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- Programmable Canonical Correlation
Analysis: A Flexible Framework
for Blind Adaptive Spatial Filtering

Stephan V. Schell, Member, IEEE, and William A. Gardner, Fellow, IEEE

Abstract— We present a new framework known as the pro-
grammable canonical correlation analysis (PCCA) for the design
of blind adaptive spatial filtering algorithms that attempt to
separate one or more signals of interest from unknown cochannel
interference and noise. Unlike many alternatives;, PCCA does
not require kmowledge of the calibration data for the array,
directions of arrival, training signals, or spatial autocorrelation
matrices of the noise or interferers. A novel aspect of PCCA is the
ease with which new algorithms, targeted at capturing all signals
from particular classes of interest, can be developed within this
framework. In this paper, several existing algorithms are unified
within the PCCA framework, and new algorithms are derived as
examples. Analysis for the infinite-collect case and simulation for
the finite-collect case illustrate the operation of specific algorithms
within the PCCA framework.

1. INTRODUCTION

N applications such as signal interception, and potentially

in wireléss communication systems of the future, it can be
valuable or even essential for a receiver to adapt an array of
sensors to separate one or more signals of interest (SOI’s)
from signals not of interest (SNOI’s) and noise without the
aid of a training or preamble signal, without information
about directions of arrival and sensor array calibration, and
without knowledge of the spatial autocorrelation matrix of the
SNOT’s and noise. In signals intelligence and interception, the
unintended receiver is not likely to have some of this prior
knowledge, and the remainder can be prohibitively expensive.
In cooperative communication systems, it has been argued
(e.g., see [1], [2]) that incorporating techniques for blind
adaptive equalization and blind adaptive spatial filtering into
the system as an integral part of the design can lead to
improvements in both the quality of communication and the
capacity of the system. Although some promising work has
been done on this problem of blindly adapting a spatial filter,
the various techniques (e.g., SCORE [3], AMUSE [4], CMA
[5]) developed to date have been largely ad hoc and specific
to a particular signal class.
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In response to this lack of a framework for blind adaptive
spatial filtering (as contrasted with a specific algorithm of
more restricted utility), we have introduced the notion of pro-
grammable canonical correlation analysis (PCCA) [1], [6]-[8].
Using this framework to design an algorithm for a signal
class of interest consists of specifying (or programming) a
transformation that is used to distinguish each SOI from the
others and from the SNOI's and noise. This technique is less
direct than the conventional method that uses a training signal,
but is potentially more powerful in the sense that less detailed
prior knowledge is required.

In this paper we develop the PCCA framework by starting
with the conventional approach that uses a known training sig-
nal, showing (theoretically and by example) how an alternative
(albeit noisy) training signal can be derived from the received
data, and then generalizing the technique to accommodate
multiple SOI’s simultaneously. Although adaptive techniques
using data-derived training signals have been explored pre-
viously, the techniques described in [9] accommodate only a
single SOI of a narrowly prescribed type, and the technique
described in [3] does accommodate multiple SOI’s but exploits
only one statistical property, namely cyclostationarity. Also,
the family of constant modulus techniques (cf. [10], [11] and
references therein) can be interpreted as generating a train-
ing signal by performing memoryless modulus normalization
operations on the equalizer output signal. In contrast, we
show in this paper how PCCA easily accommodates multiple
SOr’s in the presence of multiple unknown SNOI’s and can
be programmed in a wide variety of ways to distinguish
among various classes of signals (i.e., to determine what
constitutes a SOI and what does not). General conditions
on the programmable transformation are derived, and several
specific transformations are considered to illustrate the utility
of PCCA and the breadth of signal properties that can be used
to distinguish each SOI from among the remaining signals
and noise in the received data.

Several new algorithms are derived simply by specifying
appropriate data transformations. Specifically, we derive new
algorithms that separate signals on the basis of their differing
temporal correlation properties, differing spectral densities
(even when the signals are completely spectrally overlapping),
differing temporal activity profiles (even when at least two sig-
nals are “on” at any time), and differing symbol-clock phases
of bauded digital communication signals. Additionally, an
algorithm is designed that can mitigate the effects of multipath
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using prior approximate knowledge of the time-delay between
the multiple paths. The class of Cross-SCORE and Conjugate
Cross-SCORE algorithms [3] and their accelerated versions
[1], [6], [7], which discriminate on the basis of differing
spectral correlation properties (including, but not limited to,
differing cycle frequencies, such as baud rates, doubled carrier
frequencies, baseband tone frequencies, etc.), are shown to be
specific algorithms within the PCCA framework.

II. ADAPTATION WITHOUT CONVENTIONAL TRAINING

In order to motivate the development of blind adaptive
algorithms, we first argue briefly how a training signal can
be obtained directly from the noisy, interference-corrupted
received data, and why this noisy, substantially corrupted
training signal can be used to adapt a spatial filter to inally
obtain a high-quality signal estimate. :

To this end, let the zero-mean sampled complex-envelope of
the received data (a vector-valued time series) be modeled as

x(n) = as(n) +i(n)

where a is the array response vector of the signal of interest
s(n) and i(n) is the interference plus noise, for which the
spatial autocorrelation matrix R;; is unknown.

Assume that knowledge of neither s(n) nor a is available,
but that we have somehow formed a signal £(n) having the
property that it is correlated with s(n) and uncorrelated with
everything else (i.e., i(n)) in the data

R,; = aR, + Ry — aky;. @)
Here, the symbol “—” denotes “approaches in the limit as
collection tilpe N approaches co,” and the estimated cross-
correlation Ry is defined as

N
Ruyv = ¥ Z u(n)v(n)? £ (u(n)v(n))n

for any vector-valued signals u(n) and v(n), with superscript
H denoting conjugate-transposition. Significantly, t(n) need
not be proportional to s(n). In fact, (n) could be a substan-
tially corrupted version of s(n), as long as it is correlated with
s(n) and uncorrelated with i(n). Even though t(n) is a poor-
quality estimate of s(n), we can use t(n) as a training signal
to compute a spatial filter

w, = REIR,; — gR3xa = Wsivr

for some scalar g, where wging is the weight vector that yields
the maximum signal to interference and noise ratio (SINR).

We propose that this data-derived training signal t(n) be
obtained according to

@

y(n) £ Tlx(n)]

for any appropriate transformation T'[-]. This transformation
T[] is called the reference-path transformation because it

#(n) = wlly(n) where

transforms the received data to provide the input to the

reference-path spatial filter (having weights wy) that supplies
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the reference or training signal eventually used to train the pri-
mary spatial filter weights w. In general, any transformation
y(n) of x(n) such that

R,y — ab?

3

where b is not orthogonal to w,, will work because w, is
asymptotically (as N — o0) proportional to WsINR

Wg = R;:l ny Wy — R;:la(bHWy) = gRy a= WsINR.

“
The sufficiency of the condition (3) holds regardless of whether
the vector y(n) has a different number M, of elements than
the number M, of elements in vector x(n), and regardless of
whether T'[-] has memory or is memoryless, is time-invariant
or time-variant!, or is linear or nonlinear.

We note here that an alternative approach to the problem
of extracting a single SOI is to make use of insights from the
signal-subspace perspective. In particular, under the condition
Riy = 0, the dominant left singular vector of the matrix
ny is a high-quality estimator of a (because ﬁxy converges
to a rank-one matrix with column-space spanned by a). If
we call this estimator &, then we can form w, = f{;xé
and expect (correctly) to obtain a spatial filter that converges
to the maximum SINR estimator of s(n). However, unless
some additional knowledge (such as the array manifold) is
introduced into this approach, there is no way to separate
multiple SOI’s in this fashion if they all exhibit the desired
property. '

In the next section we discuss how our approach of using
data-derived training signals can be generalized to handle this
problem of separating multiple SOI's successfully.

III. CANONICAL CORRELATION ANALYSIS

With the motivation provided by the previous section, we
derive a general adaptation framework (which can be identified
as being based on canonical correlation analysis) in which
both the primary and reference-path spatial filters are jointly
adapted. Simultaneously, we increase the number of signals of
interest that can be accommodated to an arbitrary number L
less than the number M, of sensors in the array. In this section
we derive the new framework and show that it is identical
in form with the canonical correlation analysis problem from
multivariate statistics. In the next section, we re-derive the
new framework from a completely different point of view, one
based on the maximum likelihood criterion. Subsequently, we
derive the conditions needed for the new framework to yield
algorithms that separate multiple SOI’s.

Following the previous section, we propose a simple least-
squares algorithm for jointly adapting the two spatial filters,

_min ([i(n) - 3(n)|P) N )

subject to constraints (ﬁg s=1, Rt‘f = 1), or equivalently (to
within an arbitrary complex scalar)
R“ 2

max ! StAl .

Wz, Wy Rg 3 R{f

©

I There is some abuse of notation in y(n) = T[x(n)] when T[] has
memory.
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Fig. 1. Block diagram of generic PCCA processor showing the primary

(upper) path and the reference (lower) path. *The minimization is constrained
as in (7).

To accommodate a number L (1 < L < M,) of SOIs,
denoted by the L x 1 vector s(n), where the received data
is now modeled by

x(n) i(n),

in which A is an M x L matrix composed of L array
response vectors, we jointly adapt L primary spatial filters
and L reference-path spatial filters, denoted by the M, x L
matrix W, and the M, x L matrix W,, respectively. The
corresponding least-squares optumzatlon problem (generalized
from (5) with §(n) = W[x(n) and £(n) = WHy(n)) is
then given by

o, (W () = WEx(m)|?)

= As(n) +

Q)

subject to the constraints Rzz = WHR, W, = I and
similarly for W,, as depicted in Fig. 1. The constraints
perform two functions here: they prevent the trivial solutions
in which W, and W, equal zero, and they force the estimated
SOI’s to be uncorrelated. Identifying (7) as the canonical
correlation analysis problem from multivariate statistics (with
the apparently novel modification that one of the two data
sets is actually a transformed version of the other), we move
directly to the solution. The sets of spatial filters are given
by the L dominant eigenvectors that satisfy the following
equations

R R Ry} RE w,; = \w, ®)
ﬁ;; ﬁfy R;i Ruy Wy i = Aiwy; e

where A\; > - > Ap > Apyq > oo > Ay s required for
a unique solution, with M = min(M,, M,) (we ignore the
eigenvalues Apry1, -, Amax(M., u,) of the larger of the two
systems (8)—(9) since rank {f{xy} < M implies that these are
identically zero). In practice, only (8) need be solved, since
w, and t(n) are really just intermediate quantities that are
useful to us conceptually. The signal estimates of interest are
given by §(n) = WHx(n).

Alternatively (but equivalently), the columns of Wx and
W, can be found from L of the M stationary points of (6).
Straightforward complex matrix calculus (or careful use of the
Cauchy-Schwartz inequality) leads to the solutions (8).

IV. CONSTRAINED MAXIMUM LIKELIHOOD

Here we discuss an alternative (but, as we show, equivalent)
approach to using canonical correlation analysis for extending
the single-SOI technique of (5) to the case of multiple SOI’s
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We consider the following two-step process: (1) develop a
constrained maximum likelihood (CML) estimator t(n) of
s(n), and (2) use t(n) in the conventional least-squares
solution W, = RxxR i for the weight vector that will
extract the final estimates of the SOI's, (n) = WEHx(n).
We emphasize that step 1 is not sufficient by itself because
the transformation 7'[-] can substantially distort the SOI’s (and
thus £(n) will contain distorted versions of the SOI’s), so step
two is necessary to obtain a final estimate of s(n).

Regarding our terminology, the CML estimator is con-
strained because t(n) is constrained to be a linear transforma-
tion of y(n). The estimator is ML under the assumption that
the interference plus noise, i(n), is a stationary zero-mean
temporally-white complex Gaussian process with unknown
spatial autocorrelation matrix Rj;, and that the SOI's s(n)
are unknown signals.

A. Step 1: CML Data-Derived Training Signal

The log of the constrained likelihood function for the
received data x(n), 1 < n < N, in terms of the estimate
A of the unknown array response matrix, the estimate t( )
of the unknown SOI waveforms s(n), and the estimate Rj;
of the unknown spatial autocorrelation of the interference and
noise, is

#(A, {{(n)},Rai) = &1 + NIn[R3
- Ntr{R5'Q(A, {t(m)})} (10)

where tr{-} denotes the matrix trace operation, ¢; =
—N Mlnr, and

Q(A, {E(m)}) £ ((x(n)

=Rxx — A

Based on the derivation in Appendix A, we can show that the
CML estimators for R;; and A are given by

RO = (A, (i(n))

ML) _ -1
AMD =R R,

— A&(n))(x(n) ~ Ab(n))")
RZ R 4A7 4+ ARGAZ.

and that the remaining task of maximizing ¢(AMD), {{(n)},

RMY ) with respect to Wy (in the constraint {(n) = W¥
y(n)) is equivalent to minimizing the function

]WH PW,|
FWy) & v
where
P= If"yy - ﬁfyﬁ;iﬁ‘xy

By the result proven in Appendix B, the solution W,
is any full-rank linear combination of the L least dom-
inant generalized eigenvectors of the pair (P,Ryy),
vided that the eigenvalues satisfy A\; > -.. > AM,—L >
AM,-L+1 2 --- Ap. Finally, we note (omitting the straight-
forward matrix algebra) that these eigenvectors are identical
to the L most dominant generalized eigenvectors of the pair

: (nyRx,}ny, Ryy), which completes the derivation for step
. one.
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If it is requued that the estimated signals be uncorrelated,
Wi R,y W, = I, then the likelihood is maximized only by
the L most dormnant eigenvectors of (nyRx,}ny,Ryy)
instead of any linear combination thereof. This is equivalent
to the CCA solution (9). In this case, a related result was
proposed in [12] and proven in [13]. An altemate proof
of their result can be obtained by noting that maximizing
(AMD) {§(n)}, R(ML)) is equivalent to maximizing

M
[1 A (WERy R Ry W, WER,, W)

m=1 :
where A, (-, ) denotes the mth generalized eigenvalue of the
matrix pair (-,-), and then applying the Poincaré Separation
Theorem for generalized eigenvalues of a pair of Hermitian
matrices (e.g., [14]). Also, the result of this section includes

that in [15] as the special case in which one signal is present
(L = 1) and y(n) = x*(n).

B. Step 2: Using the Data-Derived Training Signal

In this step, t(n) is used as a training signal to minimize
the mean-squared-error between (n) and §(n) = WHx(n).
Direct substitution of t(n) = WHy(n), with W, obtained
according to step one, into

Wl‘ = ﬁ;)%f{xf:

and algebraic manipulation reveal that W, can be any full-
rank linear combination of the L most dominant eigenvectors
of the pair (nyR;}%ﬁfy, Ryy). As in step one, if the
elements of §(n) = WXx(n) are constrained to be uncorre-
lated, then the additional constraint WX R.x W, = I implies
that W, is exactly the L most dommant elgenvectors of
the pair ( nyﬁ;y ny, R,y ), instead of any full-rank linear
-combination thereof. This is equlvalent to the CCA solution
(®).

V. SEPARATION OF MULTIPLE SOIS FROM SNOIS AND NOISE

Having derived the new PCCA framework from two dif-
ferent perspectives (CCA and CML), we now discuss the
conditions under which PCCA can separate multiple SOI's
from each other, multiple SNOI's, and noise. In so doing,
we show by example how some existing algorithms are
unified under the new framework, and we derive several new
algorithms, all by merely choosing appropriate reference-path
transformations T'[-].

For simplicity of analysis, we assume that the transformation
is linear or linear-conjugate-linear (i.e., a linear combination
of linear transformations of the signal and the conjugate of
the signal). Although we have not analyzed the behavior of
PCCA when operating with a nonlinear transformation, we see
no fundamental barrier to using such a transformation; this
point is left for future investigation. Also we consider only
the algorithm behavior for N — oo; that is, all correlation
matrices are assumed to be equal to their limit time-average
values (or their ensemble average values, with appropriate
assumptions of ergodicity). A full analytical performance
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evaluation is beyond the scope of this paper and is left for
future work. In our discussion, we use the following notation

x(n) = As(n) +i(n) and y(n)=Bt(n)+j(n)
where )
y(n) £ T[x(n)],
t(n) £ T[s(n)],
j(n) £ Tfi(n)]

and T[] is the user-programmable transformation.

Before considering the case of practical interest, we develop
intuition by explaining the behavior of PCCA in the absence
of noise and SNOI’s (i(n) = 0). We consider first the presence
of uncorrelated SOI’s, and second the presence of correlated
SOI’s. Finally, we consider correlated SOI’s multiple SNOI’s,
and noise.

A. Case 1: Uncorrelated SOI’s, No SNOI’s, and No Noise

In this case, i(n) = j(n) = 0. Denote Afw, = g, (i.e., if
g. has only one nonzero entry, then w,, perfectly nulls all of
the SOI’s except one). Using this definition, the assumption
that the number of SOI’s is less than the number of sensors,
and straightforward algebraic manipulation, we can show that
(8) is equivalent to an eigenequation in terms of gg:

R Ra Ry Res gz = Age- an

That is, for each g, found in this manner, there is a vector wy,
found from (8) having the property A¥w, = g,. (One such
vector, the minimum-norm solution, is w, = A(AH A)lg.)
In light of the meaning of g, we would like to find con-
ditions under which these eigenvectors are proportional to the
Euclidean basis vectors (i.e., vectors having only one nonzero
element). Since a diagonal matrix having distinct diagonal
elements is the only full-rank matrix with all eigenvectors
proportional to the Buclidean basis vectors, we conclude the
following: hwtigie e
A necessary and sufficient condition for PCCA to achieve
perfect signal separation in the absence of SNOI's and
noise is that the matrix RZ! Rey Ry Rys be diagonal
and have distinct diagonal elements.
We can also state a simpler sufficient condition, along with
a useful implication:
A sufficient condition for PCCA to achieve perfect signal
separation for uncorrelated SOI’s in the absence of
SNOI’s and noise is that the correlation coefficients

defined by
Psitn 2 Rort |V Rags Bt (12)
have the properties
|pst, |2 =0  forall k #m, 13)
psct|® # |ps,e,|> forall k #n. (14)

Furthermore, assume that the SOI’s are ordered in such
a way that

|p51t1i2 > > IpSLtL|2' (15)
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Then the kth most dominant eigenvector of (8) perfectly
extracts the kth SOL

Some examples will help to illustrate the sufficient condition
while simultaneously describing some of the reference-path
transformations proposed to date. In all of these examples, we
assume that there are L uncorrelated SOI's present.

1) Time-Shift Transformation: Assume that Rs(7) is diag-
onal for a particular time-shift 7. Let y(n) = x(n — 7). Then
the matrix RZ! Rt Ry;! R, is diagonal with kth diagonal
element equal to |ps, s, (7)|?. Provided that these correlation
coefficient magnitudes are distinct, all SOI’s can be perfectly
separated by the L most-dominant PCCA eigenvectors. Here,
we can interpret the condition that the diagonal elements
be distinct to mean that the degree to which each signal is
correlated with a time-shifted version of itself is distinct.

In a later section we discuss the behavior of PCCA using the
time-shift transformation in the presence of correlated SOI’s
(e.g., multipath).

2) Frequency-Shift and Time-Shift Transformation: Assume
that the L SOI's exhibit cyclostationarity (cf. [16], [17]
for tutorial treatments in continuous time and discrete time,
respectively) and share a common cycle frequency «. Assume
also that the cyclic autocorrelation R (7) defined by

R2,(7) 2 (s(n) s(n — ) e73%mem)

is diagonal for some fixed time-shift 7 (this could be so if
the elements of s(n) are uncorrelated). Let y(n) = x(n —
7) €727 Then the matrix R! Re; Ri;' Ry is diagonal with
kth diagonal element equal to the cyclic correlation coefficient
102, 4, (7)[? defined by

pgksk (7—) sksk( )/RSS(O)

Provided that these diagonal elements are distinct, all SOI’s
can be perfectly separated by the L most-dominant PCCA
eigenvectors. We can interpret the condition that the diagonal
elements be distinct to mean. that the degree to which each
signal is correlated with a time-shifted and frequency-shifted
version of itself is distinct. Following a convention in the liter-
ature on cyclostationarity, we refer to |p2 . (7)|? as the feature
strength of s.(n) for cycle frequency o and lag 7 (derived
from the interpretation of the quadratically regenerated sine
wave at frequency « that appears in the signal sx(n) st(n—7)
as a feature of the signal). Thus, PCCA can separate the
SOI’s if they have distinct feature strengths. This capability
is identical to the sorting property exhibited by the Cross-
SCORE algorithm, as discussed in [3]. This transformation is
appropriate for SOI's created by ASK, FSK, PSK, and QAM
modulators.

3) Conjugation, Frequency-Shift, and ﬁme-Shift Transfor-
mation: Assume that the L SOI’s exhibit conjugate cyclo-
stationarity and share a common cycle frequency o. Let
y(n) = x*(n — 7) e/2™*™_ Then we can show by a similar
analysis that PCCA can separate the SODs if they have distinct
conjugate feature strengths, where we define the conjugate
feature strength to be |2, .. (7)|%, where p2 vs .(7) is the cyclic
conjugate correlation coefﬁc:lent defined by

$2,5: (7) = RS, .. (7)/Res(0).
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This transformation is appropriate for SOI’s created through
double (or vestigial) sideband amplitude modulation with
suppressed carrier, BPSK, ASK, real PAM, unbalanced QPSK
or QAM, SQPSK, and so forth.

4) Multiple Frequency-Shifts and Time-Shifts and Conjuga-
tions: The two cases above can be generalized by defining
the reference-path transformation to yield

x(*) (TL _ ,7_1) e—J2main

y(n) = .
(*) (n _ TK) e—J2makn

for any desired set of time-shifts 71,...,7x and frequency
shifts aj,...,ax and optional conjugatlons (*) on each
appearance of x. For example, for digital PSK or QAM SOI’s

with baud period T' = 4 and bandwidth efficient pulses, the
set of pairs

{(ai,m)} = {(1/4,0), (1/4,1), (1/4,-1),
(_1/47 0)’ (_1/4> 1)7 (_1/4’ _1)}

allows PCCA to exploit the six significant samples of the
cyclic autocorrelation at the baud rate. Simulation results
showing a substantial reduction in convergence time, relative
to the conventional Cross-SCORE algorithm, appear in [1],
[6]-[8]. Hence the resulting algorithm is referred to as the
accelerated SCORE algorithm.

5) Frequency Gating and Windowing: We can interpret the
example of the time-shift transformation as a special case of
the more general transformation in which y(n) = x(n) *
h(n), where h(n) is the impulse response of a linear time-
invariant (LTI) filter, and * denotes convolution. Such filters
can provide frequency gating (by passing some bands and
rejecting others) or, more generally, frequency windowing or
shaping.

We can consider the special case in which the filter h(n)
nulls out part of the band while passing the remainder with
unity gain and zero phase. In this case, it is easy to show that
|psit|? is simply the degree to which the average power of
the kth SOI is contained within the passband of h(n). If this
newly defined feature strength is different for each SOI, then
PCCA can separate them perfectly.-We emphasize that these
conditions can be satisfied even when the SOI’s are spectrally
overlapping in such a way that there is no band to which only
a single SOI contributes.

Also, since the passband of h(n) need not be a single
contiguous band, potentially intricate schemes of discrimi-
nating among SOI’s on the basis of their differing spectral
densities can be created at the leisure of the transformation
designer/programmer.

Finally, in the general case in which h(n) can be any
impulse response, the operative condition for separability is
still the simply stated one in the sufficient condition. We can
interpret it to mean that the degrees to which the si(n) are
correlated with their corresponding tx(n) = si(n)xh(n) must
be distinct over £k = 1,..., L.

6) Time Gating and Windowing: Let y(n) = x(n)g(n),
where g(n) is a gating function that is equal to unity for
some times and zero for others. Then, analogously to the
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interpretation of the LTI filtering transformation, we can define
the feature strength |ps,:, | to be the degree to which the
average power of the kth SOI is due to signal activity during
the times when g(n) is “on”. We can then interpret the
sufficiency condition to mean that PCCA can separate the
multiple SOI's provided that each SOI has a distinct degree
to which its average power is due to signal activity during the
times when g(n) is “on”.

The gating function can be periodic (e.g., to match the
frequency of a common duty cycle shared by the SOI’s),
although this is not a requirement. More generally, the gating
function need not be binary-valued. That is, it can be a shaped
window.

Analogously to our general interpretation of the class of LTI
filtering operations, this class of transformations is capable of
distinguishing among the SOI’s on the basis of their different
temporal activity profiles. We emphasize that these activity
profiles need not be disjoint; and ‘that there need not be any
time periods during which only a single SOI is “on”.
~ For example, for k = 1,2 let s(n) be the complex envelope
of a PAM or QAM signal

oo

sk(n) = Z bim p(n — mT — ny)
where by, is the mth baud of the kth SOIL p(n) and T' are
the impulse response of the pulse-shaping filter and the baud
period, respectively, that are common to the two SOI’s, and
ny, is the timing offset of the kth SOI (i.e., if n1 # no, then
the symbol clocks of the SOI’s are not phase-synchronized).
Also, let the gating function be defined by

(16)

=Y én-mT)

m=—0o0

(17

where 6(n) is the Kronecker delta equal to one for n = 0 and
zero for n # 0. Although we could derive a general condition
on the pulses and the timing offsets that would be sufficient
for separability by PCCA, we choose instead to illustrate this
numerically for brevity. As a function of the timing offset ng,
the feature strength |ps, ;, | is shown in Table I for the choice
T = 8 and p(n) equal to a Nyquist-shaped pulse (raised cosine
in the frequency domain) with 100% excess bandwidth. With
these choices, both signals would be “on” during the entire
data collection interval.

From the table, we can conclude that the feature strengths
of the two SOI’s are distinct (and thus that PCCA can separate
them) provided that their timing offsets simultaneously satisfy
the two conditions n; # ms and n; # T — ng. Thus, we have
shown that a PCCA processor can (theoretically) separate two
digital communication signals on the basis of their differing
symbol clock phases. Historically, only the Phase-SCORE
_algorithm [18] and its enhanced-convergence version [19],
[8] had been shown to be able to accomplish this feat,
although neither ad hoc algorithm has been shown to solve
any optimization problem. The task of optimally choosing the

windowing function f(n) is left as an open problem. For our-

purpose of illustrating the potential capabilities of PCCA, our
simple choice suffices.
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" TABLEI
FEATURE STRENGTH VERSUS TIMING OFFSET
nk 0 l1or7|2o0r 6|3 o0orb 4
[Psicel” || 0.166 | 0.154 | 0.125 | 0.096 | 0.084

B. Case 2: Correlated SOI's, No SNOI’s, No Noise

Here we generalize our intuition from uncorrelated SOI’s
to correlated SOI’s. Provided that the sufficient conditions
(13)—(14) are satisfied, PCCA can separate the uncorrelated
SOI’'s. However, in the presence of correlated SOI’s, the
capability of PCCA to separate the SOI's from each other
is more complicated, as we explain in the following.

To proceed, we denote by s;(n) the ith block of signals
in s(n) such that Rss; = 0 for 4 # j. That is, the blocks
are uncorrelated with each other. In addition, assume without
loss of generality that the signals within s(n) are ordered in
such a way that the signals belonging to the ith block occupy
consecutive Tow positions in s(n)

s(n) = [s{ (n) - -sk(n))"

Thus, the matrix Rs‘is.sth_tlms is block diagonal, and we
denote by R,; the sth block, which corresponds to the ith block
of signals. ‘

Analogously to the uncorrelated-SOI’s case, separation of
the sth block of signals from the other blocks requires that R;
and R; have no eigenvalues in common,

AMR)NAR,) =9

for all j such that j # 7, where A\(-) denotes the set of all
eigenvalues of its argument and ¢ denotes the empty set.
This generalizes the necessary and sufficient condition of the
previous subsection to the problem of separating blocks of
correlated signals from each other.

In addition, we would like in some applications (e.g., blind
adaptive arrays used to mitigate the effects of multipath) to
separate the correlated SOI's within a given block. Specifi-
cally, we wish to separate the kth signal from all other signals
in the ith block. As before, we can accomplish this only if there
is associated with the kth signal in the ith block an eigenvalue

(18)

19

-of multiplicity one and an associated eigenvector belonging to

the set of Euclidean basis vectors. These conditions are met
if the condition (19) is satisfied and either the kth row or the
kth column of R; contains only one nonzero element, and
this element differs from all of the eigenvalues of the matrix
formed from R; after the kth row and kth column are deleted.

Thus, although it is possible for PCCA to separate un-
correlated blocks of correlated SOI's from each other, more
stringent conditions are needed to separate the correlated SOI's
within each block.

We offer a single example to illustrate the point.

1) Time-Shift Transformation: Assume that s(n)= [s(n)
s(n — d)]T for some excess path delay d, and consider the
performance of PCCA when y(n) = x(n — d); that is, assume
that the PCCA has prior knowledge of the multipath delay
parameter d. Denote by p(7) the autocorrelation coefficient of
s(n) at log . In the absence of noise, using straightforward
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algebraic manipulations we can show that
- - 1 2d) - p?(d))*> ©
Rsissthth'ts — b_z [lp( ) ,,.p ( )l 62]

where b = 1—|p(d)|%, and r = be* +(p(2d) — p2(d) — p2(d))*c,
and ¢ = p(d) — p*(d)p(2d). It can be shown that if

lo(2d) — p*(d)?
1 - 1p(@)?)?

then the two distinct eigenvalues are equal to this quotient
and unity, respectively, and that the eigenvector corresponding
to A = 1 is proportional to [0 1]7. Furthermore, since the
eigenvalues are canonical correlation coefficients, each must
satisfy 0 < A < 1. Thus, the dominant eigenvector perfectly
separates s(n — d) from s(n). Similarly, if the reference-path
transformation y(n) is defined to be y(n) = x(n + d), then it
can be shown that the dominant eigenvector perfectly separates
s(n) from s(n).

This example is investigated further in a more realistic
environment in Section VI, where additive noise is present
and estimated correlation matrices are used.

£1

C. Case 3: Correlated SOI’s, Multiple SNOI's, Noise

In this case, neither i(n) nor j(n) is zero, which is typically
true in practical applications. However, we are still assuming
that R;; = 0. That is, the reference-path transformation
decorrelates the transformed noise and the received noise.

Unfortunately for our task of understanding the principle
of operation of PCCA in this case, the relatively simple con-
ditions developed in the previous subsection are not directly
applicable. However, the intuition is still substantially sound,
provided that some additional conditions are met.

The collection of MMSE weight vectors for all L SOI’s is

Wanvse = Ry A Ras

and the collection of corresponding effective gains and phases
of the adapted array for the L SOI’s is

(20)

Gumse = AFWynvse. 21
Low MMSE and high SINR occur when ‘
(IWitmsgi(m)|I?) < (||Gimses(m)]I) (22)

and Gypvse is approximately diagonal. Using this observa-
tion, we can understand the behavior of PCCA in two steps:
1) we show that the interference rejection properties of PCCA
are similar to those of the MMSE processor (this part concerns
the left hand side of (22)), and 2) we show that the capability
of PCCA to separate SOI's from each other is similar to that
of the MMSE processor (this part concerns the right hand side
of (22)).

To understand the interference rejection properties, we need
simply to see that the PCCA eigenequation can be re-expressed
as

Wamse[Ra Rt BIRS I BRiJATw, = Aw,.  (23)
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That is, the L dominant eigenvectors are various linear com-
binations of the MMSE weight vectors, so their interference
rejection properties are similar.

To understand the SOI separation properties, we re-express
the PCCA eigenequation as

GmuseR RetHumseRy Resgs = Age (24)

where Hyvsg 2 BH R;;BRy: is analogous to Gyumsge. To
proceed, assume that Gavsg 1S approximately diagonal in
the sense that

Guuse = Guuse + Ec @5)
where Guyisg 1S diagonal and the residual E¢ is small,
Tmin{GrusE} > Tmax{Ec} (26)

where oi, and oyax denote the smallest and largest singular
value, respectively. Assume a similar relation for Hypyse.
Now we can simplify (24) to obtain

[GwmvseRo Rst HymseR iy Res + Algs = rgz  (27)
where A is the sum of three terms
A = GuuseR R Er Ry Res
+ E¢R'Rs; AvmseRi Ris
+ E¢RIRGErR; Rys. (28)

Since A can be interpreted as a small perturbation on the
left hand side of (27), we can use a result from perturbation
theory for eigenvalue problems [20] to obtain the following
expression

gi=g+GWNI-NTQTAg; (29)
where g; and g; are the ith eigenvectors of the perturbed and
unperturbed eigenequations, respectively, G = [g1 --- &),
A; is the sth eigenvalue of the unperturbed eigenequation,
superscript + denotes the pseudo-inverse, and Q contains the
right eigenvectors of the unperturbed eigenequation.

For a heuristic understanding, it may be sufficient to note
simply that this result implies that the eigenvectors of the
PCCA eigenequation have SOI separation properties (which
can be inferred from the distance between A¥ W, and the
closest, possibly permuted, diagonal matrix) that are slightly
perturbed from the SOI separation properties of the MMSE
weight vectors, provided that the performance of the MMSE
processor is sufficiently high (low MMSE, high SINR) and the
necessary and sufficient condition (13)—(14) is satisfied.

However, we hasten to remind the reader that the argument
leading to this conclusion is valid only asymptotically as N —
0o. Nonetheless, simulation results show that the conclusion
is also valid for moderate values of N. This in turn suggests

- that the results of this section provide a valid starting point for

a more detailed analysis of the convergence properties (which
is beyond the scope of this paper).
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VI. COMPUTER SIMULATIONS

An existing set of computer simulations [1], [6]-[8] presents
the performance of the accelerated versions of Cross-SCORE
as obtained from the PCCA framework, so these are not
repeated here.

We present four sets of simulations to investigate the
special cases of PCCA described in Section V: PCCA with
y(n) = x(n — 7) to separate two signals on the basis of
their differing temporal correlation properties, PCCA with
y(n) = x(n)*h(n) to separate two signals on the basis of their
differing spectral densities, PCCA with y(n) = x(n) g(n) to
separate two signals on the basis of their differing symbol-
clock phases, and PCCA with y(n) = x(n — 7) to separate a
direct-path signal from a multipath reflection.

We use two types of signals in these simulations. The
.BPSK signals all have square-root-Nyquist (square-root of
raised cosine in the frequency domain) pulse shaping with
rolloff factor equal to unity (100% excess bandwidth) and
zero carrier offset relative to the center of the analysis band.
The Gaussian interferer is simply bandpass stationary Gaussian
noise created by passing white Gaussian noise through a filter
having unity gain in the passband 0 < f < 0.3 and zero
elsewhere. Simulations of PCCA involving other signal types,
including narrowband FM, QPSK, and AMPS FM, appear in
[21], [22], 8]

We specify the power ; of the :th signal relative to the
total noise power in the analysis band, in dB. We measure the
quality of the spatial filters found by PCCA in two ways: signal
to interference and noise ratio (SINR) and bit error rate (BER).
We denote the mean and standard deviation of the SINR of
the :th signal by m; and o;, respectively, and the mean and
standard deviation of the BER of a BPSK signal by m; and o3,
respectively. We compute the BER in each trial by applying
a square-root Nyquist filter to the output of the PCCA spatial
filter, estimating the symbol timing (by estimating the phase
of the quadratically regenerated spectral line at the symbol
rate), sampling, making bit decisions, and comparing with the
transmitted bit sequence. '

In all cases, we perform 100 trials for each collection
interval and each pair of signal powers. The array contains
four elements, arranged linearly, and uniformly spaced by half
the carrier-frequency wavelength.

A. Time-Shift Transformation for Signal Separation

A BPSK signal (signal 1) having baud period equal to 2
samples per baud and a Gaussian interferer (signal 2) arrive at
the array. These two signals have different temporal correlation
coefficients |ps, s, (7)|? for 7 = 1 sample, with the narrowband
signal having the stronger one. Thus, we specify our reference-
path transformation to be y(n) = x(n — 1). According to our
analysis in the previous sections, the most dominant PCCA
eigenvector should extract the Gaussian interferer, and the next
most dominant eigenvector should extract the BPSK signal.
For a range of signal powers and collect times, the results

-are summarized in Table II. Despite the low signal power of

the BPSK signal, PCCA converges in a reasonable number of
samples to the maximum attainable SINR solutions (which are
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TABLE II
RESULTS OBTAINED USING REFERENCE DATAy(n) = x(n — 1) FOR
SEPARATING A BPSK SIGNAL(SIGNAL 1) FROM A GAUSSIAN SIGNAL
(SIGNAL 2) . THE BER REeFERS TO THE BPSK SOI (SIGNAL 1)

n 2 ]|T m__ oy |m o2 |ms I
-5 0}16 -63 27 |06 20 |[030 0.17
64 -37 18 |43 07 |016 0.15
256 |-1.1 0.8 |52 02 |0.044 0.02
1024 | -02 02 |54 01 |0.028 0.005
4096 | 0.03 0.07 | 5.5 0.04 [ 0.024 0.004
-5 10| 16 59 25 |79 24 [027 017
64 -34 18 |13.0 11 015 0.15
256 |-0.87 0.7 | 148 04 0.02
1024 | -0.05 0.18 [ 153 0.13 0.004
4096 | 0.15 0.03 [ 15.5 0.05 0.003

0.04
0.02
0.02

TABLE I
ResULTS OBTAINED USING REFERENCE DATA y(n) = x(n) % h(n),
WHERE h(n) Is A BANDSTOP FILTER THAT REJECTS ONLY
HALF OF THE BAND OCCUPIED BY THE GAUSSIAN INTERFERER
(S1GNAL 2). THE BER REFERS TO THE BPSK SOI (SIGNAL 1).

n_1]|T m__ 01 |mp o2 |mp [

-5 0] 16 -70 27]1-04 251033 0.17
64 -46 22|28 14021 0.16
256 |-24 14|47 05009 0.09
1024 |1 -06 0553 (2]0.03 001
4096 | -0.1 0.2 |55 0.1]0.025 0.004

-5 10| 16 -66 27|45 35031 0.17
64 -42 21189 22]020 0.16
256 |-22 131125 12009 0.10
1024 | -05 04145 06| 0.03 0.01
4096 | 0.0 0.1 153 0.2]0.02 0.004

as follows: (y1,72) = (=5,0) dB gives maximum attainable
SINR’s of 0.4 dB and 5.6 dB, respectively; (v1,72) =
(—5,10) dB gives maximum attainable SINR’s of 0.25 dB
and 15.6 dB, respectively). Other results (not shown here)
indicate that this behavior continues for other input power
pairs, including (71a'72) = (_5720)7 (07 20)7 and (10,20),
and others.

B. Bandstop Filtering Transformation

In this simulation the signal environment is identical to
that in the previous simulation, but the reference-path trans-
formation is different, being a bandstop filter. Two cases are
considered: in the first, the bandstop filter rejects the lower half
of the Gaussian interferer and part of the BPSK SOI; in the
second, the bandstop filter rejects all of the Gaussian interferer
and part of the BPSK SOI. In neither case could the bandstop
filter suffice for interference rejection since it destroys part of
the BPSK signal, but it does provide a reference signal for
use by PCCA, which adapts two spatial filters that separate
the two signals.

The results are shown in Tables IIT and IV. The maximum
attainable SINR’s are the same as in the previous simulation,
and PCCA again converges to within a fraction of a dB of
these optimal solutions. The strong similarity between the
results obtained from the two different bandstop filters in the
reference path show that this algorithm is relatively insensitive
to the exact characteristics of the bandstop filter (e.g., if the
spectral band of the narrowband interferer were known only
roughly, the algorithm could still obtain good results). Other
results (not shown here) indicate that this behavior continues
for other input power pairs, including (v1,72) = (—5,20),
(0,20), and (10,20), and others.
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TABLE IV
REsuLTs OBTAINED USING REFERENCE DaTtay(n) = x(n) x h(n),
WHERE h(n) Is A BANDSTOP FILTER THAT REJECTS ALL
OF THE BAND OCCUPIED BY THE GAUSSIAN INTERFERER
(SIGNAL 2). THE BER REFERS TO THE BPSK SOI (SIGNAL 1)

b U ) T my o0 ma o2 mp op

-5 01|16 -6.1 2432 1.1 0.27 0.17
64 -36 1951 03 0.15 0.13
256 |-2.0 12|55 0.1 0.08 0.08
1024 | -0.5 05|56 0.02 [0.03 0.01
4096 [ 0.0 0.1 |56 0.01 |0.02 0.004

-5 10 | 16 -59 23110 19 0.25 0.17
64 -36 19]148 0.6 0.15 0.13
256 (-19 12155 0.08 | 007 0.08
1024 | -0.4 0.5 156 0.01 | 0.03 0.01
4096 | 0.04 0.1 | 15.6 0.005 | 0.02 0.004

TABLE V

ResuLTs OBTAINED USING THE PERIODIC TIME-GATING
TRANSFORMATION TO SEPARATE TWO SIGNALS HAVING THE
SAME BAUD RATE BUT DIFFERENT SYMBOL-CLOCK PHASES

n _1|T m_ 01 |[me o2 [mpy o

-5 0|16 -39 21 (06 21 0.2 0.16
64 -16 1.2 |37 1.0 |0.06 0.06
256 |-02 03 |50 03 |0.03 0.006
1024 1 0.2 0.1 }54 0.1 |0.02 0.004
4096 | 0.3 0.03 |55 0.03]0.02 0.003

-5 1016 -40 21 (60 29 |02 0.17
64 -1.6 1.2 1109 1.7 |0.07 0.07
256 |-03 0.3 13.8 0.8 | 0.03 0.006
1024 | 0.09 0.09 | 150 0.3 | 0.02 0.004
4096 | 0.2 0.02 154 0.1 | 0.02 0.003

TABLE VI

ResuLTS OBTAINED USING PHASE SCORE TO SEPARATE TWO SIGNALS
HAVING THE SAME BAUD RATE BUT DIFFERENT SYMBOL-CLOCK PHASES

71 Y2 T m; o1 ma o2 mp Op

-5 016 -33 16 |12 17 |016 0.14
64 -15 10 |37 1.0 [0.05 0.03
256 |-02 03 |50 0.28 |0.03 0.006
1024 1 0.2 0.1 |54 0.09]0.02 0.004
4096 | 0.3 0.03 | 5.5 0.03 | 0.02 0.003

-5 10| 16 -33 15 |61 28 [015 0.14
64 -1.5 1.0 | 109 1.7 [0.06 0.05
256 |-03 03 |138 0.8 |0.03 0.006
1024 | 0.1 0.09 ] 15.0 0.3 | 0.02 0.004
4096 { 0.2 0.02 | 154 0.1 | 0.02 0.003

C. Time Gating Transformation

In this simulation, two BPSK SOI’s arrive at the array.
They have identical baud periods (2 samples per baud) and
identical carriers. However, their symbol-clock phases are
offset from each other by 180° (one time sample). Using the
time gating transformation described in Section V, PCCA is
able to separate these two signals according to their differing
symbol-clock phases. The Phase SCORE algorithm, which is
able to do this using a different approach, is also simulated,
and performs nearly the same as PCCA.

As shown in Tables V and VI, the two approaches have
nearly identical performance. However, we note that the
performance of PCCA might be improved by modifying the
time-gating function; the simple one is used here pnmanly to
demonstrate the concept.

D. Delay Transformation for Multtpath Mztzgatzon

In this simulation, we consider the performance of PCCA :
using a delay transformation to spatially separate a direct path
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TABLE VI
RESULTS OBTAINED USING REFERENCE DATAY (n) = x(n — 1) FOR MULTIPATH
MITIGATION. SIGNAL 1 IS THE DELAYED PATH AND SIGNAL 2 IS THE DIRECT PATH -

n_1|T m_ o my o [my o

-5 -5116 -3.8 2.0 -7.8 281]0.18 0.14
64 -04 0.5 6.1 2.71]0.04 0.02
256 | 032 0.15 |-6.1 2.5 0.02 0.006
1024 { 0.5 0.03 |-5.7 2.6 | 0.02 0.005
4096 | 0.6 0.001 | -5.8 2.6 | 0.02 0.004

and a delayed path (delayed by one sample) of the same BPSK
signal. Based on our discussion in Section V, we choose the
reference path transformation to be y(n) = x(n — 1). PCCA
then finds two weight vectors corresponding to two, significant
eigenvalues: the dominant one extracts the delayed path, and
the second one extracts some arbitrary linear combination of
the direct path and the delayed path. As shown in Table VII,
PCCA converges quickly to the maximum attainable SINR-
solution (0.6 dB), and the correspondingly low BER shows
that the multipath has indeed been mitigated.

VII. CONCLUSION

We have derived a new framework for blind adaptive spatial
filtering that unifies several existing algorithms and facilitates
the development of new ones. By analysis of the infinite-
collect case and simulation of the finite-collect case, we have
illustrated the conditions under which algorithms within the
new framework can approach the maximum attainabie SINR
solutions. In the process of illustrating these properties of
PCCA, we derived new algorithms that can separate signals
on the basis of their differing temporal correlation properties,
differing spectral densities, or differing symbol-clock phases.

In related work not reported here, the PCCA framework
has been used to accelerate the convergence of the Cross-
SCORE algorithm [1], [6]-[8], and modifications to the PCCA
framework, motivated by the work of Biedka [19] on using
rank-reduction techniques to accelerate the Cross-SCORE and
Phase-SCORE algorithms, have been shown in simulations
[21] to accelerate the convergence of numerous algorithms
within the PCCA framework.

Several open problems remain to be investigated, including
analytical performance evaluation in the finite-collect case,
optimization of the time-gating transformation used to separate
signals on the basis of their differing symbol-clock phases,
and investigation of other reference-path transformations, in-
cluding nonlinear ones. In [22], the PCCA framework is
generalized to incorporate recursive processing; the constant
modulus algorithm is then derived from this general recursive
PCCA framework by choosing a nonlinear transformation 77|
that normalizes the modulus of the reference-path data.

APPENDIX A
CML DERIVATION: STEP 1°

A {Reducﬁ'on toa Deierminantial Form
Using the identities Vatr{AB} = B7 and V4In|A| =
(A‘l)T, the complex gradient (defined as in [23]) of ¢(A,
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{t(n)}, Ry;) with respect to R;! can be shown to be given by
Va-19(A, {E(n)}, Ra) = NRE - NQ(A, {E(n)})".
Equating the gradient to zero and solving for Ri; yields the

ML estimate ]::t,(lM L) given by
RE™ = Q(A, (H(n)}).
The partially maximized log-likelihood is then given by
(A, (i)}, RE™) = c; - NI |Q(A, {E(n)})|
where co = ¢; — NM. Using the identity
ValnD — AB¥ - BAZ + ACAE|
=[(-B¥ + CAT)E~T (30)

where
E=D-AB¥ _BAF { ACAZ,

the gradient of ¢(A, {£(n)},R§™) with respect to A can
be shown to be given by

Vad(A, {im)}, RY™Y)
= N[(R,; —~ ARy)"Q(A, {E(m)}) ™"
Equating this gradient to zero and solving for A yields the
ML estimate AML) given by
AML ZR R

Thus, after substituting AL into ¢(AMD), {{(n)}, RM™)
and using the identity

|A -BC™!Bf| = |A||C - BEAB|/|C]
the partially maximized log-likelihood function can be ex-
pressed as

$(AMD) (F(n)}, RMV)

1
= ¢z — NIn|Ryx — R¢R;'RE|
= c3 — Nln[Ry; — RERZR¢|/[Reg

where c3 = ¢y — Nln[ﬁ,xxL X

Maximizing (31) with respect to W, (in {t(n)} =
{WZXy(n)}) is equivalent to minimizing the function
. IWIPW,|

Wi Ryy W, |

(3D

F(Wy)
where .
P = R,y — RE RS Ry

This concludes the derivation of the first step of the CML
solution.

APPENDIX B
CML DERIVATION: STEP 2

A. Minimization of a Determinantial Form

Result: The function f(W) £ |[WHAW|/|WHEBW|,
where A and B are M x M Hermitian matrices with A > 0
and B > 0 and W is an M x L matrix, is minimized with
respect to W by any full-rank linear combination of the L
least dominant generalized eigenvectors U of the pair (A, B).
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Proof: First, we note that UY AU = D, and UYBU =
Dy, where D, > 0 and Dy > 0 are diagonal matrices,
with DDy 1 = A being the generalized eigenvalues. Then

any W can be expressed as W = UD, /2¢C for some C.
Substituting, we have (after straightforward simplification) .

9(C) £ f(UD;?C) = |c¥AC)/|ICHC).

For g(C) to be defined, the condition [CEC| # 0 implies
that the M x L matrix C has full rank. Since M > L, there
exists a subset of L linearly independent rows. Denote these
rows by the invertible matrix Cz. Without loss of generality
(since A is not ordered, except with respect to U which is also
unordered), let these rows be the first L rows of C. Thus, we

form the partitions
_{Ct _|AL O
o= %] ana a=[4 ol

where b has dimension (M — L) x L. Re-expressing g(C),
we obtain

CfALCL + bHAbb|
|CECL + bHb|
L+ (A 2dALY2)E (A %A )
I+ dHd|

9(C) = |

= |AL]

where we obtain the simplification by using d £ bCZl and
the identity | X'Y| = |X]|Y| for any square matrices X and Y.

Now, a consequence of the Minkowski determinant
inequality (cf. [24], pp. 115-117) is that both [T+
(AYPAALY*)E(AY2AATY?)| and |I + dHd| are non-
decreasing (concave) functions of d. To aid our analysis of
the ratio of these two functions, we note that

Vall+ (A2 dA7 A E (A2 dATY?)|

= AY?[(VaI+dHd]|) 1Az

|dA;/2dA;‘/2
That s, if [As]i;/[AL]j; > 1 then the numerator increases more
rapidly as a function of d;; than does the denominator. On the
other hand, if [As];;/[AL];; < 1 then the numerator increases
less tapidly as a function of d;; than does the denominator.
We treat the ratio in two exhaustive cases.

Case 1: There exists at least one pair ¢,j such that
[Ae);;/[AL];; < 1. Thus, since the numerator of g(C)
increases less rapidly as a function of d;; than does the
denominator, g(C) is a strictly decreasing function of d;;.
Conversely, if [A}ii/[AL];; > 1, then g(C) is a strictly
increasing function of d;;. That is, g(C) is minimized only
by increasing without bound the magnitudes of all d;; for -
which [Ap)i;/[AL]l;; < 1. In this limit, g(C) approaches the
product of the L smallest diagonal elements of A. However,
since we are not interested in infinite-norm solutions, we pass
on to Case 2.

Case 2: For all pairs 4, j we have [Ap];;/[AL];; > 1. Thus,
g(C) is a strictly increasing function of d and has its global
minimum at d = 0, at which g(C) = |A|, where Ay are the
L smallest elements of A. Thus, with C = [CZ, 0]# for any
invertible Cy, we see that the corresponding W = UD, 2¢
is any full-rank linear combination of the least dominant
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generalized eigenvectors of (A,B), provided that the Lth
smallest eigenvalue is less than the (L + 1)th.

This completes the proof of this result and with it the second
step of the derivation of the CML solution.
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