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Abstract

A method for identifying the Fourier—Volterra kernels of polyperiodic nonlinear systems by crosscorrelating the system
output with prescribed nonlinear transformations of a prescribed random input is introduced. A frequency-domain
counterpart of this method, which can utilize a computationally efficient FFT algorithm to compute cross-spectra of the
system output and prescribed nonlinear transformations of the input, is also introduced. With complex inputs, the methods
apply to infinite-order systems with infinite memory. For real inputs, they apply only to finite-order systems.

1
Zusammenfassung

Eine Methode zur Identifikation des Fourier—Volterra-Kerns mehrfach-periodischer nichtlinearer Systeme wird
eingefiihrt; sie arbeitet mit der Kreuzkorrelation des Systemausgangs mit nichtlinearen Transformationen einer vorge-
schriebenen Zufallserregung. Auch ein Frequenzbereichs-Gegenstiick dieser Methode wird eingefiihrt; es kann einen
recheneffizienten FFT-Algorithmus zur Berechnung von Kreuzspektren des Systemausgangs und vorgeschriebenen
nichtlinearen Eingangstransformationen nutzen. Mit komplexen Eingangssignalen lassen sich die Verfahren auf Systeme
unendlichen Grades mit unbegrenztem Gedichtnis anwenden, mit reellwerrtigen Eingangssignalen nur auf Systeme
endlicher Ordnung.

Résume

On introduit une méthode d’identification des noyaux de Fourier—Volterra pour les systémes nonlinéaires poly-
périodiques en intercorrelant la sortie du systéme avec des transformations nonlinéaires prédéfinies d’une entrée aléatoire
donnée. Une contre-partie fréquentielle de cette méthode, qui peut utiliser un algorithme de TFR efficace en termes de
calcul pour trouver les inter-spectres de la sortie du systéme et des transformées nonlinéaires prédéfinies de I'entrée, est
également introduite. Dans le cas de données complexes, les méthodes s’appliquent aux systémes d’ordre infini avec une
mémoire infinie. Dans le cas de données réelles, elles ne s’appliquent qu’aux systémes d’ordre fini.

Keywords: System identification; Nonlinear; Time-variant systems; Fourier-Volterra series

* This work was supported by grants from the Army Research Office under contract DAAL03-91-C-0018, and the office of the Naval
Research under contract N00014-92-J-1218.

* Corresponding author. Address: Dipartimento di Ingegneria Elettronica, Universita di Napoli Federico IL, via Claudio 21, I-80125,
Napoli, Italy. Fax: + 39-81-7683149. E-mail: paura@nadis.dis.unina.it.

0165-1684/95/$9.50 © 1995 Elsevier Science B.V. All rights reserved
SSDI 0165-1684(95)00073-9



76 W.A. Gardner, L. Paura | Signal Processing 46 (1995) 75-83

1. Introduction

The class of nonlinear systems whose character-
istics change with time according to one or more
(possibly incommensurate) periodicities, namely the
polyperiodic nonlinear (PPN) systems, is appropri-
ate for describing the relationships between in-
put/output measurements on natural systems sub-
ject to seasonal variations. Examples can be found in
meteorology, atmospheric science, oceanography,
hydrology, econometrics, and so on. This class of
systems is also appropriate for manmade systems
subject to single or multiple periodic variation,
collectively called polyperiodic variation. Examples
include systems subject to vibration from rotating
machinery, radio communication systems, and other
signal processing systems where periodic signal pro-
cessing operations (e.g., sampling, scanning, modula-
ting, multiplexing, coding, and so on) are used.

A great deal of work has gone into development
of theory and methods for identifying, by in-
put/output measurement, time-invariant nonlinear
(TIN) systems [3,9-13]. Recently, new methods,
which are based on using system inputs that are
cyclostationary [5], have been introduced for both
polyperiodic linear [4,5] and time-invariant non-
linear systems that admit Volterra-series repres-
entation [7]. Nevertheless, there is (to our know-
ledge) no general approach to PPN system identi-
fication reported in the literature.

In this paper, the methods proposed in [7] for
the class of real TIN-Volterra systems are general-
ized to real PPN systems. More specifically, for the
class of PPN systems that can be represented
by a generalized form of Volterra series, called
a Fourier—Volterra series, we have developed
a class of methods for identifying the Fourier—
Volterra kernels. The extension of the results from
time-invariant to polyperiodically time-variant
nonlinear systems is based on representing a PPN
Fourier—Volterra system as a multiplicity of TIN
Volterra systems whose outputs are frequency shif-
ted (by the cycle frequencies of the PPN system)
and summed. In fact, this representation suggests
how to specify a class of cyclostationary complex-
valued time-series inputs for PPN systems that
enables the analytical specification of a set of
operators on the input that are orthonormal over

all time to the Fourier—Volterra operators. Such
operators are used to obtain an input/output type
of crosscorrelation formula for identifying the indi-
vidual Fourier—Volterra kernels of arbitrary order
of a PPN system of possibly infinite order and
possibly infinite memory. A class of cyclostationary
real-valued time-series inputs is also introduced for
which the same sets of specified operators apply.
However, the orthogonality for different orders for
these real inputs holds only for Fourier-Volterra
operators of order less than that of the specified
operator. Thus, these real inputs can be used to
identify Fourier—Volterra kernels only for finite-or-
der systems.

To our knowledge, the methods introduced here
for complex inputs are the first methods to be able
to identify an arbitrary-order Fourier—Volterra
kernel for an infinite-order system. Unfortunately,
these methods can be used only when a complete
description of the input-output rule (such as
a mathematical model) that defines the system for
complex inputs is available, e.g., for simulation on
a computer. Complex inputs cannot, of course, be
applied to physical systems. Nevertheless, methods
for identifying the Fourier—Volterra kernels from
mathematical models have potentially important
practical applications such as the calculation of the
performance of a communication system with non-
linear components (cf. [1,2]). Also the methods for
the real counterparts of the complex inputs, which
require that the system be accurately approximable
by a finite-term Fourier—Volterra series, appear to
be computationally attractive when finite-state in-
puts are used (cf. [7]).

2. Polyperiodic nonlinear systems

To introduce PPN systems that can be represent-
ed by Fourier—Volterra series, let us first consider
the class of real TIN systems with possibly com-
plex-valued input x(k) and output y(k) whose
members admit the Volterra series representation

v =Y hy(j)x(k — )
+ Z ha(Jja,»j2,)x(k —j2,)x(k — ja,)

j21’j22
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L)

J3,:J35473,

h3(ja,>j3,5J3,) x(k — ja,)

XX (k —j3,)x(k —js,)+ =+ (1)

In shorthand notation, we have

vk =3 [Z hn(Jin) (K, s (- ))} 2

n

where k represents discrete time, j, = [ jn,sJn,,
<<+ >Jn 1> hu(jn) is the nth-order Volterra kernel [14]
and A,(k, j,,x((-)) is the nth-order lag product of
x(k),

n

’ln(kajmx((')) = I_[ X(k _jn,)- (3)

r=1

This class of real TIN system can be generalized to
a class of polyperiodic nonlinear systems in the
same way as the class of time-invariant linear sys-
tems is generalized to that of polyperiodic linear
systems. That is, we allow the kernels h,(k,j,) to be
polyperiodic functions of time k. Under the as-
sumption that the Fourier series associated with
each polyperiodic kernel converges, one has

hn(k’jn) = Z h:l(jn)eiznaks (4)
acd,

where ’

ha(in) & Cha(k, ja)e ™27y, ®)

(- denotes average over all time, namely

A 1 - N
() 2 lim oot 3 Sk ©)
and 4, is the set of frequencies for which h%(-) #0.
Substituting the generalized kernels (4) in place of
the Volterra kernels in the Volterra series (2) yields
the system representation

v =% {Z[Z hff(jn)in(k,jmX(-))]}e”““"

Z ya(k)eunak’ (7)

acAd

where A4 is the union of all sets 4, forn =1,2,3, ...

We shall use the abbreviation PPN to denote the

class of real polyperiodic nonlinear systems whose
members admit the joint Fourier—Volterra series
“representation (7). Also, we shall refer to the fre-
quencies o in (7) as the cycle frequencies of the
system. We can see from (7) that a PPN system is
equivalent to a multiplicity of TIN Volterra sys-
tems (with Volterra kernels hj((-)) whose outputs
Va(k) are frequency shifted (by «) and summed.
Thus, a PPN system is composed of multidimen-
sional convolution operators (operating on the lag-
products of the input) followed by frequency-shift
operators and a summing operator.

The kernel hj(-) of the operator

2 i ) Ak, iy x(- )27, )

In

operating on x(t), shall be called the nth-order
Fourier-Volterra kernel (which reduces to the
Volterra kernel for o = 0), and the corresponding
operator shall be called the nth-order Fourier—
Volterra operator (which reduces to the Volterra
operator for a =0). However, the elementary
operator

Ao X(+)) £ (ks ()€1 ©)

also shall be called the nth-order Fourier—Volterra
operator.

3. The identification methods

We are interested in the problem of identifying
PPN systems using input/output measurements.
That is, we want to determine the cycle frequencies
o and the Fourier—Volterra kernels h%(-). We are
interested in two versions of this problem. In one
version we have a mathematical model of the oper-
ator that maps input sequences into output se-
quences y(k) and we want to calculate o and A%(+) in
the representation (7) for this model. In the other
version of the problem, we have a physical system
that maps x (k) into y(k), but we have no mathemat-
ical model and we want to fit the model (7) to this
system by appropriately selecting o and h(-). In
the first version of the problem, we are allowed to
use complex-valued input sequences (if this will
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facilitate the calculations), but in the second version
we are restricted to real input sequences.

We shall consider only random input sequences
x(k) and we shall employ as in [7] the temporal
probability framework [5, 6,8] to describe the stat-
istical characteristics of the inputs. We begin by
reviewing the necessary concepts and definitions.

A stationary time-series z(k) is one for which
infinite-time averages of lag-products (and all other
well-behaved time-invariant (or k-invariant) func-
tions of the time series) are all finite and are not all
identically zero, and for which the sinusoidally
weighted lag-products (and all other sinusoidally
weighted well-behaved time-invariant functions) of
the time-series have infinite-time averages that are
identically zero for all noninteger sinewave fre-
quencies [6]. That is, for a stationary time series the
cyclic moments

RE(jn) = Cnlks s 2(+))e 127 (10)

are zero for all noninteger real cycle frequencies
o, all lag variables j,, and all positive integers n.
It follows that if z(k) is stationary, then every
well-behaved k-invariant function of z(k — ki),
z(k — ky), ..., z(k — k,), say ’

Sk by, 2(+)) = f(z(k — k1), ..., 2(k — ky))
=f(0’kn - lnk’Z(,')) (11)

(where 1, is the n-dimensional row vector with all
elements equal to unity), is also stationary. If (10) is
nonzero for some noninteger «, then z(k) exhibits
cyclostationarity and « is called a cycle frequency.
Specifically, when the set of all cycle frequencies is
not integrally divisible by a single fundamental
cycle frequency, then x(k) exhibits polycyclo-
stationarity [6].

If the joint fraction-of-time probability density
functions of a time-series factor into products of the
individual fraction-of-time densities, then the time-
series is said to be a sequence of statistically (tem-
porally) independent variables [6]. Under such an
assumption for z(k) its joint moments factor as
follows:

< [T 2" _jm,,)> = ]j[1 2"k = jm,)) (12)

q=1

for all distinct 1ags jou,,jm,> -+ »Jm,-

We shall now briefly describe a method for iden-
tifying a cycle frequency o of the PPN system under
consideration. Since A,(k, j,, x((+)) = 24,(0, j, —
1,k,x(+)), then the operator that defines y,() in (7)
is a k-invariant operator and, therefore, transforms
any stationary sequence x(-) into a stationary se-
quence y,(-). Therefore, the cyclic mean of the
system output is given by

ME 2 (yk)e 20y = 3 (a(k)) dap (13)

where 9, is the Kronecker delta. Thus, as long as
{y4(k)> # 0 for each cycle frequency of the system,
all these frequencies can be determined since the
spectrum of the output y(k) will contain spectral
lines of strength |MJ|*> at each cycle frequency
a and only at these frequencies. If the fraction-of-
time probability density functions of x(k) ar even
functions, then all odd-order moments are zero,
and, therefore, only even-order nonlinearities (even
n) in the system can contribute to {y,(k)). In order
to detect cycle frequencies associated with odd-
order, as well as even-order nonlinearities, we can
use the spectral lines present in the spectrum of one
or more quadratic transformations of y(k).

Regarding the identification of the Fourier—
Volterra kernels, the PPN system representation (7)
suggests deriving methods for their identification
by extending and generalizing the approach pro-
posed in [7] for identifying the Volterra kernels of
TIN systems. More specifically, let us consider as in
[7] the two classes of cyclostationary inputs:

(14a)
(14b)

x(k) = z(k)e'¥,
x(k) = Re{z(k)e*},

where z(k) is a real- or complex-valued stationary
time-series and w is any real number such that

nw

o + o — f # integer (15)

for all differences « — f8 of cycle frequencies of the
PPN system of interest and for all nonzero integers
n. (The reason for this constraint on o is explained
in Appendix A.) Moreover, the following result (also
utilized in [7]) holds: For some stationary time-
series z(k) we can find a set of k-invariant operators
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@u(k, k,,z(+)) for a given z(k) that is orthonormal
(reciprocal) to the set of the lag-product operators

n

Ak g 2((+)) = T 2(k — ji,) (16)

r=1

in the sense that

(ks 2((+)) Pulks Koy 2((+))* > = 65, (17)

where j, is any permutation of j,, and o5, is the
n-dimensional Kronecker delta (which is the
product of n one-dimensional Kronecker deltas:
0; &, = 1 for j, =k, and ¢; -, = 0 for j, #k, )

"The two following theorems and associated co-
rollaries provide the results on identifying
Fourier-Volterra kernels for both complex and real
signals.

Theorem 1. Let the operators yf be defined by

'yf(k,k,,,Z((‘))

£ e LTI g (ke 2((-))e 2, (18)
where ¢, satisfies (17), and let x(k) be given by (14a)
and (15). Then these operators y¢ are orthonormal
over the orders n, the lag sets k,, and the cycle
frequencies f to the Fourier—V olterra operators 2

K oms X )R ey s 2(()* = S, S0p. (19)

A proof of this theorem is given in Appendix A.
(In (18), prime denotes the transpose operation.) As
a corollary to this theorem, we have the following
result on identifying Fourier—Volterra kernels.

Corollary. Given operators ¢, satisfying (17) and
system input specified by (14a) and (15), the operators

7% defined by (18) can be used to identify the sym-
metrzzed Fourier-Volterra kernels in (7) by perform-
ing the crosscorrelation operation

b (k) = P(k )<y(k)7n(k ks 2((+))*D, (20)

where P(k,) is the number of distinct permutations of
the elements k,. Specifically, if k,={k,,, ..

o

Ks by sk o Ky s K ] where k,, is re-
peated n, times and n; + n, + --- + n, = n, then

n!

P(k,) = 2D

nylnyl-om,l’
(The kernels of any system can be symmetrized, by
averaging hy(j,) over all permutations j,, without
affecting the output of the system, cf. [13] for the case
of « =0)

For real inputs we have
1 | ok
x(k) = 3 z(k)e'* + 3 z¥(k)ye (22)

and, parallel to Theorem 1, we have the following
theorem (which is also is proved in Appendix A).

Theorem 2. Let the operators y} be defined by (I 8)
modified to include the factor 2" where ¢, satisfies
17), and let x(k) be given by (22). Then these oper-
ators y! are orthonormal over the orders n, the
lag sets k,, and the cycle frequencies B to the
Fourier—V olterra operators 1%, of orders m < n:

e, joms (=) 72 (ks Koy 2(+))*
= OumOj1,00p for m < m. (23)

Thus, parallel to the corollary, for an Nth-order
Fourier—Volterra system (for which h% = 0 for all
m > N in (7)), (20) holds for n = N. After (20) is used
to identify the Nth-order Fourier—Volterra kernels
for all cycle frequencies, o, the Nth term in (7) can
be subtracted off to produce the output of an
(N — 1)th-order system whose highest-order ker-
nels hy_;(jy-1) can then be identified for all .
However, since small estimation errors can com-
pound, a poor accuracy can result when the
strength of kernels of different order is very differ-
ent.

The following lemma, proved in [7], provides the
operators @,(k,k,,z(-)) satisfying (17).

Lemma. Let z(k) be a stationary sequence of statis-
tically (temporally) independent variables so that
the powers z™(k) are also linearly independent. In
general, there exists a set of univariate orthogonal
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operators Y,(z(k — ko)) that are orthonormal to
the particular lag-product operators Am(K,jm»z(+))
=z"(k — jo) for m <m,

2™k — jo)ws (z(k — ko)) = Omndjek,
form < n, (24)

and we can define operators to satisfy the orthonor-
mality property (17) and, for w =0 in (18), to also
satisfy the orthonormality property (19) for m < n, as
follows:

14
Oulk, by 2(+)) 2 [ Y, (2(k — k), (25)
q=1
where n, is the number of times the lag k,, is repeated.

By comparing the results, here obtained, for
identifying PPN Fourier—Volterra systems with
those of TIN Volterra systems derived in [7], one
can see that the differences can be summarized as
follows:

(i) the frequency value w/2m of both possible in-
put signals (14) not only must be irrational as
in [7] but has to satisfy (15) for & —  # 0;
(ii) the operators y/ differ from those used for TIN
system identification by the presence of the
factor e!2*#* which renders them time-variant;
(iii) the operators 7/ are orthonormal to the
Fourier-Volterra operators not only over
the orders n and the lag sets &, but also over
the cycle frequencies f.
According to these observations, both the examples
and the discussion reported in Section III of [7]
apply also to PPN system identification. Specifi-
cally, since PM method in both its complex- and
real-valued versions revealed to be a computation-
ally attractive (relatively speaking) method for de-
termining the Volterra kernels of TIN Volterra
systems, here we shall consider such a method also
for identifying PPN Volterra kernels.

Let z(k) = 0e'®® be a purely stationary sequence
of statistically independent (white) variables having
an M-ary discrete uniform circular temporal-prob-
ability distribution (fraction-of-time distribution
[5,6,8]), which results from 0(k) having an M-ary
discrete uniform distribution in the interval
[ — =, w]. In this case, we can make the choice

Yalz(k —1) & 07 "2"(k — ) (26)

and satisfy (24) provided that n — m is not a non-
zero integer multiple of M. Therefore, a sufficient
condition for identification formula (20) to be valid
is that n, in (25), which is used in (20), be less than
M. That is, the alphabet size M must exceed the
number of times any lag value is repeated at the
point in the domain of the kernel at which the
kernel is to be identified. (This restriction is a result
of the fact that z™(k) are linearly independent only
for 1 < m < M.) This can be guaranteed for arbit-
rarily high-order kernels, by letting M — oo :1i.e., by
using a continuous uniform distribution for 6(k).

It follows from (26) that for the complex phase-
modulated (PM) input, we have

Ok, Ky, z(+)) = 07" Ak, Ky, 2(+)) 27
and, therefore,
VB (ki z2(+)) = 0" An(k, gy x(+)) 2P (28)

The real counterpart (14b) of the input in this
example is the phase-modulated sinewave

x(k) = o cos(wk + 0(k)). (29)

It is important to recognize that for @ # 0, both the
complex and real PM inputs take on values
throughout a continuum (a disk of diameter 2¢ for
complex PM and an interval length of 2o for real
PM) even though the random sequence 6(k) has
only a finite number (M) of states for each k (the
same finite set of states for all k). For w = 0, the PM
inputs take on only a finite number (M) of values.
Thus, for w # 0, the PM input is much richer than
it is for @ = 0. Specifically, it is a white input with
a fraction-of-time amplitude density equal to that
of a sinusoid.

Regarding computational complexity, it can be
seen from the proof of Theorem 1 in Appendix A,
that the averaging time used in practice must not
only be long enough to obtain statistically reliable
estimates of the infinitely long averages used in the
theory, but also be long enough to adequately re-
duce bias that results from sinewaves with frequen-
cies nw/2n not being orthogonal over all finite-
length intervals to sinewaves with frequencies o — f8
for all cycle frequencies o of the PPN system, where
B is the cycle frequency of the kernel h%(.) being
identified. Thus, ideally for each f, w should be
chosen to maximize the minimum (over all « € A
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and all n less than or equal to the order of the
system) of the noninteger part of nw/2w + o — f.
This follows from (A.3) in Appendix A. Moreover,
to exploit the computational efficiency of FFT al-
gorithms, the frequency-domain counterparts of
the time-domain methods, which directly identify
the multidimensional Fourier transforms of the
Fourier—Volterra kernels (i.e., the Fourier—Volterra
transfer functions Hp(f,)) can be considered.
All the equations derived in Section IV of [7]
still apply to the identification of the PPN
Fourier—Volterra transfer-functions provided that
the operator y, is replaced with the operator
y» given by (18), w(k,) is replaced with

a 1 (v

Wn (kn) = m'yn(oakmz('))a (30)
and the truncated (to intervals of length T ) output
yr(k) is replaced with its a-frequency-shifted ver-
sion so that the estimate of Hg( f,) obtained from
the Fourier transform of (20), by reducing the aver-
aging time for (- ) from oo to T, can be closely
approximated for T> K by

N 1 + o0
Hif)= ) [— Y yr(k)whk, — 1,k)*

0<k, <K Tk=—oo

xe~ i21mk:|e—i21tf,,k,’,

| FwH i)

® Ax(f1)® -+ ® Ax(f,), (31)
where
_ 8 e sin[rf(K +1)]
A T T ey
Yr(f)= Y y(k)e iz, (33)
k| < T/2
WH—f)= Y wilk,)e2s, (34)
|kal < T/2

and 0 <k, < Kmeans0 <k, <Kfori=12,...,n,
where K should be chosen to exceed the system
memory length L (but not excessively) for which
hy(k,) = 0 for k, > L for every i.

4. Simulations

A simulation experiment was carried out to ver-
ify that the proposed system identification method
assures that the Fourier—Volterra kernels estimates
converge to the correct values. Specifically, we con-
sidered a second-order PPN system consisting of
an LTI causal transformation described by the
first-order difference equation

—0.89897 z(k — 1) + 1.89897 z(k) = x(k), (35)
followed by the nonlinear periodic system
y(k) = z(k)*[1 + 0.3 cos(1.37k)]. (36)

From (35) and (36) it follows that the system is
characterized by the kernels h3(ky, k,) = h(k,)h(k,)
and hi '37(ky,ky) = 0.15h3(ky, k), with h(-) de-
noting the impulse response of system (35).

System input of PM types with sinewave fre-
quencies of w =0 and @ = 1, and alphabet sizes
M equal to 3, 6,9 and 12 were considered. Both
methods, namely real and complex versions of PM,
were tested. A number K of 1000 Monte Carlo
trials were used in correspondence of an input-data
record length of 10000, whereas for 100000 sam-
ples K = 100 trials were considered. The bias and
the coefficient of variation defined as

1 -
EZfil [h3(i) — h3(ky, k)]

bias| £ ,
[bias| k)]

(37)

1 N
EZ,-Kzl [h3(0) — h3(ks, k2)]?
f. var £
coef. var [k o) T2 ; (38)

were evaluated for the estimates of the 2nd-order
kernels h3(ky,k,), h337(ky, k,) computed in corres-
pondence of k; =0 and k, = 1. In (37) and (38)
(i) is the ith estimate of h%(ky, k).

The results are reported in Tables 1 and 2 where
the first letter (C or R) in the abbreviations denotes
complex or real method. Since the variations in bias
and coeflicient of variation with respect to the al-
phabet size M were considered to be statistically
insignificant, only the average values of these para-
meters (over the set of alphabet sizes) are reported
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Table 1 .
Bias and coefficient of variation for Fourier—Volterra kernel
h3(0, 1) estimates obtained using various methods

Record length Record length
= 10000 = 100000
Method | bias| coef. var | bias| coef. var
CPM
w=0 1% 2x107% 0.3% 1x1073
=1 1% 2x1074 0.3% 2x107°
RPM
w=0 3% 1x1073 0.9% 1x107%
w=1 3% 1x1073 0.9% 1x107%
Table 2

Bias and coefficient of variation for Fourier—Volterra kernel
hi-37(0, 1) estimates obtained using various methods

Record length Record length
= 10000 = 100000
Method | bias| coef. var | bias| coef. var
CPM
w=0 5% 4x1073 1% 3x 1074
w=1 5% 4x1073 1% 3x 1074
RPM
w=0 15% 4x1072 5% 4x1073
=1 15% 4x1072 5% 3x 1073

in the tables. The results show that both bias and
coefficient of variation can be made arbitrarily
small by increasing the record length. In fact, for
a 10-fold increase in averaging time, there is a 10-
fold decrease in coefficient of variation. Finally, it is
worthwhile to note that the lower accuracy of the
estimates of hi-37(0,1) with respect to those of
h9(0,1) can be justified taking into account the
considerable difference in strength between the two
kernels.

5. Conclusion

The class of real polyperiodic nonlinear systems
that admit a new double series representation,
called the Fourier—Volterra series, is considered,

and a class of cyclostationary complex-valued ran-
dom inputs that enables the analytical specification
of sets of operators on the input that are orthonor-
mal over all time to the Fourier—Volterra operators
is defined. The reciprocal operators are used to
obtain a crosscorrelation formula for identifying
the Fourier—Volterra kernels of PPN systems of
possibly infinite order and memory. A class of
cyclostationary real-valued time-series inputs for

which the same sets of operators apply is also -

introduced. However, in this case the orthogonality
for different orders holds only for Fourier—Volterra
operators of order less than that of the specified
operator. Then, this real inputs can be used to
identify Fourier-Volterra kernels only for finite
order systems.

The computational load of the cross-correlation
method can be substantial not only because of
averaging time but also because of the number of
terms required in the double series representation.
To significantly reduce such a computational load
the frequency-domain counterpart of the cross-cor-
relation method is introduced, which is based on
frequency-smoothed cyclic ~cross-periodograms
that can be evaluated by FFT algorithms.

Appendix A. Proofs of Theorems 1 and 2

Proof of Theorem 1. Substituting (14a) into (3), (3)
into (9), and the result together with (18) into the
left-hand side of (19) yields
(19) = (s 2(-))2 =52

x iUk g (k K, 2())*e T2

= <lm(k:jm9z(°)) (pn(k’kmz(' ))*

iw(m—n)keiZn(a—ﬂ)k>eia)(l,,k,’,—l,,, j,’,,)‘

x e (A1)

Since An(k,jm,z(+)) and @,(k,k,,z(+))* are k-in-
variant functions of [z(k — ji), ...,z(k — j.)] and
[z(k — ki), ..., z(k — k,)], respectively, and z(k) is
stationary, then

j'm(kajmaz( ')) (pn(kaknsz( '))*

is stationary. Consequently, the average (A.1) is
zero for

(A.2)

(n —m)w/2n + o — f # integer,

(A3)
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which is satisfied by (15), provided that m # n. For
m=n and o =  we have

CAnlKs jns 2(2)) ul, Ky, 2 () *pe it (A4

and (17) guarantees that this average is zero for
Jn # k, and is unity for j, = k,. Thus, we have verifi-
ed (19). O

Proof of Theorem 2. Substituting (22) into (4), and
(4) into (9), and the result together with (18) (modi-
fied to include the factor 2") into the left-hand side
of (23) yields the same result as (A.1) except that the
factor

(K, s 2(+)) €1 ML) (A.5)
is replaced with

Z )';(kxip’Z(')))“q(k:.iqaz(°))*

x glo((p=alk+1,j,=1,7,) (A.6)

where 1o(k,jo,(+)) £ 1. Using the same reasoning
as in the proof of Theorem 1, we obtain the desired
result (the right-hand side of (23)) provided that
p—q—n=0only if p=n and q =0. The only
way to guarantee this is to impose the restriction
m<n []
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