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I Introduction

In such application areas as communication systems, signals intelligence,
radar, sonar, commercial communications monitoring, biomedical signal
processing, and geophysical exploration, signals of interest (SOIs) are often
corrupted by channel distortion, interfering signals, and noise. To mitigate
these sources of corruption and thus enable the receiver to obtain high-
quality estimates of the SOI, it is often necessary to use adaptive spatial,
temporal, or spatio-temporal filtering. Conventional methods of adaptive
filtering typically require prior knowledge of the SOI and/or of the corrup-
tion, such as a training signal, channel transfer function, or interference
covariance matrix. However, this prior knowledge can be difficult or im-
possible to obtain in some applications.

For example, in cellular communication systems that use time division
multiple access (TDMA) (i.e., each SOI is active during only a short peri-
odically occurring time slot) and must operate in the presence of rapidly
changing multipath propagation, the characteristics of the corruption are

time-varying and unknown, and periodic retransmission of a sufficiently
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long training signal during each time slot would decrease prohibitively the
time that remains to communicate the message. Furthermore, many con-
ventional adaptive methods are derived without regard for the statistical
structure that uniquely identifies the SOlIs.

The primary goal of this chapter is to explain how the statistical struc-
ture of cyclostationary signals (cf. [1, 2, 3] and references therein), and
of man-made communication signals in particular, can be used to address
some of the drawbacks of conventional methods. Almost all man-made
communication signals exhibit cyclostationarity as the result of periodic
gating, keying, and mixing operations in modulators and transmitters. A
key point is that this property can be exploited in signal processors to favor
desired signals and to discriminate against undesired signals, interference,
and noise. This signal selectivity offers appealing benefits: post-processing
that determines which signals and their parameters are of interest can
sometimes be reduced or eliminated, and applicability to some difficult
environments is enhanced. For example, direction-finding methods that
exploit cyclostationarity can operate properly even when the total num-
ber of signals arriving at the sensor array exceeds the number of sensors,
provided that the number of signals having the specified cyclostationarity
property is less than the number of sensors (cf. [2, 4, 5, 6]). In addition,
many cyclostationarity-exploiting algorithms offer these benefits while us-
ing much less prior knowledge of signal characteristics than that required
by conventional methods. In particular, some methods of adaptive spatial
filtering that exploit cyclostationarity require only knowledge of the baud
rate or carrier frequency, or other frequency that characterizes the under-
lying periodicity exhibited by the desired signals. It is explained in this
chapter how this knowledge is used to avoid the need for training signals,
estimates of directions of arrival, and array calibration data in both adap-
tive sensor arrays (spatial filtering) and fractionally-spaced equalization for
digital communication systems (temporal filtering).

In addition to explaining how cyclostationarity can be exploited by blind
adaptive algorithms, this chapter also illustrates how other statistical prop-
erties can be exploited in a unifying framework referred to as Programmable
Canonical Correlation Analysis.
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This chapter is organized as follows. In Section II, the mathematical
models for the sensor array data are described. In Section III, notation and
basic results on the measurement of spatial characteristics of cyclostation-
ary signals are summarized, and their implications for the basic problems of
spatial filtering and fractionally-spaced equalization are briefly discussed.
In Section IV, algorithms for blindly adapting (i.e., without using a train-
ing signal) a spatial or spatio-temporal filter to extract high-quality esti-
mates of signal waveforms are summarized. In Section V, blind adaptive
fractionally-spaced equalization (using one or more sensors) is addressed.
Finally, in Section VI a few brief conclusions are drawn and the chapter is

briefly summarized.

II Modeling Data from Sensor Arrays

In this section the mathematical models for the signals at the output of a
sensor array are developed from basic physical considerations. The general
model for wideband data is derived by assuming that a single sinusoid ar-
rives at the array and then applying superposition to build up the expres-
sions for multiple nonsinusoidal signals. An extremely useful simplifying
approximation is then justified and applied to yield a description referred
to in the sensor-array signal processing literature as the narrowband model.
Extensive use is made of this model in this chapter.

II.A General Wideband Model

Consider the analytic signal exp(j2 ft) corresponding to a real sine wave
having frequency f and arriving at the array from angle 6. For simplicity,
assume that the sensors in the array and the signal source are coplanar so
that ordered pairs and a single angle suffice to describe the positions of the
sensors and the direction of arrival of the signal, respectively, and assume
that the wavefronts impinging on the array are planar. If the propagation
medium does not significantly affect the signal as it propagates from one
end of the array to the other, then the signal received at one sensor differs
from the signal received at another sensor only by a delay. As suggested by
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Figure 1, the dependence of the delay on the locations of the sensors and
on the angle of arrival can be determined by using elementary geometry.
Specifically, if we assume that the coordinates of the M sensors are (q1,71),
..+ (gm,7a), then it can be shown that the delay t,, of the signal at the
mth sensor relative to the signal at the origin of the coordinate system can
be expressed as t,;, = —[gm sin(#) + rm cos(#)]/c, where c is the propagation
speed and 6 is measured clockwise from the r axis. Since the signal is
sinusoidal, the propagation delay t,, is equivalent to a phase shift by the
amount v¢,, = —27 ft,,, which is in turn equivalent to multiplication by
exp(j¥m). Thus, the signal received by the array can be expressed in the
vector form

1(?) exp(j¥1(6, f))
xt)2| : |= : 21, 1)
zm(t) exp(jy¥m (9, f))
where
Ym(0, f) = [gm sin(0) + 7 cos(0)]2x f [ c. (2)

More generally, the sensors can have differing directional and frequency—
dependent characteristics, which can be modeled by applying differing gains
and phases to the elements of the vector in (1). Denoting the gain and phase
of the mth sensor by g, (0, f) and ¢ (0, f), respectively, the analytic signal
at the outputs of the sensors can be expressed as

x(t) = a(6, f)e’>™* 3)

where apn(0, f) = gm (8, f) exp [j(¥m(0, f) + ém(0, f))] is the mth element
of the vector a(f, f), which is referred to in this chapter as the array re-
sponse vector, although the terms aperture vector, array vector, array man-
ifold vector, DOA wvector, direction vector, and steering vector also appear
in the literature. The collection of array response vectors for all angles 6
and all frequencies f of interest is referred to as the array manifold.

In the more general (and interesting) case in which multiple non-sinusoidal

signals arrive at the array, the data can be modeled by decomposing it in



SPATIO-TEMPORAL FILTERING AND EQUALIZATION

7

L4
g A

4

/'(ielay =t

L
array origin m 9

Figure 1: Plane waves propagating from angle § toward the array origin.

the frequency domain (temporarily assuming that the signals are Fourier-
transformable) and using linear superposition:

L

S a6y, £)a(f) +1(f)

=1

[a(61, f) -+~ a(8r, Al [51(f) - 5. ()T +i(f)
A0, )5() +i(f), (4)

I

x(f)

where L signals having Fourier transforms 3;(f), ..., §1(f) arrive from
angles 64, ..., 61 and ;( f) represents interference and noise components
(e.g., thermal noise from the sensors and associated electronics, background
noise from the environment, and spatially diffuse sources of man-made
interference such as cities). That is, the array data is linear with respect to

the signals and is linear (in the frequency domain) with respect to a(0, f).
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II.B Narrowband Model

The general wideband model is needlessly complex if only a relatively nar-
row frequency band is of interest (e.g., if prior knowledge regarding the
center frequencies and bandwidths of the signals of interest is available to
select the narrow band of interest). For example, in some applications the
data may be channelized into very narrow bands which are then processed
individually. Alternatively, if it is known that the signals of interest oc-
cupy a certain frequency band then it is advantageous to reject interference
components and noise that lie outside this band. If this band is sufficiently
narrow that the array response vector a(6, f) is approximately constant
with respect to f over the band of interest for all angles 8 (e.g., if the recip-
rocal of the bandwidth of the signal is much greater than the time required
for the signal to propagate across the array, and if the sensor characteristics
do not vary significantly across this bandwidth), then the dependence on f
can be dropped and the array data can be modeled in the time domain as
the analytic signal

L

Z a(az)sl(t) + i(t)

=1
[a(61) -+ a(8o)] [s1(2) -+ sL(B)]" +1(2)
A(0)s(t) +i(2), (5)

x(t)

where s(t) and i(t) are analytic signals. That is, these are the complex
representations obtained by suppressing the negative frequency portions
of the signals. Although the signals s;(t) are not sinusoids, the spatial
characteristics of the array response can be approximately modeled as if
they were. This observation is the essence of the narrowband model.

A more detailed discussion of the conditions under which this assump-
tion is valid, as well as a detailed investigation of the representation of
wideband array data, can be found in [7]. A brief justification is offered
here. Consider a single signal s(t) having flat power spectral density over
the band [fo — B/2, fo+ B/2], and arriving at a uniform linear array (ULA)
for which (gm,7m) = (dm,0) where d is the sensor spacing. The spectral
density of x(t) is Sxx(f) = a(8, f)af (0, f) for |f — fo| < B/2, and the
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autocorrelation at lag 7 = 0 can be expressed as
Jod Bd
[Rxx(0)],, , = B exp | —j27— (m —n)sinf ) sinc 1r——(m n)sin

The total average power Py of X(t) is Pyor = tr {Rxx(0)} = M B. Also, the
average power Py, in x(t) that can be represented by the narrowband model
a(f, fo) s(t) can be found (e.g., conceptually by projecting x(¢) onto the
space spanned by a(f, fo) and then computing the power of the pro jection);
that is,

Pfo = ftr {Pa(eyfo)Rxx(O)}

B < T
= i Z sinc (-2—17(]6 —m)sin 0)
k,m=1
where 77 = B/ fo is the relative bandwidth, fo is the frequency chosen
for use in the narrowband model (it can be any frequency in the reception
band), and Py denotes the orthogonal projection matrix for vector v. Thus,
the ratio ¥ = Pf,/Pio is a measure of the degree to which x(t) admits a
narrowband model:

a Pfo __1_
T Pt M2

sinc (%(k — m)sinf) .
k,m=1
Clearly, the narrowband model is exact (Pg, = Pyo;) for = 0 but degrades
as the relative bandwidth increases, as shown in Figure 2. For example, at
the worst-case value of 6 (6 = 90 degrees), the narrowband model for the
4-element ULA accounts for 99% of the received power for n = 10%, and
90% of the received power for 5 = 30%.

In this chapter and in much of the literature on sensor-array signal pro-
cessing, the sampled complex envelope of the array data is used in the
description and analysis of the various algorithms because the algorithms
are typically implemented on a digital computer and therefore operate on
sampled data. Since the complex envelope of a bandlimited analytic signal
can be obtained by performing a complex down—conversion (i.e., by multi-
plying the data by exp(—j27 ft) for some appropriate f), the corresponding
model for the sampled complex envelope is essentially the same as in (5),
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Figure 2: Accuracy of narrowband model versus relative bandwidth 7 and
angle of arrival 6 for a 4-element ULA.

0

except that x(t), s(t), and i(t) denote the complex envelopes of the array
data, the signals, and the noise, respectively, and t is replaced with n:

L
x(n) =Y a(f)si(n) +i(n) = A(©)s(n) +i(n). (6)
=1
Almost all of the algorithms discussed in this chapter are based on this
model.

ITIT Cyclostationarity

In this section the relevant results from the theory of cyclostationary signals
are briefly summarized. Cyclostationary signals are also referred to as being
periodically correlated or almost periodically correlated, among other terms

(cf. [8, 3]). A useful partial characterization of a cyclostationary signal is its



SPATIO-TEMPORAL FILTERING AND EQUALIZATION 9

set of cycle frequencies, where a signal is said to exhibit cyclostationarity
with cycle frequency a if and only if its cyclic autocorrelation function
R2,(7) (defined in Section IIL.A) is not identically zero. This requirement
can be interpreted as meaning that a finite-amplitude additive sine wave at
frequency o is present in the output 2(n) z*(n—7) of the delay-and-multiply
quadratic processor, or equivalently that some spectral components of z(n)
that are separated by a are correlated.

The emphasis in this chapter is on man-made communication signals,
which typically have cycle frequencies equal to harmonics of their respec-
tive symbol rates (e.g., for PSK, QAM, FSK, and spread spectrum sig-
nals), doubled-carrier frequencies (e.g., for DSB-AM, narrowband FM, and
BPSK signals), and sums and differences of these (e.g., for BPSK, stag-
gered QPSK, and MSK signals). In many applications, one or more of
these cycle frequencies can be known by the receiver (e.g., especially in
commercial communication systems). Alternatively, they can be estimated
(cf. [9, 10, 11, 12, 13] and references therein), although much work remains
to be done in this area.

First, notation used in the rest of this chapter is summarized. Then,
the implications of cyclostationarity for sensor array processing (especially
interference rejection) are summarized by discussing certain temporal cor-
relation statistics of cyclostationarity. Finally, the implications for equal-
ization of channel distortion are discussed by making use of an alternative
but completely equivalent interpretation of cyclostationarity in terms of
spectral redundancy. Detailed tutorial treatments of cyclostationarity can
be found in [2, 3, 14, 12].

III.A Notation

The following abbreviations are used throughout this chapter:
SOI: Signal of interest

SNOI: Signal not of interest

STF: Spatio-temporal filter

DOA: Direction of arrival
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LCL-PTYV: Linear-conjugate-linear polyperiodic time varying
SNR: Signal to noise ratio

SINR: Signal to interference and noise ratio

MSE: Mean squared error

PSK: Phase-shift-keyed

QAM: Quadrature amplitude modulated

With reference to the abbreviation LCL-PTYV, it is noted that the term
linear-conjugate-linear multiply-periodic time-varying (LCL-MPTV) is used
in earlier work [15] to denote the same concept. The new term is chosen
for consistency with the terminology used in [3]. The following definitions
are used throughout this chapter:

D-1 The notation (f(n)), denotes the time average of f(n):
N-
A
(F(n)y £ Z f(n)-

D-2 The function Zy(f,7) is defined as

N-1-7

_JV Z e—]21rfn

_ ( )smc(n’f((Nf-)— 7)) o—inf(N=r=1)

and is O (%) for fixed f # 0 and 7, where sinc(z) = sinz/z.

3

ZN(f) T)

D-3 The superscripts %, T', H, 4+, and L denote conjugation, matrix trans-
position, matrix conjugate transposition, pseudo-inversion, and the
orthogonal complement operation, respectively. Furthermore, « and
® denote the convolution and Kronecker (tensor) product (cf. [16])
operators, respectively.

D-4 The expectation operation is denoted by F {} and can denote either
the ensemble-averaging operation for which the argument is typically

a stochastic process, or the sinewave (or polyperiodic component)
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extraction operation based on time-averaging. In this chapter, this
operation can be interpreted in either way with complete equivalence
of the results, provided that underlying assumptions of cycloergod-
icity and so forth are properly attended to. Extensive discussion of
these two analytical frameworks can be found in [3].

D-5 The time-variant cross-correlation Ry (m,n) between x(m) and y(n)
is defined by

Ryy(m,n) 2 E {x(m)y(n)}.
D-6 If Rxy(n+7,n) has a Fourier series representation in n, it is given by

Ryy(n+7,n) = E RY (r)efmPn
B

where the sum is taken over all 3 for which the cyclic cross correlation
R{, (1), defined by

szy(r) £ (Ryy(n+, n)e'jz"ﬂ")co ,

is not identically zero as a function of 7.

D-7 The symbol f{;‘c‘y () denotes the cyclic cross-correlogram of x(n) and
y(n) at cycle frequency « and lag 7:

% Zﬁ:ol_r x(n +7)yH(n)e=2mn  for 7 >0,
% Zr]:,:—-lf x(n + 7)yH(n) e~i2mon for 7 < 0,

R, 2 {

and it is useful to note that ng(r) = f{;,f‘H (—7)es?mar,

D-8 The cyclic cross correlation coefficient between u(n) and v(n) for cycle

frequency a and lag 7 is defined as

pin(r) 2 B(1) [ VRO R (0)

where it is noted that |pg,(7)| < 1 for all @ and 7 (e.g., [14]). The
magnitude of p3;(7) is sometimes referred to as the feature strength
(at cycle frequency a and lag 7) of the signal s(n). The feature
strength is a normalized measure that can be interpreted as indicating
the degree to which a signal is correlated with a time- and frequency-
shifted copy of itself).



12 STEPHAN V. SCHELL AND WILLIAM A. GARDNER

III.B Implications for Spatial Filtering

Under the assumption that the narrowband model holds well and L,, signals
of interest (SOI) s1(n), ..., st (n) having cycle frequency a arrive at the
array, and that the remaining signals not of interest (SNOIs) and noise i(n)
do not have cycle frequency a (i.e., RE(7) =0 and R{.(7) = 0), where

La
x(n) =) a(0:) si(n) +i(n),
=1
then it can be shown (see [8, 6]) that the estimated cyclic autocorrelation
matrix converges to the ideal cyclic autocorrelation matrix,

R (1) — A(O)RL(r)AT(0)
R (1) —  A(O)RL.()AT(0)

with bias and covariance O (#). This in turn implies that a measurement
of the spatial characteristics (the vector space spanned by the SOIs’ array
response vectors) of the L, SOIs can be made, even if the SOI waveforms
and directions of arrival are unknown, and even if i(n) has completely arbi-
trary and unknown spatial characteristics. However, note that restrictions
on the ambiguity of the manifold and on the rank of R (7) are needed to
determine © and/or A(©) from RZ, (7).

In Section IV it is shown how this signal selectivity can be exploited
to solve waveform and parameter estimation problems in sensor array pro-
cessing.

An implication of the convergence results obtained in [6] is that error
in the knowledge of the cycle frequency manifests itself as cycle leakage in
the sense that the regenerated spectral line at the true cycle frequency aq
leaks into the estimate at a with weight Zy (a9 — a). For example, it can
be shown under reasonable assumptions that the mean of R;‘y(T) fort>0

can be expressed as
- T
E{Rz,(n} = (1- T)Rey () + I RE(7) Zn(a = B,7),
B#a

where the summation is performed over all cycle frequencies of x(n) and

¥(n). Thus, the allowable error in the estimated cycle frequency should be



SPATIO-TEMPORAL FILTERING AND EQUALIZATION 13

less than 1/2N. More extensive discussion of cycle leakage can be found
in [12, 17, 11]. To reduce the error, methods for estimating the cycle fre-
quencies of a signal can be used, although they themselves are somewhat
susceptible to error and require a potentially large number of data samples
[9, 10], or they are computationally intensive (requiring computation of the
cyclic spectrum over a potentially large portion of the (f,a) plane as in
[13]) (cf. [17, 11] for efficiently implemented cyclic spectrum analyzers).
However, it has been observed in some cases [18] that the CRLB on the
variance of cycle frequency estimates decreases as 1/N? (in contrast to 1/N
for estimates of direction of arrival, carrier phases, and so forth), so it may
be possible to develop extremely reliable cycle frequency estimators. Even
in the case of scalar data this remains an open problem, although the lit-
erature on synchronization in digital communication systems (cf. [19] and

references therein) offers useful starting points.

ITII.C Implications for Equalization

In the equalization of digital QAM communication signals, the statistical
structure of the SOI is restricted even further. Let z(n) be a scalar-valued
digital communication signal corrupted by channel distortion and interfer-
ence,
oo
z(n) = Z h(n —1T)s(1) + i(n)
l=—00

where the unknown channel has impulse response h(n), T is the baud pe-
riod, s(k) is the kth symbol (unknown), and i(n) is unknown noise. It can
be shown (cf. [20]) that R,.(m + k,m) is periodic with period T’ and thus
that the cyclic autocorrelation evaluated at « equal to integer multiples of
the symbol rate 1/T is not identically zero.

Although this interpretation of the cyclostationarity of z(n) in terms
of cyclic correlations could be pursued in a manner similar to that done in
Section IIL.B, an alternative but completely equivalent interpretation in the
frequency domain is given here. In particular, z(n) can also be expressed
as

z(n) = h(n) xt(n) +i(n)



14 STEPHAN V. SCHELL AND WILLIAM A. GARDNER

where
tn)= Y 8(n—1T)s(1),
l=—00

and thus the power spectral density (PSD) of ¢(n) is given by
Si(f) = Ss(f +1/T).
1

Under the reasonable assumption that s(!) and i(n) are white sequences,
the power spectral densities of s(!), t(n), and h(n)*t(n) are depicted in Fig-
ure 3 for a typical example of h(n) having 100% excess bandwidth beyond
the minimum (Nyquist) bandwidth needed for transmission of s(I) without
intersymbol interference. Clearly, t(n) and h(n) % t(n) exhibit spectral re-
dundancy (which is reflected in nonzero spectral correlation), which in this
case means that the same components of the message stream s(!) are trans-
mitted and received over multiple spectral bands. Specifically, the signal
component in the band [-1/T, —1/(2T)] is a filtered and frequency-shifted
copy of the component in the band [0,1/(2T)], and similarly for the bands
[-1/(2T),0] and [1/(2T),T].

This property of digital QAM communication signals implies that a
receiver can use information from one spectral band to repair or replace in-
formation that is degraded or destroyed in a different spectral band. Frac-
tionally spaced equalizers, which are special cases of the more general filters
called frequency shift filters (or LCL-PTV filters), exploit this property to
advantage, as discussed in Section V. Also, more extensive discussion of
frequency-shift filters can be found in [21, 22].

Also, this property of these signals implies that information on the chan-
nel phase is available in the second-order statistics of cyclostationarity (i.e.,
R2,(7) and its Fourier transform, the cyclic spectrum $2,(f)). Methods
that implicitly or explicitly exploit this fact can be found in [23] and in
Section V of this chapter.

IV Spatial Filtering

In this section the problem of using a sensor array to spatially filter the

received signals without knowing a training signal or direction of arrival
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is addressed. First, structures for spatial and spatio-temporal filtering,
performance measures, and conventional adaptive methods are reviewed.
Then, the use of data-derived training signals is discussed and a flexible
general framework, called Programmable Canonical Correlation Analysis
(PCCA), is introduced. The utility of some specific realizations within this
framework is then illustrated through computer simulations, and potential
applications are discussed briefly.

IV.A Structures for Spatial Filtering

Spatial filtering is used for purposes similar to those of temporal filter-
ing: to enhance desired signal components, to attenuate undesired signal
components, and to minimize noise.

The simplest spatial filter considered here linearly combines the signals
from the sensors to yield an output signal §(n):

3(n) = wHx(n).

If the narrowband model (6) holds well then, to a close approximation,

Lo
(n) =Y [wHa(8)] si(n) + wi(n),
=1

which clearly shows that the gain applied to a signal arriving from angle 8
is wHa(f). Thus, w#a(f) is analogous to the transfer function (Fourier-
transformed impulse response) of a linear time-invariant (LTI) temporal
filter and is referred to as the spatial transfer function or antenna pattern
of the spatial filter. When multiple signals arrive from different directions, a
carefully chosen spatial filter can extract one of these signals while rejecting
the others, as depicted by the antenna pattern in Figure 4, where w has
been chosen to extract the signal arriving from 30 degrees and to reject (or
null out) the signals arriving from -20 degrees and 0 degrees.

More generally, a spatial filter can include an LTI filter on each sensor
to perform spatio-temporal filtering (STF)

M
§(n) = wh(n) % zm(n) = W (n) % x(n),

m=1
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Figure 4: Antenna pattern of a spatial filter to extract a SOI arriving from
30 degrees in the presence of signals at -20 and 0 degrees and white noise
that is uncorrelated from sensor to sensor.

for which the antenna pattern is now a function of both DOA 6 and fre-
quency f (i.e., wH(=f)a(8, f)), and the frequency dependence of a(f) is
included to emphasize that the STF is appropriate even if the narrowband
model does not hold.

Yet more generally, a spatial filter can include a linear-conjugate-linear
polyperiodic time-variant (LCL-PTV) filter on each sensor to perform LCL-
PTV STF, which is the generalization to multiple inputs of the scalar LCL-
PTV temporal filter. An extensive discussion of LCL-PTV filters is given
in [21] where they are referred to as polyperiodic linear filters. As discussed
there and particularly in [22], the LCL-PTV filter structure can implement
the Cyclic Wiener filter, which is the generalization of the Wiener filter

from stationary to cyclostationary signals. The fractionally-spaced equal-
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izer structure that is ubiquitous in digital communication systems is also a
restricted implementation of an LCL-PTV filter [22, 24]. Since a properly
chosen LCL-PTYV filter can separate two cyclostationary signals even if they
are completely overlapping both temporally and spectrally, it is reasonable
to expect there to be substantial benefits of LCL-PTV STF's over LTI STF's
in some cases.

In addition to the preceding, LCL-PTV STFs can be motivated simply
by observing that they make it possible to simultaneously exploit multi-
ple cyclostationarity features. For example, a digital communication SOI
having baud rate fyzua exhibits useful cyclostationarity at multiple cy-
cle frequencies, such as %+ fiquq (and harmonics thereof if the SOI is not
bandwidth-efficient), and the cyclic autocorrelations at these cycle frequen-
cies contain useful information at multiple values of the lag parameter 7.
Thus, the LCL-PTV STF can be interpreted as linearly combining multi-
ple frequency-shifted and filtered and possibly conjugated versions of the
received data, or as simply providing a signal, which when correlated with
the original data, allows multiple cyclostationarity properties to be mani-
fested simultaneously in a single measurement. That is, the output of the
LCL-PTV STF is given by

§(n) = wiy(n) (7)

where

[ (x(n) * hy(n)) e2merm

(X(n) * hJ(n)) ej27ra_1n
(x(n)* % hyy1(n)) ef2mer4n

y(n) = (®)

| (x(n)* x hi(n)) e??mox"
and hi(n) fork = 1,..., K are the impulse responses of arbitrary LTI filters,
and o for k =1,..., K are typically related to the cycle frequencies of the
desired cyclostationary signals (and possibly undesired interfering signals)
s(n) (e.g., doubled carrier frequencies, baud rates and their harmonics, and
sums and differences of these). Figure 5 depicts an implementation of (7),
without the branches that use conjugation.
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) ()

Figure 5: Block diagram of an LCL-PTV STF. The conjugate branches are
omitted for simplicity.

It is noted here that several open problems relate to LCL-PTV STFs.
In particular, practical methods of adapting them, their convergence time
and SINR at convergence, methods for blindly adapting them (i.e., without
the use of training signals), and their use in such applications as equal-
ization and/or demodulation of severely corrupted digital communication
signals (e.g., see Section V) and interception (blind de-spreading) of spread
spectrum communication signals are of significant interest. As described
in Section IV.E, the primary use of LCL-PTV STF in this chapter is as a
means of deriving training signals (for use by an algorithm that adapts a
memoryless linear spatial filter) directly from the data.

IV.B Performance Criteria

The performance measures most commonly used to evaluate waveform es-
timators such as spatial filters are summarized here.

Perhaps the most obvious of these measures is the mean squared error
(MSE) of the estimated waveform relative to the desired waveform,

MSE(3,5) = (|ls(n) — s(n)]*) )

A closely related measure is the signal to interference and noise ratio (SINR)

N .

which can be expressed as

power of desired signal components in §

SINR(3,s) =

power of everything else in §
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~ 12 /A
R, /Rss I“. 2

= b5l (10)
12 /s 1- 12
R§s /Rss - lpssl
The SINR increases without bound as § becomes arbitrarily highly corre-
lated with s (i.e., as |pss| — 1). All three of these measures (M SE(3,s),

SINR(3,s), and |#ss|°) are applicable to single time-series, but are often

Rss —

averaged over multiple realizations (e.g., sample paths of a stochastic pro-
cess) or multiple data segments of length N comprising a much longer time
series.

It should be noted that minimizing M SE(g3, s) with respect to the com-
plex scalar g and estimated waveform § is exactly equivalent to maximizing
SINR(3,s) and then computing g = ng/Rgg.

It should also be noted that in this chapter SINR is distinct from SNR,
which is used here to specify the power levels of received signals relative to
the power of Gaussian noise.

Finally, in the special, though increasingly important, case in which the
desired signal is a digital communication signal, the ultimate goal is typ-
ically to obtain a good estimate of the underlying bit or symbol stream.
Thus, the relevant performance measure is the bit error rate (BER), which
is strongly dependent both on the type of interference, noise, and channel
distortion that corrupts the signal at the input to the demodulator and on
the demodulator itself. Simple expressions for BER as a function of SNR
(relative to white Gaussian noise) in the absence of channel distortion are
well-known and can be found in any standard text on digital communica-
tions (e.g., [25]).

IV.C Conventional Methods

Conventional approaches to adapting a spatial filter have been well under-
stood for more than two decades, and a tutorial that includes them and
more recent advances can be found in [26]. Comprehensive treatments can
also be found in [27] and [28]. For the purposes of this chapter, three of
the most popular methods are summarized here.

The most direct method simply minimizes MSE(3,s) to obtain the
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minimum MSE (MMSE) solution
Warmse = Ryl Rus, (11)

for which the corresponding SINR (referred to in this chapter as the max-
imum SINR SINR;.q, attainable by a memoryless time-invariant spatial
filter) is given by (10) with
|ﬁ§s'2 = Rfsﬁ';;}ﬁxs/ﬁss-

As can be inferred from (10), a spatial filter attaining this maximum SINR
can also be found by maximizing |ﬁ§s|2. A general depiction of this adapta-
tion scheme is shown in Figure 6. For applications in which it is undesirable,
expensive, or impossible for a known training signal to be sent by the trans-

mitter and a local copy of it produced for use by the receiver for adaptation,
this method is unsuitable.

A
t t
x(1) — 5(1),
w M- . .
s(t ) mimize
( > < IWHx(2) — s(t)I12>

Figure 6: Block diagram of MMSE adaptive filter.

An alternative to the MMSE method makes use of prior knowledge of
the direction of arrival (DOA) of the signal of interest (SOI) to form a
beam on the SOI and to null any interferers. This method is referred to in
the literature as minimum variance distortionless response (MVDR) beam-
forming and is a special case of a more general framework called linearly
constrained minimum variance beamforming. Yet more general variants ex-
ist which accommodate quadratic, derivative, and eigenvector constraints
(cf. [26]). The spatial filter weights are chosen so as to minimize the average
output power while maintaining unity array gain in the direction 8, of the
SOI, since doing so necessarily minimizes the contributions of interferers

that arrive from other directions:

max R;; — max w Rew.
w S.t. wHa(f,)=1 w S.t. wHa(f,)=1
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It can be shown (e.g., via the method of Lagrange multipliers) that the
solution is given by

wavpr = [ (B0)R1a(0)]  Rta(do). (12)

If the SOI arrives only from angle 6y, then f{xs converges to a(fo) Rss, which
with (11) and (12) implies that the output SINR of the MVDR spatial filter
converges to SINR,,4,. For applications in which it is impossible to know
8o or a(fp) and difficult to estimate them (e.g., using one of the direction
finding methods described in [29]), this method is unsuitable.

As yet another alternative, when neither a known training signal nor a
known direction of arrival is available, a direction-finding algorithm can be
applied. For example, given known array calibration data (the array mani-
fold), the method of [30] estimates the directions of arrival of all signals and
then uses these to compute the weights of the spatial filter for each signal.
However, in some applications, the computational load of estimating all of
the directions of arrival and post-processing the spatially filtered signals to
select those of interest may be prohibitive. Also, accurate array calibration
data can be difficult or impossible to obtain in some applications.

IV.D Data-Derived Training Signals

In this section, one possible motivation for the framework of blind adaptive
spatial filtering to be discussed in Section IV.E is presented.

The challenge of blind adaptive spatial filtering is to minimize M SE(3, 5)
without knowing s, without knowing a(fy), and without resorting to meth-
ods based on direction finding which require knowledge of the array calibra-
tion data a(-). At first this challenge may seem insurmountable. However,
it is noted that if s arrives from only one direction (i.e., no multipath or
smart jamming is present), then Ry, converges to a(fg)Rss; indeed, any
vector that converges to a vector that is proportional to a(fy) can reason-
ably serve as a substitute for Ry, in (11). In particular, if d(n) is any signal
that is correlated with s(n) but uncorrelated with the remaining signals
comprising x(n), then Ryg = a(GO)de + Riq converges to a(fp)Rsa, which
is clearly proportional to a(fy) as desired. This implies that w = R R4
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might be a suitable adaptive spatial filtering algorithm. If possible, the
convergence time should be reduced by choosing the signal d(n) so as to
naximize the ratio of the desired contributions a(9o)de to the residual
contributions ﬁid.

Of particular interest here is that the alternative training signal d(n)
can be derived directly from the data. Several specific examples of this
technique can be found in Chapter 7 of [28], where the adaptation is imple-
mented using the LMS algorithm. However, the approach taken in Section
IV.E is more general and flexible, accommodating multiple signals of inter-
est simultaneously and user-programmability. This approach relies on an
auxiliary spatial filter w, to generate J(n):

d(n) = W}y (n),

where y(n) is the output of a user-programmable transformation applied
to x(n). A key observation is that a carefully selected transformation can
have the following properties:

1. s(n) and its transformed version are correlated

2. i(n) and its transformed version are uncorrelated (although it will be

seen in Section IV.E.6 that this property is desirable but not neces-
sary).

Thus, provided that the aﬁxiliary spatial filter w, does not reject the
.ransformed version of a s(n), then d(n) can be a useful data-derived train-
ing signal:

min MSE(3,d).

Since J(n) serves as a training or reference signal, the transformation that
yields y(n) from x(n) is referred to as the reference-path transformation.

An example of this approach applied to cyclostationary signals illus-
trates the main ideas. If it is known that s(n) is cyclostationary with cycle
frequency o, but i(n) is not, then a reference signal d(n) can be derived
directly from the received data,

d(n) = w,'y(n) with y(n) = x(n — ) ef27", (13)
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where w, is any vector of spatial filter weights such that wia(6o) # 0 (e.g.,
wy =[1, 0, ..., 0]T is reasonable for use with omnidirectional sensors or
identically-oriented directional sensors), and 7 is chosen so as to maximiz
(if possible) R%,(7). The key observation is that d(n) is correlated with
s(n) but uncorrelated with i(n). This observation leads directly to the
Least-Squares SCORE (LS-SCORE) optimization problem

min MSE(3,d) < max|ﬁ§¢§|2 (14)
which has solution
we = R{R ;= RgRe ()wy (15)

referred to as the LS-SCORE spatial filter. Alternatively, if s(n) exhibits
conjugate cyclostationarity, then d(n) can be given by

d(n) = wly(n) with y(n) = x*(n — 1) €72™", (16)

which yields
=RIR ;= RIRY.(T)wy.

The performance of LS-SCORE is discussed in [31], where it is shown to
provide high-quality estimates of a single SOI in the presence of interference
and noise by using only the prior knowledge of the SOI’s baud rate (e.g.,
for a PSK, QAM, or FSK signal) or carrier frequency (e.g., for a BPSK,
DSB-AM, or NBFM signal).

IV.E Programmable Canonical Correlation Analysis

Two generalizations immediately follow, from the simple approach just dis-
cussed, by minimizing the MSE with respect to both w, and w,, and by
generalizing the spatial filter vectors to be matrices to accommodate mul-
tiple SOIs. In particular, the latter generalization requires a notational
change in which s(n), §(n), Wz, and w, become s(n), §(n), W, and W,
respectively. An additional benefit is a substantial reduction in conver-
gence time in some cases, as demonstrated in Section IV.E.6. These gener-
alizations are accommodated naturally by the two alternative (but equiva-

lent) approaches to the problem, namely canonical correlation analysis and
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constrained conditional maximum likelihood, discussed in Sections IV.E.1
and IV.E.2, respectively. These two approaches are completely equivalent
axcept for one detail that has implications for processing signals in the
presence of multipath or correlated interference, as discussed in Section
IV.E.3. The two approaches allow substantial programmability in choosing
the reference-path transformations, hence the name Programmable Canon-
ical Correlation Analysis. Several possible transformations are discussed in
Section IV.E.4. It is then shown in Section IV.E.5 that the Cross-SCORE
algorithms (cf. [31, 15, 32] and references therein) are special cases of PCCA
that exploit a single cyclostationarity property of the SOIs. The flexibil-
ity and utility of PCCA are demonstrated in Section IV.E.6 where it is
shown how to simultaneously exploit multiple cyclostationarity properties
to accelerate the convergence of Cross-SCORE, how to exploit differences
in spectral support of spectrally overlapping signals to separate them, and
how to exploit the temporal shift (delay) structure of multipath propagation
to mitigate the effects of multipath channel distortion.

IV.E.1 Canonical Correlation Analysis

In the canonical correlation analysis (CCA) (cf. [33, 34, 35]) of two data
sets x(n) and y(n) that are believed to share some number L of additive
components (e.g., signals) jointly denoted by s(n), it is desired to minimize
the mean-squared error between the estimates of s(n) linearly obtained from
2ach of x(n) and y(n). Denoting §(n) = Wx(n) and d(n) = Wly(n)
and constraining Rz;(0) = Iand R34(0) = I, then this can be accomplished
by minimizing

MSE(3,d) = ( [WHx(n) - ny(n)||2>N (17)

subject to the constraints that WH¥R,, W, = I and wi f{yyWy =1
Equivalently, this can be accomplished (cf. [34]) by first maximizing

the magnitude of the cross-correlation coefficient between ;(n) and d; (n),

and then by successively maximizing the magnitude of the cross-correlation

coefficient between &,,(n) and d,,(n), subject to the constraint that 3, (n)
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be uncorrelated with 3;(n), -+, §;m—1(n) and similarly for d,,(n):

n 2
H
Wz,meywy,m

max
Waz,m,Wy, H R H R
ST [wz,mesz,m] [Wy,mRyywy,m]

subject to the orthogonality constraints
Wf,mﬁxxwz,k = 6m—k and wfmf{yywy,k = 6m—k (18)

forall k=1,...,m — 1, where §,,— is the Kronecker delta function.
Either way, the resulting weight matrices W, and W, are given by the
L most dominant eigenvectors of

Tey = R Ry RyyRyx (19)
and

Tya: = R;; Ryxﬁ';i nya (20)
respectively.

In this chapter, since y(n) is a user-programmable transformation of
x(n), rather than being simply another measured data set, this approach
to blind adaptation is referred to as Programmable CCA (PCCA). A general
block diagram of the processor is shown in Figure 7.

x(1)

s(t)_

fo( t)
W . . .
L Minimize

F < \Wlx(t) — Wiy(t)I>>

Reference-Path Y(’i .
Transformation | | "yY(*)

Figure 7: Generic block diagram of the PCCA adaptive processor.

IV.E.2 Constrained Conditional Maximum Likelihood

An alternative interpretation of canonical correlation analysis is discussed

here to provide additional insight and justification for the approach.
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In [15] a constrained conditional maximum-likelihood (CCML) STF is
found for unknown cyclostationary signals in stationary zero-mean complex
white Gaussian noise having arbitrary unknown spatial covariance matrix.
Since the publication of [15], a more complete interpretation, described
here, has been developed.

The derivation of the algorithm consists of two steps: 1) the CCML
STF is developed to obtain a set of optimal (in the CCML sense) data-
derived training signals for the SOIs; and 2) the resulting estimates of the
training signals replace the ideal training signal in (11) to yield the spatial
filter weights used to estimate the SOI waveforms. The two-step procedure
is adopted because it will be seen that the data-derived training signals
cannot be high quality estimates of the SOIs, but they can be effective
training signals.

Step 1: CCML Data-Derived Training Signal
Before becoming embroiled in the details of the algorithm, the justifications
for the qualifiers constrained and conditional are presented.

To exploit cyclostationarity, the reference-path transformation which is
used to generate the data-derived training signals must be constrained to be
an LCL-PTV STF. However, it is noted here (and discussed in more detail
in Section IV.E.4) that other signal properties could also be exploited by
simply choosing y(n) to be some other transformation of x(n). For example,
the Kronecker products x(n)®x(n—7), x(n)®@x(n—71 )®x(n—72), variations
of these involving conjugation of some terms, and further variations in which
frequency shifts are included, could be useful transformations of x(n) that
yield data-derived training signals. These examples could be appropriate for
exploitation of higher-order stationarity or higher-order cyclostationarity.
These statistical properties are discussed in depth in [36].

The ML problem is conditional (on the unknown waveforms of the cy-
clostationary signals) because noise can often be accurately modeled as
being stationary and Gaussian, whereas communication signals of interest
are almost never Gaussian nor stationary, and their probability distribution
functions are typically unknown or virtually intractable to work with. In
particular, in some signal interception and signal classification applications,
almost nothing might be known about the signals of interest. Also, the con-
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ditional ML problem easily admits the user-programmable constraints just
described.

The vector of sampled complex envelopes at the output of an M-element
sensor array is denoted by x(n), which can be modeled under the narrow-
band assumption by

x(n) = As(n) +i(n)

where s(n) denotes the vector of L unknown signals, A denotes the M x L
matrix of unknown array response vectors of the signals, and i(n) denotes
the stationary temporally-white Gaussian noise. The estimates of the data-

derived training signals are constrained to be the linear combinations
d(n) = W,Ty(n) (21)

where y(n) is almost any specific realization of the general LCL-PTV form
in (8) or another suitable transformation as discussed above. It is necessary
to constrain the processor structure to something other than the usual linear
processor d(n) = WHx(n) since the resulting solution for W in this case
could be any arbitrary matrix having column-rank equal to L, as will be
seen in Section IV.E.4. Furthermore, for the same reason, x(n) cannot
appear in unmodified form in y(n). Thus, d(n) cannot in general be a high
quality estimate of s(n), but it will be seen to be a useful training signal.

The constrained conditional likelihood function for the estimates A, D,
and Rj; of A, S £ {s(n):1<n < N}, and Ry 2 (i(n)i(n)®)__, respec-
tively, is given by

L(A, D, Ri) = |nfy[exp { - (em)™Rz'e(m) }

where e(n) = x(n) — Ad(n).

By application of results from matrix calculus [16] and complex gradi-
ents of non-analytic functions [37], it can be shown [38] that the CCML
estimates are given by

R(ML) _ B _ A(ML)RH Y ‘ML)H AMLYA . "ML)H
Rii = Ryx—A )Rx&—Rxd [A( ] +A( Rdd [A( ] ,
AMML) _ H .p-1
A = Rde&&’
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and d(n) is given by (21). The matrix W, has L columns given by any
full-column-rank linear combination of the L most dominant eigenvectors
E of the matrix T, defined by

Ty = R} Ryx Rl Ry (22)

That is, W, = EQ for any full-rank L x L matrix Q.

If, in addition to the constraint on the processor structure, it is required
that the estimated signals be uncorrelated, W7 Ryy W, = I, then the like-
lihood is maximized only by the L most dominant eigenvectors of T,
instead of any linear combination thereof; that is, W, = E. A mathemat-
ical result related to the solution (22) was proposed in [39] and proven in
[33]. Also, the result of this section includes that in [40] as the special case
for which one signal is present (L = 1) and y(n) = x*(n).

An alternate proof of (22) can be obtained by noting that maximizing
LAML) D, IS{EIM L)) is equivalent to maximizing

M
f(Wy) = H )‘m(WfﬁyxR;inyWyaWfﬁyywy),
m=1
where A (-, %) denotes the mth generalized eigenvalue of the matrix pair
(-,*), and then applying the Poincaré Separation Theorem for generalized
eigenvalues of a pair of Hermitian matrices (e.g., [41]). In any case, the
additional constraint that the data-derived training signals be uncorrelated
yields a unique solution W that can also be obtained from the CCA per-
spective as discussed in Section IV.E.1.
Step 2: Using the Data-Derived Training Signal
In this step, d(n) is used as a training signal to minimize M SE(3,4d).
Direct substitution of d = (EQ)¥y(n) into

W, = R;’}Rx&

and algebraic manipulation reveal that W, can be any full-rank linear
combination of the L most dominant eigenvectors of T,

T.y = Rl Ry RIIR,,. (23)
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As before, if the elements of §(n) = W¥x(n) are costrained to be uncorre-
lated, then the additional constraint W R W, =1 implies that W, is
exactly the L most dominant eigenvectors of Tg,.

IV.E.3 Contrast Between CCML and CCA

Clearly, Ty, in (20) and Ty, in (22) are identical, and similarly for Ty,
which shows that the CCML and CCA frameworks yield identical algo-
rithms when the signal estimates are constrained to be uncorrelated. Thus,
a primary utility of having these two approaches is simply a conceptual
one, providing the engineer with some flexibility in how the application of
interest is conceptualized.

The CCML conceptual framework is obviously applicable when the spa-
tial covariance of the interference and noise i(n) is unknown, but it requires
that i(n) be stationary, white, and Gaussian. In contrast, the CCA concep-
tual framework is not obviously optimum when R;;(0) is unknown (although
from its equivalence with CCML we know it is), but its simple least-squares
formulation does not require that i(n) be stationary, white, or Gaussian.

The other contrast of interest here is that CCML can be formulated
without the constraint that the signal estimates be uncorrelated, whereas
CCA cannot so easily admit this flexibility. In many applications, uncorre-
lated signal estimates are required. However, in the presence of multipath
it is conjectured (based on results for Cross-SCORE in [31]) that multiple
signal estimates, one for each propagation path of a SOI, are obtained by
CCML/CCA. In this case, the desired action of the processor is first to re-
ject other SOIs, interference, and noise from the multiple signal estimates
of a single SOI, and then to linearly combine these multiple estimates to
mitigate the multipath. Thus, a conceptual benefit of the CCML frame-
work, without the constraint that signal estimates be uncorrelated, is that
linearly combining the multipath estimates is the optimal type of process-
ing (in the CCML sense). Note, however, that the CCML framework does
not suggest how to choose the weights in the linear combiner. Another
adaptive processor (e.g., one of the blind equalization algorithms reviewed
in [42], or either of the algorithms in Section V) could be configured to
perform this task.
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IV.E.4 Reference-Path Transformations for PCCA

- Here the restriction on the choice of y(n) mentioned earlier is discussed,
and it is noted that the CCML/CCA framework can exploit a wider variety
of signal properties than just those related to cyclostationarity.

From (17) it can be seen that y(n) should not contain x(n) as a literal
element, since any solution of the form

e[

would minimize (17); this observation implies that this CCML/CCA frame-
work cannot directly yield a blind adaptive Cyclic Wiener spatio-temporal
filter.

As alluded to earlier, the CCML/CCA framework need not use an LCL-
PTV transformation to obtain y(n). Indeed, the transformation is entirely
up to the user, provided that the restriction just discussed is met. To
emphasize this flexibility, the programmable canonical correlation analyzer
(PCCA) is proposed, wherein the transformation used to obtain y(n) is
completely programmable by the user. Thus, the PCCA can use many types
of signal properties to distinguish between desired signals and interference.

A non-exhaustive list of transformations is proposed here:

L. y(n) is a frequency-shifted (by a) and delayed (by 7) version of x(n)
or x*(n), which yield the Cross-SCORE and conjugate Cross-SCORE
algorithms, respectively [31] (cf. Section IV.E.5); this defines as SOIs
those signals that exhibit cyclostationarity or conjugate cyclostation-
arity with cycle frequency «, and can be generalized to multiple fre-
quency shifts, multiple delays, and pre-filtering.

2. y(n) is the output of a band-stop (or band-pass) LTI filter applied to
x(n); this defines as SOIs those signals that have spectral support out-
side (or inside) the stop-band (or pass-band), and can be generalized
to more complicated regions of spectral support.

3. y(n) is a delayed version of x(n); this defines as SOIs those signals
for which the coherence time is greater than or equal to 7.
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. ¥(n) is the output of a temporal interval-stop (gating) device applied

to x(n); this defines as SOIs those signals that are active outside the
stop intervals.

. ¥(n) is the narrowband (or wideband) output of an adaptive spectral-

line enhancer applied to x(n); this defines as SOIs those signals that
are relatively narrowband (or wideband).

. ¥(n) is the enhanced (or degraded) output of a spectral-correlation en-

hancer (a blind adaptive LCL-PTYV filter) applied to x(n); this defines
as SOIs those signals that exhibit (or don’t exhibit) cyclostationarity
at a specified cycle frequency a.

. ¥(n) is the constant modulus (or non-constant modulus) output of an

LTI filter (or LTI canceller) adapted by the constant modulus (CM)
algorithm (CMA); this defines as SOIs those signals that have (or do
not have) constant modulus.

. ¥(n) is the output of a demodulation/remodulation device that is

applied to x(n) and is structured to select FM, PM, FSK, or PSK
signals.

. ¥(n) is the output of a nonlinear transformation such as x(n) ®x(n)®

x(n), x(n) ® x(n) © x*(n), x(n) @ x(n) @ x(n), x(n) ®x(n) ® x*(n),
or time-variant non-memoryless generalizations thereof, where ® de-
notes the elementwise product and ® denotes the Kronecker product;
this defines as SOIs those signals that have the higher-order station-
arity or higher-order cyclostationarity properties selected for by the

chosen transformation.

Examples of the first three transformations are used in the computer

simulations of the PCCA described in Section IV.E.6.

IV.E.5 SCORE Algorithms

It is noted here that the cross-SCORE and conjugate cross-SCORE [31]
blind adaptive beamformers are specific realizations of the CCML/CCA
beamformer. Two special choices of y(n) merit consideration. The first
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choice is y(n) = x(n — 7)e’>™*" for which each of WHx(n) and W y(n)
is a CCML and CCA beamformer. Also, WZx(n) in this case is exactly
the Cross-SCORE blind adaptive STF that is found by solving

RIRS (MRIIRS (1) IWm = AnWim (24)

X

form =1,...,L, where
ﬁ;“‘x(r) £ (x(n)x(n - 1)# e‘jz""‘")

is the cyclic autocorrelation matrix of x(n) for cycle frequency o and lag 7.
The block diagram of the signal processor for this case is shown in Figure 8,
although the general CCML/CCA processor can be obtained by replacing
the dash-boxed section with the diagram for the appropriate LCL-PTV
transformation of x(t) (i.e., the relevant part of Figure 5).

x(t)

fv\(t)>

> Wix(r) *

Minimize
_______ +C— < IWHx(t) - Wiy(2)I2>

Wiy(1)

Figure 8: Block diagram of Cross-SCORE processor.

Similarly, the second choice is y(n) = x(n — 7)*e/7*" for which each of
W x(n) and Wly(n) is a CCML and CCA beamformer. Also, W x(n)
in this case is exactly the conjugate Cross-SCORE blind adaptive beam-
former that is found by solving

R;)lﬁgx‘ (T)R;‘lx‘ sz* (T)me = Ame (25)
form=1,...,L. , where

RE. (1) 2 (x(n)x(n — )T e92mem)
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is the cyclic conjugate correlation matrix of x(n) for cycle frequency o and
lag 7.

The observation that cross-SCORE and conjugate cross-SCORE are
CCA beamformers was first made in [43] where it was used only to motivate
the Cyclic Correlation Significance Test for estimating the number of signals
having a specified cycle frequency.

Performance Attributes
In the following, assume that L, SOIs have cycle frequency a. In [31] it is
shown that the L, most dominant eigenvectors wy, - --, wr_ in (24), which
correspond to the L, highest stationary points of |/3§ (;Iz (i.e., locations at
which the gradients with respect to w, and w,, are both equal to zero), are
spatial filter weights that can be used to obtain estimates of the L, signals
having cycle frequency a and lag 7. It is also shown that each of these signal
estimates has nearly the same SINR as the corresponding MMSE signal
estimate, provided that a sufficient number of data samples are available for
adaptation, that input SNR is not too low, that fewer signals than sensors
arrive at the array, the array response vectors are linearly independent, no
coherent multipath is present, and that each signal has a different feature
strength. The condition on the feature strengths can be easily derived in
the absence of noise and effects due to finite-averaging by simplifying (24)
to obtain

R2,(NRRE (1) = \Reog (26)

where g = A(©)w and it is assumed that the L, columns of A(©)
are linearly independent, and noticing that perfect signal separation im-
plies that the eigenvectors [g; --- gr.] are a permutation of the iden-
tity matrix I, which occurs only when Rgs and R%,(7) are diagonal and
|p% 5. (7)| # |p2 ... (7)] for all m # n. Thus, the SOIs must be uncor-
related and have distinct feature strengths for perfect signal separation in
Cross-SCORE. In practice, noise is present (so (26) does not apply), and
thus signal separation is less than perfect. Nonetheless, signal separation
has been observed in simulations to be adequate, provided that the input
SNR (but not necessarily the input SINR) is greater than 0 dB.

In practical terms, Cross-SCORE avoids the need for a known training

signal, albeit at the expense of increased convergence time relative to the
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MMSE method. The benefits of this to cellular communication system
design are discussed in [44, 6]. For example, using only the knowledge of
the baud rate of desired bauded digital communications signals (e.g., PSK,
QAM, etc.) or only the doubled carrier of communications signals that
exhibit cyclic conjugate correlation at the doubled carrier frequency (e.g.,
BPSK, DSB-AM, NBFM), the cross-SCORE and conjugate cross-SCORE
algorithms, respectively, can achieve nearly the maximum SINR attainable
by an LTI beamformer [31].

Although empirical results on the performance of cross-SCORE for finite
numbers of time samples are available in [31, 45, 46, 47, 48, 15], no analytical
results are available, such as the mean and variance of the output SINR
as a function of the number IV of time samples. It is likely that existing
results in the multivariate statistics literature on the behavior of canonical
correlation analyzers could be applicable to the performance analysis of
Cross-SCORE and the CCML/CCA generalizations thereof.

Simulation Results

A brief illustration of the performance of LS-SCORE and Cross-SCORE is
given here. In the computer simulations, 100 independent trials are per-
formed and the average SINR at the output of the SCORE processor is
computed as a function of the number N of time samples used for adapta-
tion. In each trial, independent BPSK signals having baud rates 0.25 and
0.2, carrier frequencies 0 and 0.1, and angles of arrival 0 and 20 degrees,
respectively, arrive at a 4-element ULA in the presence of additive white
Gaussian noise that is uncorrelated from sensor to sensor. Both signals use
Nyquist-shaped pulses with 100% excess bandwidth and have SNR equal
to 10 dB. LS-SCORE and Cross-SCORE are both applied to the data, first
with @ = 0.25 and then using the conjugate form with a = 0; that is, first
the baud rate feature and then the doubled-carrier feature of the first signal
is exploited. Similar results (not shown here) are obtained using the cycle
frequencies of the second BPSK signal. Asshown in Figure 9, Cross-SCORE
adapts more quickly than LS-SCORE because Cross-SCORE adapts both
w, and w,. Convergence is much quicker for doubled-carrier features than
for baud rate features because the feature strength at the doubled carrier

is much stronger than at the baud rate; a stronger feature enables more re-
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Figure 9: Average output SINR of LS-SCORE and Cross-SCORE for dif-

ferent feature choices.

liable discrimination between the desired signal and the interference, thus
reducing convergence time. This is analogous to the fact that the MMSE
method adapted with a slightly noisy training signal converges more quickly
than the same method adapted with a very noisy training signal. Indeed,
the results in Figure 9 show that Cross-SCORE, using the doubled carrier
feature, converges at nearly the same rate as the MMSE method, which
uses perfect knowledge of the signal waveform.

Other performance results are given in Section IV.E.6, and in [45, 46,
47, 31], where it is also shown that, in certain environments in which a
baud-rate feature is being used, Cross-SCORE can converge much more
quickly than LS-SCORE, in contrast to the results shown in Figure 9.

IV.E.6 Performance of Example Realizations of PCCA

Here the performance attributes of four different realizations of the PCCA
beamformer are briefly illustrated via computer simulations. In the first
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three examples, the PCCA is applied to problems in which two independent
signals arrive at the sensor array, and the objective is to separate them from
each other. In the first example, the PCCA structure is used to accelerate
the convergence of the Cross-SCORE algorithm as it extracts an estimate
of one BPSK signal in the presence of an interfering BPSK signal having a
different baud rate. In the second example, one of the signals is replaced by
a narrowband Gaussian interferer, and the reference-path transformation
is simply a bandstop filter, where the stop band coincides with the spectral
support of the Gaussian signal. In the third example, the reference-path
transformation from the second example is replaced by a unit-delay. In the
fourth example, a single SOI arrives at the array and a delayed version of
the SOI arrives from a different direction; in this example, the objective is
"to separate the signals corresponding to the two paths, and the reference-
path transformation is again simply a delay. In all of the examples, the
average output SINR is obtained by averaging the output SINRs from one
hundred independent trials.

Cyclostationarity Exploitation

In the simulated environment, a 4-element ULA having half-wavelength
sensor-spacing receives 2 BPSK signals in the presence of stationary com-
plex white Gaussian noise. The two signals are spectrally overlapping and
have equal signal to noise ratios (SNRs) but arrive from different directions
(0 and 20 degrees) and have different baud rates (0.25 and 0.33 times the
sampling rate). Two different input SNRs (0 dB and 10 dB) are considered.
In each case, the average output SINR is evaluated for different numbers of
cycle frequencies o and filters hx(n) = 6,_r, in (8). In particular, 6 combi-
nations of one or two values of a (0.25 and -0.25) and 3 values of 7 (0, 1, and
-1) are considered; since these values of & correspond to cycle frequencies of
the BPSK signal with baud rate 0.25 (because the cyclic autocorrelations
at these cycle frequencies and lags 7 are nonzero), this signal is extracted
by the spatial filter. If o were chosen to be 0.33 and/or -0.33, then the
other BPSK signal would be chosen. If only one value of o and one value
of 7 are used, then the CCA beamformer is equivalent to the cross-SCORE
beamformer. As seen in Figures 10 and 11, the use of multiple values of a
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and 7 substantially improves convergence, with between only one-half and

one-eighth as many data samples required to achieve the same performance
as cross-SCORE.

Bandstop Filtering

In this simulation, the array receives a BPSK signal and a narrowband
Gaussian signal. The BPSK signal has a baud rate of 0.25, zero carrier
offset, 10 dB SNR, and direction of arrival of 0 degrees. The narrowband
Gaussian signal consists of white Gaussian noise passed through a filter
with passband [0,0.1], and arrives from 20 degrees. In the PCCA, the
reference-path transformation is simply a bandstop filter that rejects the
passband of the Gaussian signal. Since this also causes irreparable damage
to the BPSK signal, the bandstop filter is unsuitable as the sole interference
rejection device. However, it does allow the PCCA to distinguish between
the signals, and thereby to reject either signal by spatial filtering alone, as
demonstrated in Figures 12 and 13, which show the output SINR obtained
by PCCA as a function of the number of data samples and the SNR of the
Gaussian signal (which ranges from 10 dB to 50 dB). For both signals, the
output SINR converges to the maximum attainable during the adaptation
period considered. Of the four spatial filters found by PCCA for this array
(i.e., one per antenna), the two obtained from the most dominant eigenvec-
tors rejected both signals, and the least dominant eigenvector extracted the
Gaussian signal (which is predictable from the fact that the reference-path
transformation rejects this signal), and the next-to-least dominant eigen-
vector extracts the BPSK signal. As of this writing, this ordering of the
solutions is not completely understood. In some applications, relatively
simple classification algorithms could be applied to the multiple output

signals to determine which are of interest.

Delay: Signal Separation

In this simulation, the signals are exactly the same as in the previous simu-
lation, although the reference-path transformation is simply a unit-sample
delay instead of a bandstop filter. The corresponding results are shown

in Figures 14 and 15. In this simulation, the most dominant eigenvector
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found by PCCA extracts the Gaussian signal (because it has the longest
coherence time) , the next-most dominant eigenvector extracts the BPSK
signal, and the least dominant eigenvectors reject the signals in favor of the
noise (which, being white, is uncorrelated with the delayed version of itself,

resulting in a feature strength of zero).

Delay: Multipath Mitigation

In this simulation, a single BPSK SOI having baud rate 0.25 arrives at
the array from two different directions, simulating a two-ray multipath
propagation environment. Each arrival is given a random carrier phase
that is uniformly distributed on [0, 27) radians. One arrival is designated
as the direct path and has 10 dB SNR; the other arrival is designated as
the reflected path; it has an SNR that is randomly chosen at each trial
from the range 5 to 15 dB, and it is delayed by a fixed positive amount
relative to the direct path. The range of delays is 0.5 to 3 samples in
increments of one-half sample. The reference-path transformation used by
PCCA is simply a unit-sample advance, which causes the most dominant
eigenvector to select the direct path, whereas a unit-sample delay causes
the most dominant eigenvector to select the reflected path. The output
SINR for the most dominant eigenvector is shown in Figure 16, and a
typical antenna pattern (obtained for multipath delay equal to one sample)
shown in Figure 17 confirms that the reflected signal is being rejected,
rather than coherently combined with the direct path (which would result
in multipath distortion and thus require an adaptive filter to compensate).
- As the multipath delay increases beyond the advance value used in the
reference-path transformation, the output SINR decreases, which suggests
that a reasonable estimate of the range of multipath delays is needed for
this method to work well.

IV.F Related Algorithms

Two additional blind adaptive methods are summarized here. The first
is intended for use where the narrowband approximation does not hold,
and it can be interpreted as a frequency-domain version of the PCCA. The

second is not a PCCA method but the algorithm has a similar structure to
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the PCCA eigenvalue problem, and the performance attributes are simlar,
with the exception that SOIs are separated on the basis of both feature
strength and phase, rather than feature strength only as in PCCA.

IV.F.1 Wideband SCORE

SCORE can also be applied to wideband environments, in which the re-
ceived data x(t) can be modeled in terms of finite-time Fourier transforms

(FTFT):

Lo

x(t,f) =~ Y a0, Halt, f)+it, 1)

=1

= A(0,1)s(t, f) +i(t ), (27)

where (¢, ) £ (1/VA) [{*2/7 x(t) €797/ dt is the FTFT of the received
data, a(0, f) is the transfer function of the array for a signal arriving from
angle 0, 5(t, f) is the FTFT of the L, cyclostationary signals impinging on
the array from angles 64, ..., 01, respectively, and having cycle frequency
a, and i(t, f) is the FTFT of all other signals and noise that do not have
cycle frequency a. The approximation in (27) holds well if the FTFT inte-
gration time A is much greater than the duration of the impulse response
of the array. Similarly, the FTFT of the Ith extracted signal is given by
Gi(t, ) = W (t, )ER(t, f) for I =1, ..., L.

Application of the SCORE concept to this problem can be pursued by
re-expressing it as a CCA problem. Notice that the FTFT y(¢, f) of the
auxiliary signal defined by y(t) = x(t) e/27** is given by

S’(ta f) i(ta f - a)

A(O,f —a)i(t,f — a) +i(t, f - a). (28)

Since s(t) is cyclostationary with cycle frequency a, §(t, f — a) is correlated
(shares a common component) with §(¢, f). Consequently, a solution based

on canonical correlation analysis can be found for each value of f:

1

Sxy (£) Syy (£)7* Syx(£)Wza(f)
Syx(£) Sxx(£) ™! Sy (£) Wy ()

M(F)Sxx(F) () (29)
’\l(f)gyy(f)wy,l(f)a (30)



SPATIO-TEMPORAL FILTERING AND EQUALIZATION 45

where Sxy (f) is the estimated cross-correlation matrix of X(t, f) and y(t, f)
(and can also be interpreted as the cross-periodogram matrix of x(t) and
y(t)).

Other details of the method, including the regions over which W, ;(f)
and Wy,(f) are defined, are given in [32]. Also, as discussed in [32], Wide-
band SCORE differs from the frequency-dependent SCORE method pre-
sented in [49], which typically requires that a complicated set of coupled
matrix equations be solved, which hinders practical application.

IV.F.2 Phase SCORE

One very important occurrence of multiple spectrally overlapping SOIs hav-
ing the same cycle frequency « is in modern communication networks based
on code-division multiple-access (CDMA). In CDMA, multiple signals can
share the same spectral band because the unique code used by the transmit-
ter to spread a message signal across the wide spectral band is also used by
the receiver to despread it. At the receiver, this code despreads the corre-
sponding SOI but does not despread the signals of other users. Depending
upon the choice of spreading codes, the feature strengths of the CDMA
signals of the multiple users can be identical. Thus, in this application,
cross-SCORE’s requirement that each SOI has a different feature strength
(to enable signal separation) is especially restrictive. However, unless the
network is synchronous (i.e., all users are synchronized to a single symbol
clock), the cyclic correlation coefficients p% . (7) will have different phases
even if the magnitudes are the same. This result follows because the phase
of p§ 5 () is linearly dependent on the phase of the symbol clock when a
is a harmonic of the symbol rate. Thus, the task of signal separation may
be viewed as one of designing a SCORE-like algorithm that preserves this
phase information.

An ad hoc solution can be obtained from the noiseless infinite-time
analysis (26) by simply deleting R;;'R2H () from the left-hand side to
obtain

R:S(T)gl = /\stsgz for I = 1, P ,La. (31)

Here, perfect signal separation (i.e., [g1, -+, gr,] is a permutation of I)
occurs only when the SOIs are uncorrelated and pg _; (7) # p% . (7) for
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all m # n. That is, the phase information of the feature at « is preserved
and is used to distinguish each signal from the others. Working backwards
from (31) yields the Phase-SCORE algorithm

R2, ()W = ARyxxw. (32)

As shown in [46] and [31] via computer simulations, phase-SCORE can
separate SOIs having the same feature strengths but different feature phases
(e.g., caused by the signals having different timing of their symbol clocks).

As with Cross-SCORE, analytical results for finite-time performance
of Phase-SCORE are desirable but currently unavailable. Unlike Cross-
SCORE, which has been reinterpreted as a particular instance of the canon-
ical correlation analyzer, or as the solution to a particular constrained con-
ditional maximum likelihood problem, no link between Phase-SCORE and
existing methodology in multivariate statistics has been found. Further-
more, it is unclear (at least to the authors as of this writing) whether
Phase-SCORE is the solution to an optimization problem or it is a purely
ad hoc algorithm. Also, it is not clear if Phase-SCORE can be extended to
accommodate multiple cycle frequencies, or if it can exploit features asso-
ciated with the cyclic conjugate correlation (e.g., features at the doubled
carrier frequency).

IV.G Application Examples

In this section two specific applications of blind adaptive spatial filtering
to digital communication systems are summarized very briefly.

In the first application, the Cross-SCORE algorithm forms the basis
for a completely new architecture for a land mobile digital cellular radio
system that accommodates a substantially greater number of users than
existing or proposed systems. This system is discussed in [48, 44] where
it is demonstrated in computer simulations to achieve up to 5 times the
capacity of an optimistically evaluated CDMA system. The new scheme
achieves this capacity by using spatial filtering during both transmission
and reception at the base station to separate spectrally overlapping signals
of multiple users. Adaptation of the spatial filter for each user’s signal is
performed by the conjugate Cross-SCORE algorithm, which exploits a novel
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carrier allocation scheme. Each user is assigned a distinct carrier frequency
(which is used by conjugate Cross-SCORE to extract that particular user
without wasting message capacity on a training signal), but the separation
between adjacent carrier frequencies can be much less than the bandwidths
of the signals, thus providing a large increase in spectral efficiency.

In the second application, the wideband SCORE algorithm is applied
to a direct-sequence spread spectrum communication system to reduce the
amount of processing gain required from spreading alone, thereby allowing
an increase in channel capacity and/or a decrease in bit error rate. In par-
ticular, in so-called overlay systems one or more spread spectrum signals use
the same spectral band as pre-existing conventional fixed-point microwave
signals or other relatively narrowband signals. Provided that the average
power of the spread spectrum signals is low, the pre-existing users suffer
a tolerable amount of added interference. A potentially large spreading
factor is then needed in the spread spectrum system to overcome the inter-
ference caused by the pre-existing users. The solution proposed in [32] is
to use the Wideband SCORE algorithm to adapt an antenna array at each
spread spectrum receiver to spatially reject the pre-existing users prior to
the despreading operation. This implies that the spreading factor can be
smaller (thus allowing the data rate of the message signal to be larger for
the same receiver bandwidth) or that the number of CDMA users can be

greater.

IV.H Summary

Several blind adaptive spatial filtering algorithms are available, although
their performanceis not thoroughly understood and none appears to be sta-
tistically optimum and devoid of undesirable behavior. Nonetheless, their
performance and capabilities suggest that blind adaptive spatial filtering
and blind adaptive LCL-PTV STF may significantly improve the perfor-
mance (i.e., signal quality and capacity) of communication systems relative
to that obtainable with conventional methods. Also, the flexibility of the
PCCA framework and its performance attributes (illustrated by simula-
tions) suggest that interference and multipath can be rejected (or at least
mitigated) and multiple SOIs separated even when little is known about
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them at the receiver.

V  Fractionally-Spaced Equalization

In this section the problem of blindly adapting a fractionally spaced equal-
izer (for either single-sensor or multi-sensor data) for bauded digital com-
munication signals (such as PAM, QAM, ASK, and PSK) is addressed.
In a loose sense, this problem is similar in character to that addressed
in Section IV because the objective in both sections is to blindly adapt a
spatio-temporal filter to obtain a high-quality estimate of the SOI. However,
the emphasis here is on using spatio-temporal degrees of freedom to com-
pensate for channel distortion rather than using them to separate multiple
SOIs and to reject SNOIs and noise.

Fractionally spaced equalizers (FSEs) (cf. Section 7.4 of [50], or any
standard text on digital communications) for single-sensor data are widely
used in digital communication systems to compensate for channel distortion
and to mitigate the effects of timing jitter. An FSE filters the received data
(typically sampled at two or four times the baud rate) and then samples the
filtered output at the baud rate to obtain a stream of estimated symbols.
Provided that the LTI filter in the FSE is chosen properly, it can be shown
that this structure is the optimum linear receiver for QAM signals corrupted
by linear channel distortion and additive stationary noise [24, 51]. The
FSE structure can also be understood in terms of LCL-PTV filtering (also
called LCL frequency-shift filtering or LCL-FRESH filtering), as discussed
in [3, 22, 52].

Tutorial overviews of equalization in digital communication systems are
given in [53, 54], and additional discussion of blind equalization are given
in [42] and references therein. Most of the blind channel identification
and equalization methods studied to date have exploited the fact that
well-equalized baud-sampled data should have samples drawn from a fi-
nite alphabet, or that the higher-order statistics of the baud-sampled data
can be used to infer the effective channel seen by the symbol stream as it
propagates through the modulator, transmitter, propagation channel, and

receiver. Many of these methods require the iterative optimization of non-
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linear objective functions, which can cause misconvergence or noise capture,
as discussed in [55, 56, 57]. Furthermore, the methods typically converge
at a rate that is unacceptably slow for applications in which the channel
varies rapidly (e.g., land mobile cellular communications).

In constrast, the methods considered in [42, 58] and the new method [6]
discussed in Section V.B exploit only the second-order cyclostationarity of
the fractionally-sampled data, a property which is destroyed by the baud-
sampling typically performed prior to application of other blind equaliza-
tion methods. Unlike the second-order statistics of stationary signals, the
second-order statistics of cyclostationary signals have been shown to be
sufficient to perform identification and equalization of most nonminimum-
phase channels [42, 58].

In this section, the blind FSE presented in [59, 58] is rederived us-
ing least-squares minimization instead of observations about the algebraic
structure of the ideal autocorrelation function of the received data, and
a new optimum method proposed in [6] is explained. Brief comparative

examples of performance are also given.

V.A The Blind FSE of Tong, Xu, and Kailath.

In this section the blind channel identification and equalization method
of Tong, Xu, and Kailath, referred to here as the TXK method for the
sake of brevity, is reinterpreted as the solution to a least-squares problem.
The method and an algebraic derivation is presented in [59] and is general-
ized in a straightforward way in [58] to accommodate multiple sensors. It
accommodates arbitrary time-limited pulse shapes and channel distortion
but requires that the noise be spatially and temporally white (i.e., it has
no interference rejection capability).

The TXK method performs blind adaptive temporal equalization of a
noisy distorted QAM signal,

(o]

z(n)= > g(n—kT)s(k)+i(n) (33)

k=—00

received at a single sensor, where {s(k)} is the stream of independent sym-

bols, T is the symbol period, and g(n) is the unknown distorted pulse. In
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[59, 58], the TXK method is derived by exploiting various signal subspace
properties of the ideal correlation matrices of the received data to yield an
algebraically motivated solution. In [58], the straightforward extension to
sensor array or multichannel data is proposed by replacing z(-) in (33) by
the received data x(-) at the output of the sensor array, and replacing h(-)
by the multi-sensor impulse response g(-). This general case is used in this
section.

The method operates on the vector-stationarized data

x(kT)
z(k) = : = Hs(k) +i(k) (34)
x(kT+ KT - 1)
where
g(—(ko +0)T) e g(—(ko +d - 1)T)
H= : :
gKT-1-(ko+0)T) --- g(KT—-1-(ko+d-1)T)
and
S(ko + k)
S(k) =1: >

s(ko+k+d-1)

with K equal to the desired length (in symbol periods) of the equalizer, ko
equal to an ai‘bitrary integer (e.g., zero for simplicity), and d equal to a best
guess of the number of symbols that contribute significantly to any given
sample of the signal (i.e., the estimated number of symbol periodsin the dis-
torted pulse h(n)). In addition to re-expressing the data as the stationary
output of a multidimensional LTI system, this representation is useful be-
cause the autocorrelations R,;(0) and R,;(1) exhibit a special structure,
namely R,,(0) = HH¥ + 021 and R,;(1) = HIHZ + 6237, where the
superscript T here temporarily denotes exponentiation, not transposition.
This structure is exploited by the TXK method as described in [58].

The objective is to identify the channel h(n) through which the symbols
are sent, equalize the channel, and estimate the symbol values. The equal-

ization structure is constrained to be linear, with the estimated symbols
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§(k) given by
8(k) = WHz(k).
Thus, not only must d be long enough that the estimated channel can be a
reasonable approximation of the true channel, but K must be large enough
that the equalization filter W can adequately compensate for the distortion.
Here, the TXK method for blind adaptive spatio-temporal equalization
is re-derived as the solution to a least-squares problem for a finite data set:

. 2
min <”z(k) - Hé(k)” > : (35)
W.H N/T
where the time average (-) is taken over the symbol index k, the estimated

symbols are §(k) = W¥Hz(k), and the autocorrelations of § are restricted
to obey Rs5(0) = I and Rg;(1) = J, with

(01 0 ... 0]
0 1
J= 0
0 1
0 0

Re-expressing the cost function (35) in terms of estimated correlations and
minimizing with respect to W yields the solution

W=ﬁ(f{”f{)_l.

Substituting this solution into (35) and minimizing with respect to H can
be shown to lead to the maximization problem

max tr {Pﬁﬁzz(O)}
PN SN
where Py = H (HH H) HH | which in turn is equivalent to

max tr {owt.zz (0)} .

Expressing the problem in terms of the SVD of W = UXVH yields the
constrained optimization problem

max tr {UUH R,. (0)}
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subject to

VIUFR,, (0)UTVH
VIUHR,, (1) USVE = J.

Straightforward manipulations reveal that maximization subject to the first
constraint requires that U equal the d most dominant eigenvectors of R..
and ¥ equal the reciprocal of the square root of the corresponding eigen-
values. The second constraint then defines V.

This derivation leads to the same algorithm as obtained in [59, 58] by
a different, algebraically motivated argument for the single-channel case.
However, since the second constraint can be satisfied only if the matrix
TUH fl.zz(l)UE has Jordan form J, which occurs with probability zero due
to finite averaging time, the TXK method is seen to lead to an ill-posed
optimization problem. A possible solution to this dilemma is given without
proof (but motivated by standard practices in the sensor array processing
literature) in [59, 58].

V.B Another Blind FSE

Partially motivated by the least-squares derivation of the TXK method,
another algorithm, first proposed in [6], that blindly adapts an FSE is dis-
cussed here. Unlike the TXK method, this method can be interpreted as
a maximum likelihood blind adaptive FSE under some reasonable assump
tions, described in Section V.B.2.

V.B.1 Notation

Let x(kT + n), for 0 < n < T, be the received data given by

0
x(kT+n)= Y g(n—IT)s(l+k) +i(kT + n),
l=—00
which is a noisy bauded communication signal distorted by an unknown
multi-sensor channel having impulse response g(-), where T is the baud

period, s(k) is the kth symbol (unknown), and i(-) is unknown noise. Note
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that s(k) is not necessarily the dominant symbol within the sampling inter-
val {kT,...,kT+T -1}, and that the time interval kT < kT +n < kT +T
need not be centered on an optimal instant for making a symbol decision.
Provided that g(t) decays sufficiently fast as t — oco, x(kT + n) can be
approximated by

0

x(kT+n)~ Y g(n—IT)s(l + k) + i(kT + n). (36)
I=—L

For most physical channels of interest, this simply means that L is suffi-
ciently large, or equivalently that only L+1 symbols contribute significantly
to any particular baud period of the signal. Defining

y(k) = [x(kT), x(kT+1), ---, x(kT +T —1)]7,

h(k) = [g(—kT), g(=kT+1), -+, g(-kT+T -1)|",
H [b(~L) h(~L+1) --- h(0)],

i(k) = [(*T), (kT +1), ---, iGT+T-1)7,

s(k) = [s(-L+k), s(~L+1+4k), ---, sk)]",

(36) can be expressed as
y(k) = Hs(k) + j(k), (37)

which is a stationary complex vector-valued signal. It is noted that H
s defined here is unstructured because y(k) contains only a single baud
period of the signal, whereas H as defined in the TXK method is a block
Toeplitz matrix in most cases.

The signal is to be filtered by an FIR filter of length (K + 1)T samples
to yield an estimate of the symbol stream,

W

(=}

y(k - K) y(k - K)

w y(k-K+1) W y(k—K+1)

-

8(k) = » (38)

WK y(k) y(k)
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and thus the vector §(k) of symbol estimates is given by

y(k—K-L)
s(k) = WH vk - K:— L+ WHa(k), (39)
y(k)

where z(k) is defined in the obvious way and W is a block Toeplitz matrix
of dimension (K + L+1) x (L'+1) with block size T x 1 (or MT x 1 if x(n)
comes from an M-sensor array) and first column equal to [wf wff --- wg
0--- 0)¥ and first row equal to [wo 0--- 0]. This formulation insures that
51(k) = 81—m(k + m), where as the TXK method attempts to satisfy this
indirectly through the correlation constraints, although as noted in Section

V.A these constraints are satisfied with zero probability.

V.B.2 Derivation

In a vein similar to (35) but having different constraints, a least-squares
minimization problem can be posed,

%(Hy(k) -ﬁs(k>||2>N/T, (40)

subject only to the constraint that W is block Toeplitz. Note that there is
no requirement that the symbols be uncorrelated with each other or that
the noise be spatio-temporally white (although these assumptions might
be needed to insure consistency; this is an open problem). Note also that
there can be phase ambiguities and temporal-shift ambiguities in H and
§(k), since only their product must match the signal component of y(k) to
minimize the cost function. Equivalently,

mmtr{Ryy—-HR L~ Ry A7 + AR, | (41)

Alternatively, if i(n) is zero-mean stationary spatio-temporally white Gaus-
sian noise, then it is easily shown that (40)-(41) maximize the conditional
likelihood of the received data, with H being an unknown parameter matrix

to be estimated and the conditioning being performed over the unknown
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symbol values, whose estimates are then constrained to be given by (38)-
(39).

Minimization of (41) with respect to H is a standard problem whose
solution is well-known. However, in preparation for the subsequent opti-
mization with respect to W which does not seem to be a standard problem,
the basics of complex matrix calculus are introduced here. It is shown in
[37] that an appropriate definition of the complex gradient of a real-valued
function with respect to a complex matrix and its conjugate can be found
simply by treating the matrix and its conjugate as independent variables.
This step is necessary because the usual definition of differentiation with
respect to a complex variable is not valid unless the function is analytic.
Consequently, it is also shown in [37] that the stationary point of a real-
valued function of a complex matrix can be found by setting the complex
gradient with respect to the conjugate of the matrix equal to zero (equiva-
lently, the gradient with respect to the matrix could be equated with zero).
Then, it is easily shown that

Vi tr {I:IHA} =A and Vpg.tr {ﬂHAﬁ} = AH.
Consequently, the gradient of the cost function in (41) is
Vi« (cost func) = — £ vs + HR,;.
Equating to zero and solving yields the standard solution,
H=R,R;. (42)
Substituting (42) into (41) yields
n‘kirn tr {Ryy - Rysﬁs'slﬁfs , (43)

which can be re-expressed using (39) as

max tr {WHR}{JZRWW (WH RMW) _1} . (44)

It is crucial to note that W is a block Toeplitz matrix, so care is required

in the application of conventional optimization techniques. However, (44)
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can be re-expressed in terms of the unstructured vector w as follows. Note
that the (m,n)th element of a quadratic form in W can be expressed as

K K

[WIRW] =" W/ RitmirnWs (45)
1=0 k=0

where Ryt k+n is the block element (matrix) at block-row I 4+ m and
block-column %k + n in R, and m and n each range from 0 to L. Denoting

Rmn -+ Rmntx
R™" = :
Rotkn - BRmikntk
(45) can be expressed as
[WARW] =wIR™"w. (46)
Thus, (44) is equivalent to
max tr {A(w) [B(w)]_l} (47)

where
AW, = wh [ﬁ;’zf{yz] ™" w and BW)l,.n = wh [Rzz] " w

with m and n each ranging from 0 to L. As of this writing, no further
simplification of (47) has been found, except in the special case where L = 0
(i.e., the impulse response of the channel is assumed to be negligible outside
of one symbol period). In this special case, A(w) and B(w) are scalars
and the standard solution for w is simply the most dominant eigenvector
Wmaz Of the system

ﬁfzf{yzwmam = )‘mazﬁzzwmaz- (48)

This special case provides some hope that (47) can be solved without resort

to a gradient-based search method. However, this remains an open problem.

V.B.3 Discussion

It is interesting to note that if K = L = 0 is chosen then y = z and (48)

reduces to

Ryywmaz = AnazWmaz- (49)
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That is, the equalizer weights are obtained from the most dominant eigen-
vector used in the Karhunen-Loéve (KL) expansion of y over one symbol
period. Thus, the equalizer output for each symbol interval is the dominant
coefficient in the KL expansion over that interval. Furthermore, the TXK
FSE also degenerates to (49) when its parameters are chosen as K = 1 and
d = 1 (which have the same meaning as K = 0 and L = 0, respectively
in the new method of this section), although this degenerate case was not
specifically considered in [59, 58].
This simplified algorithm for equalization of a scalar channel,

8(k) =wl .y (k)

with W4, having length equal to one symbol interval, can be derived
directly from consideration of the properties of the KL expansion of y(k)
over the kth symbol interval:

T-1
y(k) =Y ouk)n, (50)
=0
where [, -+ mp_y] is the unitary matrix of eigenvectors of Ry, =

E {y(k)y"(k)} with corresponding eigenvalues Ao > --- > Ar_;, and
o1(k) = nfly(k) with E {o1(k)o’(k)} = M1 m.

The fact that 7, is independent of k for I = 0,...,T — 1, follows because
Y (k) is stationary. Note that Wpmqez = 1.

Now, let us compare the KL expansion (50) with the noise-free signal
at the channel output,

[o o) [e9)

y(k) =) s(k—Dh(=1)=>_ &(k)h() (51)
=0 =0
where
si(k) = s(k=1) [|a(=D)]

h() = h(=0)/[R(-1)].

In the typical case in which the symbols s(k) are independent and identically
distributed, §;(k) can be modeled as orthogonal random variables, similar
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to oi(k):

E {51(k)5n(k)} = B {Js(0) } IB(-DII* 61— = 1611

In (51), denote by d the index of the dominant symbol 34(k) within the
symbol interval k; that is,

74 = maxy.

Then the intersymbol interference (ISI) in the kth symbol interval corre-
sponds to all of the terms in (51) for which ! # d. To remove this ISI, the
weight vector w would have to satisfy

wih()=0, 1#d, 1=0,1,.... (52)

We see from the preceding that T of the terms in (50) and (51) would
be identical if

gn(l)(k) = Ul(k)9 l‘i(n(l)) =M, W =T, (53)

where n(l) is an index mapping such that v,y > -+ > Yp(r-1) and in this
case we would obtain perfect equalization because (52) would be satisfied.
However, in general, the set of vectors h(l) is not orthogonal, and the T x 1
vector w can be orthogonal to no more than 7'—1 vectors fx(l); thus, except
for certain cases, (53) cannot be satisfied.

Nonetheless, (53) is sufficient but not necessary for the zero ISI condi-
tion (52) to be satisfied. For practical implementation, given N/T symbo.
intervals of data, we can replace Ry, with its time-averaged estimator f{yy
and use w equal to the dominant eigenvector W4, of Ryy. Some tradeoff
can be seen to exist in the choice of T', namely that larger T is needed
for w to be orthogonal to more ISI components but that larger T entails
an increased sampling rate. If the orthogonality (52) is sufficiently closely
approximated, then the signal can be very effectively equalized even though
7)o might be a poor estimate of the channel (because the estimate spans
only one symbol interval). Thus, the KL method should be considered an
equalization method, not a channel identification method.

This derivation/explanation of the KL algorithm can be easily general-

ized for vector channels. The solution is still the dominant eigenvector of
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ﬁyy where y(k) is the vector-stationarized version of the vector data as in
(37).

Although this derivation omits the noise from the model of the received
data, it is easily shown that the eigenvectors of the ideal autocorrelation
matrix Ry, are invariant to additive stationary white noise. Consequently,
the same argument that leads to the KL algorithm in the absence of noise
applies when noise is taken into consideration.

Curiously, the eigenvectors of the ideal correlation matrix Ry, have been
studied previously (cf. [60] and references therein) without the observation
being made that the dominant eigenvector of Ryy might serve usefully as
a blind adaptive FSE.

V.B.4 Algorithm Summary

In general, the algorithm can be summarized in the following steps:
1. Estimate Ry,, a,nd‘ ftzz.
2. If L = 0, then solve (48) or (49), and exit.

3. If L # 0, initialize the weight vector w with a Kronecker delta func-
tion, or prior knowledge of a suitable equalizer for the multichannel
impulse response (e.g., in single-channel communication systems for
which the transmitter filter has transfer function equal to the square-
root of the raised-cosine function, the initial guess for w could be the
impulse response of this filter), or a centered version of the weight
vector found from running the algorithm with K = L = 0.

4. Tteratively update the guess w(*) at the kth iteration using the simple
gradient method
w® = wk-D 4 v . (54)

where V.« is the gradient with respect to w* of the objective function
in (47) evaluated at w(*~1), and can be shown using results in [37, 16]
to be equal to the following,

Vs = Z {Cn,m Am,,,w - (wakm,nw) ZC,,,,, l~3p,qw C ,m}

m,n P9
(85)
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where each summation index ranges from 0 to L and

m,n

Amn = [RER,]™", B =[Ru| , and C=[B(w) ™.

(56)

Cauchy’s method (cf. [61]) could be an alternative to the simple gradi-
ent method (54), and consists simply of (54) with p replaced by a scalar
variable over which maximization occurs at each iteration. Another alter-
native is a limited-step Newton’s method, although this requires that the
Hessian matrix be computed and inverted at each iteration, which signifi-
cantly increases the computational load at each iteration. These issues are
left as open problems, as are those concerning the the choice of the values
for the parameters L and K.

V.C A Simulation Example

Here the TXK method and the method of Section V.B are simulated in the
example environment considered in [58]. That is, the transmitter filter and
the propagation channel together have impulse response (c(n) — 0.8¢(n —
0.5) +0.4¢c(n — 3))ugr(n), where ¢(n) is a Nyquist-shaped pulse having 11%
excess bandwidth and ugr(n) is a rectangular window of duration 6 symbol
intervals. The symbol stream is binary, and the sampling rate is 4 samples
per symbol. The TXK method is implemented according to the description
in [58], with the parameter settings d = 10 and K = 5. The new method
is implemented as described at the end of Section V.B, with K = L = 0
chosen to enable the simple optimization based on the eigenvalue problem
(48) (i.e., the KL method is implemented). One hundred independent trials
of each method at each SNR were performed. In each trial, 100 symbols
were collected and used to adapt the equalizer, and the performance of
this equalizer was then measured by processing 1000 symbols. As shown in
Figure 18, the BER of the KL method is significantly less than the BER of
the TXK method over a wide range of SNRs in this environment.
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Figure 18: Bit error rate after blind equalization by the TXK method and
the KL method.
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V.D Summary

A comprehensive evaluation of these second-order cyclostationarity-exploiti
methods and the higher-order/finite-alphabet methods referred to at the
beginning of this section has yet to be performed, so no firm conclusions
can be drawn as to their relative merits. Issues such as relative convergence
time, robustness to deviation from underlying assumptions, and computa-
tional complexity must all be considered. However, it is clear that neither
approach by itself can be optimum since the signals in question exhibit
both properties, collectively described by their nth-order cyclostationarity
properties for n = 2,3,....

Many open problems exist in blind spatio-temporal equalization, even
if the scope is restricted to a single, distorted, digital communication signal
in noise. For example, the consistency properties of the method of Section
V.B remain to be determined. Finite-time analyses and complete simulation
studies of the two methods considered in this section remain to be done.
Also, more computationally efficient methods of solving (47) need to be
found. Both the TXK method and the new method of Section V.B could
be easily extended to constrain the estimated symbols to be real, which is
appropriate for signals such as BPSK and ASK having real constellations.
On the speculative side, extension of these algorithms to the new capability
of simultaneously separating and equalizing multiple spectrally overlapping
signals could be used to increase communication capacity in wireless cellular
networks. Except for the temporal equalization step, such a scheme based
on Cross-SCORE has already been proposed in [44, 6].

VI Conclusions

Work on algorithms for spatial filtering and equalization of cyclostationary
signals has shown that exploitation of cyclostationarity can offer substan-
tially improved performance over that of conventional algorithms in some
signal environments and can offer reasonably good performancein other en-
vironments where conventional algorithms fail completely. However, some
of these signal-selective algorithms are suboptimal and exhibit some un-
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desirable performance attributes. Thus, numerous problems remain to be
investigated.
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