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A new approach to blind adaptive signal extraction using nar-
rowband antenna arrays is presented. This approach has the capa-
bility to extract communication signals from co-channel interfer-
ence environments using only known spectral correlation prop-
erties of those signals—in other words, without using knowledge
of the content or direction of arrival of the transmitted signal, or
the array manifold or background noise covariance of the receiver,
to train the antenna array. The class of spectral self-coherence re-
storal (SCORE) objective. functions is introduced, and algorithms
for adapting antenna arrays to optimize these objective functions
are developed. Using the theory of spectral correlation, it is shown
via analysis and simulation that these algorithms maximize the sig-
nal-to-interference-and-noise ratio at the output of a narrowband
antenna array, when a single communication signal with spectral
self-coherence at a known value of frequency separation and an
arbitrary number of interferers without spectral self-coherence at
that frequency separation are impinging on the array. It is also
shown that the SCORE processors can nearly optimally extract
communication signals from environments containing multiple
signals with spectral self-coherence at the same value of frequency
separation.

I. INTRODUCTION

The need for blind adaptive signal extraction is growing
in a number of signal processing applications. The ability
to adapt a receiver processor to remove unknown or time-
varying distortion and interference from a signal of interest
(SOI), without using knowledge of the transmission chan-
nel or waveform to train the processor, can significantly
reduce cost and outage time in telephony and microwave
communication systems. Blind adaptive processing can also
allow signal extraction to be performed in many other appli-
cationswhereitisimpractical orimpossible to provide such
knowledge to the adaptive processor, for example, in
mobile radio and in regenerative satellite communication
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systems, where it can be too costly to provide an adaptive
processor with a separate training sequence for each signal
received by the transponder or receiver, and in broadcast
FM receivers and military reconnaissance and communi-
cation systems, where the SOl and interference waveform
and channel parameters are typically unknown and time-
varying during the reception time.

Antenna arrays provide a particularly useful means for
performing this signal extraction in microwave receiver sys-
tems, where the most significant signal corruption is caused
by co-channel interference. Blind array adaptation algo-
rithms developed to date can be divided into two broad
categories: property restoral techniques, which adapt arrays

~ torestore a known set of SOI properties to the array output

signal, and spatial-coherence exploitation techniques,

-which adapt arrays to exploit known spatial-coherence

properties of the signals received by the array. The property
restoral technique that has received the most attention in
adaptive array applications is the constant modulus algo-
rithm [1], [2], which exploits the low modulus variation of
most communication signals (for instance, signals with FM,
PSK, FSK, and QAM PCM modulation formats). Spatial-
coherence exploitation techniques that have been applied
to adaptive signal extraction include the generalized side-
lobe canceller [3] and the signal subspace techniques, such
as MUSIC [4] and ESPRIT [5], which exploit the discrete spa-
tial distribution of the received signals.

All of the blind adaptation techniques developed to date
suffer from shortcomings in practice. The convergence and
capture characteristics of the constant modulus algorithm
are still not fully understood, a drawback that limits the
application of this algorithm in automatic (unsupervised)
communication systems where they must operate with a
minimum of attention. Although the spatial-coherence:
exploitation techniques are analytically more tractable, they
suffer from other problems associated with measuring the
spatial spectrum of the received signal. The generalized
sidelobe canceller and MUSIC, for instance, require accu-
rate knowledge of the array manifold to operate, which lim-
its their application in systems where such data are too
costly or impossible to measure (for example, if the array
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geometry is changing with time), while ESPRIT imposes a
structural constraint on the sensor array that can be difficult
to satisfy in some practical applications, and that can reduce
the degrees of freedom (null-steering capability) of the
overall array by as much as 50%. In addition, MUSIC and.
ESPRIT both require knowledge or estimation of the co-
variance of the background noise and of the interfering sig-
nals that are not to be extracted by the array. This require-
ment can limit the application of these techniques in envi-
ronments where the background noise and interference
statistics are unknown or varying during the reception time.

All of these techniques suffer from the additional prob-
lem that they are nondiscriminatory, and must therefore
extract all of the unknown signals received by the array and
rely on additional downstream processing to separate the
SOls from the interferers. This drawback can be of critical
importancein systems where the number of signals imping-
ing on the array is high, especially if only a few of those sig-
nals are of interest to the receiver processor.

This paper presents the new class of spectral self-coher-
ence restoral (SCORE) algorithms, which have the potential
to overcome these limitations. A property held by most
communication signals is that they are correlated with fre-
quency-shifted and possibly conjugated versions of them-
selves for certain discrete values of frequency shift. This
property, referred to here as spectral self-coherence or
spectral conjugate self-coherence, is commonly induced by
periodic gating, mixing, or multiplexing operations at the
transmitter. Forinstance, spectral self-coherence is induced
atmultiples of the symbol rate in PCM signals and multiples
of the pilot-tone frequency in FDM-FM signals, and spectral
conjugate self-coherence is commonly induced at twice the
carrier frequency in BPSK and AM signals. The spectral self-
coherence of a received signal is degraded if it is corrupted
by additive interference that is not spectrally self-coherent
at the same value of frequency shift, for instance, if a PCM
SOl is corrupted at the receiver by a PCM interferer with
a different symbol rate. The SCORE algorithms adapt a
receiverarrayto restore this SOl self-coherence, and thereby
reduce the power of the interference in the receiver output
signal.

Section Il introduces the fundamental concepts of spec-
tral self-coherence and conjugate self-coherence, and moti-
vates the development of the SCORE algorithms. Section
[l introduces the basic SCORE algorithms presented here:
the least-squares SCOREF, cross-SCORE, and auto-SCORE
algorithms. Section IV analyzes the asymptotic (infinite time-
average) performance of these algorithms in the rank-L,
spectral self-coherence environment where L, signals with
spectral self-coherence or conjugate self-coherence at a tar-
get frequency shift o are received by an antenna array. Sec-
tion V evaluates the performance of the SCORE algorithms
in the rank-1 and rank-L, spectral self-coherence environ-
ments via computer simulation.

Il.  THE SPECTRAL SELF-COHERENCE CONCEPT

Ascalar waveform s(1) is said to be spectrally self-coherent
at frequency separation « [6] if the correlation between s(t)
and s(t) frequency-shifted by « is nonzero for some lag 7,
that is, if
(st + 12)[s(t — 7/2)e™™]*)

\/(ls(t + 712)Y o (st — 7/2) @272y,
= R&(1)/R,(0) # O (1

A
pss(1) =

754

at some value of 7, where (- ), denotes infinite time-aver-
aging. Similarly, a signal waveform s(t) is said to be spec-
trally conjugate self-coherent at frequency separation « if
the correlation between s(t) and the conjugate of s(t) fre-
quency-shifted by « is nonzero for some lag 7, that is, if

(st + T)[s*(t — 7/2)eP™*y
Vst + 712)2. (|s*(t — r/2)e ™2y,
= RE.(7)IR(0) # 0 )

atsome value of 7. The functions p%(7) and p2%.(7) are referred
to here as the spectral self-coherence function and the spec-
tral conjugate self-coherence function of s(t), respectively;
the functions R%(7) and R%.(7) are referred to here as the
cyclic autocorrelation function and the cyclic conjugate-
correlation function of s(t), respectively, and are defined by

A
psse(T) =

RE(1) £ (s(t + 7/2)s*(t — 7/2)e 2ty 3)

R.(1) & (s(t + 7/2)s(t — 7/2)e 2ty _. @

An M-element vector waveform x(f) is said to be rank-L,
spectrally self-coherent at frequency separation « or rank-
L, spectrally conjugate self-coherent at frequency separa-
tion « if the respective cyclic autocorrelation matrix R%(r)
or cyclic conjugate correlation matrix RS .(7)

R&() £ (x(t + 7/2)xH(t — 7/2)e 2ty (5)

RSe(r) & (x(t + r/2X(t — 7/2)e ?mety (6)

has rank L, (L, = M) at frequency-shift « for some lag 7,
where T and H denote transpose and conjugate-transpose
(Hermitian response) operations, respectively'.

The spectral self-coherence and conjugate self-coher-
ence properties for a DSB-AM waveform are illustrated in
Fig. 1 and Fig. 2, respectively.? If the real (bandpass rep-

F{st)}. s(t) = real DSB-AM

)
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?_{s(t)eﬂnlnl} -

b

1, f of,

Fig. 1. Spectral self-coherence for a real DSB-AM signal.

R = 0

resentation) signal is under investigation (Fig. 1), then this
modulation type has conjugate-symmetric frequency con-
tent both about its carrier (f = fy) and about DC (f = 0). The

"The shorthand notation R.(r) £ RE(1)]a—o, RE, £ R%(1)],_o, and
Ry £ RE(7), =0 is used throughout this paper to reduce the level
of notation. A similar convention is employed for the spectral self-
coherence function pg(7).

*Note that the Fourier transforms shown in these figures are only
used as heuristic aids to illustrate the concepts of spectral self-
coherence and conjugate self-coherence. Signals that are Fourier
transformable cannot exhibit spectral self-coherence, because they
cannot have finite average power [7].
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‘f{s(t)}, s(t) = analytic DSB-AM
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Fig. 2. Spectral conjugate self-coherence for an analytic
DSB-AM signal.

combined effect of these symmetries renders the negative-
frequency component of the modulated signal equal to the
positive-frequency component of the modulated signal,
except foracomplex phase-shift. The overall signal is there-
fore correlated with a frequency-shifted version of itself
when the frequency shift is exactly equal to twice the signal
carrier (Fig. 1), that is, the signal is spectrally self-coherent
at o = 2f,,.

This correlation can be removed by converting the signal
to its analytic representation, that is, by removing the neg-
ative-frequency signal component using a complex filter.
However, the original negative-frequency component can
be recreated by conjugating the analytic signal, which
reflects the signal through the DC axis (Fig. 2). The con-
jugated signal is then correlated with the original signal after
afrequency shift of exactly twice the carrier, thatis, the orig-
inal signal is spectrally conjugate self-coherent at a = 2f,.

The spectral self-coherence functions and cyclic corre-
lation functions are developed in detail in the theory of
spectral correlation [6], [7], where it is shown that complex
wide-sense cyclostationary and wide-sense almost-cyclo-
stationary waveforms exhibit spectral self-coherence or
conjugate self-coherence at discrete multiples of the time
periodicities of the waveform statistics. Table 1lists the self-

Table 1 Examples of Spectrally Self-Coherent Signals

Complex
Modulation Self-Coherence Conj. Self-Coherence
Format Frequencies Freq. (@ 2 X Carrier)
ASK, BPSK Baud-rate mult. Baud-rate mult.
QPSK Symbol-rate mult. None
MSK, SQPSK Baud-rate mult. + 1/2 baud rate
CPFSK Symbol-rate mult. 2 X symbol frequencies?
FDM-FM Pilot-tone mult. None
DSB-AM, None 2 X carrier
VSB-AM
SSB-AM None None

*frequency deviation = multiple of 1/2 only.

coherence and conjugate self-coherence frequencies for a
number of common modulation. formats. As this Table
shows, this class of waveforms includes most communi-
cation signals; for instance, all PCM signals exhibit spectral
self-coherence at multiples of their baud-rate, and ASK and
BPSK signals are in addition spectrally conjugate self-coher-
ent at twice their carrier frequency. Furthermore, many
nominally stationary signals can be spectrally self-coherent
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if their baseband is spectrally self-coherent, for instance, if
their baseband is a TDM waveform.

The function | p&(7)| can be interpreted as a measure of
the relative strength of s(t) contained within s™*(t —
7)€/, where the optional conjugation (+f'is only applied
if conjugate self-coherence is being measured. Using the
Orthogonal Projection Theorem, s*)(t — 7) e/ can be rep-
resented by

s — Del™ = [pZane T s(t) + VA1 — | pa(n)]el(t)
@)

where s(f) and (t) are equal-power orthogonal waveforms
(R, = 0). Therefore, s™(t — 7)e”™ can be thought of as a
scaled and corrupted replica of s(f), with a signal-to-cor-
ruption ratio of

| &)

T L Y

')%CR(aI 7) é
This ratio varies between zero and infinity as | p%(7)|* varies
between zero and unity.

The utility of the self-coherence concept can best be seen
in interference environments. Consider the environment
where a scalar waveform x(t) is equal to ascaled SOI s(t) plus
an independent interference signal i(?), x(t) = as(t) + i(t). If
s(t) is spectrally self-coherentat frequency separation «, but
i(®) is not spectrally self-coherent at «, then the cyclic auto-
correlation of x(t) is given by

Ry (1) = |a|*Re(r) + RY(7) = |a]*Re(7), ©)

that is, the infinite time-averaged cyclic autocorrelation of
x(#) is unchanged by the addition of arbitrary interference,
provided that the interference is not spectrally self-coher-
ent at frequency separation «.

A useful interpretation of (9) is that the frequency-shift
and optional conjugation operations completely decorre-
late the interference component of x(t), but only partially
decorrelate the SOI component of x(#). In terms of the
decomposition given in (7), x*(t — 7)e”?™' can be expressed
in terms of the signal and interference components of x(1)
by

x9Nt — e = as() + i(D), (10)

where
a= aps”st.)(r)*e"m’ (11
it) = av1 — | p%a@)|e(® + it — el ™ (12)

and where i(t) is uncorrelated with both s(t) and i(f). Equa-
tion (10) motivates the development of interference can-
cellation techniques that use x*(t — 7)e”*™as the reference
signal in a conventional least-squares algorithm.

A different interpretation can be obtained by noting that
the spectral self-coherence of x(?) in the above example is
reduced when interference that is not spectrally self-coher-
ent at shift a is added to the received environment. In this
case the self-coherence strength of x(9) is degraded to

|Pss"'(T)| - < ngsm(T)l 13

A PN

for a signal-to-interference-and-noise ratio of |a|?Ry/R;;.
Equation (13) motivates the development of interference
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cancellation techniques that extract SOIs by optimizing
some direct or indirect measure of their self-coherence.

IIl. THE SCORE ALGORITHMS

A. Problem Statement

The SCORE algorithms are motivated by extending the
example given in Section II to narrowband vector (multi-
sensor) data signals. Consider an environment where an
antenna array is excited by a SOI s(t) and by background
noise and co-channel interference. If the inverse band-
width of the receiver is small with respect to the electrical
distance between the array elements, then the received sig-
nal vector x(t) can be modelled by

x(t) = as(t) + i(t), (14)

where the SOI aperture vector a models the polarization-
and direction-of-arrival-dependent antenna gains, cross-
sensor phase mismatches, and near-field multipath (scat-
tering) and mutual coupling effects of the array, and where
the interference vectori(t) models the remaining signals and
background noise received by the array. Assume that s(f)
is spectrally self-coherent at o, and that i(t) is not spectrally
self-coherent at « and is temporally uncorrelated with s(f)
(Ris(1) = 0 for every 7).

Given this model, then s(t) can be extracted from x(t) using
the linear estimator y(t) = w"x(t), where the processor
weight vector w suppresses i(f) in some manner (for exam-
ple, by forming an effective antenna pattern with a beam
in the direction of s(t) and nulls in the directions of the spa-
tially coherent co-channelinterferers). For the environment
described in (14), this is optimally accomplished by setting
w equal to a maximum-SINR linear combiner

Wmax & Rii_1a o R;(13Rssr (15)

where R;; and R,y are the limit (infinite time-average) auto-
correlation matrices of the interference and received signal
vectors. These weights can also be interpreted as the opti-
mal solution to the least-squares cost function

Fisw) 2 ¢y — gs(d|® e, (16)

where g is some arbitrary scalar gain constant. Conven-
tional (nonblind) methods for computing wp,., require
knowledge of the interference autocorrelation R; or the SOI
aperture vector a to implement (15), or knowledge of the
SOI waveform s(t) to minimize (16). The goal in this paper
is to adapt w to approximate (15) without using this knowl-
edge, that is, using only knowledge of the spectral self-
coherence properties of the SOI.

B. The Least-Squares SCORE Algorithm

The simplest SCORE algorithm, referred to here as the
least-squares SCORE algorithm’®, is developed using the
interpretation of spectral self-coherence given in (10)-(12).
We define a reference signal r(t) by

0 = Xt — rel, (17)

where the vector c is referred to as the control vector and
the optional conjugation () is applied if and only if con-

3The least-squares SCORE algorithm was first presented in [8].
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jugate self-coherence is to be restored by the processor. If
x(t) is modeled by (14) and s() is the sole received signal
component with spectral self-coherence or conjugate self-
coherence at frequency separation «, then (10)-(12) can be
used to show that r(t) decomposes into a replica of the SOI
plus a corruption term that is uncorrelated with both s(t)
and x(f) (and therefore (1))

) = as(®) + i, (18)

where 4 and {(¢) are given by (11) and (12), respectively, with
a = c"a™ and i(®) = [c™]Mi(D.

Equation (18) motivates the least-squares SCORE algo-
rithm. We define the least-squares SCORE cost function by

Fscw; ©) £ (|y@) — rd|%,, (19)

where y(t) = w"x(t) and r(t) is given by (17), and where (- ),
denotes time-averaging over the interval [0, T]. Substituting
(18) into (19) and letting the averaging time grow to infinity
yields

Fsc = <|y® — [4s(t) + i®]*);
= {y® — &s0|* o + O . (20)

Because i(f) does not depend on w, it follows that (19)
becomes equivalent to the true least-squares cost function
(16) and the value of w that minimizes (19) converges to the
maximum-SINR processor as T — oo,

This result can be proved more directly by solving for the
processor vector wsc that optimizes (19) for infinite aver-
aging time. Minimizing (19) with respect to wyields the least-
squares SCORE algorithm

wse = R'R,,, @1

where R, and R,, are the sample autocorelation matrix and
cross-correlation vector computed over [0, T]. If i(t) is not
spectrally self-coherent at «, then as T — o (21) converges
to

wsc =~ RL'R,, 2)
= R'R (1) ce /™. (23)

if only s() is spectrally self-coherent at «, then as
T — oo, R2(7) reduces to a rank-1 matrix with form

R (1) = a[a™]"R%.(7) (24)
and (23) reduces to
wse = Ry@[a™]c) R u(r) e ~i™ (25)

= gscRa'aRss,  Bsc = [a* cplu(ne ™. (26)

That is, wsc reduces to the maximum-SINR (or scaled least-
squares) weight vector given by (15), where gsc is the gain
constant appearing in (16). Note that w converges to the
maximum-SINR solution for any value of c, as long as c is
not orthogonal to a"*.

The least-squares SCORE processor block diagram is
shown in Fig. 3. The reference signal r(t) is generated by lin-
early combining, delaying, conjugating (if conjugate self-
coherence is being exploited), and frequency-shifting the
datareceived by the array. The reference signal is then used
as a training signal to adapt the processor vector w using
aleast-squares algorithm. The only control parameters used
in the processor are the control vector c, the delay 7, the
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Fig. 3. Least-squares Score processor.

conjugation control, and the frequency-shift «; however,
only « and the conjugation control are critical to the oper-
ation of the processor. For most communication waveforms
much latitude can be allowed in the choice of ¢ and 7,
because in theory these parameters need only be chosen
to yield a nonzero value of gsc in (26)*. In addition, the fre-
quency-shift parameter o need not be related in any way
to the bandwidth or sampling rate of the receiver system;
however, care must be taken to avoid aliasing effects if the
processor is implemented in digital form and « is large.
From Fig. 3 it is clear that the least-squares SCORE pro-
cessor can be generalized in several ways. For instance, the
delay operation can be replaced by a more general filtering
operation, by generating r(t) using
rt) = cHi(*)(t)e/met,

x(t) = h(t) @ x(t), @7)

where h(t) is the control filter impulse response and ®
denotes convolution. The optimum weight vector then con-
verges to

Wsc = gscRu'aRs,  gsc = [a™]"cple %, (28)
R

where $(t) is the filtered SOI. As Section V shows, a key
parameter affecting the convergence rate of the SCORE
processor is the strength of the spectral self-coherence
pss being restored by the processor; appropriate design of
the control filter can improve the performance of the SCORE
processor by increasing this strength.

The critical dependence of the SCORE processor on the
choice of target « can also be eased somewhat by the par-
ticular choice of averaging window used to calculate the
finite-time correlation matrices R, and R,. Ifagrowingrect-
angular window is used to calculate R,,, for instance, then
the processor will eventually reject a received SOI if there
is any error between the self-coherence frequency of the
SOl and the target self-coherence frequency of the pro-
cessor. In many environments, however, the self-coher-
ence frequency of the SOI cannot be known exactly, for
instance, if the SOl is subject to Doppler shift (which shifts
the conjugate self-coherence frequency of the SOI). The
SCORE processor can be made more tolerant to this error
if a different choice of averaging window, such as an expo-
nentially decaying window, is used to compute R,,.

The greatest improvement in SCORE processor perfor-
mance can be obtained by adaptively adjusting the control

“In practice, it is important to choose values of ¢ and 7 that yield
alarge value of gsc, as this parameter does have a strong effect on
the convergence time of the SCORE algorithm. This can impose a
serious constrainton c (for example, if the array is subject to strong
co-channel interference), but does not impose a strong constraint
on 7 in most communication applications.
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vector as well as the processor vector to some appropriate
value. This generalization leads to the cross-SCORE
algorithm®, discussed in the next section.

C. The Cross-SCORE Algorithm

An algorithm for adapting ¢ can be developed by moti-
vating the least-squares SCORE algorithm from a property-
restoral viewpoint. The same value of wgc given in (21) results
from maximizing the strength of the cross-correlation coef-
ficient between y(t) and r(t)

IESC(W; C) é IRAyrlzl[Iéyylén]

= |WR|Y[wW"R,,wR,] (29)
[W Ry
= ML (30)
[WHRxxW] [CHRuuc]

where u(t) is defined to be the control signal,

u®) £ f9He = 1) = cHu(r). 31)

The cost function Fgc is an indirect measurement of the
spectral self-coherence in y(t) at frequency separation «; it
is lowered if x() contains interference that is not spectrally
self-coherentat this frequency separation. In this sense, the
least-squares SCORE algorithm can be interpreted as a
method for restoring this spectral self-coherence to the
processor output signal. The cross-correlation coefficient
is also degraded if interference is present in r(t). Conse-
quently, maximizing Fsc with respect to w and ¢ should
restore this spectral self-coherence to both y(t) and r(t). For
this reason, (30) is referred to here as the cross-SCORE
objective function, and methods for optimizing (30) are
referred to here as cross-SCORE algorithms. .

From the Cauchy-Schwarz Inequality, it is clear that w is
optimized for fixed ¢ by

w°Pt & R);(1 l'ixr = ﬁ;(1 quc/ (32)

whichis the least-squares SCORE solution (if the delay oper-
ation in Fig. 3 is generalized to a filtering equation). Sim-

ilarly, c is optimized for fixed w by

Copt % RG/Ruw. (33)
Substituting (33) into (30) yields a generalized Rayleigh quo-
tient in w
WR R Ry W

= , 34
whR,, w 34

Fsc(w, Cop) =

which is maximized by setting w equal to the dominant
mode (eigenvector corresponding to the maximum eigen-
value) of

MRow = R, Ry Ry dw. (35)

Similarly, the control vector is globally optimized by setting
¢ equal to the dominant mode of

ARy€ = [Ry R Ry lc. 36)

Equations (35) and (36) are referred to here as cross-SCORE
eigenequations; both of these eigenequations have the
same eigenvalues, with the maximum eigenvalue equal to
the maximized objective function value. Equations (35) and

*The cross-SCORE algorithm was first presented in [8].
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(36) can also be used to obtain an equivalent joint cross-
SCORE eigenequation

R 0 |[w 0 Rul[w
Lo sl e
0 Ryllc Ru 0 |lc

where A = »*and every solution (A, wy, c,) to (35), (36) has
a pair of solutions (\/)\_k, W, ¢) and (—«/)\—k, W, —C;) to (37).

Itis easily shown that the dominant modes of (35) and (36)
both converge to the maximum-SINR solution givenin (15)
if s(t) isthe only received signal with spectral self-coherence
or conjugate self-coherence at a. In this environment, the
Hermitian matrix on the right-hand side of (35) reduces to
a rank-1 matrix as T — o,

qu Iiu_u‘l I’iux - ﬂaaH, n= (aHRf;”(1 a)leaﬂ"lZ‘ (38)
For an M-element antenna array, the eigenvectors of (35)
therefore converge to M — 1 signal-rejection solutions
where w is orthogonal to a and \ is equal to zero, and one
signal-selection solution where w is equal to wp,, and \ is
approximately equal to | p%u|?,

Amax = @R @) @"R5'a) |RE%w|? 39)

— |P?§<‘>|2
A+ v + 77D

vyt > 1,

= | pgs‘“’lzl

(40)

where v2 = 42, is the maximume-attainable SINR of s(t) for
the input data x(t) and 2 is the maximum-attainable SINR
of the filtered SOI §(t) for the filtered input data %(t). Sim-
ilarly, R, R Ry, reduces to a rank-1 matrix in this environ-
ment as T — oo, and the eigenvectors of (36) converge to
M — 1 signal-rejection solutions where c"a™® = 0 and one
signal-selection solution where ¢ o Ry'a™ Ry,.

A block diagram of the cross-SCORE processor is shown
in Fig. 4. Structurally, the processor is identical to the least-

X(1) > w y(t)

.
- (*) “ -
(T <]

ht)

Fig. 4. Cross-Score processor.

squares SCORE processor, except that the control com-
bining is moved to the end of the control path (to allow mea-
surement of R,, and R,,) and the delay operation is changed
toamore general filtering operation. However, in the cross-
SCORE processor, both the processor and the control
weights are adapted to find the maximum-eigenvalue solu-
tion of (37). If only one signal with spectral self-coherence
at the target « is incident (or expected) at the array, then
the cross-SCORE processor can be very simply imple-
mented using the power method [9]

c < gRLR,w @1

A

w < g RJIR,C, 42)

758

where g,, and g. are used to normalize the power of y(t) and
r(t) at each step in the algorithm. Equations (41) and (42) con-
verge very rapidly to the dominant mode of (36) in the rank-
1spectral self-coherence environment, because of the wide
spread between the maximum and lesser eigenvalues of
(37) that prevails in this case.

D. The Auto-SCORE Algorithms

Although the cross-SCORE algorithm can be interpreted
as a property-restoral algorithm, it is essentially an exten-
sion of the least-squares SCORE algorithm, and as such is
motivated more naturally from the interference-decorre-
lation viewpoint discussed in Section II. A more natural
framework for developing a true property-restoral algo-
rithm based on spectral self-coherence is to consider the
problem of maximizing the spectral or conjugate self-
coherence strength at the output of a single linear com-
biner

Focw) 2 |30

_WRE (D w™)]

WHR“W(*) (43)

Algorithms for optimizing |},(7)| are referred to here as
auto-SCORE algorithms. Algorithms for optimizing | py,.(7)|
are referred to as conjugate auto-SCORE algorithms.

A detailed development and discussion of the auto-
SCORE and conjugate auto-SCORE algorithms is given in
[10] (where they are referred to as the direct SCORE algo-
rithms); however, some specific results for these algorithms
bear mentioning here. Both classes of algorithms asymp-
totically (as the averaging time grows to infinity) converge
to the maximum-SINR solution in the rank-1 spectral self-
coherence environment. In addition, the general (rank-L,,
finite time-average) maximal solution to the conjugate auto-
SCORE objective function is nearly always identical to the
maximal solution to the analogous conjugate cross-SCORE
objective function. In particular, | p;,«(7)] is maximized if w
is equal to the dominant mode of

)\ﬁxxw = qu IAzu.u1 I’iuxW/ u(t) = x*(t — T)ejmell (44)

where R,, is the symmetrized cross-correlation between x()
and u(t),

CAY
Rw =

3R + Ry (45)
Equation (44) is identical to the cross-SCORE eigenequation
(35) if Ry, is symmetric R,, = RL). In fact, in most appli-
cations where conjugate self-coherence can be exploited
by the processor, |p5.(7)| is maximized for 7 = 0, and the
symmetry condition holds. If the symmetry condition does
not hold, (45) also shows that a simple modification to
eigenequation (37) can transform the cross-SCORE proces-
sor to a conjugate auto-SCORE processor.

In contrast, the maximal solutions to the nonconjugated
auto-SCORE objective function can differ greatly from the
maximal solution to the analogous cross-SCORE objective
function under general conditions. In particular, | 5},,(7)| has
a local maximum at every dominant mode of

N Row = R4(7, @)W (46)

such that Ap.(¢) also has a local maximum with respect to
¢, where R, (7, ¢) is the Hermitianized cyclic autocorrelation
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matrix of x(t),

Re(T, @)

>

1R& (M) e 7 + R (e, (47)

A method for adapting w to perform this optimization is
also developed in [10].

Arelated algorithm has recently been introduced [11] that
can be interpreted as a suboptimal solution to the auto-
SCORE objective function. This algorithm, referred to here
as the phase-SCORE algorithm, solves the simpler eigen-
equation

AR, w = R (DwW (48)

for the complex eigenvalue A with maximum strength | A|.
As the next sections show, the phase-SCORE algorithm has
very attractive analytical, implementation, and perfor-
mance properties, which give it some inherent advantages
over the cross-SCORE algorithm if nonconjugate self-
coherence is being restored by the adaptive processor.
The auto-SCORE and conjugate auto-SCORE objective
functions can also be generalized by replacing the delay
operation with a more flexible filtering operation, yielding

FSC(W) : ‘ 5;’:'

| wHﬁxu w(*)‘

(49)

VW R, wIW RS W]

where u(t) is given by (31), and (with a change from the nota-
tion used in the previous sections) r(t) = [w"*']"u(t). How-
ever, this filtering approach is less useful here, because w
must achieve a compromise between the optimal extractor
of a given SOI from the received environment and the fil-
tered SOI from the filtered received environment. If the fil-
tering operation affects the SOl and interference differently
(for example, if the control filter is selectively nulling the
interference), then the resultant processor can diverge sig-
nificantly from the maximum-SINR processor. The excep-
tion to this observation is the phase-SCORE algorithm given
by

AR, w = R,,w, (50)

which converges to a maximum-SINR solution in the rank-
1spectral self-coherence environment for any control filter
(as long as p,; # 0).

IV. ANALYsis OF THE SCORE ALGORITHMS
A. Infinite-Collect Analysis

The stationary solutions of the SCORE objective func-
tions are easiest to discern under infinite-collect conditions
where the averaging-time T grows to infinity. Under these
conditions, the sample correlation matrices can be replaced
with their limit values, and all cross-correlations between
statistically uncorrelated signals and signal components can
be set equal to zero.

In Section 111, itis shown that all of the SCORE algorithms
converge to the maximum-SINR solution in the rank-1 spec-
tral self-coherence environment where only one signal with
spectral self-coherence at the target « is received by the
array. The behavior of the SCORE algorithms in the rank-1,
spectral self-coherence environment remains to be deter-
mined, however. This analysis is performed below.
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1) Assumed Environment: Consider the environment
shown in Fig. 5, where N, uncorrelated signals {s,(t)} e

n=1

with spectral self-coherence or conjugate self-coherence at

Source |

x\

Source 2

Source N,

><”

Fig. 5. Rank-L, collect geometry.

Receiver
Platform

a arrive at an M-element antenna array, together with inter-
ference i(?) that is not self-coherent at «. Each signal s,(f) is
assumed to arrive at the receiver along K|, paths, such that
L, =N, K, signals are received from the N, separate
sources. We denote the kth signal received from the nth
source by s;,(#), and assume that this signal arrives at direc-
tion 6, with delay 7, and scaling coefficient g,,. Then under
the narrowband assumption stated in Section IlI, the
received data vector x(t) is modeled by

Neo K
x0) = 2| B gunalin)Senlt = i) | +i0)  (5T)
N_a
= %)1 A, s (D) + i) (52)
= As(t) + i(f) (53)
where
Sp(0) 2 1t — 71) =+ Sgonlt — 7, )

A
An = [g1na(01n) e gK,,na(OKnn)]
are the received signal vector and the received signal aper-
ture matrix due to the nth source, and where

s(t) £ [s]@) - - sh01

AL A, - Ayl

are the received signal vector and received signal aperture
matrix due to all of the sources. Similarly, the control signal
u(t) is modeled by :

ll(t) — A(*)[g(*)(t)e/lrmt] + ['i‘(*)(t)eﬂml]
= A3(0) + (1) (54)

where A = A and §(t) and i(t) are the filtered, optionally
conjugated, and frequency-shifted received signal and
interference signal vectors.

For the analysis presented here, it is also assumed that
s(1), §(t), A, and A have maximal rank, that is, the fully coher-
ent multipath environmentis not considered. However, the
primary results of this analysis should extend easily to the
fully coherent multipath environment, because signal
extraction (rather than direction finding) is of interest in this
paper.

2) Analysis of the Least-Squares SCORE and Cross-SCORE
Algorithms: Analysis of this environment shows that the
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least-squares SCORE and cross-SCORE algorithms screen
the data to optimally suppress the noise and interference
i(f) that is not spectrally self-coherent at the target o, if the
total number of received signals that are spectrally self-
coherent at « is less than or equal to the number of ele-
ments in the array (L, < M). Moreover, this analysis also
shows that the solutions to the cross-SCORE eigenequation
separate the remaining self-coherentsignals into N, blocks,
corresponding to selection of each block of correlated sig-
nals {s,(t — 1) }k~ 4, if i) is low and/or removable by the
array and the eigenvalues are distinct between blocks. A
corollary of this result is that the cross-SCORE processor
can sort environments containing multiple uncorrelated
signals with spectral self-coherence at the same value of
frequency separation, by separating those signals on the
basis of their self-coherence strength.

The screening property can be deduced by noting that
any processor vector w can be expressed as the sum of a
component that is orthogonal to A and a component lying
in the space spanned by the linear combiners that provide
the least-squares estimates of the elements of s(t) given x(t).
That is, w can be represented by w = w, + w,, where w,
is in the left null space of A (A"w, = 0) and

w, £ R;'AR,p,, (55)

= pu = N;TAMw, N, £ A"RGIAR, (56)

and where p,, = e, (where ¢, & [8m- 11 -+) sets w, equal to
the least-squares extractor of the /th element of s(t) from x(t).
Similarly, any control vector ¢ can be expressed as the sum
of a component ¢, that is orthogonal to A (A"c, = 0) and
a component ¢, lying in the space spanned by the least-
squares estimates of the elements of §(t) given u(t)

¢ = Ri'ARgp, (57)

= Pp. = N§_1AH , N§ é AHRJJAR;;- (58)

Substituting (55) and (57) into the least-squares SCORE
equation (22) shows that y(t) = wécx(d) lies entirely within
the space spanned by the least-squares estimates of s(t),
because

Wsc ™ Rx_x1 RwC, Rw = AngAH

1% A — z
= R)(x1 ARpsc, Psc = Ry ! R Afc

= w; (59)

forany control vector c. Thus, both the least-squares SCORE
algorithm and the cross-SCORE algorithm optimally sup-
press the background interference i(t), in the sense that they
forcew, = 0as T — oo.

This property extends to each of the cross-SCORE eigen-
equation solutions with nonzero eigenvalue. Substituting
(55) and (57) into the joint cross-SCORE eigenequation (37)
yields the coupled equations

MAR;p, + Riw,] = ARsN;p. (60)
V[AR§§ . + Rgc, ]l = AREstpw- (61)

Equations (60) and (61) have 2(M — L,) solutions (M — L,
significant solutions) where p,, = 0 = p_, (w, ¢) = (w,, c,),
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and » = 0, and 2L, solutions (L, significant solutions) where
w;, =0 = ¢, and (v, p,, pJ) satisfies the eigenequation

Rss 0 Pw 0 Rs§N§ w
v = (62)
0 R§§ Pc R§st 0 (o
0 Rs§ Ns 0 w
. (63)
Re 0 |l0 N.Jlp.

That is, the joint cross-SCORE eigenequation has M — L,
pairs of signal-rejection solutions where the processor and
control weight vectors completely reject the signals with
self-coherence at « (set p, = 0 = p,) and pass the back-
ground interference, and L, pairs of interference-rejection
solutions where the weight vectors optimally reject the
background interference (setw, =0 =¢,)and pass alinear
combination of the least-squares estimates of the self-
coherent signals. The interference-rejection solutions in
effect screen the data and minimize the contribution from
any signals that are not spectrally self-coherent or conju-
gate self-coherent at the target a.

The cross-SCORE sorting property can be deduced from
examination of (63) when the background interference is
low and/or removable. Using the Matrix Inverse Lemma [9],

(C + ASA")™" = €7 — C'AS( + AHC-TAS)"AMC!

(64)
N, and N; can be rewritten as
A"RGAR, = (I, + T7)7, T, £ A"R;'AR,
=10, =, + 1Y’ (65)
A"RGARG = (I, + TN, T, & APR;7'AR,
=1, -1, + I (66)

where I’y and I; can be interpreted as matrix measures of
the maximum signal-to-noise-and-interference ratios at-
tainable using an adaptive array on x(t) and u(t), respec-
tively. The matrix SINR I is related to the minimum-attain-
able mean-square error between the Ith element of s(t) and
w"x() according to the formula [10]

MSEpin() = ef(l,, + T)~"e/Ryq, 67)

with an analogous result holding for ;. It is reasonable to
assume that I and T are usually large (T, |IF57] << 1)
when the true maximum-attainable SINRs of the self-coher-
ent signals are high, allowing (63) to be approximated by

[Rss 0 Mpw} [0 Rs] o " [pw] )
V = —
o RIlp.] IR, 0| c

[0 Ry;] [pw]
= (69)
R§s 0 | C

r, o\
A = I2La +
. 0 r;_

- 0as I, It - o. (70)

where
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Eigenequation (69) can be transformed into separate eigen-
equations in terms of the individual vectors p,, and p,,

ARipy = [Rs§R§—§1 Rg]pw (71
ARgsp. = [ngs?I Rilpe, (72)

where \ = »2. Equations (69)-(72) have the same form as the
actual cross-SCORE eigenequations, but are expressed
directly in terms of the correlation matrices of the under-
lying received signal vectors s(t) and §(t).

If multipath is not present in the received environment,
that s, if the received signals {s/(t — 7)} {2 are uncorrelated
(Ny = L), then the received signal correlation matrices are
diagonal, and both (71) and (72) reduce to

Ap(y = diag {|pgs!|’} Pry (73)
= diag {|0%s/*} P(- (74)

where pS, is the cyclic cross-coherence between s(t) and
$/(0). If the self-coherence strengths {|p%|*}i* are distinct,
then (74) has L, unambiguous solutions (X, p,, p.) of the
form

NOERIAE (75)
pu) = e (76)
pl) = e, (77)

That is, the cross-SCORE eigenequation has L, unambig-
uous solutions, each corresponding to least-squares extrac-
tion of each of the received signals s(t — 7)) from the received
environment if those signals have distinct self-coherence
strengths and sufficiently high maximum-attainable SINR.

If multipath is present in the received environment, such
that the self-coherent signals can be grouped into N, < L,
blocks of correlated signals as shown in Fig. 5, then R,
Ri; and R are block-diagonal and (71)-(72) reduce to

>\ dlag {RSnSn} pw = dlag {Rsn§nR§_n;nR:,I,§n} pw (78)
A diag {Rs,s,} pc = diag {R{s,R;1R.5} pe. 79

If the eigenvalues of (78) and (79) are distinct, then these
eigenequations have N, blocks of solutions, where the nth
block has form

{)\(k/ n)/ pw(kl n)/ pc(kl n)}fn=1

kn

_ —_— . =
0 0
= { Nk, n) | putk, n) | | Bk, ) (80)
0 0
L —d —

k=1

and where {p,} and {p.} are K,-dimensional eigenvectors
and {\k, n), putk, n), plk, M}Ee; are the solutions to the
N, eigenequations

)\RSnSn pw = [R(sx,-,s,, Rs_,,1§,, (R:.Q,,)H] pw (81)
ARqo, P = [(R%s)"Rs L RS 6 1P (82)

That is, the cross-SCORE eigenequation divides into N,
blocks of solutions, where the nth block of solutions extracts
alinear combination of the received signals {s,(f)} Kn ,asso-

AGEE et al.: NEW APPROACH TO BLIND ADAPTIVE SIGNAL EXTRACTION

ciated with the nth signal source, and optimally rejects the
background interference and the other uncorrelated SOls
that are self-coherent at o.

Identification of the multipath blocks can be performed
by analyzing the structure of the output-signal covariance
matrix R,, = WiR, W, where W, is the matrix of processor
eigenvectors with nonzero eigenvalues at the target a. The
output-signal covariance matrix should be block-diagonal
with N, blocks, allowing determination of both the number
of sources N, with spectral self-coherence or conjugate self-
coherence at o and the number of received signals per
source {K,} N= ;. Thus, although the cross-SCORE processor
is not generally able to correct multipath, it is able to sort
the received environment into a set of multipath blocks for
each transmitted SOI. The sorted multipath blocks can then
be passed to a second blind processing stage, such as a con-
stant modulus algorithm [1], to reconstruct the original
source.

3) Analysis of the Auto-SCORE Algorithms: The infinite-
collect analysis of the auto-SCORE objective function is
straightforward and parallels the analysis of the cross-
SCORE objective function®. In particular, if the general envi-
ronment given in (53) is assumed, and u(t) is formed without
a conjugation operation, then A = A and the phase-SCORE
eigenequation given in (50) transforms to

NARp,, + Riw, ] = ARsN,p,, (83)

under the representation (55) for w. Equation (83) has
M — L, solutions wherep,, =0, w = w, and A =0, and L,
solutions where w, = 0 and (), p,,) satisfies

MRyspw = Rglly, — (1, — T) "p,, (84)

- Repw, TS << 1. (85)

The phase-SCORE eigenequation shown in (85) is dis-
cussed extensively in [10], [11], where it is used to show that
the phase-SCORE eigenvectors share the screening and
sorting properties exhibited by the cross-SCORE eigen-
vectors. However, the phase-SCORE eigenequation also
possesses several important advantages over the cross-
SCORE eigenequation, due to its having a complex-valued
eigenvalue, that are worth noting here. In particular, if
IT; "l << 1and {s(0} % are independent and identically dis-
tributed signals (for example, if the signals are part of acom-
munications net) and L, < M, then R is diagonal and (85)
has L, nonzero solutions associated with selection of each
of the self-coherent signals with A()) = p,,, as long as those
signals have distinct self-coherence strengths orphases (for
example, caused by different timing phases). This is in con-
trast to the cross-SCORE eigenequation, which can only
separate signals if they have distinct self-coherence
strengths. The phase-SCORE eigenequation can also be
shown to have N, blocks of nonzero solutions correspond-
ing to selection of each block of correlated self-coherent
signals in the multipath environment discussed above. In
[10], it is also shown that many of these results also extend
to the auto-SCORE objective function. In particular, the
auto-SCORE objective function possesses the same screen-
ing and sorting properties exhibited by thé phase-SCORE
algorithms.

The behavior of the conjugate auto-SCORE objective function
is not of concern here, as itis equivalent to a slightly modified (and
usually identical) conjugate cross-SCORE eigenequation.
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The dependence of the phase-SCORE eigenequation and
the auto-SCORE stationary solutions on the phase as well
as the strength of the spectral self-coherence of the received
signals significantly broadens the applications of these
algorithms, as the received signals rarely have identical tim-
ing phase even if they have identical structure. This prop-
erty can also improve the convergence characteristics of
the approach, as discussed in the next section.

B. Finite-Collect Analysis

A rigorous analysis of the performance of the SCORE
algorithms under finite-collect conditions is beyond the
scope of this paper. However, some qualitative statements
can be made here.

In the rank-1 spectral self-coherence environment, both
the least-squares SCORE algorithm and the power-method
cross-SCORE algorithm described in Section Il can be
treated as noisy least squares algorithms, where the train-
ing (reference) signal r(t) is equal to a desired signal 4s(t)
corrupted by uricorrelated additive noise i(t). Until i(t) is
averaged out by the correlation process, this corruption
component can have a strong effect on the adaptation of
the processor weights.

This noise component is dominated by the background
interference in the least-squares SCORE algorithm if ¢ is
chosen arbitrarily. Thus, the least-squares SCORE algo-
rithm should converge slowly (with respect to a nonblind
algorithm that uses r(t) = s(t) to train the processor) if the
background interference is strong and is not removed by
the control combiner, regardless of the self-coherence
strength of the SOI being selected by the processor.

In contrast, the performance of the cross-SCORE pro-
cessor should be strongly dependent on the strength of the
SOl self-coherence. Adaptation of the control vector during
the optimization process removes the bulk of the back-
ground interference from the control path, leaving only the
self-interference component given in (12), which cannot be
removed because it has the same direction of arrival as the
SOL. As (8) shows, the reciprocal strength vix(a, 7) of the
self-corruption component is directly dependent on | p%u|;
if | o] is close to unity then yicg(a, 7) is very large and the
algorithm should converge nearly as fast as a nonblind least-
squares algorithm. However, if [p%.| << 1, then v (o, 7)
is small and the cross-SCORE algorithm converges much
more slowly than the nonblind least-squares algorithm.

The performance of these algorithms can also be affected
by the spectral self-coherence properties of the other sig-
nals in the environment, even if the other signals are not
truly (for infinite collects) spectrally self-coherent at «. In
particular, if the environment contains [, signals that are
spectrally self-coherent in the vicinity of o, then it is appro-
priate to treat the environmentas rank-L,, self-coherent until
the cycle resolution (reciprocal of the collect time) [6] of the
spectral correlation measurement becomes narrow enough
to discriminate against the other signals. A positive con-
sequence of this observation is that the SCORE algorithms
should be able to select signals even if they are not spec-
trally self-coherent at the target «, given a short enough
averaging time or a wide enough cycle resolution. A neg-
ative consequence of this resultis that the other signals may
interfere with the signals of interest at the target o« and slow
the convergence time of the SCORE processor.

This phenomenon affects the cross-SCORE algorithms
more strongly than the auto-SCORE and phase-SCORE algo-
rithms, due to the dependence of the cross-SCORE algo-
rithms on the self-coherence strength of the received sig-
nals. The measured spectral self-coherence of the received
signals is erratic over short averaging times, and the self-
coherence strengths of the signals can coincide and cross
atrandom intervals over the early portion of any collect. The
cross-SCORE algorithm is not able to separate the received
signals when their measured self-coherence strengths
coincide, resulting in random intervals of performance loss,
or “’signal drop-outs” over the beginning and intermediate
portions of the collect. However, the complex value
(strength and phase) of the self-coherence measurements
of the received signals should rarely coincide. Conse-
quently, the auto-SCORE and phase-SCORE algorithms
should not be subject to the drop-out phenomenon.

V. PERFORMANCE OF THE SCORE ALGORITHMS

A. Simulator Setup

The basic collect geometry and received environment for
the simulations conducted here are shown in Figs. 6 and

FDM-FM
Interferer
Opon,
16-QAM
SOl \ /BPSSOK|

Interferer

[=e
V4
Fig. 6. Receiver front end.

7. A four-element circular array with a 10.24 MHz complex
(bandpass) reception bandwidth, isotropic array elements,
and a half-wavelength array diameter is excited by white
Gaussian noise, two PCM SOls, and FDM-FM and TV inter-

20 dB 1 Received-Signal Spectrum

TV
g

PCM SOls

5 -4 3 2 1 0 1 2 3 4 3

Frequency, MHz

Fig. 7. Received signal environment, isotropic antenna pat-
tern. .

ference signals. The Gaussian noise is white in both spatial
and frequency domains. The PCM signals are transmitted
using Nyquist-shaped modulation pulses with 100% rolloff
(cos® ((n/2) (fIf,) pulse Fourier transforms, where f, is the
symbol rate of the SOI), and with BPSK and 16-QAM symbol
constellations. The FDM-FM signal consists of a carrier fre-
quency-modulated by a 120-channel 60-552 kHz noise-
loaded baseband with a 200-kHz rms frequency deviation.
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The TV signal simulates a horizontal-synchronization pulse-
train with a 15.625 kHz (CCIR standard) line rate. The
received data vector is converted to complex-baseband rep-
resentation and sampled at a 10.24 Ms/sec complex sam-
pling rate prior to adaptive processing. The received signal
parameters are given in Table 2, where DOA denotes direc-
tion of arrival and SWNR denotes signal-to-white-noise ratio.

Table 2 Received Environment Parameters

Signal Rate Carrier DOA SWNR
16-QAM 3 Mbl/s 0 —45° 15 dB
BPSK 4 Mb/s 0 60° 20 dB
FDM-FM — —500 kHz 30° 30 dB
v 15.625 kHz 2 Mhz —110° 40 dB

The two PCM SOils are spectrally self-coherent at plus-
and-minus their symbol rate, with maximum self-coher-
ence magnitude of 1/6 (—16 dB with respect to a magnitude
of 1) at 7 = 0. In addition, the BPSK SOl is conjugate self-
coherent at 0 kHz, with a maximum conjugate self-coher-
ence strength of 1(0dB) at 7 = 0. The TV signal is also spec-
trally self-coherent at multiples of 15.625 kHz, out to the
bandwidth of the synch pulse (=2 MHz).

The least-squares SCORE algorithm is implemented using
the formula

rn) = cMu(n) (86)
w(n) = g(nRG(MR,(n), 87)

where g(n) is a power-normalizing gain variable, u(n) =
x*X(n)e”™" (delay = 0) and c is set to [1, 0, 0, 0]" (isotropic
antenna pattern), and where R,.,(n) denotes correlation with
time-averaging over discrete-time collectinterval[1, n]. The
dominant mode of the cross-SCORE eigenequation is cal-
culated using a stochastic implementation of the power
method algorithm described in (41) and (42),

c(n) = gn Ry (MR (Mw(n — 1) (88)
wn) = g MRS Ru(n cn), (89)

where g(,(n) are power-normalizing gain constants and n
refers to the averaging time (and collect time) of the pro-
cessor. In both cases the output signal is formed using the
most recent processor weight vector y(n) = w"(n)x(n). The
remaining modes of (35), (36) are calculated when required
using a generalized eigenequation algorithm. The corre-
lation statistics used in the weight update equations are cal-
culated using a gain-normalized exponential growing rect-
angular window, with a recursive update formula given by

R0 = [1 — pmIR,u(n — 1) + umzn)v'(n)  (90)

for arbitrary signals z(n) and v(n), where u(n) is given by

1 . .
o rectangular windowing
uln) = 91)
Po

P —— exponential windowing.
1 — (1 _ P'm)n p g

The performance measure used to judge the quality of
the processor output signal is the output SINR

SINR £ |w"a|?R/w/R;w, (92)
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where a is the true direction vector of the SOI, R, is the true
power of the SOI, and R; is the true autocorrelation matrix
of the interference (noise and other signals) in the envi-
ronment.

B. Performance in the Rank-1 Spectral Self-Coherence
Environment

The performance of the SCORE processors in the rank-
1 spectral self-coherence environment containing a single
signal with self-coherence at the target « is investigated
here. Figure 8 verifies the theoretical (infinite time-average)

20 dB- Max BPSK SINR~,, _ Cross-SCORE:

(‘ Carrier restoral—>_

Balidate restoral”

LS-SCORE:
Baud-rate restoral
Carrier resioral\

10 dB-

0dB

200 400 600 800
BPSK SOI Bauds (0.25 psec/baud)
Fig. 8. SCORE performance for a BPSK SOI.

results obtained in Section 11l and illustrates the differing
convergence rates of the least-squares SCORE and cross-
SCORE processors discussed in Section lll. The cross-
SCORE processor converges to within 3 dB of the maxi-
mume-attainable SINR in under 100 SOI bauds in a baud-rate
restoral mode (@ = 4 MHz, r = 0, conjugation disabled) and
in under 20 SOI bauds in carrier restoral mode (¢ = 0, 7 =
0, conjugation enabled). The least-squares SCORE proces-
sor converges much more slowly: the processor SINR is still
5 dB less than the maximum SINR after 350 SOI bauds in
baud-rate restoral mode, and the processor fails to signif-
icantly extract the SOl after 800 SOl bauds in carrier restoral
mode.

The relatively slow convergence of the least-squares
SCORE processor is due to the large uncorrelated inter-
ference component i(¢) present in the reference signal r(t)
for the choice of control vector used in this experiment.
This effect is greatly reduced when the control vectoris also
adapted to restore self-coherence: the dominant corrup-
tion component remaining in r(f) after ¢ is optimized is the
irreducible self-interference component(12), which is small
if the self-coherence strength | p%w| is close to unity. This
also explains why the cross-SCORE processor converges
much faster in carrier restoral mode than in baud-rate
restoral mode: the SO! conjugate self-coherence at o = 0
is six times stronger than the SOI spectral self-coherence
at o = 4 MHz.

The convergence of the cross-SCORE processor is not
appreciably slowed by using the stochastic power-method
to adapt the processor and control vectors. In fact, the dif-
ference between the processor SINR obtained using the
algorithm given in (88) and (89) and the SINR obtained using
the actual dominant mode of the cross-SCORE eigenequa-
tion drops to below 5 dB within 8 SOI bauds (2 psec) in the
environmentused in Fig. 8 [10]. This result is consistent with
the expected performance of the power-method algorithm
in the rank-1spectral self-coherence environment, because
the cross-SCORE eigenequation has a very large spread
between its maximum eigenvalue and its lesser eigenvalues
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Fig. 9. Signal sorting by self-coherence frequency.

(which are all asymptotically equal to zero) in this environ-
ment.

Figure 9 demonstrates the ability of the SCORE algorithm
to sort through interference environments and extract SOls
on the basis of their differing self-coherence frequencies,
a key feature of the cross-SCORE processor. Removing the
conjugation operation and setting the target self-coher-
ence frequency « to 4 MHz causes the SCORE processor to
selectthe BPSK SOI; changing « to 3 MHz causes the SCORE
processor to reject the BPSK SOl and select the 16-QAM
SOL. In both cases, the processor converges to within 3 dB
of the optimal performance within 100 (BPSK) SOI bauds.

Figure 10 illustrates the ability of the rectangularly win-
dowed SCORE processor to tolerate error in the assumed

20 dB 4 BPSK SINR, dB
20 kHz error

no error
4 kHz error

40 kHz error
0 200 400 600 800
BPSK SOI Bauds (0.25 psec/baud)

0dB

Fig. 10. Tolerance of rectangularly-windowed cross-SCORE
to target self-coherence error.

SOl self-coherence frequency, a particularly important
 problem when conjugate self-coherence (which is affected
by Doppler shift) is being restored by the processor. The
processor is implemented here in carrier-restoral mode
(conjugation enabled, 7 = 0) for varying amounts of error
inthe target .. In all cases where « is in error, the processor
eventually rejects the BPSK SOI; as Fig. 10 shows, however,
the time required for this to happen is long when the error
is small. Furthermore, even when the error is large and the
rejection time is short, the SINR of the selected SOI can
reach a high value before the SCORE processor begins to
reject the SOI. In many applications, this SINR may be high
enough to allow a more robust (but less discriminatory)
algorithm, such as a constant modulus algorithm, to take
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over adaptation of the array. Alternately, the rejection time
may be long enough to allow the error in « to be estimated
and removed over the SOI transmission time.

The simulation performed in Fig. 10 is repeated in [10]
using the exponential windowing algorithm given in (971),
for 0.001 < p, < 0.1, in order to evaluate the tolerance of
this window to error in the self-coherence frequency of the
SOL. It is found that an exponential window can improve
the tolerance of the SCORE algorithm, but at significant cost
in misadjustment error. For the largest exponential decay
factor chosen in [10] (u, = 0.1), for instance, the SCORE
algorithm experienced an average SINR loss of 6 dB below
the maximum-attainable SINR for this example, for virtually
all of the self-coherence errors considered in Fig. 10. How-
ever, this SINR loss fluctuated widely over the collection
interval, varying by as much as 8 dB from that average value
over the run-time of the simulation. It is hoped that more
sophisticated averaging windows can reduce this misad-
justment and increase the tolerance of the SCORE algo-
rithm to self-coherence error.

C. Performance in the Rank-L, Spectral Self-Coherence
Environment

The performance of the SCORE processors in the rank-
L, spectral self-coherence environment containing L, sig-
nals with spectral self-coherence at the target « is inves-
tigated here. Two environments are of particular interest:
the multipath environment, where L, correlated signals
(reflections) with self-coherence at « are impinging on the
array, and the multiple-SOI environment, where L, uncor-
related signals with equal self-coherence strength at the
same « are impinging on the array. The cross-SCORE pro-
cessor is shown to reject interference and background
noise, leaving at worst an arbitrary linear combination of
the L, self-coherent signals in both environments. In addi-
tion, the cross-SCORE and phase-SCORE processors are
shown to sort through the multiple-SOI environment and
separate the self-coherent signals with near-optimal SINR,
if those signals have differing self-coherence strength at the
same a (if the cross-SCORE algorithm is used), or if the sig-
nals have differing complex value (strength or phase) at the
same « (if the phase-SCORE algorithm is used).
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Fig. 11. Antenna pattern of most-dominant cross-SCORE
solutions, multipath environment.

Figure 11 demonstrates the screening property of the
cross-SCORE processor in a multipath environment where
the 16-QAM signal in Table 2 has been replaced by a one-
sample (50 nsec) delayed replica of the BPSK signal listed
in that table. The delayed-path signal s(t — 7,) is almost fully
correlated with the direct-path signal s(t), (| ps5(74)| = 0.93)
for this value of delay, presenting adifficult extraction prob-
lem for any processor operating without prior knowledge
of the signal DOAs. However, Fig. 11 shows that the two
most-dominant modes of the cross-SCORE eigenequation
are able to reject the interference signals that are not self-
coherent at the SOI symbol rate, and to pass some linear
combination of the two SOl components. In [10] it is also
shown that SOl components are extracted with significant
distortion, but without the cancellation effects observed in
multipath environments with other blind techniques such
as power-minimization techniques.

Figure 12 demonstrates the ability of the cross-SCORE
processor to sort through interference environments and
extract signals on the basis of their differing self-coherence
strengths. The cross-SCORE processor is configured here
in baud-rate restoral mode, and the 16-QAM signal listed
in Table 2 has been replaced with a 4 Mb/s BPSK signal with
50% Nyquist rolloff. This environment therefore contains
two BPSK signals with spectral self-coherence at 4 MHz but
with differing self-coherence strengths (1/6 for the signal
with 100% rolloff, and 1/14 for the signal with 50% rolloff).
Figure 12 shows that the eigenvector corresponding to the
largest eigenvalue of (35) selects the BPSK signal with 100%

100% Nyq. BPSK SINR, max A
50% Nyq. BPSK SINR, next 1

0dB

7
200
BPSK SOI Bauds (0.25, psec/baud)

Fig. 12. Signal sorting by eigenequation solution.
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Max. 50% Nyq. BPSK SINR

400 600 800

Nyquist rolloff, while the eigenvector corresponding to the
next-largest eigenvalue of (35) selects the BPSK signal with
50% Nyquist rolloff. In each case, the SINR of the selected
signal converges to within 3 dB of its maximum attainable
value.

Figures 13and 14illustrate the performance of the SCORE
processors when the self-coherent signals have equal self-

0.180 1Self-Coherence Magnitude

0.165

-45° DOA

0.150 y
[} 400 800 1200 1600
Number of SOI symbols (0.25

Fig. 13. Measured SOl self-coherence magnitudes for two
i.i.d. BPSK received signals.
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1548 Phase-SCORE
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1048 Cross-
SCORE
5d8
0dB Output SINR, dB
4bo 800 1200 1600
of SOI symbols (0.25 psec/symbol)

Fig. 14. Output cross-SCORE, phase-SCORE SINRs for two
i.i.d. BPSK received signals.

coherence strengths. The cross-SCORE processor is imple-
mented here with the conjugation disabled and « = 4 MHz,
and with the 16-QAM signal listed in Table 2 replaced by
a BPSK signal with the same structure as the BPSK signal
given in that table, but with a different timing phase and
a statistically independent bit sequence. This environment
then contains two independent and identically distributed
(i.i.d.) signals with identical self-coherence strengths of
1/6 at « = 4 MHz and 7 = 0. However, the two BPSK signals

* 5% peak jitter
06 02 02 06 = 1
Baud Interval

% Nyquist BPSK E

- > 12% peak jitter

L L T T T T T T =

-0.6 -0.2 0.2 0.6 1
Baud Interval
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have differing self-coherence phases, due to their differing
timing phases.

Figure 13 shows that the estimated self-coherence
strengths of the transmitted BPSK SOls do not begin to set-
tle about their expected values until roughly 800 data bauds
have been collected. Comparison of Fig. 13 with the SINR
of the two highest-eigenvalue solutions shown in Fig. 14
reveals that the cross-SCORE processor separates the two
SOls until their estimated self-coherence strengths become
too close. After this point, the dominant modes no longer
separate the SOls, but continue to reject the interference
and pass some linear combination of the two SOIs (plus a
low level background of noise and residual interference).
In contrast, Fig. 14 shows that an auto-SCORE algorithm
such as the phase-SCORE algorithm can select and separate
the BPSK signals even after the estimated self-coherence
strengths of the SOIs have converged to the same value.
The phase-SCORE algorithm is able to select each of the
SOls with near-optimal output SINR in this environment,
by exploiting the differing self-coherence phase of these
signals. The phase-SCORE SINR curves are also much
smoother in Fig. 14, demonstrating none of the drop-outs
exhibited by the cross-SCORE algorithm in this experiment.

VI. CONCLUSIONS

Anew class of algorithms for blind adaptation of antenna
arrays, the spectral self-coherence restoral (SCORE) algo-
rithms, is presented. Three new adaptive processors, the
least-squares SCORE processor, the cross-SCORE processor,
and the auto-SCORE processors, are developed, analyzed,
and simulated in the rank-7 and rank-L, spectral self-coher-
enceenvironments whére 1and L, signals with spectral self-
coherence or conjugate self-coherence at a known value of
frequency shift and arbitrary interference without self-
coherence at that value of frequency-shift are received by
an antennaarray. It is shown analytically and by computer
simulation that the SCORE processors can select a SOl with
maximum SINR in the rank-1 spectral self-coherence envi-
ronment, given only knowledge of a self-coherence fre-
quency of the SOI, for example, knowledge of the SOl sym-
bol-rate or carrier frequency. Itis also that the cross-SCORE
processor can select SOls even if their self-coherence fre-
quencies are only approximately known, and that the cross-
SCORE processor can select SOls with near-optimum SINR
in the rank-L,, spectral self-coherence environment. These
properties are used to demonstrate the ability of the SCORE
processor to sort through environments to extract and sep-
arate multiple PCM SOls on the basis of their differing sym-
bol-rates, or (if their symbol rates are equal) on the basis of
their differing self-coherence strengths or phases.

These results show that the SCORE approach provides a
promising alternative to existing blind adaptation tech-
niques. The SCORE processors have unambiguous and ana-
lytically tractable convergence and selection properties,
giving them an advantage over other property restoral tech-
niques in automatic processing applications. The SCORE
algorithms also operate without knowledge of the back-
ground noise or interference covariance matrix, and with-
outknowledge of (or constraints on) the sensor array geom-
etry or individual sensor characteristics, giving them cost,
complexity and performance advantages over techniques
that exploit only the spatial coherence. The highly discrim-
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inatory signal-selection properties of the SCORE approach
make it ideal for directed-search applications where a few
SOls with well-known modulation properties must be
extracted from dense interference environments.
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