functlon
are taken to be the direction estlmates

Thus, the method estimates the matrix R, computes the L, left singular
vectors corresponding to the L, significant singular values, and ﬁnds the angle
estimates 6, for which the correspondmg induced array response vectors most
nearly lie in the space spanned by those singular vectors.

By exploiting the cyclic correlation associated with multiple lag values, this
method can achieve much better performance (e.g., less RMSE) than Cyclic
MUSIC or CLS, and does so without requiring potentially troublesome
cross-correlations between sensors. It also benefits from signal-selectivity just
as Cyclic MUSIC and CLS do, but extends this benefit more accurately to
environments that cannot be adequately modeled as narrowband. However,
the method is not applicable to environments in which the signals are partially
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or fully correlated. Also, since the presence of ambiguities in the induced array
manifold is determined by the product of the sensor spacing and the cycle
frequency «, environments in which the desired signals are appropriately
modeled as being narrowband but do not exhibit cyclostationarity associated
with the carrier frequency (e.g., QAM or QPSK signals having small relative
bandwidths) can require that the sensors be widely spaced, since « will then be
relatively small. The need for this wide spacing has also been noticed in work
on the CPD method for TDOA estimation (Gardner and Chen, 1992).

6. Performance limits

Given a number of uncorrelated signals less than the number of sensors and an
unlimited supply of data, most of the preceding DF methods can uniquely and
exactly locate the sources. However, the presence of too many signals, or the
availability of only a finite amount of data, can cause any given DF algorithm
to yield erroneous DOA estimates or to fail completely. Two performance
limits are discussed here. The first limit is the largest number of signals that can
be present such that the DOAs can be estimated uniquely, and the second limit
is the Cramér—Rao lower bound on the RMSE of the DOA estimates.

6.1. Uniqueness

In Wax and Ziskind (1989) it is shown that certain conditions on the array
manifold, the number of sensors, the number of signals, and the rank of the
autocorrelation matrix of the signals determine whether or not the DOAs of
the signals can be estimated uniquely. Depending on the strength of the
conditions, uniqueness can be either guaranteed for every possible batch of
received data or assured with probability one. Both cases require that the array
manifold be known and that the array manifold vectors corresponding to M
distinct DOAs be linearly independent for all possible choices of those DOAs.

The stronger condition states that uniqueness is guaranteed if the number L
of signals is less than the average of the number M of sensors and the rank of
the signal autocorrelation matrix:

M+
- ra121k{RN} '

(73)
This result is proven by showing that (73) implies that

A(O)[s(0) -+ s(N-D]#A(O)S0) -+ §N-1)] (74)
for all @ @ regardless of how {§(n)} is chosen. Consequently, the result

applies to every possible choice of distinct angles 6,, . . . , 6, and every possible
{s(n)} for which rank {R_} has the desired value. For example, if the signals
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are uncorrelated, then rank {R_} =L and (73) merely states the familiar
condition L < M. However, the effect of correlated signals is to reduce the
rank of R and consequently to reduce the maximum number of sources that
can be localized uniquely. For example, if all signals are fully correlated then
rank {R_} =1, implying that the number of uniquely localizable sources is
L<(M+1)/2.

Since the strong condition (73) might seem overly restrictive in the presence
of multipath, it is fortunate that, if one is willing to accept uniqueness with
probability one rather than guaranteed uniqueness, the following weaker
condition is sufficient,

- 2 rank{R,,} u -
2rank{R_}+1 (73)

This condition also reduces to L < M for uncorrelated signals, but it reduces to
L < %M when all of the signals are fully correlated.

Although these results say nothing of the accuracy of the DOA estimates in
the presence of noise, they do imply that ambiguous solutions obtained while
using any given batch of received data ought not to occur. However, the
approach used in Wax and Ziskind (1989) to derive the results is based on the
assumption that no extra knowledge of the signals is available. For example, if
it were known that only a subset of the signals, say s(n), were correlated with a
known waveform (e.g., a short training signal inserted into the signals at
periodic intervals before transmission), then that knowledge could be exploited
to find the DOAs of only that subset of signals. In such a case it might be
shown that rank {R,} in (73) and (75) could be replaced by rank {R;} and L
by L.

A similar result is obtained in Schell (1990) and Schell and Gardner (1990c)
for the case in which a subset of the signals exhibits spectral correlation with
cycle frequency «. Specifically, it is shown for the Cyclic Least Squares
algorithm that the condition

M + rank{Ry}
< _—
a 2 >
guarantees that the signals can be resolved given sufficient data, where L, is
the number of signals exhibiting cyclostationarity with cycle frequency a. Two
benefits of signal selectivity can make this condition on L, much more easily
satisfied than the condition on L. First, L, is always less than or equal to the
total number of signals. Second, although perfect cyclic correlation among the
L, desired signals reduces the rank of Ry (and typically results from perfect
noncyclic correlation among them and hence is accompanied by a reduction in
the rank of R, ), perfect correlation among the L — L, undesired signals
reduces the rank of R but not of R{,. That is, the number of sensors required
and, conversely, the number of desired signals that can be accommodated are

determined only by the properties of the desired signals.

L (76)
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6.2. Cramér—Rao lower bound

Given an array receiving signals from sources in fixed locations, how accurate
is a particular method and what is the best possible accuracy? Or, more
specifically, if a DF experiment is performed many times, what is the average
squared error and what is a meaningful lower bound on it? The answers to
these questions can be useful in choosing a DF method (e.g., by choosing the
one with the smallest error) and in determining whether to continue the search
for more accurate methods. Unfortunately, these questions are too vague to be
answered precisely in general because the statistical properties of the signals
(e.g., stationarity and whiteness) directly affect the statistical properties of the
DOA estimates.

However, one can get a flavor for the performance of various methods by
assuming that the noise is stationary, zero-mean, and Gaussian, and either that
the signals themselves are, too, or that they are simply unknown. The former
case is sometimes referred to as the stochastic or unconditional Gaussian signal
model, whereas the latter is sometimes referred to as the deterministic or
conditional Gaussian signal model. In either case, the probability density
function of the received data is a Gaussian density function. Aside from the
relative ease of working with the Gaussian density (as compared with most
other densities), the fact that most DF methods use only second-order statistics
(i.e., auto- and cross-correlation measurements) matches well with the proper-
ty of zero-mean Gaussian signals that they are completely characterized by
their second-order probabilistic parameters (ideal correlations). Furthermore,
a recent result in Ottersten and Ljung (1989) shows that the stochastic ML
DOA estimator for zero-mean independent stationary Gaussian signals when
applied to any zero-mean uncorrelated stationary signals yields the same
asymptotic (as the number N of data samples approaches infinity) variance
regardless of the distribution of the signals.

Although the MSE of the DOA estimates obtained by specific DF methods
is certainly of interest, the details of the analytical methods and results are
quite diverse (even within the WSF framework) and, if presented here, would
detract from the heuristic nature of this chapter. Examples of specific analyses
are given in Viberg and Ottersten (1991), Ottersten and Ljung (1989),
Barabell et al. (1984), Kaveh and Barabell (1986), Schmidt (1981), Stoica and
Nehorai (1989), Wang and Kaveh (1986), Kesler and Shahmirian (1988), and
Porat and Friedlander (1988). Instead, the topic of interest here is that of
finding a lower bound on the MSE of any unbiased DOA estimator, and the
particular bound discussed here is the Cramér-Rao lower bound (CRLB).
Two cases are considered, yielding the stochastic or unconditional CRLB and
the deterministic or conditional CRLB.

Derivations of the stochastic CRLB for the narrowband DF problem appear
in Porat and Friedlander (1988), Barabell et al. (1984), Schmidt (1981),
although the one in Bangs (1971) is the first. The derivation is not repeated
here. Given the ideal spatial autocorrelation matrix R, of the received data,
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and assuming that the noise is spatially white (R,; = o’I), the end result is that
the covariance matrix of any unbiased estimator @ is greater than the inverse
of the Fisher information matrix J,

cov{®}=J7'(0), (77)

in the sense that var{v'®} = v" cov{@}v=v"J '(@)v for all vectors v, where
the elements of J are given by

J _Nt {R—l aRx,\r R—l aRxx}
ij T xx 301 xx 601

=—Nt {aR;xl 6szx} 78
I GFT T (78)

In this context the unknown parameters 6, are not restricted to be angles of
arrival. In fact, to obtain a meaningful lower bound for most applications, the
signal powers, cross-correlations among the signals, and noise powers (and
perhaps the cross-correlations among the noises at different sensors), must also
be considered as unknown parameters.

One intuitive aspect of the result is that the CRLB decreases as 1/N, so that
doubling the amount of collected data halves the minimum MSE. Also, in the
special case of one signal arriving at the array and 6 being the only unknown
parameter, the covariance matrix in (77) is simply the MSE of any DOA
estimate. Other than these two observations, the general intractability of
proceeding analytically makes it difficult to obtain much more understanding of
a heuristic nature.

Thus, due to the difficulties in obtaining more useful results analytically, a
numerical example is presented. Consider the five-element ULA used in the
previous examples in this chapter. Two signals arrive with equal power 10 dB
above that of additive white Gaussian noise, and the DOA of one signal is held
fixed at 0 degrees while the DOA of the other signal is allowed to vary. The
number of data samples is assumed to be 100, although the results for any
desired number N of samples can be obtained by vertically shifting the curve by
log,, VN/100. Intuitively, we expect the RMSE to increase as the angular
separation decreases because the two distinct arrivals begin to appear as one.
This expectation is confirmed by the results of the numerical evaluation
displayed in Figure 21. Judging from the figure by the location of the
intersection of the dotted line (RMSE = angular separation) with the solid line
(the CRLB), the CRLB is greater than the angular separation itself when the
angular separation is less than approximately 2 degrees. This point can be
taken to be the resolution threshold for the given SNR and number of data
samples. Thus, regardless of the method to be applied to this environment,
more data (or higher SNR) is required to operate when the separation is less
than 2 degrees. Notice that as the DOA of the second signal approaches the
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Fig. 21. CRLB for the DOA estimates of signals having 10 dB SNR and arriving from 0 degrees

(solid line) and 6, degrees (dashed line), plotted as a function of 6,. (In the region to the left of the

intersection of these curves with the dotted line, the CRLB is greater than the angular separation,
whereas the CRLB is less than the angular separation in the region to the right of the intersection.)

end-fire position (6,—90°), the CRLB rises dramatically because the array
response vector becomes insensitive to small changes in DOA (da(6,)/
de,— 0).

It should be noted that the resolution threshold adopted here is a severe one
that is intended to distinguish the region of excellent performance from the
regions of possibly acceptable performance and definitely unacceptable per-
formance. Also, this aspect of resolving signals is distinct from the typically
necessary prerequisite of correctly detecting the number of signals present.
Only when the two are taken together can a complete characterization of
performance that is applicable to most problems be made.

More recently derived than the stochastic CRLB is the deterministic CRLB,
presented in Stoica and Nehorai (1989). Unlike the stochastic CRLB, the
deterministic CRLB depends on the signal waveforms rather than their prob-
abilistic model. However, when the number N of data samples is sufficiently
large, the deterministic CRLB can be expressed in terms of the limit (N — )
autocorrelation matrix of the signals,

2

cov{®} = 7 [Re{[D"(I ~ P,(0)DIOR}) ", (79)

where © denotes the element-wise matrix product, and the matrix D (not to be
confused with the matrix D in (47)) is given by

da(6,) da(6,)
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Like the expressions for the stochastic CRLB, this expression does not yield
much insight into the behavior of the CRLB as a function of angular separation
between sources, SNR, or number of sensors. However, for the special case of
a uniform linear array, if the number M of sensors and the number N of time
samples are sufficiently large, then the CRLB can be expressed simply as

o [1/SNR, 0
cov{B@}) = —— ) (81)
M’N| 1/SNR,

where SNR, is the signal-to-noise ratio for the [-th signal. This expression
shows that the deterministic CRLB is reduced drastically as the number M of
sensors increases and that increasing SNR or collect time N also decreases the
CRLB in inverse proportion. Although it seems strange that (81) is in-
dependent of the angular separations, it is a direct result of the requirement
that M be sufficiently large. However, for practical numbers of sensors,
analytical evaluation of the deterministic CRLB is too complex to offer much
intuitively pleasing information.

Although the preceding two versions of the CRLB can provide useful lower
bounds for the RMSE of estimators operating on stationary data, they neglect
the reduction in RMSE that is potentially obtainable when the signals are
cyclostationary. In Schell (1990) and Schell and Gardner (1992a) it is shown
that the CRLB for the DOAs of cyclostationary signals can be orders of
magnitude less than the CRLB for the DOAs of stationary signals, even if the
cycle frequencies (and SNRs and other parameters) of the signals are un-
known, provided that not all signals have the same cycle frequencies. This
potential performance increase is based on the fact (mentioned in Section
5.5.1) that simultaneously resolving in the cycle-frequency domain (even
though the signals are spectrally overlapping) and the spatial domain can
require much less data than resolving only in the spatial domain alone.

7. Departures from ideality

Given the difficulty in understanding the physical behavior of most DF
methods, the bulk of the discussion in the previous sections of this chapter is
devoted to the ideal case in which all quantities processed by the methods are
known exactly and all operating assumptions are satisfied. As seen from the
preceding discussion, there are substantial differences in performance and
applicability among the methods without introducing other dependencies.
However, in practice, virtually all of the departures from ideality discussed in
this section can occur. Effects due to finite averaging-time, calibration errors,
unknown number of signals, the presence of more signals than sensors,
unknown interference-and-noise spatial autocorrelation matrix, and wideband
signals can all conspire to degrade performance. For each of these sources of
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error there are both analyses of existing methods in the presence of error and
designs of new methods for reducing the effects of error, although much more
work remains to be done. In this section, some of the most important
departures from ideality and potential methods for accommodating them are
briefly surveyed.

7.1. Finite averaging time

The DF methods discussed in this chapter are explained in terms of their
behavior when given ideal correlation matrices in. order to concentrate on the
simplest interpretations of the methods. In practice, the correlation matrices
must be measured from the received data. The consequences of using these
nonideal values include possible bias (average error) in the estimates, vari-
ability in the estimates from trial to trial for the same environment, incorrect
detection of the number of signals, failure to resolve the signals even when
given the correct number of them, and errors resulting from dynamic or
transient environments. Usually it is assumed that the physical model (source
locations, array geometry, signal power, etc.) is stationary. Thus, as the
number of data samples increases without bound, the measured correlation
matrices are assumed to converge to the ideal matrices. However, depending
on the DF method, this convergence does not imply convergence of the DOA
estimates to the true values, as noted in the numerical evaluations presented in
the preceding sections of this chapter.

To investigate performance for a finite number of data samples, most papers
on DF methods contain the results of Monte Carlo simulations in which the
random number seeds used to generate the signals and noise vary from trial to
trial. From these trials are calculated the bias and RMSE of the DOA
estimates, but these results are typically applicable only to the specific signal
environment being simulated. In contrast, analytical results can be used for
performance evaluation in a variety of environments, their explicit functional
dependence can reveal relationships between performance and environmental
parameters not previously known, and they facilitate the comparison of
performance obtained for different DF methods. However, due to the non-
linear dependence of the DOA estimates on both the data and the correlation
matrices measured from the data, analysis of bias and RMSE for a finite
amount of data can be difficult at best or intractable. For example, analysis of
recent methods based on eigenvalue problems and subspace-fitting typically
involves asymptotic (as the number of data samples becomes large) probabilis-
tic behavior of both the correlation matrices in question and the eigenvectors
or singular vectors of those matrices. Although results on such probabilistic
behavior are available, the difficulty in obtaining very specific results (such as
the number of data samples needed to resolve two signals) remains. Analytical
investigations of more complicated environments (involving more than one or
two signals) are typically avoided in favor of Monte Carlo simulations.

Nonetheless, a number of useful analyses are presented in the literature,



High-resolution direction-finding 805

including results on the SNR needed for MUSIC and the minimum-norm
methods to resolve two signals (Kaveh and Barabell, 1986), and the bias and
RMSE of DOA estimates obtained by MUSIC (Porat and Friedlander, 1988;
Stoica and Nehorai, 1989), ESPRIT (Ottersten et al., 1991), ML (Stoica and
Nehorai, 1989), WSF (Viberg and Ottersten, 1991) and Cyclic MUSIC (Schell,
1993). Other useful performance analyses and results of Monte Carlo simula-
tions are presented in Wang and Kaveh (1986), Barabell et al. (1984), and
Jeffries and Farrier (1985).

7.2. Calibration errors

Throughout most of the literature on DF it is assumed that the array manifold
is known precisely. However, the effective array manifold can differ from the
assumed or measured one due to measurement error during calibration, sensor
characteristics changing with time and temperature, array geometry being
perturbed by vibration and mechanical deformation (e.g., in arrays that are
dismantled and reassembled), and more complex effects such as mutual
coupling among sensors. If the corresponding perturbations in the array
manifold are small, then many DF algorithms can still provide useful results for
a single signal or for widely spaced signals, although the estimates will likely be
biased, but the ability to resolve two closely spaced sources can be severely
reduced. Thus, it is important both to quantify the sensitivity of algorithms to
calibration error and to formulate algorithms that either are tolerant to such
error or attempt to adaptively self-calibrate the array.

In some respects the analyses of DOA estimation error in the presence of
calibration errors and finite-time effects are similar because they can both be
interpreted as involving perturbations to R .. In fact, the general perturbation
equations from Rao and Hari (1989) on asymptotic analysis of root-MUSIC for
finite time are used in Swindlehurst et al. (1989) to obtain results for DOA
estimation error of root-MUSIC for calibration error. A more general expres-
sion obtained there which is applicable to MUSIC and root-MUSIC is

b —0~— Re[dH(oi)EnEnH‘;(Oi)]
v d"(0)E,E{d(6)

(82)

where a(0) = a,,,.(0) — @, umea(0) is the perturbation which is assumed to be
small, d(#) is the partial derivative of a(6), d(6) =da(0)/36, and E_ is the
matrix of noise eigenvectors of R or the null eigenvectors of R . Specific
numerical evaluations in Friedlander (1990) and Swindlehurst et al. (1989)
show that calibration error can be rather large (e.g., random phase errors on
the order of 30 degrees) without causing significant degradation in the per-
formance of MUSIC when only one signal is present, but that even small
calibration errors (e.g., a phase error of 2 degrees) can prevent MUSIC from
resolving two signals.
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In light of this last result it appears particularly important to formulate DF
algorithms that can adaptively adjust their calibration. Most such algorithms
proposed to date, including those in Weiss and Friedlander (1989), Rockah and
Schultheiss (1987a,b), Weiss et al. (1988), and Friedlander and Weiss (1988),
are applicable to restricted types of calibration error. One type of error comes
from gain and phase errors that are independent of DOA. In this case the
effective array response vector a(6) + a(@) is related to the assumed vector
a(8) by a diagonal matrix I,

a(0) + a(0) = I'a(9) , (83)

so in addition to estimating the DOAs, the DF algorithm must also estimate I.
Another type of error results from errors in sensor locations. In this case the
sensor locations must be estimated and then substituted into the analytical
expression for the array response vectors in order to obtain the estimated array
response vectors. For these two types of error, a common approach is to iterate
between estimating DOAs using the current corrections for calibration error
and estimating corrections for calibration error using the current DOA esti-
mates. For example, an ML version of this approach is shown with Monte
Carlo simulations in Weiss and Friedlander (1989) to converge quickly (e.g., 5
to 10 iterations) for sensor location perturbations of 34% of the element
spacing in a 6-element uniform circular array. This self-calibration method
reduced the DOA errors from 8§ degrees to less than 1 degree. Despite the
encouraging nature of these results, the more general problem of combined
sensor and gain/phase errors and the problem of gain and phase errors.that
vary with DOA remain.

An alternate approach to addressing the calibration problem is to explore
algorithms that are inherently less sensitive to calibration errors. For example,
the ESPRIT algorithm (cf. Section 5.2) uses only the distance between the two
subarrays, thereby greatly reducing the dependence on proper calibration.
However, if the two subarrays are not identical due to physical perturbations of
the array geometry or component drift in the sensors, then performance can be
degraded. As another example, the methods that exploit cyclostationarity (cf.
Section 5.5) can yield better performance in the presence of calibration errors
than their conventional counterparts by reducing the number of signals to be
processed. For example, consider only one signal present that is cyclostationary
with a particular cycle frequency « and other closely-spaced signals that are
present and do not have that cycle frequency. If the calibration error is great
enough that closely-spaced signals cannot be spatially resolved, then a conven-
tional method will fail. In contrast, the signal-selective DOA estimate obtained
by a cyclostationarity-exploiting method will be biased, but the amount of such
bias can be small. Since the conventional methods must spatially resolve all of
the signals, they are more susceptible to calibration error than are the
cyclostationarity-exploiting methods which pre-select one signal (or a relatively
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small subset of signals) in the cycle-frequency domain independently of any
calibration error. This is not to say that the cyclostationarity-exploiting meth-
ods are not affected by calibration error, but that they can be much less
affected than their conventional counterparts because they typically operate on
fewer signals at a time (cf. Schell, 1992b).

7.3. Unknown number of signals

Throughout this chapter it is assumed that the number of signals impinging on
the array is known. Of course, if the ideal spatial autocorrelation matrix R, of
the data is known, the ideal autocorrelation matrix of the signals R has full
rank, and the interference-and-noise autocorrelation matrix R;, is known, then
the number of signals can be found by subtracting the multiplicity of the
smallest eigenvalue of R, from the number of sensors (cf. equation (26)).

In practice, the number of signals is often unknown and only a finite amount
of data is available, preventing the use of the preceding technique. Although a
sequence of hypothesis tests can be applied to the eigenvalues of the estimated
autocorrelation matrix (Bartlett, 1954; Lawley, 1956), this procedure requires
that some subjective judgement be made to choose the threshold value used in
the tests. More specifically, the log-likelihood of the data (assumed to be
Gaussian) is evaluated for increasing trial value L of the number of signals.
Then, since this function is nondecreasing, some threshold is needed to
determine whether the likelihood is high enough for the trial value to be taken
as the final estimate. The subjectivity in choosing this threshold, then, is a
weakness of the method.

In contrast, the type A Information Criterion (AIC) of Akaike (1973), the
minimum description length (MDL) criterion (Wax and Kailath, 1985), and the
efficient detection criterion (EDC) (Zhao et al., 1986) avoid this problem by
employing a more sophisticated threshold that is chosen according to a
statistical motivation specific to each method. These methods estimate the
number of signals as the value of L that minimizes the function

(L, p, N)=N(M — L)logla(L)/g(L)] + p(L, N) , (84)

where a(L) and g(L) are the arithmetic and geometric means, respectively, of
the M — L smallest eigenvalues of R__, and p(L, N) is a penalty function that is
different for each of the AIC, MDL, and EDC methods. The purpose of the
penalty function is to offset the first term (which is recognizable as the negative
of the log-likelihood and is a nonincreasing function of L) and thereby induce
a minimum in the function. Alternatively, the penalty function can be inter-
preted as a sophisticated threshold function. A different alternative considered
in Chen et al. (1991) involves a statistical method for predicting the best
thresholds and has been shown to outperform the AIC and MDL methods.

For the cyclic DF methods such as Cyclic MUSIC and Cyclic Least Squares,
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the aforementioned detection techniques do not apply. They do not apply
directly because the number L, of only the signals having cycle frequency « is
desired, and they do not apply indirectly because the statistical behavior of the
singular values of the cyclic autocorrelation matrix is much different than that
of the eigenvalues of the conventional autocorrelation matrix. A new detection
scheme that combines a penalty function (so no threshold needs to be chosen)
with some results in multivariate statistics regarding common factor analysis
(which is concerned with estimating signal components that are common to two
different data sets) is presented in Schell and Gardner (1990a) and is shown
there to perform satisfactorily. More recent methods are considered in Schell
(1993).

7.4. Number of signals > number of sensors

In cluttered signal environments such as tactical surveillance, air traffic control,
and communication networks, the number of signals impinging on the array
can exceed the number of sensors. Given the cost or impracticality of increas-
ing the number of sensors in some applications, an attractive alternative is to
use a DF algorithm that can operate properly in such cluttered environments.

The possibility of such an alternative follows from a recent result in Wax
(1992), where it is shown that a number L > M of signals can be uniquely
localized if the signals satisfy certain constraints. For example, it is shown that
up to 2M — 2 uncorrelated signals having unknown but constant amplitudes can
almost always be uniquely localized. A more powerful result is shown under
the constraints that M >2 sensors are used and that the signals are uncorre-
lated complex exponentials (e.g., each signal s,(n) has the form s,(n)=
a, exp(j2wfin + ¢,)). Then any number L of signals can almost always be
uniquely localized provided that L time samples are taken.

Another alternative reduces the inherent redundancy in a ULA without
reducing the number of resolvable signals or the aperture (spatial extent) of the
array. The primary example of this is the minimum redundancy linear array
(Moffet, 1968) which is based on the representation of all pairwise differences
among the integers 1,2, ..., M by the pairwise differences in a set containing
fewer than M integers. For example, the integers 1,2, ... ,24 yield pairwise
differences 0,1, ...,23, and many pairwise differences are the same (e.g.,
24-10=23—-9=---=15-1=14). However, the set of integers 1, 2, 3, 12,
16, 19, 22, 24 also yields all differences between 0 and 23, but this set contains
only 8 elements. This property can be exploited to reconstruct the spatial
autocorrelation matrix of the 24-element ULA from the autocorrelation matrix
of the minimum redundancy 8-element array because redundant differences in
the set of integers 1,..., M correspond to redundant cross-correlations be-
tween sensors. Since (for infinite time-averaging) R, for a ULA is a Toeplitz
matrix (i.e., Rx,-xj =R, kxj+k)’ an entire sub-diagonal or super-diagonal of R,
can be reconstructed from a single element in it. This reconstructed matrix,
obtained from only 8 sensors, can then be processed by a DF algorithm such as
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MUSIC to resolve up to 23 signals. Larger gains can be achieved by consider-
ing larger values of M above.

Yet another alternative is to apply a signal-selective DF algorithm such as
Cyclic MUSIC or Cyclic Least Squares (cf. Section 5.5). For these algorithms,
the only requirement on the number of signals is that the number L, of signals
with the cycle frequency «; be less than the number of sensors (considering
only the case of full rank R;! for simplicity here). Consequently, if there exist
L,,< M signals with cycle frequency «, then the DOAs of those signals can
also be estimated simply by changing the value of a from «, to a,. This
situation can be repeated for a number of distinct cycle frequencies limited
only by measurement noise due to finite time-averaging and computational
precision effects so that, in principle, the DOAs of a virtually unlimited
number of temporally and spectrally overlapping signals can be estimated.
Also, when each signal of interest has a unique cycle frequency, only a
two-sensor array is needed, although some reduction in RMSE can be obtained
by adding a third sensor to substantially increase the aperture beyond that
required to avoid ambiguities for the two-element array.

7.5. Unknown R,

The need to know the interference-plus-noise autocorrelation matrix R;; can
prevent many DF algorithms including MUSIC, ESPRIT, ML, and WSF, from
obtaining any useful DOA estimates or can impose extra cost, added complexi-
ty (e.g., if an automatic system were somehow added to estimate R;), or
hardship on the operator to obtain this information, when it is indeed
available. Typically, R;, is assumed to be proportional to the identity matrix.
However, if one sensor is particularly noisy, or if significant noise is actually
received (rather than being generated by the sensors themselves), then R;; can
deviate significantly from the assumed value.

Covariance differencing techniques (Paulraj and Kailath, 1986; Prasad et al.,
1988) sidestep this requirement under certain conditions by computing the
difference between the matrix and a transformed version, where the trans-
formation is chosen such that the noise correlation is invariant to it, thus
removing the contribution of R,,. However, these techniques work well only
when the noise does indeed satisfy this invariance property. Also, covariance
differencing does not remove the need to know R, when undesired and
interfering signal sources are to be included in i(n) as a means of eliminating
them from consideration in the DOA estimation process.

However, cyclostationarity-exploiting DF methods such as Cyclic MUSIC
and Cyclic Least Squares (cf. Section 5.5) inherently avoid the need to know
R if the interference and noise do not exhibit cyclostationarity with the cycle
frequency of the signals of interest, allowing them to be applied in a broader
range of environments. This is particularly important in analysis applications in
which — for some cases — virtually no prior knowledge of the signal environ-
ment exists.
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7.6. Potential limitations of cyclostationarity-exploiting methods

An obvious limitation of cyclostationarity-exploiting methods is that not all
signals whose directions of arrival are to be found exhibit cyclostationarity.
Although some natural signals do (e.g., due to seasonal variations), many
natural signals do not. Also, although many man-made signals do exhibit
cyclostationarity, some do not (e.g., analog frequency-modulated signals with
large modulation index, and analog single-sideband amplitude-modulated
signals).

Although the performance of methods that exploit cyclostationarity can be
greatly superior to that of conventional methods in difficult environments, the
performance can be worse in some environments, and knowledge of the
unconventional parameters required can be difficult to obtain in some applica-
tions.

Inferior performance of the cyclostationarity-exploiting methods is likely to
occur when the conventional methods are operating well within their operating
limits, such as when received noise is negligible, internal noise is uncorrelated
from sensor to sensor and the noise power at each sensor is known, few signals
are present, and the signals are not extremely closely spaced. Examples of this
behavior can be found in Schell (1990) and Schell and Gardner (1990b). One
explanation for this behavior is that signal selectivity is not essential to
acceptable performance in these environments and that the DOA estimates of
the cyclostationarity-exploiting methods are based on a weaker (more difficult
to estimate accurately) property of the signals than the property used by the
conventional methods. Specifically, the additive sine wave component at
frequency a # 0 in the lag-product waveform x(n)x"(n — 7) that is exploited by
the cyclostationarity-exploiting methods is weaker (and for bandwidth-efficient
communication signals can be much weaker) than the additive constant com-
ponent at frequency « =0 exploited by the conventional methods. Conse-
quently, more data samples can be required to obtain a reliable estimate of the
amplitude and phase of the sine wave and hence of the DOAs.

Although some parameters required by the conventional methods (e.g.,
autocorrelation matrix of the noise, total number of signals) are not needed by
the cyclostationarity-exploiting methods, knowledge of some unconventional
parameters is needed. In particular, the cycle frequency o must be known
accurately (to within about 100/N percent of the width of the receiver band,
where N is the number of data samples) to obtain acceptable performance.
Some initial work (Schell and Gardner, 1990b) on estimating « from the data
indicates that excellent performance can be obtained even when « is essentially
unknown. Another parameter that is required to be known is the number of
signals present that have the desired cycle frequency. As with the conventional
methods, the estimation of this parameter (analogous to the estimation of the
total number of signals) requires a statistical test to be applied when only a
finite amount of data is available. Unfortunately, using the eigenvalues or
singular values of the cyclic autocorrelation matrix in the conventional detec-



High-resolution direction-finding 811

tion criteria does not result in useful estimates of the number of signals having
the desired cycle frequency. However, a new detection criterion presented in
Schell and Gardner (1990a), which is based on existing results in multivariate
analysis of testing the significance of the correlation of one data set with
another, appears to yield acceptable performance (cf. Schell, 1993).

7.7. Breakdown of narrowband approximation

Throughout this chapter it is assumed that the signals are sufficiently narrow-
band that equation (7) is a close approximation. Thus, the contribution of each
signal to the spatial autocorrelation matrix of the received data has rank equal
to one, and the rank of the signals-only part of that matrix is equal to the
number of signals (in the absence of perfectly correlated signals, pathological
signal environments, and ambiguities in the array manifold). However, in
many applications the bandwidths of the signals can be comparable to the
center frequency of interest and/or tapped delay lines can be attached to the
sensors, so the more general model that includes frequency dependence must
be used instead. A more detailed discussion of the conditions under which the
wideband model is needed can be found in Buckley (1987).

Perhaps the most obvious method for accommodating wideband data is
simply to decompose the data into disjoint frequency bands that individually
satisfy the narrowband assumption. Then, the DOA estimates obtained from
applying a narrowband DF algorithm to each band must somehow be com-
bined to yield one DOA estimate for each wideband signal. This approach is
investigated in Wax et al. (1984). However, as in any non-linear estimation
problem, as SNR decreases below some threshold, the errors in the individual
estimates increase dramatically and prevent the final combination from being
effective (cf. Van Trees, 1968, Chapter 4, Section 2). This is so because the
data from the multiple narrow bands are combined incoherently in the sense
that no combining is performed until after the data from each band is
processed by a nonlinear processor. Specific examples of this effect in the
wideband DF problem are presented in Wang and Kaveh (1985). Conse-
quently, methods that coherently combine the data from the multiple narrow
bands are needed.

One such coherent wideband DF method, broadband signal-subspace spa-
tial-spectrum estimation (BASS-ALE) (Buckley and Griffiths, 1988), is based
on a reduced rank representation of wideband signals. This representation is
based on the results shown in Buckley (1987) that more than 99.99% of the
received average power from a single signal is characterized by the r largest
eigenvalues of the autocorrelation matrix, where

r=[2WT(0)+1], (85)

[x] represents the smallest integer greater than or equal to x, W is the
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bandwidth of the received data, and T(8) is the propagation time across the
array (including time spent traveling through the delay lines on the sensors) for
a signal arriving from angle 6. Two sampling criteria are also assumed to hold:
(1) the sensors are spaced closely enough that

M =2f,,,7(0) (86)
where M is the number of sensors, f, .. is the highest frequency present in the
data, and 7(8) is the propagation time across the physical array (not including
delay lines); and (2) the delay increment in the delay-line is 1/2f, ...

Thus, the effective rank of the autocorrelation matrix is given by r in (85). A
pure sine wave (W= 0) has effective rank r =1, being perfectly narrowband.

or nonzero W and T(8), r is always greater than one. However, if 2WT(6) + 1
is sufficiently close to one then the second eigenvalue of R, is negligible,
making the data effectively narrowband. And, for wider bandwidths and
greater propagation times across the array, the effective rank » can be much
greater than one but still be less than the dimension of the received data vector
(number of sensors plus the number of delay elements per sensor). This notion
of effective rank is exploited for wideband DF in Buckley and Griffiths (1988)
to define the notion of signal subspace in the context of wideband signals.
Specifically, it is used to show that a signal subspace and an orthogonal
complement (noise subspace) do indeed exist. Then, as in narrowband
MUSIC, the array response vectors that are orthogonal to that noise subspace
are found, and the corresponding angles are taken to be the DOA estimates.

Another coherent wideband method, the coherent signal subspace (CSS)
method described in Wang and Kaveh (1985) and Hung and Kaveh (1988), is
based on focusing the data from the narrow bands onto a common signal
subspace, say, the signal subspace corresponding to the center frequency of the
receiver band. Since the signal subspace of each narrow band is different, the
subspaces must be rotated onto a common subspace before they can be usefully
combined. Then, given the autocorrelation matrix of the focused data, existing
signal subspace algorithms such as MUSIC can be applied.

Yet another alternative uses the steered covariance matrix (STCM) (Krolik
and Swingler, 1989), which is measured after steering delays are applied to the
received data. Under the assumption that the output of the m-th sensor can be
modeled as

L

X, (n) =2 s,(n—1,,(8)) + i, (n), (87)

I=1

where 7, (0) is the signal propagation delay to the m-th sensor (relative to the
coordinate origin of the array) for a signal from angle 6, then applying delays
7,.(0), m=1,..., M, to the sensor outputs aligns in time the signal com-
ponent from angle 6. This pre-steering enhances the contribution of the signal
from direction 6 to the autocorrelation matrix, similar to the way in which the



High-resolution direction-finding 813

focusing matrices in the CSS align the data from the multiple narrow bands
before the autocorrelation matrices are computed. Notice that the STCM
method maps the propagation time across the array to zero, in contrast to the
CSS method which maps the bandwidth of the signal to zero. Both methods
have the effect of mapping the time-bandwidth product to zero for a particular
look direction (or set of directions). Then, for each direction within the
analysis region, the autocorrelation matrix of the pre-steered data (the STCM)
for that look direction is computed and then processed using modified versions
of existing narrowband methods.

8. Summary

Sensor arrays can be used to obtain high-resolution estimates of the directions
of arrival of propagating signals. Several recent direction-finding methods are
described in terms of how they use spatial filters (linear combiners) to enhance
the contribution of some signals and/or attenuate others in the process of
estimating the directions of arrival. It is shown that this physically motivated
interpretation can be used to derive some of the methods, explain their
behavior in different signal environments, and lead smoothly to the more
abstract framework of subspace fitting which is prevalent in the research
literature. Included in this discussion are descriptions of recent advances in
unifying apparently diverse methods and exploiting cyclostationarity properties
of signals to obtain better performance. Statistical bounds on the errors of the
estimates are briefly described, and several departures from ideality are
considered. Future research is likely to continue to focus on accommodating
multipath and jamming signals, wideband signals, and array calibration errors,
and on achieving even better performance at less computational expense.
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