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Signal Interception: Performance Advantages
of Cyclic-Feature Detectors

William A. Gardner, Fellow, IEEE, and Chad M. Spooner, Student Member, IEEE,

Abstract— The problem of detecting the presence of spread-
spectrum phase-shift-keyed signals in variable noise and inter-
ference backgrounds is considered, and the performances of four
detectors are evaluated and compared. These include the opti-
mum radiometer, the optimum modified radiometer that jointly
estimates the noise level and detects the signal, and the maximum-
SNR spectral-line regenerator for spectral line frequencies equal
to the chip rate and the doubled carrier frequency. It is concluded
that the spectral line regenerators can outperform both types
of radiometers by a wide margin. The performance advantages
are quantified in terms of receiver operating characteristics
for several noise and interference environments and receiver
collection times.

I. INTRODUCTION

TTEMPTED interception of communication signals that

arise from modulation schemes designed to foil such
interception is a topic that is receiving increasing attention. In
light of the growing use of direct-sequence spread-spectrum
techniques and the increasingly congested communication
environments, standard methods of interception, which are
based on energy measurement, and are collectively referred
to as radiometry, are becoming less effective. In particular,
since radiometric methods simply measure energy in specific
bands of frequencies, they are inherently susceptible to un-
known or changing background noise level and interference
activity. In order to design secure communication systems, it is
necessary to assess the vulnerability of competing techniques
to interception. For this purpose, the approach of designing
and analyzing the performance of detectors that are capable of
intercepting spread-spectrum signals in adverse environments
where radiometric methods are likely to fail is taken in this
paper.

Communication signals have traditionally been modeled as
stationary random processes. Although communication signals
typically involve one or more periodicities underlying their
random fluctuations, due to sine-wave carriers and repetitive
pulsing or keying, a stationary model can be obtained by
introducing random phase variables uniformly distributed over
one period of each periodicity [1]. On the surface this seems
appropriate if the receiver has no knowledge of carrier phase
or clock timing and is, therefore, unsynchronized to the
periodicities. However, by looking beneath the surface we find
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that carrier and clock periodicity can indeed be exploited by
receivers that have no knowledge of the associated phases, and
that make no attempt to estimate those phases. This has been
demonstrated in [2] where it is explained that, in comparison
with the optimum quadratic detector for the stationary model
of the signal, superior detection performance (i.e., detection
of the presence of a weak signal in noise) can be obtained
by exploiting the single frequency of some harmonic of a
periodicity, such as a doubled carrier frequency, or a keying
rate. It has also been demonstrated in [3] where, in comparison
with a conventional estimator (based on a stationary model of
the signal) of time-difference-of-arrival (TDOA) for locating a
signal source, superior estimation performance can be obtained
by exploiting the doubled carrier frequency or the keying
rate. No use of the phase associated with the single sine-
wave frequency is made in either of these applications. This
is partially analogous to the common procedure of detecting
the presence of an additive sine wave in noise by measuring
the magnitude of the correlation of the noisy data with a
complex sine wave of arbitrary phase. But, for detection of
communication signals, the problem is more subtle since such
signals rarely contain additive sine-wave components (which
result in spectral lines).

In the signal detection techniques studied in this paper,
the underlying periodicities of communication signals are ex-
ploited by quadratically processing the received data. Certain
simple quadratic processors are widely used to regenerate
sinewaves; for instance, a squarer is often used to regenerate
a sinewave with frequency equal to the doubled carrier, and a
delay-and-multiply device with delay equal to half of the chip
interval can be used to regenerate a spectral line at the chip
rate. By using the mathematical framework of cyclostationar-
ity, it is possible to characterize all spectral lines that can be
regenerated and to solve for the quadratic transformation of the
data that yields the strongest possible spectral line at a given
frequency [2]. Thus, the theory of cyclostationarity provides
a rigorous framework for understanding ad hoc spectral-line
generators, as well as allowing for the specification of optimal
spectral-line generators, which are more general than squarers
and delay-and-multipliers.

The purpose of this paper is to quantify the gains in
detection performance that are attainable by exploiting the
underlying periodicity that is present in communication sig-
nals. More specifically, we consider phase-shift-keyed signals,
which are used for spread-spectrum communications, and we
determine receiver operating characteristics for operation in
a relatively strong white-Gaussian-noise (WGN) background
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with random fluctuations in the noise power level. In par-
ticular, we consider a nominal SNR of 0 dB, corresponding
to the expected noise level, and we consider a coefficient
of variation (variance normalized by squared mean) of 10%
for the random fluctuation about the expected noise level.
In a receiving system that monitors the noise level and
adjusts the detection threshold accordingly, this 10% variation
represents the error in noise-level tracking. This variation can
also represent nonstationary activity of broadband interfering
signals. In addition, a highly variable narrow-band interference
background with SIR of —10 dB and fixed-level WGN with
SNR = 10 dB is also considered.

The detectors whose performances are compared are the
standard optimum radiometer, which is the weak-signal
likelihood-ratio detector for the stationary model of the signal
[4], a modified radiometer that provides the weak-signal joint
maximum-likelihood estimate of the noise power level and
detection of the signal (modeled as stationary), and two
maximum-SNR cyclic-feature detectors (or simply cycle
detectors) one of which exploits the doubled carrier frequency
and the other of which exploits the keying rate.

In order to understand the operation of the cycle detec-
tors, the signal model without the intentionally introduced
random phases must be used. This model is cyclostationary
rather than stationary [4]. Consequently, the concepts and
definitions associated with cyclostationarity that are necessary
to understand the cycle detectors are briefly reviewed in
Section II. The four detectors are then defined in Section IIL.
In order to link this study with previous studies of weak-
signal detection performance [5]—[8], the detector-output SNR
called deflection is evaluated in Section IV. Then in Section V,
receiver operating characteristics obtained from simulations of
the four detectors are presented and used to draw conclusions
about performance advantages of the cycle detectors, and about
the limited usefulness of deflection as a basis for comparing
detectors.

II. FUNDAMENTALS OF CYCLOSTATIONARITY

In this section, a brief review of the basic concepts and def-
initions associated with cyclostationary processes is presented.
A more expansive survey of both theory and applications of
cyclostationarity is given in [9].

A zero-mean process z(t) is said to be cyclostationary (in
the wide sense) if its autocorrelation is a periodic function of
time,

Ry(t+7/2,t —7/2) = Ry(t + To +7/2,t + Tp — 7/2),
for some period 7y # 0 where
Ro(t+7/2,t —7/2) 2 E{z(t+ 7/2)a*(t - 7/2)}, (1)

and E{-} denotes the mathematical expectation operation.
Since R, is periodic, it admits a Fourier series representation,

Ryt +7/2,t—7/2) = > R3(r)e™ 2)

where the sum over o includes all integer multiples of the re-
ciprocal of the fundamental period Tp. The Fourier coefficients
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R2(7) are given by either

To/2
R2(1) = L Ry(t+7/2,t —7/2)e "™ dt, (3a)
O—TO/Z
or
T/2
R3(r) = lim % / Ru(t+7/2,t — 7/2)e- 20t gy
—~T/2
(3b)

The function RS (7), which—for each value of 7—is the
strength of the sinusoid in ¢ at frequency « in the auto-
correlation R, (t+ 7/2,t — 7/2), is referred to as the cyclic
autocorrelation. If the process z(t) is modeled as cycloergodic
(which excludes all time-invariant random phases) [4], as is
assumed henceforth, then the cyclic autocorrelation can be
obtained from the limiting time average

T/2
1 .
Rg(T) = Tl—l—I»I;O —,1—: / C(J(t + T/Q).T*(t _ T/2)e-—127rat dt,
~T/2

Q)

for any sample path of the process z(t). The cycloergodic
model is a natural model for the applications of interest in
this paper. Clearly, the cyclic autocorrelation (3), or (4), is not
identically zero for all nonzero « if and only if the autocorrela-
tion in (3), or the lag-product of the cycloergodic process z(t)
in (4), contains an additive periodic component, which will be
the case if x(t) is cyclostationary. The set {a: R¥(7) # 0}
is referred to as the set of cycle frequencies. By analogy
with the terminology for-the conventional autocorrelation
(which is (4) with oo = 0), the Fourier transform of the cyclic
autocorrelation,

oo

so(f) 2 / R® (r)e~ 717 dr,

— 00

Q)

is called the cyclic spectrum. The cyclic spectrum can also be
interpreted as a spectral correlation function (SCF) according
to the following characterization [9], [10]:

S2(f) = lim lim

T—o00 At—o0 TAt
At/2
[ Xt aXit s -ap)d ©
—At/2
where
t+T/2
Xp(t,v) 2 z(u)e 2 dy @)
t—.T/2

is the complex envelope of the spectral component of z(t)
at frequency v with approximate bandwidth 1/7. Since the
frequencies of the correlated spectral components are f + o/2
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and f —a/2, the cycle frequency « is also called the frequency
separation.

If the autocorrelation R, (¢t + 7/2,t — 7/2) or the lag prod-
uct 2(t + 7/2)x*(¢ — 7/2) contains multiple additive periodi-
cities, and these periodicities are incommensurate, then the
cycloergodic process is called almost cyclostationary, after the
nomenclature of almost periodic function used for a function
that is a sum of periodic functions with incommensurate peri-
ods. In this case, the relations (2)—(7), including (3b) but not
(3a), still apply; however, the sum over the cycle frequencies o
in (2) must include all harmonics of all fundamental reciprocal
periods present in the autocorrelation or lag product.

If for each fundamental period, an independent random
phase variable, uniformly distributed over that period, is added
to the time variable ¢ in the process model z(t), then the
resultant phase-randomized process Z(t) will be stationary

(1],
Rz(t+7/2,t —7/2) = Rz(7), 8)
and the stationary autocorrelation is given by
Rs(7) = Ry (7). ©)
The corresponding power spectral density function is given
by

S:(f) = 8%(f). (10)

Example: Binary and Quaternary Phase Shift Keying. The
BPSK signal

o0

Z q(t — nT. — tg) cos(2m fot + 0, + do) (11)

n=—oo

s(t) =

where T, is the chip interval, {6, } is an independent sequence
of binary variables taking on the two equiprobable values 0
and , has SCF given by (12) below ([4], [10]) for all integers
k where Q(f) is the Fourier transform of the pulse g¢(t).
Similarly, the QPSK signal

(e o]

> qt = nT. — to) cos(2 fot + b + do) .(13)

n=—oo

s(t) =

where {6, } is an independent sequence of quaternary variables
taking on the four equiprobable values 0, 7/2, 7, 37/2, has
SCF equal to that of the BPSK signal for « = k/T,, and is
identically zero for all other o # 0 [4], [10]. The magnitude
of these spectral correlation functions for BPSK and QPSK
are graphed in Fig. 1 as the heights of surfaces above the

10/To

-5/To

10/T,

-5/To

—_

7 5/T,

Fig. 1. Theoretical spectral correlation magnitude surfaces for BPSK, QPSK,

SQPSK, and MSK modulation types.

bifrequency (f versus «) plane. For the stationary model of
the signal, the power spectral density function is given by

55(£) = 82(0) = g {100 = S + 15 + S0}
(14)

Numerous examples of the spectral correlation function
(5)—(6) for other modulated signals are given in [4], [10].

III. RADIOMETRIC AND CYCLIC-FEATURE DETECTORS

In this section, three basic detector structures—the radiome-
ter, cycle detector, and joint estimation/detection radiometric
(modified radiometer)—are described.

The detection problem considered here can be stated in
terms of a binary hypothesis test, with the null hypothesis
Hy corresponding to signal absent (x(t) = n(t)) and the
alternative hypothesis H; corresponding to signal present
(z(t) = s(t) + n(t)) in the sliding observation interval cen-
tered at ¢ with length T. The function z(¢) represents the
received data, n(¢) is white Gaussian noise (WGN), and s(t)
is the zero-mean random signal of interest (SOI), which is

iQ(f + 04/2 T fO)Q*(f _ a/2 + fo)e—i[Qw(anZfo)toq:wo]’ a = izfo + _1’:_6

S3(f) =

QU + /2 + fo)Q*(f — a/2+ fo) |
+ Qf +a/2 = f0)Q*(f — a/2 — fo)}e i2moto, N

(12)

Sl
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assumed to be weak and independent of the noise. Since we are
concerned here with interception, the data collection parameter
T of the detection devices should be large compared to the
correlation time (approximate width of the autocorrelation
function) of the SOI or, equivalently, the reciprocal of the
bandwidth of the SOI. For example, for a spread-spectrum
PSK SOI, the collect time 1" should greatly exceed the chip
interval T,.

For weak Gaussian signals in WGN, the maximum-
likelihood (ml) signal detection criterion leads to the following
approximate sufficient statistic [11]:

t+T/2 t+T/2

/ Rs(u, v)x(u)z* (v) du dv. (15)

t—T/2 t—T/2

yml(t) o8

It can be shown that this quadratic form is asymptotically

(input SNR — 0) optimal even when the weak SOI is not

Gaussian [12], [13]. Thus, for weak-signal detection, the
optimum detector implements a quadratic transformation of
the received data and compares the resultant statistic to a
threshold. Many of the ad hoc detection schemes that have
been proposed for signal interception, such as the delay-and-
multiply chip-rate-feature detector, the filter-squarer carrier-
feature detector, and the ambiguity function, can be expressed
in the general form of a quadratic transformation

t+T/2 t+T/2
k(u,v)z(u)z*(v) dudv
t=T/2 t—T/2

y(t) (16)

for some kernel k(u,v) [2]. Thus, the study of the optimum
detector (15) provides a benchmark for evaluation for various
suboptimum and ad hoc quadratic detectors.

The actual device specified by (15) depends on the particular
signal model employed. If the signal is modeled as (almost)
cyclostationary, then the autocorrelation is given by (2) and
the resulting device can be expressed as a multicycle detector
[2], [10],

oo

wmel®) =3 [ 20752, (0 1) df

@

(17)

— 00

where the sum is aver all o for which the SCF S¢(f) is not
identically zero. The function
1
S:T (t7 f) é 'TXT(ta .f + a/Z)X;(t, f - 05/2) (18)
where X (t,v) is defined in (7), is called the cyclic peri-
odogram (cf. [10]).

If the signal is modeled as stationary, then only the oo = 0
term in (17) is nonzero and we obtain the optimum radiometer

wt)= [ SUNSE,E.1)df (19)
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Various arguments can be construed for using the magnitude
of only one a # 0 term! in (17) [2],

yse(t) = [ ST() S5, (¢, f) df. (20)

é\g

The device that compares the magnitude of the statistic (20)
to a threshold is referred to as a single-cycle detector (or just
cycle detector). By way of interpretation, the cycle detector
output ys.(t) is a measure of the amount of spectral correlation
present in the received waveform, whereas the radiometer
output y.(t) is a measure of the amount of energy present
in the received waveform.

It is shown in [10] that the detectors (17) and (20) are
solutions to optimization problems that do not invoke the
weak-signal assumption. Specifically, among all quadratic
detectors (16), the multicycle detector (17) maximizes the
performance parameter known as deflection

g2 [E{y(O)IH:} — E{y(t)|Ho}|
Var{y(t)|Ho}

; eay

and the single-cycle detector (20) generates from the received
signal z(t) = s(t) + n(t) a spectral line at frequency a with
maximum power level, subject to a constraint on the output
noise spectral density level at frequency o.

The final detector of interest results from considering the
noise spectral height Vg to be unknown. This detector attempts
to estimate the parameter Ny, and then uses the estimate to
form a detection statistic. Since the variance of continuous-
time WGN is infinite, the problem of estimating Ny is not
well posed. However, for discrete-time WGN, the variance is
Ny and the problem is, indeed, well posed. Thus, we consider
a discrete-time model at this point.

Since we are operating under the weak-signal assumption,
the maximum-likelihood estimate of the spectral height Ny is
approximately the same on both hypotheses and is given by

No = iiaﬂ 2 <x2>
Mk:l ’

where z is the vector of M received data samples z. It is
shown in [12] that the log-likelihood-ratio test for a weak
random signal in white Gaussian noise is approximated by
tTK.ax M(c?)
InfA(z)] = = Lz

1
= —azTq,

- (22)

23)

where K, £ E {ssT} is the covariance matrix for the vector
s of signal samples from the signal sg, and (0?) is the
average power of this signal. Substituting Ng from (22) in
place of Ny in (23) and assuming a long collection time
M (M > 2yNo/(c?)), we obtain the generalized maximum-
likelihood detection statistic
y zTK sT wT_’t
ml = v T :
! (a3)

(24

! A primary motive is to circumvent the problem that the multicycle detector
cannot be implemented unless the absolute phase of the SOI [e.g., to and ¢o
in (11)] is known, or is estimated jointly with detection.
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The statistic y4,m; can be manipulated into the form

1/2
ygml:é‘%z / [S2(0) = 6a(02)] 52, (1, £) df (25)
¥ _1/2

where S%(f) and égM (t, f) are discrete-time counterparts of
(5)—(6) and (18), respectively. Specifically,

Sa (f Z Roz —i27rlcf (26)
k=—00
where
1 M
RS(k) = him oo n:Z_ z(n + [k[)z*(n)
i e—i21‘ra(n+|k|/2); (27)
and
1 5 %
52,6 1) = = Kualt, f+ /DK (0. f ~0/2) (28)
where
~ t_l >,
Xr(t, f)= Y a(ue 2" (29)
u=t—M

The statistic (25) differs from the discrete-time version of the
multicycle detector (17) only in the o = 0 (radiometric) term,

1/2
_ M e o
Ymr = <U§>_Jz [Ss(f) ( s)]SxM(t,f) df. (30)

This term can be reexpressed as

M1 0 :
N L
k=—(M-1)

where RO(k) is given by (27) with o = 0 and

t—k|—1

>

n=t—M

R (t,k)=— z(n + |k|)z

“(n). (32

Thus, the detection statistic ¥,,,, which is called the modi-
fied radiometer, is simply the radiometric statistic with a re-
duction proportional to the noise-level estimate (1/M)zTz =
RO o (t,0). This detector is actually the generalized maximum-
likelihood detector for a weak stationary signal in white
Gaussian noise with unknown noise level Ng. The reduction
in (30) or in (31) can be extreme for wideband signals, where
RO(k)/(02) = 8 in (31) or where SO(f)/{02) = 1 in (30), in
which case this modified radiometric statistic is of little use.
Analysis and simulation results on the performances of the
radiometer, modified radiometer, and single-cycle detectors
(for various cycle frequencies) are presented in the following
sections. The multicycle detector is excluded from the simu-
lations because it is considerably more difficult to implement,
since the absolute phase of the signal must be known (or
estimated) for constructive addition of the terms in the sum

over « in (17) [2], [4]. Before proceeding we explain the link
between the single-cycle detector and two other methods of
detection, which are based on the cyclic spectrum analyzer
and the radar ambiguity function.

If the ideal spectral correlation function S(f) is unknown,
we can replace it in the cycle detector (20) with a rectangular
window with width on the order of the signal bandwidth, say,
Af. The resulting statistic is given by

i f+Af/2
'Kf Sar (¢, V)dV—Sa (t, f)Af:
f-Af/2

y(t) = (33)

which is a standard frequency-smoothed estimate of the cyclic
spectrum S2(f) of the input waveform z(¢) [10]. The device
that generates y(t) in (33) for a range of values of f and o
is called a cyclic spectrum analyzer (CSA), and is (with post-
processing) capable of emulating all of the devices (17)—(20)
as well as other quadratic detectors (16) [2]. The magnitude
of the output of a CSA, for large time-frequency resolution
product TAf (which ensures high-reliability measurements),
and sufficiently small smoothing-window width A f for ade-
quate spectral resolution, when graphed as the height of a
surface above the bifrequency plane, not only can provide
a means for detection, but also, when compared to ideal
SCF surfaces, can be used for signal recognition [14]. That
is, the patterns of spectral correlation can be highly distinct
for different modulation types even when the signals have
identical power spectral densities. This is illustrated in [10] for
BPSK, QPSK, SQPSK, MSK, FSK, AM, FM, PAM, PWM,
PPM, and other modulation types. As an example, the ideal
SCF surfaces for BPSK, QPSK, SQPSK, and MSK are shown
in Fig. 1. Computationally efficient digital architectures for
cyclic spectral analysis are developed in [15] (cf. [16]).

The spectral-correlation-function estimate (33) bears an
interesting relationship to the function

) t+(T—[7])/2
R2, ()2 = a(u+7/2)
t—(T—|r])/2
C o (u—T)2)e T gy,
(34)
Specifically,
(rA
y(t) = / Re (1) 32T f SN(TAST) miznsr gy (as)

which is the Fourier transform of a windowed version of (34).
Since (34) is the complex-valued radar ambiguity function for
a sliding segment of data (when z(t) is the analytic signal for
the received waveform) where « is the range-rate (Doppler)
parameter and 7 is the range (delay) parameter, we see that
the complex-valued spectral correlation surface is the Fourier
transform of the windowed complex-valued ambiguity surface,
which has been proposed for signal interception (e.g., [17]).
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IV. DEFLECTION

Because of its analytical tractability (relative to the probabil-
ities required to construct the receiver operating characteristic),
deflection is a commonly used performance indicator in the
literature on signal interception [5]—[8]. In order to put this
particular performance indicator into better perspective, its
maximum possible value for signals in WGN is presented
in this section. Then in Section V the relative deflection per-
formances of several detectors are compared to their relative
receiver operating characteristic (ROC) performances. Before
proceeding, it is important to note that the detection statistic
(20) of the cycle detector is complex-valued, and that the
correct statistic to be used in the threshold test

/ L&
Yse =Y (36)
Hyp
is the magnitude of the statistic (20),
Yse 2 |Ysel- (37)

To ensure mathematical tractability of the deflection, it is nec-
essary to use ys. in (21). This renders the resulting deflection
formulas less useful than desired since they are based on a
statistic that differs from the true detection statistic by the non-
linear operation |-|. The justification for using ¥, is threefold.
First, it can be shown that the deflection based on the real
statistic /., denoted by d,, is always larger than the deflection
based on the complex statistic, denoted by d., provided that the
length of the collect time T is sufficiently large (a proof of this
is given in the Appendix). Thus, d. is a reliably conservative
measure of the performance of the cycle detector. Second, the
evaluation of d. provides a convenient and necessary means
for checking the results of computer simulations, which are
required to compute d,. and the probabilities of detection and
false alarm, Pp and Pr4, for ROC’s. Third, the study of
deflection provides a unifying link with previous SNR studies
of weak-signal detection [5]—[8].

A. Constant WGN Background

It is shown in [2] that the deflection d for the weak-signal
likelihood-ratio detector (which maximizes deflection) for a
WGN background is given by

T/2 T/2
1
7 / / Ry(t —u,t —v)]* dudv
T R )
—T/2 -T/2
. T
= WZ /R?(T)RE(T)
O g “p

Csinfr(a+ B)(T — 7)), _ion(ats)t
(o + ) drem e

T
T {e}
mz / |RS(r)* dr
R !

1R

1

T T o2
w2 [ 1ssorar (38)
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This approximation is accurate if 7" is sufficiently large relative
to the longest period of cyclostationarity (7' >> 1/&min), and
sufficiently large relative to the largest width of the cyclic
autocorrelations R (7). It is also shown in [2] that the de-
flection d(«) of the single-cycle detector (which equals the
maximized SNR of the spectral line regenerator referred to in
Section III) is given by

T oo
2 — e 2
P(0) = 55 [ 1S5DP (39)
Consequently,
A = (40)

> d(a).

These deflection formulas are evaluated in [18] for BPSK,
QPSK, SQPSK (each with rectangular pulse shape), and MSK
(SQPSK with a half-cycle cosine pulse shape) and the results
are summarized here in Table I.

B. Variable WGN Background

Let us now consider the problem of detecting a cyclostation-
ary signal in broad-band noise with variable level. The noise
is modeled as white and Gaussian with the spectral height Ny
modeled as the square of a Gaussian variate with parameters
pn 2 E{No}, 0% £ E{Ng} %, and py = 0% /p3 where
pn is the coefficient of variation of Ny. It is shown in [19]
that the deflections are given by

SNRindo(0) /L

(0) = 1 (41)
72
[1+on (14 2]
for the radiometer and
S SNRindo(@)4/ Tl
d(a) = 1/2 (42)
(1+pn)
for the cycle detector where
SNR;, = B (43)
2
(Tc )/J'N
1/m, a=1/T.
do(a) =< 1/V/3, a=2f, (44)

V2/V3 a=0,

and P, is the average signal power. The value of the coefficient
do(a) for any particular o is proportional to the strength of

the cyclic feature associated with that o,
. 1/2

b | [IssnPar|

— 00

(45)

and is equal to the deflection d(a), normalized by SNRi,
- /T/T., for the cycle detector when Ny is nonrandom
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TABLE I
NORMALIZED DEFLECTION dp(c) FOR THE RADIOMETER (a = () AND SINGLE-CYCLE DETECTORS (a # 0)
FOR NO NOISE VARIABILITY, py = 0. THESE EXACT RESULTS ARE NOT IN COMPLETE AGREEMENT WITH
APPROXIMATE RESULTS OBTAINED ELSEWHERE AND REPRODUCED IN [23, TABLE 4.3]. THESE RESULTS
ALSO-DIFFER SUBSTANTIALLY IN SOME CASES (E.G., SQPSK) FROM RESULTS OBTAINED
ELSEWHERE FOR SUBOPTIMUM AD HOC DETECTORS, AS REPRODUCED IN [23, TABLE 4.3]

Normalized Deflection

a BPSK QPSK SQPSK MSK
Multi- V2 1 1 1
Cycle (3 dB) (0 dB) (0 dB) (0 dB)
1/2
0 273 2/3 2/3 g[g + g] /
(~1.76 dB) (—1.76 dB) (—1.76 dB) (—2.32 dB)
1/T. 1/7 1/7 0 0
(=9.90 dB) (—9.90 dB)
2/T. 1/2x 1/2% 1/2x L /5/18
(~16.0 dB) (—16.0 dB) (—16.0 dB) (Z21.5 dB)
2fo 1/V3 0 0 0
(—4.77 dB)
S 1172
2fo +1/T. 1m/3 0 152 §[§+8-;§-]
(—12.9 dB) (—12.9 dB) (~10.0 dB)

(pv =0). The formulas (41) and (42) are accurate if the
collect time T satisfies the following conditions:

T > max {74} (46a)
1

T > 46b

a+f (46b)

where [ represents all cycle frequencies (8 # —«) associated
with the SOI s(t) and 7, is the width of the cyclic autocorre-
lation RY (7). In addition, it is required that foT, > 1.
Approximations (41) and (42) indicate that the radiometer
yields the largest deflection for py = 0, but that both the
doubled-carrier cycle detector (« = 2fy) and the chip-rate
cycle detector (o = 1/T.) can have much larger deflection
than that of the radiometer for py # O and large T. These
considerations lead to the conclusion that the cycle detectors
can have superior performance relative to the radiometer
when the collect time is long (as it needs to be for weak-
signal detection). This prediction is confirmed by the receiver
operating characteristics presented in the next section.

V. RECEIVER OPERATING CHARACTERISTICS

In this section, the results of computer simulations of
the four detectors under study—the radiometer, modified
radiometer, and cycle detectors for the chip rate and doubled
carrier frequency —are presented. The detectors simulated are
(30) and the discrete-time counterparts of the continuous-time
detectors (19) and (20). These counterparts are obtained by
replacing the integrals by sums and implementing the Fourier
transform (7), which occurs in the cyclic periodogram, with
an FFT algorithm.

In order to obtain the probabilities of detection Pp and false
alarm Pr 4 needed to form the ROC, it is necessary to generate
many sample paths of the signal and noise processes in order
to obtain adequate sample sets of the detection statistics. The

generated statistics are compared to thresholds to estimate the
required probabilities. For the results presented here, 1000
sample paths for each hypothesis were used. Both BPSK and
QPSK SOIs are considered. For the case of py = 0, the value
of the noise spectal height is fixed from trial to trial, whereas
when pny # 0, the value of Ny is chosen randomly at the
beginning of each trial and is fixed for that trial. The random
variable Ny is the square of a Gaussian variate, with mean and
coefficient of variation given by
pn = E{No},
and
o = PANG} — iy

Thus, when py = 0, Ny is nonrandom and has value pp.

The first cases of interest include both long and short
collection times combined with zero-to-moderate noise-level
variability for an SNR of 0 dB [cf. (43)]. Fig. 2 shows the
ROC’s, which plot Pp against Pr4, for long collect, T =
128 chips, and moderate variability, py = 0.1. In this and all
figures, the radiometer is represented by a thick solid line, the
chip-rate (oo = 1/T¢) cycle detector by a medium-thickness
line, the doubled-carrier (o = 2fj) cycle detector by a line
with small circles, and the modified radiometer by a thin line.
In Fig. 2, the modified radiometer and the doubled-carrier
cycle detector have ROC’s that are nearly indistinguishable
(uppermost curve). The performances of these two detectors
are almost identical and are far superior to both the chip-rate
cycle detector and the radiometer. The chip-rate cycle detector,
however, is greatly superior to the radiometer. For example,
for a false alarm probability of Pr4 = 0.025, the radiometer
has a probability of detection of Pp = 0.39, whereas the
chip-rate cycle detector has Pp = 0.94. It is evident that
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Fig. 2. Receiver operating characteristics for BPSK SOI. SNR = 0 dB,
pNy =01, T =128 T..
1
0.8 ]
0.6 mod. radjometer — -
a = chip rate —
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0.2 | ]
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Fig. 3. Receiver operating characteristics for QPSK SOIL. SNR = 0 dB,

pN =0.1, T =128 T..

the performance predictions from the previous section based
on deflection are substantiated for long collect and non-zero
variability. This case was repeated using a QPSK SOI. The
resulting ROC’s are shown in Fig. 3. The performance of the
detectors for this SOI is nearly identical to that for the BPSK
SOI (Fig. 2) because the two signals have the same SCF for
a = k/T,. The ROC for the doubled-carrier feature detector is
absent for the QPSK signal because there is no cyclic feature
at a = 2fy.

To further illustrate the superiority of the cycle detector over
the radiometer, histograms of the generated detection statistics
are presented. The histograms plot the frequency of occurrence
of values within amplitude bins for each statistic versus the bin
location. For the case corresponding to the ROCs in Fig. 2,
the histograms in Figs. 4 and 5 for « = 2fp and o = 0,
respectively, are obtained. The separation between the peaks in
Fig. 4 is quite clear, whereas there is no discernible separation
of peaks for the radiometer, Fig. 5.

In the next case, summarized in Fig. 6, the collect is reduced
to 16 chips, while all other parameters are kept the same. The
modified radiometer is clearly superior, followed in descending
order by the doubled-carrier cycle detector, radiometer, and
chip-rate cycle detector. Although the modified radiometer
outperforms both cycle detectors in this case, the ROC’s in
Fig. 7 shows that the order of performance of the detectors
reverses for increased fractional bandwidth (increased from
1/4 to 2/3), as explained in Section IIL

An interesting and. revealing case involves very short
collect, T = 4 chips, and zero variability, py = 0, with
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ysc

Fig. 4. Histogram of detection statistics for BPSK SOI with o« = 2 fp, SNR
=0dB, py =0.1, T =128 T..

Yr

Fig. 5. Histogram of detection statistics for BPSK SOI with a = 0, SNR
=0dB, py =0.1, T =128 T..

Fig. 6. Receiver operating characteristics for BPSK SOI. SNR = 0 dB,
pn = 0.1, T = 16 T, fractional bandwidth = 1/4.

SNR = 5 dB. This corresponds to the type of situation
in which the radiometer is expected to outperform all
other detectors (based on the analysis of the deflection in
Section IV). However, as evidenced by the ROC’s in Fig. 8,
the doubled-carrier cycle detector is seen to be slightly superior
to the optimum radiometer. The fact that the cycle detector can
be competitive with the radiometer in calm environments with
short collect time points out the drawbacks of the deflection as
a performance indicator (at least when applied to a complex
detection statistic).

Finally, the case of narrowband (sinusoidal) interferers
spread across the entire receiver band that are randomly
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Fig. 7. Receiver operating characteristics for BPSK SOI. SNR = 0 dB,
pn = 0.1, T = 43 T, fractional bandwidth = 2/3.
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Fig. 8. Receiver operating characteristics for BPSK SOI. SNR = 5 dB,

pN=0,T=4T..

switched off and on (so that only one interferer is present
at any given time) is considered. The switching rate is small
compared to the carrier frequency fy and the chip rate 1/7, so
that the measured power spectra of the interferer for a set of
collects with lengths of interest is a set of relatively narrow-
width spikes distributed across the receiver band. ROC’s for
the case of very small signal-to-interference ratio, SIR =
—10 dB, and moderate collect, 7' = 64 chips, and SNR =
10 dB are given in Fig. 9. The performance advantage of
the chip-rate detector is extreme in this case. (Since the
performance of the doubled-carrier detector is so much better
than both the radiometer and chip-rate detector, its ROC,
which is nearly equal to unity for all Prg4, is not shown.) For
small collect, T" = 16 chips, SIR = 0 dB, and SNR = 10 dB,
the ROC’s in Fig. 10 for a BPSK SOI and Fig. 11 for a QPSK
SOI are obtained. For small probabilities of false alarm, say
Pr4 < 0.12, both cycle detectors outperform the radiometer
for both modulation types.

VI. CONCLUSION

It is shown in this paper by simulation and analysis that
cycle detectors can outperform the radiometer and the joint
signal detection and noise-level estimation radiometric de-
tector (modified radiometer) when the background noise or
interference is variable. It is also shown by simulation that
the cycle detector can in some cases outperform the optimum
radiometer even when the variability of the background noise
is zero. This latter result is based not on measured deflection,
but rather on the measured error probabilities as reflected in the

Pp o = chip rate —

Q = 7€ro —
0.4 4
0.2 4
0O 0I2 0I4 Ob6 0‘8 1
. 4 p, O .

Fig. 9. Receiver operating characteristics for BPSK SOI. SNR = 10 dB,
SIR= —-10dB, py = 0, T = 64 T., random-location narrow-band
interferer.

0.8 a = chip rate — |
QO = ZETIQ ===
Pp o = doubled carrier -—
0.7 J
0.6 4
0.5 : : : :
0 0.1 0.2 0.3 0.4 0.5
Pry

Fig. 10. Receiver operating characteristic for BPSK SOI. SNR = 10 dB,
SIR =0 dB, py =0, T = 16 T, random-location narrow-band interferer.

09r b
0.8 a = chip rate — -
a = 7€r0 —
Pp
0.7 H k
0.6 b
0.5 . . \ .
0 0.1 0.2 0.3 0.4 0.5

Pry

Fig. 11. Receiver operating characteristics for QPSK SOI. SNR = 10 dB,
SIR =0dB, py =0, T = 16 T, random-location narrow-band interferer.

receiver operating characteristic. This result is not predicted
by theoretical calculations of the deflection. Thus, whereas
the deflection is useful in deriving detectors (which can be
derived other ways as well), it is not always appropriate for
performance comparisons with other detectors (cf. [5]).

In conclusion, cyclic spectral analysis in general and the
cycle detectors in particular possess substantial performance
advantages over more conventional signal processing methods
for interception of direct-sequence spread-spectrum signals.
However, the cycle detection methods do require that the
signal of interest exhibit cyclostationarity, and the single-cycle
detectors also require knowledge of the value of a cycle fre-
quency. Thus, modifications of the modulation schemes, which
produce the spread-spectrum signals, that destroy, substantially
weaken, or vary the cyclostationarity of the signal are needed
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to prevent interception by cycle detection. Such modifications
are the subject of current research by the authors [21], [22].

APPENDIX
PROOF THAT d. < d,

In this Appendix, it is proved that the deflection based on the
complex detection statistic d. is less than the deflection based
on the magnitude of that statistic d,., as asserted in Section I'V.
The required condition is that the collect time 7" of the detector
be sufficiently large.

In this proof, the averages in the definition of deflection are
taken to be averages over a finite set of complex numbers
(random samples), rather than over an abstract probability
space with a probability weighting function. This is the way the
deflection is computed from simulations or from data, rather
than the way it is analytically calculated using expectations.
Also, the fact that the magnitude of the average of n complex
numbers is less than or equal to the average of the magnitudes
of the numbers is used:

1 < 1
n Z G- n

=1

(A1)

n
D il
i=1

Proof: The numerator of the complex deflection is given

by
num, = % i(yﬂHl) - zn:(yHHO) : (A2)
Using (A1), we obtainz=l -
e < 515 ()| + {3 (o)
< %zn: (Jval | Hy) + %2": (Iyil | Ho). (A3)
If the condition - -
> (il [ o) < X (wl | ) a9
is met, then V&;:::an make the Cl;:: approximation
3 )+ 3 )= 33 i )
—% i (ly| | Ho) = num,. (AS5)
=1

where num, is the numerator of the real deflection. The
condition (A4) will be met for sufficiently long collection
time because the noise does not exhibit cyclostationarity, and
thus the detection statistic on the null hypothesis actually
vanishes when the collection time increases without bound.
Thus, we have the approximate inequality num, = num,,
which becomes a strict inequality asymptotically. Furthermore,
we have

n n 2

den, = Var(ylHo) = - > (Iul*1Ho) | = 3 (wil o)
=1 =1

(A6)
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and

3

1
den, = Var(y| | Hy) = —

(110

=
—

2
(lvil | Ho)| - (AT

NE

=1

|
[ oa——— |
3| =

Using (Al), we obtain

1 n
g; (lys| | Ho) >

n

%Z(yilHo)

=1

(A8)

and therefore the variance of the real statistic |y;| is always
smaller than that for the complex statistic y;, thus den, <
den.. Since the numerator of the real deflection is larger for
sufficiently long collect time, and the denominator is smaller,
it follows that d. < d, for sufficiently long collection time.
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