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The Cumulant Theory of Cyclostationary
Time-Series, Part I: Foundation

William A. Gardner, Feilow, IEEE, and Chad M. Spooner, Member, IEEE

Abstract— The problem of characterizing the sine-wave com-
ponents in the output of a polynomial nonlinear system with
a cyclostationary random time-series input is investigated. The
concept of a pure nth-order sine wave is introduced, and it is
shown that pure nth-order sine-wave strengths in the output time-
series are given by scaled Fourier coefficients of the polyperiodic
temporal cumulant of the input time-series. The higher order
moments and cumulants of narrowband spectral components of
time-series are defined and then idealized to the case of infinitesi-
mal bandwidth. Such spectral moments and cumulants are shown
to be characterized by the Fourier transforms of the temporal
moments and cumulants of the time-series. It is established that
the temporal and spectral cumulants have certain mathematical
and practical advantages over their moment counterparts. To
put the contributions of the paper in perspective, a uniquely
comprehensive historical survey that traces the development of
the ideas of temporal and spectral cuamulants from their inception
is provided.

I. INTRODUCTION

HIS paper lays the foundation required for tackling

problems in the general area of nonlinear processing of
random signals with underlying periodicities, which are often
called cyclostationary signals. Such signals commonly arise in
communication, telemetry, radar, sonar, and control systems,
and in various scientific disciplines that require analysis and
processing of random measurement data obtained from sys-
tems subject to seasonal and other rhythmic variations, such
as electrocardiograms and other physiological measurements,
climatic, oceanic, meteorologic, and hydrologic data, and so
on [33], [34].

The theory of linear and quadratic processing of cyclo-
stationary signals is quite new and unfamiliar to many. It
also is more technical than its more familiar counterpart for
stationary signals. Consequently, this paper on more general
nonlinear processing, which is more technical yet and deals
with new concepts and results from mathematical statistics,
must necessarily be tutorial and more lengthy than the typical
research paper in the field of signal processing.

The central issue in this paper is the generation (and, in Part
II, also in this issue, the utilization) of finite-strength additive
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sine-wave components from random data by nonlinear trans-
formation, and we begin our development of the theoretical
foundation for this in Section II. But first we motivate this
area of study and place it in proper perspective relative to
other areas of study with which the reader is assumed to be
familiar.

The theory of generation of sine waves by using quadratic
nonlinearities has been thoroughly laid out in [34]. Appli-
cations of this theory include weak-signal detection [36],
[41], parameter estimation [43], spatial filtering [1], direc-
tion finding [91], system identification [38], and polyperiodic
linear filtering [42] (see also [45]). Algorithms for these
tasks that are designed using the theory of quadratically
regenerated sine waves are particularly attractive when the
signal of interest is heavily corrupted by noise and interfering
signals because the regenerated sine-wave measurements are
asymptotically independent of the noise and interference and
are, therefore, tolerant to noise and interference in practice.
Thus, the exploitation of regenerated sine waves allows the
design of signal processing algorithms that exhibit a kind
of signal selectivity. However, there are some signals from
which sine waves cannot be generated by using a quadratic
nonlinearity, but from which sine waves can be generated by
using higher order nonlinearities. For example, no sine waves
can be generated from a pulse-amplitude-modulated (PAM)
signal with bandwidth equal to the Nyquist rate (e.g., as in
partial-response signaling) by using a quadratic nonlinearity,
but a sine wave with frequency equal to the symbol rate
can be generated by using quartic nonlinearities. As another
example, no sine waves with frequencies related to the carrier
frequency can be generated from a balanced quadrature-phase-
shift-keyed signal by using quadratic nonlinearities, but a
sine wave with frequency equal to four times the carrier
frequency can be generated by using a quartic nonlinearity.
Thus, in order to take advantage of the desirable properties of
sine-wave regenerative signal processing algorithms—namely,
signal-selectivity and noise tolerance—we need to consider
higher order nonlinearities.

Let us now consider the relationship of the study of higher
order sine-wave generation to other parts of signal processing
theory. The analysis of a signal into a set of spectral (sine-
wave) components is a conceptually and mathematically useful
concept. If the signal is periodic, such an analysis allows a
representation in terms of a countable set of numerical val-
ues—the Fourier coefficients—as opposed to the uncountable
set that is required for a pointwise representation of the signal
over a single period. If the signal is erratic rather than periodic,
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but is persistent and has the property of stationarity, the power
spectral density (PSD) is a useful spectral description in that it
gives the average squared magnitudes of infinitesimal spectral
components normalized by their infinitesimal bandwidths.
Moreover, the effects of linear time-invariant operations on
the signal can be easily expressed and understood through
the use of the PSD. In the case of a periodic signal, a
Fourier-series analysis gives the complex-valued strengths
(magnitudes and phases) of the sine waves that comprise
the signal, whereas in the case of a stationary erratic signal,
the Wiener relation between the PSD and the autocorrelation
function reveals that the PSD can be obtained by applying the
Fourier transform to the autocorrelation function. Thus, we
analyze either the signal itself or a probabilistic function of
the signal—the autocorrelation—into spectral components that
are finite and denumerable in the former case, and infinitesimal
and nondenumerable in the latter.

The theory of cyclostationary signals combines these two
different, but related, analysis concepts. A cyclostationary
signal is itself erratic (except in uninteresting degenerate
cases), .but its autocorrelation function varies periodically
or polyperiodically (with multiple incommensurate periods)
with time. We use a Fourier-series analysis to determine the
strengths of the sine-wave components that make up the
(poly)periodically time-varying autocorrelation, and we use
the Fourier transform of the resultant lag-dependent Fourier
coefficients to obtain a generalization of the PSD. The theory
of cyclostationary signals that is based on this time-varying
autocorrelation function and its spectral characterization is
called the theory of second-order cyclostationarity (SOCS),
and is developed in [33], [34].

The theory of higher order statistics (HOS) characterizes
the higher-than-second-order probabilistic functions (such as
moments) of stationary signals, and measurements thereof
[10]-[12], [66], [671, [72], [75] (and therefore can be called
higher order stationarity). Similarly, the theory of higher
order cyclostationarity (HOCS) characterizes the higher-than-
second-order probabilistic functions of cyclostationary signals.
These functions vary periodically or polyperiodically; hence
they can be analyzed into Fourier series components. The
individual Fourier coefficients of these time-varying functions
can then be Fourier transformed in multiple dimensions to
obtain the average higher order spectral behavior of the signal.
These Fourier transforms also give the averages of prod-
ucts of multiple bandwidth-normalized infinitesimal spectral
components of the erratic signal (which is a generalization
of the Wiener relation to higher-than-second-order moments).
Thus, HOCS deals with the time- and frequency-domain
characterization of the strengths of the sine-wave components
of (poly)periodically time-varying higher order probabilistic
functions of cyclostationary signals. As such, it is more general
than HOS in that HOS is subsumed by HOCS.

We have been purposely vague about our use of the phrase
erratic signal. This is because there is another difference
between the theory of HOCS and that of HOS (as it currently
exists in the literature), namely, the difference in the mathe-
matical framework used for the analyses described above. In
the existing theory of HOS, the framework is that of stochastic
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processes (the ensemble-average framework), whereas in the
theory of HOCS it is that of time-series (the time-average
framework). Both HOS and HOCS can be studied within
either framework, and therefore, erratic signal can mean either
stochastic process or time-series in the preceding paragraphs;
howeyver, hlstoncally HOS has always been formulated in
terms of stochastic processes whereas the time-average frame-
work of time-series has been preferred for practical reasons
in the formulation of HOCS [39], [96], [99] (and in the
autocorrelation theory of cyclostationarity (SOCS) [34]). If
the process under consideration is stationary and ergodic, and
the time-series under consideration can be viewed as a sample
path of this process, then results from one HOS framework are
generally true in the other (i.e., with probability equal to one).
Similarly, if the process is cyclostationary and cycloergodic
(terms that are defined subsequently), and if the time-series
can be viewed as a sample path of this process, then results
from one HOCS framework are again generally true in the
other. Our reasons for adopting the time-average framework
are as follows:

a) The time-average framework is conceptually and math-

ematically closer to the practice of signal processing.

b) The stochastic process framework entails a level of often

unnecessary (although sometimes useful) abstraction.
¢) The time-average framework avoids the pitfalls associ-
ated with using (unknowingly or otherwise) stochastic
process models that are not ergodic or cycloergodic, cf.
- [45].

In summary, an erratic signal in HOS is a stochastic
process, and the tool that defines the probabilistic functions
is the mathematical operation of expectation, which requires
a hypothetical ensemble of realizations chosen according to
a probability rule (a probability measure that gives rise to
probability density functions (PDF’s)), whereas an erratic
signal in HOCS is a single time-series with infinite duration,
and the tool that defines the probabilistic functions is the
infinite-time averaging operation, which leads to fraction-of-
time probabilities.

We have also been purposely vague about the phrase proba-
bilistic function. This is because we mean two different things
by this one phrase. The first is the familiar moment, such as
the mean or second moment of a random variable, which is
the average (ensemble or time) of a product of quantities.
The second thing that we mean by probabilistic function is
the not-so-familiar cumulant (also called semi-invariant, half-
invariant, cumulative moment function, generalized correlation
function). The nth-order cumulant of a random variable is a
nonlinear function of its moments for orders 1 through n, and
the nth-order moment of a random variable is a nonlinear
function of its cumulants for orders 1 through n.

Cumulants of stationary stochastic processes are the basic
parameters in the theory of HOS primarily because the cumu-
lants of Gaussian random variables and, therefore, stochastic
processes for orders greater than two are identically zero,
whereas the moments are not. A second reason for the central
position of cumulants in HOS is that the cumulant for a sum
of statistically independent random variables is the sum of
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the cumulants for each variable: cumulants are cumulative,
whereas moments are not.

Thus, higher order cumulant measurements (rather than mo-
ment measurements) have a natural tolerance to Gaussian noise
and interference that may be corrupting a signal of interest. It
has also been recognized by several early researchers [10],
[92] that cumulants can be used to construct well-behaved
higher order spectral parameters (called polyspectra), whereas
moments cannot, in general. Moments, however, are also
important in that cumulants can be estimated by properly
estimating and then combining moments.

Cumulants are fundamental in HOCS for the above reasons
and for an additional important reason which is the reason
attention in our study of cyclostationarity was originally drawn
to them: we have derived the cumulant as the solution to
a particular measurement problem associated with sine-wave
generation, which is described in Section II.

Now that we have removed the intentional ambiguities in the
terminology of the first part of this introduction, we can state
precisely what the study of HOCS consists of: the frequency-
and time-domain characterization of the strengths (magnitudes
and phases) of the sine-wave components in (poly)periodically
time-varying higher order moments and cumulants of time-
series by using the time-average operation as the basic analysis
tool. In the next section, the fundamental mathematical defini-
tions and concepts of the time-average framework are briefly
reviewed. More complete treatments are given in [34] and [40].
Following this is a brief but uniquely comprehensive historical
survey tracing the development of the cumulant in statistics
and engineering from its inception at the turn of the century
to the present. This background material in Section I sets the
stage for Section II, wherein the motivating problem of sine-
wave generation by nonlinear transformation is introduced.
The remainder of Section II and its companion Section III
develop the time- and frequency-domain characterizations of
nonlinearly generatable sine waves. The results of Sections
IT and III are discussed in Section IV, and conclusions are
drawn in Section V.

A. Fraction-of-Time Probability

In direct analogy with the conventional probability distribu-
tion function that is defined and/or interpreted as an ensemble
average, the nth-order fraction-of-time (FOT) probability dis-
tribution function for the real time-series z(t), ¢t € (—o0, 00)
is defined by

Fro(y) 2 B T U, s+
‘ e
where
E{a}{z(t)} LN Z (2(t + u)e—i27rozu>
— Z <z(u)e—i27rau>ei27rozt (2)
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is the multiple sine-wave extraction operation and

is the usual time-averaging operation. The sum in (2) is over
all values of « (which are assumed to be denumerable in
number) that result in nonzero terms. In (1), U[] is simply
the event-indicator function

1, z(t+1t;) <wy;
Uly; — o(t +1;)] = {0, ot(herwijsze g

and
Y= [y oyt
z(t) 2 [zt +t1) -zt +t,)]

Y

where  denotes matrix transposition. It is shown in [40]
that Fi;)(y) is nondecreasing in each of its arguments, only
takes on values in [0, 1], and satisfies the boundary conditions
Fgy(y) — 0 for y — —oo and Fr)(y) — 1 for y — oo.
Thus, (1) is a valid probability distribution function.

If the only nonzero term in the sum over the cycle frequency
index « is that corresponding to @ = 0, then the time-series
z(t) is said to be stationary of order n. On the other hand,
if some terms corresponding to a # 0 are also nonzero, then
z(t) is said to exhibit cyclostationarity. If all such values of
a are integer multiples of a single fundamental frequency,
say o9 = 1/Tp, corresponding to a period Ty, then z(t)
is said to be cyclostationary of order n, otherwise z(t) is
said to be polycyclostationary (or multiply-cyclostationary or
almost cyclostationary) of order n. In the latter case, the FOT
distribution function can be expressed as

Fray(w) = FR(w) + > [Fryr, ) — Faly)] 3
q
where

Fo(y) £ <H Uly; —=(t + tj)]>

and where Fg).T, (y) is the FOT distribution obtained by
summing in (1)—(2) over only those values of « that are integer
multiples of 1/T,. Fg1),r,(y) can also be obtained from the
alternative but equivalent definition

Faom, () sy

<3

m=—M

[T Uly; — z(t+t; + mTy)]
7=1

C))

The function Fig(y) must be subtracted from each Fx4,r, (y)
in'(3) because it appears in (4) as the m = 0 term for every
value of T;. That is, the m = O term in (4) is the same for
each T}, but should be included only once in the distribution
function (1), as in (3).
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The FOT probability density function (PDF) is given by the
n-fold derivative of the distribution function

F. Z(t) (y)

n

g
A

and has all the properties associated with the conventional
probability density function.

The expectation operation associated with the FOT PDF
is defined in the usual way for any PDF. Let g[z(t)] be a
function of the vector of time-samples

(t) = (2t +t2) - w(t + )]

If we redefine the symbol £{}{.} (defined in (2)) to be the
expected value with respect to the FOT PDF fz 4 (y)

Bt g} 2 / /

then it can be shown that this expected value consists exactly
of the finite-strength additive sine-wave components that are
present in g[z(t)]. Specifically

E{a}{g ]} Z Ma 27t , (6)

(Y] fx ) (y) dy (5

where

Ma A <g t) —z27rozt> (7)
which is consistent with the meaning given to Bt {-} in 2).

The FOT distributions and densities are not used explicitly
(as in (5)) in this paper. Instead, the time-averages that
characterize the FOT expectations are used directly, as in (6)
and (7). Thus, the primary purpose of this discussion of FOT
probability is to show that the multiple sine-wave extraction
operation E{O‘}{} is completely analogous to the expectation
operation E{-} and, therefore, that the subsequent use of
terms such as moment, cumulant, and characteristic function
(CF) is mathematically justified and appropriate. Examples of
computation of the quantities (6) and (7) are given throughout
the paper.

B. Statistical Independence in the FOT Framework

Since many of the properties of joint moments and cu-
mulants of multiple time-series depend on their statistical
dependence or lack thereof, it is important to understand the
notion of statistical independence in the FOT framework.

The (r + s)th-order joint distribution function for the vari-
ables

{H{ylt 4wy} {20+ k) o1 }

is denoted by Fys)z(t) ([u v]). The time-series y(¢) and z(t)
are statistically independent if and only if the joint density
factors

= Fy()(w) Fz(z)(v)

for all positive integers r and s, and all values of u and v.
It follows from this definition that any constant, periodic,
or polyperiodic time-series is statistically independent of all
time-series, including itself. This is analogous to the fact that

Fyw)z(([wv))
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a constant random variable is statistically independent of all
random random variables, including itself.

It follows that the (temporal) expected value of a product
of any number of time-samples of a (poly)periodic time-
series and the time-samples of any other time-series is equal
to the product of the samples of the (poly)periodic time-
series multiplied by the expected value of the product of
the samples of the other time-series. The previous statement
is not true if the phrase expected value is replaced by the
phrase time-averaged value, except in the special case where
the (poly)periodic time-series is actually constant.

C. Cycloergodicity

We have drawn a distinction between the underlying con-
cepts in the alternative frameworks of stochastic processes
(used in HOS) and time-series (used in HOCS), namely the
distinctions between stochastic expectation (ensemble average)
and temporal expectation (time average or, more generally,
sine-wave extraction), and between stationarity and cyclo-
stationarity. In the light of the preceding paragraphs, these
distinctions are clarified here.

A stochastic process is called kth-order stationary if all
moments of order k or lower exist and are translation invariant.
A time-series is called kth-order stationary if (i) its temporal
moments up to order k exist, (ii) these moments are not
identically zero, and (iii) there are no nonzero-frequency sine
waves in any lag product with order k or lower (the temporal
moment function contains no sine waves with frequencies
a # 0). If the third condition fails to hold, then the time-series
is kth-order cyclostationary or kth-order polycyclostationary.
A stochastic process exhibits kth-order cyclostationarity if the
kth-order moment of the process exists and contains sine-
wave components with nonzero frequencies «. The process
is kth-order (almost or poly-) cyclostationary if its kth-order
moments are (almost or poly-) periodic functions of the time-
translation variable (i.e., if the moments are entirely composed
of sums of sine waves). A stochastic process is called kth-
order cycloergodic if the sine-wave components of every
stochastic moment of order k or lower are equal to the sine-
wave components of the corresponding temporal moment for
almost every sample path; that is, stochastic moments are
equal to temporal moments with probability one. In addition,
we can define kth-order ergodicity to mean that the o = 0
components of the stochastic moments are equal to the o =
0 components of the corresponding temporal moments for
almost every sample path of the process. It is evident that kth-
order cycloergodicity implies kth-order ergodicity, but that the
converse is not true.

Communication signals are often modeled as kth-order
stationary stochastic processes even though the sample paths
are not stationary time-series. This is done by introducing
phase-randomizing variables. If in this case an ergodicity
assumption is invoked, then measurements of statistics based
on a single sample path of the process, such as moments and
cumulants, can be in error in that they will not necessarily
match the probabilistic functions of the process: the process
is not necessarily kth-order cycloergodic even though it may
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be kth-order ergodic [35], [45]. This kind of modeling not
only removes from.consideration the potentially important sine
waves, but also confuses the meaning and measurement of the
a = 0 components from sample paths of the process. This
is illustrated with a numerical example in Part II, also in this
issue.

It should be emphasized that all the results in this paper and
its sequel can be obtained in the stochastic process framework
provided that we restrict our attention to those cyclostationary
processes that are cycloergodic. This duality is reflected in
the notation we have chosen for the temporal expectation
operation E{®}{.}, which is similar to the notation E{-} for
the usual stochastic expectation used in the stochastic process
framework.

D. Historical Survey of Cumulants and Cumulant Spectra

The history of the cumulant is traced in this section. A
concise history, to begin with, is that the cumulant was born
in mathematical statistics, developed in the probabilistic theory
of stochastic processes, and after nearly 100 years found its
way into electrical engineering through the field of higher
order statistics as applied primarily to problems of time-series
modeling and system identification. '

In 1903, Danish astronomer Thorvald Nicolai Thiele pub-
lished a book called The Theory of Observations [101] in
which he tried to quantify the statistical nature of measurement
errors. Thiele developed functions that he called laws of
presumptive errors which are probability density functions.
By expressing these functions in Maclaurin series form, he
found that they could be characterized by moments or by
cumulants, which he called half-invariants, because cumulants
are invariant to additive constants in a random variable,
but not to multiplicative constants. Thiele recognized that
the half-invariants provided an easy way to test for the
normal distribution: the higher order half-invariants are zero
for Gaussian random variables. Although Thiele’s introduction
of cumulants was practically motivated, he did not arrive at
them as the solution to a particular problem. Thiele gave no
indication that he was aware of any other work on cumulants,
and he did not use any term other than half-invariant to
describe cumulants. Cramer [17], A. Fisher [29], and Graham
[46] each claim that Thiele discovered cumulants.

Cumulants were introduced into the theory of sampling
distributions, that is, the theory of the probability distribu-
tion of sample statistics, largely through the work of Fisher,
Wishart, and Kendall [15], [30], [61], [107]. The basic problem
here is to determine the distribution of statistics such as the
sample moments or sample cumulants by, say, determining
the moments or the cumulants of the sample statistic. Fisher
knew that the mean of a statistic does not necessarily equal the
corresponding population parameter. In the case of the sample
variance 62, the mean is

N —
N 10'2. ’

E{6?) =

where o2 is the population variance. Fisher proposed a new
set of cumulant statistics, called k-statistics, for which the
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expected value is equal to the corresponding population cumu-
lant. This set of statistics greatly facilitated work in sampling
distribution theory. A detailed treatment of this topic is given
in the excellent reference [61]. In 1937, Cornish [15] attributes
the term cumulant to Laplace (without referencing a particular
work of Laplace’s) because Laplace called the logarithm of
the characteristic function (LCF) the cumulative function, and
cumulants are the coefficients of this function in Maclaurin
series form. The LCF gets its alternative name of cumulative
function from the property that the LCF for a sum of indepen-
dent random variables is the sum of their LCF’s: the LCF is
cumulative. However, in 1928, Wishart [107] calls the LCF the
kappa generating function, and calls the cumulants cumulative
moment functions. The terms cumulant and log-characteristic
function are used today.

Other early work, if taken further, could also have led
to the cumulant. For example, in 1938, by generalizing the
work of several others (Ursell, Darwin, and Fowler), Kahn
and Uhlenbeck [102] presented a representation of the joint
probability function in terms of a new function, and they
represent this new function in terms of the probability function.
We have observed that by using indicator functions to represent
probability as an expectation, we can interpret the probability
function as a joint moment of random indicator variables, and
the new function can then be seen to be the cumulant of these
indicator variables. Kahn and Uhlenbeck observed that their
new function was zero when some subset of their events were
independent of their remaining events, and they claimed that
this was “the importance of the new function.”

In the early 1950’s, cumulants were used in an engineering
context for the first time by Kuznetsov, Stratonovich, and
Tikhonov in a study of the passage of stochastic processes
through linear and nonlinear systems [66], [67]. Apparently
without motivation, the authors decide to characterize the
output stochastic process by using the logarithm of the joint
characteristic function of samples of the output. They were
therefore faced with a function which contained cumulants
that were parameterized by the specific values of the sampling
times. They called these cumulants generalized correlation
Jfunctions because they were equal to the familiar correlation
function for order two (the covariance). The main result
in these two references is that the generalized correlation
functions for the output process are related in a simple way
to those for the input process. The authors also used the
generalized correlation functions to characterize the degree to
which the output process deviated from normality. A more
general form of the relation between moments and cumulants
than that given by Thiele in [101] is given in [67] apparently
for the first time, but without proof, and is not central to the
work therein. The authors of [66] and [67] used none of the
terminology described in the previous paragraphs.

In the late 1950’s and early 1960’s the theory of cumulants,
which are sometimes called semi-invariants (or seminvari-
ants), was put on a firm theoretical foundation by Shiryaev
and Leonov [69], [92]. In [69], the cumulants of the out-
put of a polynomial nonlinearity are obtained in terms of

-the cumulants of the input process, thereby formalizing the

earlier work in [66] and [67]. Also, a combinatorial proof of
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the relationships between moments and cumulants is given
for arbitrary order. This appears to be the only published
proof of these relations. The results of the work in [92]
are essentially the probabilistic counterpart of the material
presented in Sections II and IIT herein, restricted (for the
most part) to stationary processes; [92] is a measure-theoretic
approach to understanding higher order moments and spectra
of stochastic processes. Shiryaev defines the polyspectrum
as a cumulant with respect to the logarithm of a spectral
characteristic function, which is the characteristic function of
the spectral increments of the process, and also shows that the
polyspectrum is equal to the Fourier transform of the time-
domain cumulant function for generally nonstationary as well
as stationary processes. Shiryaev does not specialize his results
to the case of cyclostationary processes.

In the 1960’s the properties of cumulants, both temporal and
spectral, were investigated [10] and measurement techniques
were developed [11], [12]. It is here that the term polyspectrum
is introduced (which Brillinger attributes to Tukey) for the
spectral cumulants or, equivalently, the Fourier transform of
the temporal cumulants, and a case for the superiority of
cumulants over moments for use in the theoretical develop-
ment of HOS is made in [10]. The processes involved in
[10] are assumed to be nth-order stationary, which means
that all moments up to and including order n are translation
invariant. In [10]-[12] polyspectra are defined to be the Fourier
transforms of time-domain cumulants, but are also recognized
to be spectral cumulants.

The 1970’s saw minimal application of polyspectra and
cumulants. The focus was on the third-order polyspectrum,
called the bispectrum; the application was to the area of
detection of phase-coupling in sinusoids [55], [62], [63],
[75], [87], [88]. Three sinusoids with frequencies { iy,
and random phases {6;}3_; are said to be phase-coupled if
f1 + f2 = f3 and the sum 6 + 6 is statistically dependent
on 5. This can be the case, for example, in the output of
a linear-plus-quadratic system with the sum of sine waves
with frequencies f1 and f» at the input. Some progress in this
area was made, and a corresponding interest in the statistical
properties of estimates of the bispectrum was piqued.

In the 1980’s a sector of the electrical engineering commu-
nity became interested in HOS as a tool that could be used to
perform system identification. Since the autocorrelation (and
power spectral density) of a second-order stationary process
does not contain phase information, it cannot be used to
identify nonminimum-phase systems. Researchers were led
to higher order statistics because higher order moments and
cumulants do contain phase information. Many researchers
claim that second-order statistics cannot be used to obtain
phase information, but this is incorrect since the cyclic au-
tocorrelation, which is a second-order statistic, is sensitive to
phase for cyclostationary signals. Nevertheless, if the signal is
stationary, or does not exhibit SOCS, then third or higher order
statistics must be used to obtain phase information. System
identification is still the dominant application area in HOS, as
can be seen by noting that over half of the recent HOS tutorial
paper by Mendel [72] is concerned with parametric system
identification, that is, determining the coefficients of AR, MA
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and ARMA system models (see references in [72]). Other
recent applications include synchronization [27], [6], random
signal detection [47], [64], image reconstruction [81], tests for
the Gaussian property and linearity of stochastic process [53],
neural-network based estimation [104], radar signal processing
[26], equalization [82] and direction-finding (source location)
[13], [32], [54], [83], [110]. In most of these applications, the
signals of interest are modeled as stationary stochastic pro-
cesses (the exception is synchronization), and in many cases
the highest order employed is three. There are good reasons
for the latter restriction: for example, if the input signal-to-
noise ratio (SNR) is below 0 dB, the SNR at the output of
an nth-order homogeneous polynomial nonlinearity decreases
as the order n increases. Also, computational complexity of
algorithms that exploit HOS can grow rapidly as the order
increases.

It is of some interest to note that the subject of cumulants has
been largely neglected by the authors of the classic (or at least
popular) texts in probability theory, mathematical statistics,
stochastic processes, and time-series analysis. This is largely
due to the long-standing emphasis on the correlation theory
of processes and time-series wherein only the first and second
moments are of interest. This theory is very powerful because
it is sufficient for the explanation of the behavior of Gaussian
processes, handles linear transformations of data easily and
elegantly, and is computationally simpler (more tractable)
than higher order theories. The treatment of cumulants and
polyspectra in the most well-known texts is discussed next,
followed by a brief description of three modern texts that do
treat the topic of cumulants and polyspectra.

The texts considered in time-series analysis are [4], [9],
[52], [57], [60], [65], [84]. The book [84] by Priestley contains
the most material on cumulants. There is a short history that
starts with Shiryaev’s contribution [92], and then cumulants
are defined through the LCF. Polyspectra are defined to be
the Fourier transforms of these cumulants. Brillinger [9], on
the other hand, defines cumulants in terms of their relation
to moments and lists several of their elementary properties.
The other books in the area of time-series analysis offer little
(such as the moment/cumulant relations for n = 1,2,3,4) or
nothing on cumulants.

The texts considered in the area of stochastic processes are
[71, [81, [24], [25], [51], [581, [591, [731, [77], [79], [86], [100],
[103], [108], [109]. These texts pay very little attention to
cumulants and polyspectra. The four texts [7], [86], [100], and
[73] each define the cumulant through the series expansion of
the LCF, but do little with them. The other references in the
area of stochastic processes do not even mention cumulants.

References [16], [28], [29], [701, [71], [78], [80] are the texts
considered in probability theory. Parzen [80] and Papoulis [78]
both define the cumulant through the series expansion of the
LCF, although Parzen does it in an exercise. Neither theory
nor application of cumulants is developed in either of these
books. A. Fisher essentially reproduces Thiele’s work in his-

1923 book [29]. The other references in the area of probability

theory do not mention cumulants.
Finally, the texts considered in mathematical statistics are
[17], [31], [61], [68], [89], [106]. Both Fisz [31] and Cramer
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[17] define the cumulant through the series expansion of the
LCF in the usual way, but go no further with the theory.
The book by Kendall and Stuart [61] devotes a great deal
of attention to cumulants, mostly in the context of sampling
distribution theory (as mentioned previously). The authors
were not concerned with stochastic processes or time-series
theory, and do not define polyspectra. The other texts in
mathematical statistics do not mention cumulants.

There are three modern texts that do treat the topics of
cumulants and polyspectra for time-series and stochastic pro-
cesses. The first is by Rosenblatt [90]. The material on
cumulants and polyspectra in this text is essentially the same
as in the two papers [11], [12], in which the cumulants and
polyspectra of stationary stochastic processes are investigated,
with emphasis on estimating these parameters from finite-
length data records. The book by Priestley [85] contains a
chapter devoted to estimation of the polyspectrum of a sta-
tionary stochastic process from a finite-length data record. The
methods considered therein are the same as in [90]; however,
Priestley’s description of the frequency-domain method of
estimating the cyclic polyspectrum is in error (see Section
VI of Part II, the companion paper, also in this issue). The
material in both of these texts is considered further in Part II,
where the measurement of the parameters of HOCS is studied.
The third modern text that treats cumulants is a collection of
papers edited by Haykin [75]. The chapter by Nikias treats the
topic of estimation of the polyspectrum; the emphasis of the
chapter is on the use of such estimates in solving the problem
of parametric (ARMA) system identification.

The nine research papers [37], [39], [44], and [93]-[97],
all of which are from the same research group, address the
topic of HOCS directly. In [37], the higher order temporal
moments of cyclostationary time-series are introduced and
shown to be related to the higher order moments of spectral
components of the time-series by Fourier transformation, and
it is established for the first time that the nth-order lag product
‘of a time-series contains a finite-strength additive sine-wave
component with frequency « if and only if the joint moment of
n spectral components of the time-series is nonzero for some
sets of m frequencies that sum to «. In [39], the concept of
a pure nth-order sine wave is introduced and is shown to be
characterized by a temporal cumulant function, whose Fourier
transform is shown to be a spectral cumulant function, and
the relationships between these functions and those that arise
in the theory of HOS for stationary processes are discussed.
higher order temporal and spectral moments of cyclostationary
time-series are used in [44] to identify nonlinear systems.
Techniques for measuring the higher order statistical functions
(cyclic moments, cyclic cumulants, and cyclic polyspectra) for
cyclostationary time-series are presented in [93], and some
results on their performance are presented in [94]. A brief
overview of the theory of higher order cyclostationary time-
series is given in [95]. Finally, the application of the theory
of HOCS to the problems of weak-signal detection and time-
delay estimation is considered in [97]. )

There is one other research group that is studying higher
order cyclostationarity. These researchers use the stochastic
process framework to study the moments and cumulants
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of cyclostationary processes and their application to system
identification, random-signal detection, modulation ' classifi-
cation, and source location [18]-[23], [48]-[50]. The main
differences between the approach taken by these researchers
and the work herein are that we stress the sine-wave gener-
ation - interpretation of cyclostationarity, whereas they focus
on the probabilistic parameters (moments and cumulants)
themselves; we have focused on developing the theory of
higher order cyclostationarity, whereas they have focused on
the application of system identification; we have focused on
fourth-order moments and cumulants (because the third-order
quantities are typically zero for manmade signals), whereas
they have focused on third-order moments (which equal third-
order cumulants for zero-mean processes); we have focused
on continuous-time signals, whereas they have focused on
discrete-time signals. These differences result in part from
approaching the subject from the two distinct viewpoints
of time-average-based second-order cyclostationarity on the
one hand, and stationary-stochastic-process-based higher order
statistics on the other.

Three research papers by other investigators also treat
HOCS. One of these is [111], in which the stochastic process
framework is used, and in which no connection is made to the
sine-wave generation idea that is central to this paper, nor to
cumulants, which are also central to this paper. The second
is [5] in which a cyclic spectral analysis of the powers of a
PAM signal is carried out, that is, the cyclic spectrum of the
output of a nonlinear system with a PAM signal at the input
is calculated. (The results herein are more general than those
in [5].) The third is [2] in which the symmetry properties of
nth-order polyspectra for n < 6 for cyclostationary stochastic
processes are investigated. _

The strong recent interest in HOS in the electrical engi-
neering community is reflected in the recent workshops on
higher order statistics, in the two IEEE PROCEEDINGS tutorial
papers [72], [74], and in the special sections on HOS in
the July 1990 IEEE TRANSACTIONS ON ACOUSTICS, SPEECH AND
SIGNAL PROCESSING, and the January 1990 IEEE TRANSACTIONS
ON AutoMaTIC CONTROL.

II. THE TEMPORAL PARAMETERS OF HOCS

As one possible motivation for the definitions introduced
in this section, let us consider all nonlinear signal processing
operations that can be represented by a Volterra series. This
includes (but not exclusively) all continuous, time-invariant,
finite-memory, causal. systems [76]. The output y(t) of such
an operation is expressed as!

y(t):/oo hl(Tl)J:(t+T1)dT1+/oo /ZhQ(Tl,Tz)

x z(t + Tl).’lt(t ‘|’ To)dT1dTo + -

IStrictly speaking, the name Volterra is reserved for causal systems, for
which h,(T) = 0 for any 7; < 0, but this restriction is lifted here.
Also, infinite-memory systems, for which the hy(-) have infinite support,
are included here.

hn(T) Ly (8, T)ndr
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where T £ [7-1-~-Tn]T and L. (t,7), is the nth-order lag
product of the input z(t)

La(t,7)n 2 J[ ot + 7). ®)

j=1

We are interested in the finite-strength additive sine-wave
components present in the output but absent in the input,
that is, those sine waves that are generated by the action
of the nonlinear operation on the input z(t). For example,
the strength (magnitude and phase) of the sine wave with
frequency « in y(t) is given by (assuming the order of Efed,
>, and [ can be interchanged)

<y(t)e—i2‘rrat> — Z /—O:o ce /_o:o hn(q—)
X (Ly(t, T)ne™ " )dr.

Thus, we need only study the statistical quantities
<Lm(t,'r)ne_i2“°‘t>, for arbitrary positive integers n, which
are the strengths of the sine-wave components contained in
the nth-order lag products of x(t).

The nth-order lag product is an elementary nth-order homo-
geneous polynominal transformation of z(¢). This transformed
time-series can be decomposed into a polyperiodic (or peri-
odic) part and an aperiodic residual part

Lm(ta'r)n = p(ta T)n + m(t’T)"
where
<m(t’T)ne—i2ﬂat> =0 )

for all real numbers a. The polyperiodic portion of Ly (t,7)n
~has associated with it the Fourier series

p(t,T)n =D RE()ne™™ (10)

where

RZ(T)n 2 <p(ta'r)ne_i27mt>~ (11)

It is assumed herein that the partial sums in the Fourier series .

(10) converge uniformly in ¢ for each 7 to p(t,7),. Then
p(-,T)n is a polyperiodic function, the limit (11) exists for
each T, and the set of values of the real variable o for which
R%(1),, # 0 for each 7 is denumerable [14]. That is, there
is at most a denumerable set of incommensurate periods in
the polyperiodic (almost periodic) function p(t,7), for each
T Tt is_further assumed that the union over all T of the sets
of values of a for which R(7), # 0 is denumerable. For
example, it is shown in [56] that this union is denumerable for
n = 2 if p(t,T)2 is uniformly continuous in ¢ and 7. '
The lag-product time-series can thprefor_’e be expressed as

Lo(t,T)n =Y R(1)ne®™ +m(t, 1) (12)

where the sum is over the denumerable sef of real « for which
R(7), # 0. From (9) and (12), we have

R2(1)n = (Lo(t, T)ne™ ™). (13)
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Each value of « in the representation (12) is called an
impure nth-order cycle frequency, and R(T), in (13) is
called the nth-order cyclic temporal moment function (CTMF).
From (13), it is evident that the CTMF arises quite naturally
from a consideration of the finite-strength additive sine-wave
components in the lag product (8). The sum of all such sine
waves in L.(t,7)n is given by the temporal expected value
of the lag product (cf. Section 1.1)

E{a}{Lw(t,’l‘)n} — ZRg(T)neiZﬂat

which is called the temporal moment function (TMF), and is
denoted by R2(t,T)n

Ro(t,)n 2 B Lo(t, 1)} = D R3(1)ne?™". (14)

An individual component of the TMF, such as R (r),, €27,
is called an nth-order moment sine wave (to distinguish it
from a cumulant sine wave which is defined in Section II-
C-4) or an impure nth-order sine wave. Time-series for which
there exists at least one nth-order moment sine wave (with
a # 0) are called nth-order cyclostationary (CS,) time-
series. A potentially confusing property of CS,, time-series
is that such time-series are in general CSs,. (In contrast, for
a stationary-of-order-n (S,) time-series, we have S, implies
S,_1.) A simple example illustrates this fact. Consider the
time-series given by

z(t) = cos(wt) + m(t)

where the zero-mean time-series m(t) contains no sine-wave
components. This time-series is CS;. Any second-order lag
product contains sine waves as well:

1
2t +m)a(t +72) = 5 cos(2wt + wlr + o))

1
+ 3 cos(w[ry — 7)) + residue.

Therefore, z(t) is CSs. :
More interesting cases involve random time-series that
do not themselves contain additive sine-wave components,
because it is still true that, for example, CSy implies CSy.
For the purpose of illustrating the temporal moment functions,
we next derive the second-order TMF and CTMF’s for a
time-series model of a common communication signal.

A. Example

Consider the time-series consisting of an amplitude-
modulated carrier and an unmodulated carrier

z(t) = a(t) cos(2mvrt 4 01) + cos(2muat + 62) (15)
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where a(t) is a stationary time-series with £{*}{a(t)} = 0
and v; # vy. The second-order lag product is
Ly(t,7)2 = [a(t + 71) cos(2mun [t + 71] + 61)

+ cos(2mvat + 1] + 62)]

X [a(t + 72) cos(2mu1 [t + T2 + 61)

+ cos(2mw[t + 2] + 62)]

a(t+ 71)a(t + 72)

2

X [cos (47ru1 [t + I —;-7'2] + 201)
+ cos(2muy [y — Tg])]
+ % [cos (47r1/2 [t + I —12_72] -+ 202>

+ cos(2mua|r — Tz])]’

a(t —+ Tl)
2

+v1T1 + vame] 4 61 + 03)

+cos(2m[(v1 — va)t + v171 — vaTo] + 61 — 65))]

M[COS(QW[(V;[ + o)t

+ [cos(2[(v1 + vo)t

+

+viT2 + veT1] + 01 + 03)
+COS(27T[(I/1 — llg)t + V1T — Vle] + 61 — 92)]

Since a(t) is stationary and has zero mean, and a(t) and
cos(2mvt) are statistically independent time-series (cf. Section
I-B), the TMF is given by

B L (8, 1)9)

- %Ra(Tl —73) [COS(Z’/TVl[Tl — 72)

T +7’2} +201)}:|
2
%E{a}{cos (47I'V2 |:t + n ;szl + 292)}

1
+ 5 cos(2mva|[T1 — T2)).

+ Eled {cos(47r1/1 [t +

16)

Thus
Ro(t,m)o = BN Lo(t,m)2} = Y R(r)y €2t (17)

where
RS (1) = (18)
r 1
ERa(ﬁ — T3) cos(2mvr [T — T2))
1
+§ cos(2mva|m — T2)), a=0,
%Ra(ﬁ — 73) exp(Fi(2nvr [T + 2] + 261)), a = +2u;,
1
1 exp(i(2na[m + T2] + 267)), o= $2u,,
L0, : otherwise.
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This example is continued in subsequent sections to illustrate
the behavior of certain functions as they are introduced.
Although the example is for the case n = 2 (primarily
for brevity and clarity), it is important because it illustrates
some unique features of the theory’s parameters that are
exhibited even for n = 2. A whole section is devoted to the
specific modulation class of complex-valued pulse-amplitude-
modulated signals in Part II, also in this issue. For now, a
single example for n > 2 will suffice.

Let us consider an AM signal without the tonal interferer
that is present in (15)

z(t) = a(t) cos(2m f.t + 0) (19
and let us consider a fourth-order lag product
. \ |
Lo(t,m)a = [ 2t + 7). (20)
j=1

The sine wave with frequency 4, in the lag product (20) can
be shown to be given by

Rifc (7)4 et2mdfet

4

1

E<Ha(t+n)> @1)
j=1.

x ei@mfe[ri+Tat7s+7a]+46) ji2mdfet

Since R)(1)2 = (a(t+ 71)a(t+ 7)), then the lag product
for a(t) can be represented by

a(t + m)a(t +12) = Ro(11,72)2 + b(t, 71, 72) (22)

for which (b(t,71,72)) = 0. By making use of (22) in the
fourth-order lag product for a(t), we can begin to see the pure
and impure components of the fourth-order sine wave (21):

1
R ()a = 1o ([BQ(71, m2)2 + b(t, 1, 72)][RY(73, 72)2

+ b(t, T3, 7_4)]>e’i(27l‘fc[T1+T2+T3+T4]+49)

1 .
=16 [R2(71,72)2 RO (T3, Ta)2 + (b(t, 71, 72)
X b(t’ T3, 7—4)>]6i(27rfc [T1+T2+7‘3+T4]+40)‘

Therefore, there are components of the fourth-order mo-
ment sine wave (21) that consist of products of second-order
moment sine waves, and there are—potentially—other compo-
nents that do not consist of these products. We say potentially
because there are other products of lower order sine-waves,
namely those obtained by using a different factorization of

the fourth-order lag product, and we are unsure at this point

if these other impure sine waves are the only components of
(b(t T1,7'2)b(t 7'3,7'4))

In the case of the second-order lag products of (15), we
can purify the second-order sine waves by operating directly
on the data: we simply remove the sine-wave component
cos(2mvat + 63) from z(t). In the case of the fourth-order
lag products of (19) (or (15)), we cannot purify the fourth-
order sine waves by operating on the data because there are
no sine waves in the data. Furthermore, we cannot simply
subtract the second-order sine waves from the lag products
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z(t + 71)z(t + 72) and z(t + Tg)x(t + 74) because there are
similar sine waves in other factorizations of the fourth-order
lag product. In the next section we show how to properly purify

the nth-order moment sine waves, thereby obtaining the pure

nth-order sine waves.

B. Pure nth-Order Sine Waves

For low orders 7, it is easy to mathematically characterize a
pure nth-order sine wave in a way that matches our intuition.
For n = 1, the moment sine waves are, by definition, pure first-
order sine waves. For n = 2, all products of first-order moment
sine waves can be subtracted from the second-order moment
sine waves to obtain the pure second-order sine waves, which
are denoted by o (t,71,72)2 ’

oo(t,m1,72)2 2 B a(t + m)z(t + 72)}
— Bl et + ) B a(t + )}
= Rw<t)7—)2 - Rw(taTl)lRm(t;Té)L

There are several interesting points to be made concerning
pure second-order sine waves.

1) Since Ry (t,71), Ry(t,72), and Ry(t,T)2 are first- and
second-order moments, then o, (t,71,72)2 is a temporal
covariance function.

2) If R.(t,7)1 = 0, then there are no lower-than-second-
order sine waves, and the second-order moment sine
waves are equal to the pure second-order sine waves.

3) If the variables z(t + 1) and z(t 4 72) are statisti-
cally independent (in the temporal sense [34], [400),
then Bl {z(t + m)z(t + m)} = EleHa(t + n)}
x Ele} {z(t + 72)} and therefore o,(t,71,72)2 = 0,
that is, there is no pure second-order sine wave for this
particular pair of lags 7 and T7o.

A recursion can be used to compute the pure third-order sine
waves. Each distinct product of pure lower order sine waves
must be subtracted from the third-order moment sine waves.
Thus, products of pure second-order and pure first-order sine
waves are subtracted from the third-order moment sine waves

3
0ot T)s = E{} H z(t +75)
j=1
— 04(t,71,72)204(t, T3)1
05 (t,m1,73)204(t, T2)1
— 05 (t, 72, 73)204(t, T1)1

— 05(t,71)102(t, 72)10(t, T3)1.

(23)

Note that all possible products of pure lower order sine waves
appear in (23). The terms in the sum of products that are
subtracted can be enumerated easily by considering the distinct
partitions of the index set {1,2,3}. A partition of a set G is
a collection of p subsets of G, {yi}le, with the following

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 42, NO. 12, DECEMBER 1994

properties®:
P
GZUI/]', I/jﬂl/kzw j#k
j=1

The set P3 of distinct partitions of {1,2,3} is
p=1:{1,2,3}

p=2 {1’ Z}a {3} {1’ 3}7 {2} {27 3}7 {1}
p=3 {1}) {2}7 {3}

Thus, we can express the pure third-order sine waves o(t, T)3
as a sum over the elements of Ps

. P
0a(t,7)s = Ro(t, )3 — > | [] 0wt 705)n,
Py |j=1
p#l1
where 7, is a vector of elements of {rj ?:1 that have indices
in v, and n; is the number of elements in v;.

Note that, as in the case of n = 2, if the first-order moment
sine waves are zero, £{®}{xz(t)} = 0, then the third-order
moment sine waves are equal to the pure third-order sine
waves. In this case, there are no products of lower order sine
waves that can be subtracted from the moment.

Because there is a one-to-one correspondence between the
set of distinct factorizations of a product of n factors and the
set of distinct partitions of the set {1,2,...,n} (as illustrated
for n = 3 above), the formula for the pure nth-order sine
waves can be expressed in terms of these partitions

P
O'a:<ta7—)n = Rm(ta'r)n - Z H Jz(t7TVj)'n]‘ (24)

P, |j=1
p#1
where P, is the set of distinct partitions of {1,2,...,n}. The
pure-sine-waves formula® (24) gives all the pure nth-order sine
waves associated with the lag vector 7. A single pure nth-order
sine wave with frequency 3 can be selected by computing the
Fourier coefficient

0B (T)ne 2™ = (0, (4, T)ne > PE) (25)

and can be expressed in terms of pure lower order sine waves
by substituting the Fourier series for each o,

oo (t,w)y, = Z afk (w)ke’i27‘rﬁkt,
B '

(26)

where the sum is over all cycle frequencies (B of order k
into (24). Thus

p
A =Rimn= Y | Y [ToZ

P, ty_npj=1
p#1 pla=s

@7

2The total number of distinct partitions of a set is called Bell’s number
[3], which must be computed by a recursion involving Stirling numbers of
the second kind [46], [96]. This same recursion can be modified to yield the
partitions themselves [96].

3This approach to obtaining pure nth-order sine waves can break down
in some special anomalous cases involving degenerate time-series, which are
described in Section B.
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where B is the p-dimensional vector of cycle frequencies
[1--B,]" and 1 is the p-dimensional vector of ones. Hence,
the pure-sine-wave strength o?(7),, is given by the CTMF
RE(7),, with all products of pure lower order sine-wave
strengths, for sine waves whose frequencies sum to (3, sub-
tracted out.

1) Example—Continued: Let us reconsider the example of
Section II-A. The second-order TMF for the time-series con-
sisting of the sum of an amplitude-modulated sine wave and
an unmodulated sine wave is given by (17) and (18). The
first-order TMF for this time-series is

R, (t,7)1 = BNzt + 1)}
1
=3 exp(i2wvy(t 4 7) + 163)
1
+ 3 exp(—i2mva(t + ) — ibs).

To compute the pure second-order sine waves for this time-
series, we subtract from the second-order TMF (17), (18)
the products of all pure first-order sine waves, which are the
first-order moment sine waves:

. 1
Ralt i1 Ralt, 7)1 = & { (47er [t+ nt T?} ; 202)

+ cos(2mva[m — 7-2])].
Thus, the pure second-order sine waves are given by
oz(t,T1,T2)2 = %Ra(ﬁ — Tg)cos(2mv1 [T — T2])
+ %Ra (11 —72)

X COS (47r1/1 {t + n ; 2 ] + 201)

or, equivalently,

oz(t,T)2 = Z af('r)ﬁi%ﬁt
B

where
1
§Ra(7'1 — 7’2)COS(27T1/1 [7’1 — TQ])’ ﬂ =0,
_ . | .
o (1)2 = 1 Ba(r1 = 72) exp(i(2m ©8)
X[T1 + 72] + 261)), B = F2u,

0, otherwise.

It is evident that the set of pure second-order cycle frequencies
{B} is smaller than the set of impure second-order cycle
frequencies {o} (there is no pure second-order sine wave with
frequency +2v,). Note also that the function RY(7), is not
integrable with respect to the variable 7 = 77 — 75 because
of the presence of the sinusoidal term icos(2mvs[m — 7)),
whereas the function ¢(), is integrable. This problem with
moments is compounded in the case of higher order moments,
where there can be multiple sinusoidal factors in the CTMF,
which result in products of impulse functions in its Fourier
transform. This is studied in Section III.

In the next section, we show that the pure-nth-order-sine-
waves function o, (¢,7), is, in fact, an nth-order cumulant
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function. Before doing this, a general introduction to cumu-
lants is provided.

C. Cumulants

In the study of the statistical behavior of stochastic processes
(and time-series), much attention is focused on the first- and
second-order moment functions. There are good reasons for
this, including the tractability of analysis, the primacy of the
Gaussian distribution (which is completely characterized by
these two moment functions), and the fact that the mean
and variance of all linear transformations of a process are
completely characterized by these two moment functions. For
zero-mean random variables, stochastic processes, and time-
series, the first and second moments are the first two elements
of several distinct sets of statistical parameters that each com-
pletely describe the behavior of the quantity in question. These
include moments, centralized moments, and cumulants. In fact,
for zero-mean random variables, the moments, centralized
moments, and cumulants are identical through order 3.

Thus, in this common case we are not faced with the
prospect of choosing one set or the other for our work.
However, when we have motivation to investigate statistics
with orders larger than three, we must make a choice. To do
this, we must understand the properties of each set of statistics.

The most commonly used property of cumulants is that
for Gaussian random variables all cumulants of order 3 and
higher are zero. However, cumulants possess other valuable
properties that moments do not. In the remainder of this
section, we present a brief tutorial treatment of cumulants
of stochastic processes that includes their relationship to °
moments, and we define the analogous temporal cumulants
of a time-series using the FOT probability framework. The
connection between nth-order cumulants and pure nth-order
sine waves will then become apparent.

1) Cumulants of a Single Random Variable*: Let the ran-
dom variable X have probability density function (PDF)
fx(u). The characteristic function (CF) is the conjugate
Fourier transform of the PDF

Ox(w) = /—00 fx(w)e™ du = E{e®X},

It is well known that the moments of X can be obtained from
the CF by differentiation

n

0
ow™ @X <w) w=0

The nth-order moment of X is, therefore, the coefficient of
the term corresponding to (iw)™/n! in the Maclaurin series
expansion of the CF:

@X(w) = Zmn%

n=0

= my,.

B{X"} = (="

(29)

The CF is a useful tool in the study of random variables, but it
does have a drawback. Let Y be the sum of two independent

4The references cited in this and succeeding sections dealing with cumulants
of random variables, stochastic processes, and nonstochastic time-series are
believed to be the original sources where these quantities were first introduced.
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random variables X; and X,. Then the PDF for Y is the
convolution of the PDFs for X; and X5

hmozjffmm—xm&QMA

which implies that the CF for Y is the product of CF’s for
Xl and X2

By (w) = Bx, (w)dx, (W). (30)

By using (29) in (30), it can be shown that the nth-order
moment of Y is related to the moments of X; and Xy of all
orders n and lower.

If we transform the multiplication in (30) to addition by
applying the natural logarithm, we obtain the relation

In®y(w) =ln®x, (w) +InPx, (w). @31)

These new functions are called cumulative functions [15], a
term that is due to Laplace, and the coefficient of the term
corresponding to (iw)™/n! in the Maclaurin series expansion
of the left side of (31) (provided that it exists), is called the
nth-order cumulant of the random variable Y [15]. The nth-
order cumulant for Y is, therefore, the sum of the nth-order
cumulants for X; and X,. Note that if X is a Gaussian random
variable, its cumulative function is a second-order polynomial
in w; hence

an

Wln@;((w) =0, n>3
and, therefore, all higher order cumulants of this random
variable are zero.

2) Cumulants of a Set of Random Variables: The  multi-

variate PDF for the set of r random variables {X;}7_;
is

fx(@) = 50— Fx(a) @)

L1 axr
where Fx (z) is the multivariate distribution function
T

Fx (x) = Prob ﬂ[Xj < zj]

=1

The CF is the multidimensional conjugate Fourier transform
of (32):

Ox(w) = e fX(a:)einxd:t.
L.

The nth-order moment corresponding to the product
H§=1 X;”', where .%_;q; = n and g; are positive integers
V7, is given by the coefficient of the term corresponding to

n TT" q;
? Hj:l W;
T o'
j=19"
in the multidimensional series expansion of the CF. We need

only consider the case where r = n and therefore ¢; = 1 Vj.
This is so because if some of the g; are greater than one, we

can simply consider a larger set of variables { X}}7_;, where

some of the X are identical according to the values of q;>

The cumulants are given by the coefficients in the series
expansion of the cumulative function In ® x(w). Since we
consider only 7 = n, the resulting cumulants are called simple
cumulants [69]. Thus, the nth-order simple cumulant for the
variables {X;}7_; is given by

o

w=0

3) Multivariate Moment and Cumulant Relations: For the set
of random variables {X;}?_;, the joint moment is

Ry =ES [[ X ¢- (34)

=1

Let v, be some nonempty subset of the set of indices
{1,2,...,n}. Then the moment of order nj, = || for those
variables with subscripts in vy is

Ry, =E{ H X;

JEVK

The nth-order simple cumulant can be expressed in terms of
the moments Ry , by using the distinct partitions of the
index set {1,2,...,n} denoted by P, = {vx}}_; [69]:

D .
cx =Y |-t - [ Rx,, |- G9
P, j=1

Similarly, the nth-order moment Ry can be expressed in
terms of lower order simple cumulants [69]

P
Ry=Y |[Icx., (36)
P, |j=1

n

where Cy ,is the simple cumulant of the variables

{Xk}rew;
An important and useful property of multivariate cumulants
is the independence property. Consider the set of variables

{Zntmer =1{X:5=1,...,7; Yi:k=1,...,s},
n=r-+3s

where the X; are independent of the Y%. The nth-order joint
PDF for these variables factors

fXY(Z) = fX(x)fY(y)v z= [1"1 T Y1 ‘ys]T

which implies that the CF is the product of CF’s for X and Y
O xy(w) =2 x (wz) Py (wy)-
Therefore

In (I)XY(W) =ln®x(w,) + In Py (wy)

5An exception to this that occurs in some special anomalous cases is
described in Appendix B.
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and the nth-order derivative in (33) is zero. Other elementary
properties of cumulants are listed in [10], [72], and [99].

For a stochastic process X (t), cumulants of order n are
defined by simply selecting n time-samples, {X(7;)}7_;,
identifying these as n random variables { X;}7_,, and applying
the definition of the cumulant for » random variables.

4) Cumulants of a Time-Series: The relations (35) and (36)
are more accessible than the CF expression (33) and are,
therefore, used for the cumulants and moments of time-
series. Comparing equations (24) and (36), it is apparent that
the relationship for {x(t + 7;)}7-, between the pure-sine-
waves function o, (¢,7), and the temporal moment function
R.(t,T)n is equivalent to that between the simple cumulant
and moment for {X;}?_,. Moreover, by using the sine-wave-
extraction operation, which is an expectation operation, we can
reexpress the TMF in terms of lower order simple cumulants:

p p
Z H CM+Z H ;| 37)
i1 e
where
w2 Bl ﬁ (t+75) p = Ra(t, ™) (38)
p
Com =Y [(=1P7 o= D! ] Res, (39)

P, Jj=1
Ca,v; = Cumulant {(t 4 7) }kew,-

Then, using the equivalence (24) and (37), we obtain
Crpn=0z(t,T)n

where (37), (38), and (39) are identical to (36), (34), and (35)
respectively, except that E{°}{.} is used in place of E{-}.
To build on this mathematical duality between the pure-sine-
waves function and the cumulant function, the notation

Co(t,T)n = 02(t, T)n (40)

is used, and this function is called the temporal cumulant
function (TCF) [39]. The fundamental relation (39) then takes
the form

Ce(t,T)n . (41)

:Z (-

P,

1P~ (p—1)! 1‘[ Ry (t,7;)n,

A Fourier coefficient of this polyperiodic function of ¢ is given
by

05(7— <C t T) e—z27r,6t>

=S 0Pt - 0 Y [ R (rus)ns | 42)
P,

ai1=pj=1

and is called the cyclic temporal cumulant function (CTCF)
[39]. An individual component of the TCF, such as
CB(1),e??™Pt, is called an nth-order cumulant sine wave to
distinguish it from an nth-order moment sine wave. It can be
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seen from (25) and (40) that the nth-order CTCF is identical
to the (complex-valued) strength of the pure nth-order sine
wave with frequency  that is contained in the nth-order lag
product L, (t,7)n. The cyclic temporal moment function in
(13), on the other hand, gives the strength of the entire sine-
wave with frequency « that is contained in L(t,T)n, which
can be called the impure nth-order sine wave.

It should be pointed out that this is the first instance
(to the best of our knowledge) that cumulants have arisen
as the solution to a practically motivated problem, namely
the problem of pure nth-order sine-wave generation [39],
rather than as a mathematical observation concerning the
characteristic function [15], [101], [61], [67].

D. Properties of the Temporal Parameters of HOCS

We have seen that the TMF can be constructed from all of
the CTMF’s (cf. (14)), that the TCF can be constructed from
all of the CTCF’s (cf. (27)), that the TMF can be constructed
from all of the lower order TCF’s (cf. (37)), and that the TCF
can be constructed from all of the lower order TMF’s (cf. (41)).
Thus, any CTCF can be obtained from all of the appropriate
CTMF’s, and vice versa. In other words, the sets of moment
and cumulant functions for orders 1 through n contain the
same information. How then should we determine which set
of functions to work with in the study of sine-wave generation?
To assist us in making the correct choice, we consider some
important properties of these functions.

Signal Selectivity: Suppose our time-series z(t) consists of
the sum of M mutually independent time-series

M
s(t) =Y ym(t). (43)

Then, the TCF for z(t) is the sum of TCF’s for {y,(t)} [96]
M
Ca(t,T)n =Y Cy.(t,T)n- (44)
m=1

Thus, the pure nth-order sine waves in the lag products of
each of y,,(¢) add to form the pure nth-order sine wave in the

" lag product of z(t). The TMF does not obey this very useful

cumulative relation.

To illustrate how (44) can be applied in practice, consider
the situation where {y,,(t)}_, represent M interfering sig-
nals that overlap in time and frequency, but which possess
some distinct nth-order cycle frequencies, say {au,}M_;.
Then it follows from (44) that

Cem(T)n = Cy(T)n, m=1,2,..., M.

This indicates that the presence or absence of each of the
signals y,,(¢) can be detected by measuring (estimating) the
CTCF’s of z(t) for the cycle frequencies {o,}, and that
parameters of each of the signals, on which these CTCF’s
depend, can be estimated. As illustrated in [11, [34], [36], [38],
[41]-[43], and [91] for second order and in the companion Part
II [98], in this issue, for higher order, this signal-selectivity
property can be exploited in numerous ways to accomplish
noise-and-interference-tolerant signal detection and estimation.
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(This was first recognized in [39] but has since appeared
elsewhere [18]-[23], [48]-[50].)

As another application, let M = 2, y;(t) be non-Gaussian,
and y»(t) be Gaussian. Then Cy, (¢,7), = 0 for n > 3 and,
from (43), we have

Co(t,T)n = Cy, (t,T)p, n >3

which indicates the detectability of y;(¢) with no knowledge
about y2(t) (except that it is Gaussian).

Reduced-Dimension Integrability: By using (13) and (42),
it can be shown that both the CTMF and the CTCF are
sinusoidal jointly in the n variables 7:

CL (T +10)n = CL(1)ne™™2,
R2(T +1A), = R (1)ne™*2.

(45)
(46)

Hence, the CTMF and CTCF are not absolutely integrable with
respect to 7. The periodicity suggests that we might reduce
the dimension of the functions and retain all the information
present in the functions. Reducing the dimension by one
yields®

O (w)n = CF (fut 01)n,
B3 (w)n = RS ([u! 0]

(where w = [uj ---u,_1]"), which are not sinusoidal. The
value of CZ(t), (R2(t),) for any T can be obtained from
the value of CP(u), (R¥(w),) by using (45) ((46)). This
leads us to ask if these reduced-dimension (RD) functions
are integrable. We shall show that the function R%(u),, (RD-
CTMF) is not in general, whereas the function C%(u),, (RD-
CTCF) is in general for time-series possessing an asymptotic
independence property, that is, consider the arbitrary two-set
partition T = [T9 71] and assume that the FOT density for
{z(t + 7;)}7-, factors asymptotically:

f:l;(t)(?l) - f:c(t) (yo)f:l:(t) (yl) as 7o — 00

where 79 — oo means that all of the elements of T are tending
to infinity. This asymptotic factorization implies that the TMF,
which is a moment corresponding to the PDF fg4)(-), is
asymptotically factorable as well

E{a}{Lw(t7T)n} = E{a}{LI(tvTo)noLz(t7T1)n1}
— B Ly (t,70)no }
X E’{"‘}{Lz(t,n)nl} as 79 — 00.

Thus, the TCF is asymptotically zero
Cy(t,T)n = 0 as Ty — 00

because of the independence property of cumulants (cf. Section
II-C-3), which implies that each CTCF is asymptotically zero.
Generally, then, the CTCF is asymptotically zero as long as
at least one of the n lag values—say 7,—is fixed since the
set of variables associated with L, (¢, 7o)n, is asymptotically
independent of the set of variables associated with L (¢,71)n,,

6The reason for this particular choice of dimension reduction is made clear
in Section III.
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where 79 = [11 ---7,_1]T and 71 = [7,,]. On the other hand,
the cyclic temporal moment becomes

R (1) — (Ru(t,T0)n, R (2, Tl)nle_iz’m‘t) as 79 — 00

= Z Rz (TO)no Rg_v(Tl)Tn
pall

which is not necessarily zero. In fact, it is often nonzero.

If the rate of decay of the RD-CTCEF is sufficiently large
(e.g., O(||u||72)), then C%(w),, is absolutely integrable and,
therefore, Fourier transformable. The RD-CTMF is not, in
general, Fourier transformable except in a generalized sense
that accommodates Dirac delta functions, because it does not
decay as its arguments grow without bound. We shall see
in Section III that the Fourier transforms of the RD-CTCF
and RD-CTMF can be very useful in characterizing a signal’s
higher order frequency-domain behavior. Before leaving the
subject of temporal parameters, however, we continue with
our AM example.

E. Example—Continued

We continue to develop the example of Sections II-A and
II-B-1. Here we give the formulas for the RD-CTMF and
RD-CTCEF for the time-series

z(t) = a(t) cos(2mvrt + 01) + cos(27vat + 63).

The RD-CTMF is given by the CTMF with 75 = 0, which
is (cf. (18))

R (m1)2
(1 1
§Ra(7'1) cos(2mvy )+ 3 cos(2mvem), a =0,
B iRa(ﬁ) exp(£i(2mv171 + 261)), a = F2u,
i exp(+i(2mvam + 2602)), a=TF2vs,
L0, otherwise
and, from (28), the RD-CTCF is given by
%Ra(ﬁ) cos(2muvy71), B=0
CL ()2 = %Ra(n) exp(£i(2mv1m +261)), B=F2u,
0, otherwise.

By comparing R% (71 )2 with C2(71)2, we see that the former is
not integrable for some cycle frequencies (viz., @ = 0, F2uvy),
whereas the latter is integrable for all cycle frequencies,
provided that R,(r;) decays faster than 1/7;. In addition,
it is clear that the RD-CTCF characterizes only those sine
waves in the second-order lag product that are not the result
of first-order sine-wave multiplications.’

7 An anomaly regarding the relationship between pure nth-order sine waves
and the nth-order TCF is explained in the Appendix.
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III. THE SPECTRAL PARAMETERS OF HOCS

The Fourier transform of RO(u)s is the power spectral
density (PSD) of z(t) and the Fourier transform of CO(u)s
is the PSD of the centered version z(t) — E{®}{z(t)} of
z(t) (this is the Wiener relation [105], cf. Section IV-A
and [34]). The Fourier transform of the symmetrized version
(z(t + u/2)z*(t — u/2)e”7>%) of RY(u), for o # 0 is the
spectral correlation function (cyclic spectral density function),
and the Fourier transform of the corresponding symmetrized
version of C%(u), is the spectral correlation function for
the time-series z(t) with its first-order sine waves removed
(this is the cyclic Wiener relation [34], cf. Section IV-A).
Therefore, we could define the spectral parameters of HOCS
to be the Fourier transforms of R%(u), and CZ (u),, whenever
such transforms exist. These transforms are indeed the central
spectral parameters of the theory of HOCS, but it is more
natural (for those interested in using the theory in practice)
to derive them from a consideration of spectral moments
and spectral cumulants; that is, from limiting versions (as
bandwidth approaches zero) of moments and cumulants of
narrowband spectral components of z(t), and then to show that
- they can be characterized as Fourier transforms of temporal
moments and cumulants.

It is assumed that z(¢) is absolutely integrable on finite
intervals. We consider the complex envelope of the spectral
component of a segment of x(w) that is centered at ¢ and has
width 7" :

t+7/2

Xo(t, f) 2 / z(v)e v dy. 47)

t—T/2

The temporal moment of the set of n variables { X (%, f;)}}—;
is defined by®

j=1
z/2 n
:ZIEEO%/ TT Xx(t, £,)dt @8)

7/2 5

and is assumed for the time being to exist. If we now let the
integration time 7 in (47) tend to infinity in (48), we obtain
the spectral moment function (SMF)

Sef)a 2 Jim Ser (P

Z/2 n
= lim lim —/ HXT (t, fi)d

(49)
T TS Zo00 Z z/2 =1

However, this limit exists only in a generalized sense that
accommodates products of Dirac deltas (impulse functions).
Nevertheless, we shall see that Dirac deltas can be avoided by
working with the cumulant counterpart of this moment.

To see that the SMF (49) is composed of products of impulse
functions, we proceed as follows. The function (48) can be

8¢ would be more consistent to use £} {-} in place of {-) in the definition
of Seq (F)n, but it can be shown that these two operations lead to the same
function (49). Thus, we start with the time-average operation (-).
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expressed in terms of the CTMF as

T/2 T/2 N
Sun(fn = / [[ (¢ + e "2”fj(t+md">

T/2 T/2 ;2
_ / / wr ()R (0)ne= 2y (50)

where
n
ap 2 Z fi=Ff1, wr(v Hrect(v]/T
j=1 j=1
a2l |t| < 1/2,
rect(t) = {0, It > 1/2.

Thus, S;,.(f). is nonzero only if the sum g of the fre-
quencies is equal to an nth-order cycle frequency « of z(t).
Now, assuming that RS (v), is absolutely integrable on the
hypercube of size 7" on a side, we see that the Fourier
transform (50) exists and that (48) therefore exists. Assuming
for the time being that RS (v), is Fourier transformable on
the entire space

ssma2 [

we obtain from (50)

-/ / S20(f - g>nHTsmc<ng>dg

= / h R (1)pe= S Tar (51)

Ser(Fn

where

sinc(f) 2 sin:;f)'

Thus, the finite-time spectral moment S, (f), converges to

So(fn 2 lim Ser(Pa

_ /oo /oo S2o(f — g)n [ [ 8(gx)dg
—o0 —oo k=1
= 52°(f)n

where §(-) is the Dirac delta. Let us investigate this hypo-
thetical Fourier transform (51). Using the fact that R (),
is sinusoidal in the translation variables (cf. (46)), we can
formally show that

82 (n=52(fNmb(fr—a), F 2o fara]” 53
where S%(f'), is the Fourier transform of the RD-CTMF

(52)

52(f)n é/ ) / Re(une > du.  (54)
Thus, we have the formal result
_[82(fmb(fr-a),  fli=a,

for all cycle frequencies o of z(t). The SMF can be reex-
pressed as

Se(Pn =Y S2(F)nb(f11 - @) (56)
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which reveals that the SMF is a sum of components with
impulsive factors. Moreover, we can show that S¢(f'), can
also be a sum of components with impulsive factors and
even products of impulses (cf. Section II-E). Thus, neither
the SMF nor the reduced-dimension SMF (RD-SMF) (54) are
well-behaved functions.

The spectral cumulant function (SCF) is better behaved than
the SMF. To establish this fact, we proceed in a manner
analogous to that used for the SMF to obtain a characterization
of the SCF in terms of the Fourier transform of the RD-CTCF.
The simple cumulant of the variables { X7 (t, f;)}7_; is given
by :

Py (f)n = Cumulant{ X7 (¢, fi)}iza

=S {177 = D Ser (Fo)ms
P, =1

This function is well-defined for finite T' since each moment
Sz (-)n; is finite. The spectral cumulant function is defined
to be the limit :

5N

Po(f)n = Jim Por(f)n. (58)
We can use (50) to reexpress Py, (f)n in terms of lower order
CTIMF’s:

(Hn=>_k ]
P, j=1

o0 ©° ) —z'27r_fT v,
% / e / wr(vy, )n, Ry (v, )n e vi '3 duy,

—o00 —oo
N ——

where
k(p) £ (1P~ (p - 1),

23N e

kev;

From this expression, we see that if for every partition in
the set P, (except that for p = 1), there is some «; that is
not a cycle frequency of order n; = |v;|, then the function
P,..(f)n is equal to the function S, (f),. If there is at least
one partition such that all the «; for that partition are cycle
frequencies of order n;, then the function P..(f), differs
from Sy, (f)n. This is important when considering methods
for measuring Py (f), and its components (cf. the companion
Part II, in this issue).

We can reexpress Py, (f

Palho= [ /

P
X H wr (Vy, )n; Ry (0, )n, | €
=1

[ oo

x | > k() [T RS (vi;),
P, j=1

n more compactly as

—i27rfT’Ud,U

=iz f g, (59
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By using (50), we can show that this last expression is equiv-
alent to the Fourier transform of the CTCF on a hypercube of

size T on a side:
.t
02 (0)ne™ " V.

<f>n=/_:--/_°;wT<v)n
(60)

By analogy with the preceding argument for the SMF, we
obtain

1—0) 61)

Pn = PIf)ab(f1
B
where

et [

is (by analogy with the accepted terminology cyclic spec-
trum for § # 0 and n = 2 and the accepted terminology
polyspectrum for § = 0 and n > 2) defined to be the cyclic
polyspectrum (CP). The transform (62) does exist (in the strict
sense that excludes Dirac deltas) in general for time-series with
asymptotically independent variables such that the RD-CTCF
decays sufficiently rapidly in all directions so that C2(u),
is absolutely integrable, and hence Fourier transformable (cf.
Section II-D-2).

Because of the characterization (61) of the SCF, we can see
that the SCF is nonzero only on the hyperplanes specified by
Z;}:l fj = B, where {3 is in the set of pure nth-order cycle
frequencies of the time-series z(t) (frequencies of pure nth-
order sine waves). We can also see from (61) that the CP is
the integrated SCF

P = | "

h / e > Fau  (62)

where (37,7) includes the value 3 but excludes all other
pure cycle frequencies. Similarly, the RD-SMF is the inte-
grated SMF.

In this section we have seen that the CP, which is the
integrated SCF, is in general the only well-behaved spec-
tral function in the theory of HOCS. The SMF and its
reduced-dimension version S¥(f'), in general contain prod-
ucts of impulses and are, therefore, not well-behaved functions.
However, in the special case where the lowest order of
cyclostationarity of z(t) is n, the impure nth-order sine waves
(with strengths given by the CTMF’s) are identical to the pure
nth-order sine waves (with strengths given by the CTCF’s)
and, as a result, the nth-order SCF is identical to the nth-
order SMF, which results in equality between the CP and the
RD-SMF (for a # 0). In addition, there are certain values of
the frequency vector f’ for which the RD-SMF and the CP are
equal even when z(t) exhibits lower order cyclostationarity.
For these f', the CP can be measured by measuring the RD-
SMF, which is computationally simpler, since lower order
moments do not have to be estimated and then combined.
This is explained in Part II, in this issue.
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A. Example—Continued

We finish the example of an AM time-series plus an
unmodulated carrier (15). We can formally determine the SMF
by Fourier transforming the CTMF

Self)a = / / R (r)ee > Tdr, ag=fi+ fo.
Thus, the SMF is given by"

Su()r = S1Sulfi + ) + Salfy = v0) + (f1 4 1a)
+6(f1 —»)I6(f1 + f2)
+ %eimlsa(fl Fr)d(fi+ f2 F211)
+ 28y F )82 F v2)
and the SCF is given by the Fourier transform of the CTCF
Pu(f)s = [0y ) + Salfy = )I8(s + 1)
1S (A F O+ 2 F ). (69

The RD-SMF is given by the Fourier transform of the RD-
CTMF

(63)

(1 .
Z[Sa(fl +v1) 4+ Sa(fr — 1)
+6(fi+12) +6(fi —r2)] a=0,
Sz (f1)z = iei”f’lsa(fl Fui), a = F2u,
ieimm(fl F a), a = F2uy,
L0, otherwise
(65)
and the CP is the Fourier transform of the RD-CTCF '
1 .
Z[Sa(fl'i'l/l)‘l'sa(fl_yl)}a /820,
Pf(fl)z = %e:l:i2915a(fl :FVl)a B = F2uv,
0, otherwise.
(66)

It can be seen from (63)—(66) that the CP is the only well-
behaved function for the time-series considered; that is, the
CP does not contain any impulse functions. It can also be
seen that the SCF and CP are signal selective in that they
are completely determined by the properties of the AM signal
a(t) cos(2mv1t+61) and do not reflect in any way the presence
of the additive sine wave cos(2mvot+62). This is a degenerate
example of signal selectivity since the signal cos(2mvat + 62)
is not erratic and does not necessarily spectrally overlap the
other signal.

IV. DISCUSSION

The relation (88) between the CP and the RD-CTCF is
the generalization of the cyclic Wiener relation introduced in
[34] from order 2 to order n. Within the stochastic process
framework, the Fourier transform relation between temporal
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FC Fourier Coefficient

M/C Moment/Cumulant Relationship
RD Reduce Dimension

Fig. 1. A pictorial representation of the relationships between the parameters
of higher order cyclostationarity. The parameters of higher order stationarity
as they are typically defined correspond to the inner diamond (bold arrows)
because in this case the time-invariance of the time-domain quantities suggests
the dimension reduction. The quantities in the upper left half of the diagram
are equivalent to those in the lower right for zero-mean signals and n = 2
and 3 because in this case moments and cumulants are equal. Thus, each of
these halves contains the relation between the cyclic spectrum and the cyclic
autocorrelation for zero-mean cyclostationary signals and, as a special case,
contains the Wiener relation (bold arrow).

and spectral cumulant functions for generally nonstationary
processes was first obtained in [92] and should be called
the Shiryaev-Kolmogorov (SK) relation, which is the gen-
eralization of the Wiener-Khinchin relation for the PSD of
a stationary process. Since the only type of nonstationarity
for which temporal counterparts of stochastic moments and
cumulants exist is cyclostationarity, we see that the relation
(88) is the nonstochastic counterpart of the SK relation.

The relationships between all the parameters of higher
order cyclostationarity are shown graphically in Fig. 1. In this
figure, the lines represent functional relationships between the
quantities at the arrowheads (see key).

A. HOCS and Second-Order Probabilistic Parameters

In this section we examine the relationship between the
parameters of HOCS for n = 2 and the well-established
parameters of second-order cyclostationarity (SOCS), which
include the (nonstochastic) autocorrelation and PSD as special
cases.

The autocorrelation function for a real time-series z(t) is
defined to be

Ry () £ (z(t +7/2)z(t — 7/2)) (67)

which is obtained by the time-averaging operation (-). This
function does not in general describe the second-order cyclo-
stationarity (if any exists) of z(¢). To do that we need to use
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the sine-wave extraction operation to obtain the second-order
TMF for 7y = 7/2 and 75 = —7/2

Ry (t,7) 2 BN a(t 4 7/2)z(t — 7/2)}. (63)

For a stationary time-series, (67) and (68) are identical, but
for a cyclostationary time-series we have

Ry(t,7) = » _ R3(r)er (69)

where

Re(7) 2 (x(t+ 7/2)z(t — 7/2)e~270t), (70)

- Equations (69) and (70) define the central time-domain param-
eters of SOCS for real time-series [34]. The function (70) is
called the cyclic autocorrelation function. We can relate the
cyclic autocorrelation function to the RD-CTMF for n = 2
easily, since

B2 = (ot +ws(@e>)
= (z(t + u/2)z(t — u/2)e”2mT)elmou

which implies that the RD-CTMF for n = 2 is related to the
cyclic autocorrelation by a sinusoidal factor

Rg(u)2 = R (u)e'™™. (71)

The spectral correlation function or cyclic spectrum is the limit
as the bandwidth tends to zero (I" — oo) of the time-averaged
product of spectral components with approximate bandwidth
1/T and frequency separation o

$200) = Jim (£ (6.7 +a/2X5 (00 - af2)). (72

This function is the Fourier transform of the cyclic autocor-
relation function (70)

s:(p= [ mme i

—00

(73)

The relation (73) is the cyclic Wiener relation, and it reduces to
the Wiener relation between the PSD and the autocorrelation
when o« = 0

sin) = [ R

— OO0

(74

Combining (54), (71), and (73) yields

s = [ ”

R> (u)ge_i%f/“du
—0Q
(e o]
— / Rg (u)eiﬂaue—i%rf/udu
—oo

which implies that the Fourier transform of the RD-CTMF,
S2(f")2, is related to the cyclic spectrum by a frequency shift

SZ ()2 =S7(f' = @/2).

Note that the function S(f), can contain impulses that are
due to the first-order sine-wave components of the data z(t).
In the development of the theory of SOCS, it is most natural
to assume that the data does not contain such finite-strength

(75)
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additive sine waves. In this case, S¥(f’)2 does not contain
impulses and, as a result, the moments and cumulants are equal

RS (u)s = C3 (u)2,
S22 = PE(f")e-

Thus, in this special case, the cyclic polyspectrum is equal to
the shifted cyclic spectrum

PX(f)2 = S2(f' = a/2)
and the CP for o = 0 is equal to the PSD
P)(f)2 = S3(f).

We conclude that the parameters of HOCS that are defined
in this paper are consistent (to within a frequency shift)
with the previously developed second-order parameters for
cyclostationary time-series, and are consistent with the notions
of autocorrelation and power spectrum’ and are, therefore,
properly referred to as generalizations of the second-order pa-
rameters. The same can be said of the parameters of HOCS and
SOCS generalized from real-valued time-series to complex-
valued time-series as done in the companion paper, Part II,
for HOCS and in [34] for SOCS.

V. CONCLUDING REMARKS

In this paper, we have presented the appropriate parameters
(statistical functions) for conveniently characterizing the sine
waves that are generated by performing higher order nonlinear
transformations on cyclostationary time-series. We have shown
that the temporal cumulants of such time-series provide a
mathematical characterization of the notion of a pure nth-order
sine wave, which is that part of the sine wave present in an nth-
order lag-product waveform that remains after removal of all
parts that result from products of sine waves in lower order lag
products obtained by factoring the nth-order product. We have
also shown that the natural definitions of spectral moments
and cumulants are characterized by Fourier transforms of
temporal moments and cumulants. Most importantly, from a

. practical standpoint, we have shown that the temporal and

spectral cumulants exhibit the property of signal selectivity,
which means that they can be used to detect the presence of
and/or estimate the parameters of a specific signal in a received
waveform, even when that signal is corrupted by temporally
and spectrally overlapping stationary and cyclostationary noise
and interference, provided only that the signal has a unique
cycle frequency (for instance, a unique keying rate or carrier
frequency).

In the sequel to this Part I, the parameters of HOCS are
generalized from real-valued time-series to complex-valued
time-series; the effects of signal-processing operations on the
HOCS parameters are determined; the parameters of HOCS
for complex-valued pulse-amplitude-modulated time-series are
calculated; measurement methods are described; and appli-
cations of the theory to signal processing problems, includ-
ing weak-signal detection and time-delay estimation, are dis-
cussed.
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APPENDIX A
SUMMARY OF THE PARAMETERS OF HOCS

Summary of the Temporal Parameters: In summary, the
acronyms and parameter names for the temporal parameters
of HOCS are as follows:

TMF temporal moment function

CTMF cyclic temporal moment function

RD-CTMF  reduced-dimension cyclic temporal moment
function

TCF temporal cumulant function

CTCF cyclic temporal cumulant function

RD-CTCF  reduced-dimension cyclic temporal cumulant

function

TMF: Ry (t,7)n £ B [T 2t +7) ¢,

(76)
j=1
T=[m-7)f
CIMF: B3 (r)n = (Ro(t, T)ne ™)
— <H .’L’(t + Tj)e-—i27rat> (77)
i=1 ‘
n—1 .
RD-CTMF: R%(u), 2 <$(t) H :c(t+uj)e—i2mt>, (78)
Jj=1

u= [ul .. .un_lp‘

> [(—1)"_1(10 - 1!

Pr={vi }£=1

X ﬁ Ry (t, 70, )n; ]

i=1

TCF: Cy(t, 7)n =

(79

[I>

CTCF: CE(1)n = (Cy(t, T)ne™2"Ft)

> [(—l)p‘l(p - !

Pn={Vk}£=1
P
x Y J]Rr> (T,,j)nj] (80)
ati=gs=1
RD-CTCF: C?(u),, 2 C?([u 0]"),. (81)
Summary of the Spectral Parameters: In summary, the

acronyms and parameter names for the spectral parameters
of HOCS are as follows:

SMF spectral moment function
RD-SMF reduced-dimension spectral moment function
SCF spectral cumulant function
CP cyclic polyspectrum
SME: S;(f)n = lim Sz, (f)n
T—o0

(82)

j=1
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f= [flfn]T
=" S2(f)nb(ff1 - ), (83)
fr=0f ol
RD-SMF: 53(f')n £ F* " { RS (u)n} (84)
SCF: Po(f)n = Jim Por(f)n (85)
= dm > [(—1)1’—1@ - 1)!
Pr={vs}}_,
p
<[] SET(fyj)nj] (86)
=1 -
=Y P )ns(f11 - B) 87)
B
CP: P2(f'), = FP"HCP(u),}. (88)

APPENDIX B
PURE SINE WAVES AND THE TCF

In Section II-B, the temporal cumulant function is derived
by considering the problem of pure nth-order sine-wave gen-
eration. That is, it is found that pure nth-order sine-wave
strengths are characterized by the cyclic temporal cumulant
function. However, we have found that some mathematically
idealized models for time-series possess a degeneracy such
that, for certain values of the lag vector 7, the CTCF is nonzero
when there are no pure nth-order sine waves present. This
degeneracy is illustrated and explained here for the case of
n = 4.

Consider the fourth-order lag product

L(t,1)s = z(t + 1)z (t + 72)2x(t + 73)z(t + 74)
for the binary (£1) PAM_ signal

[ee)

s(t)= > amp(t+mly+ to)

m=—00

with rectangular pulses

p(t) = {(1)

There can be sine waves associated with the factors

[@) =zt + 1)zt + 72)

[t| < To/2
otherwise.

and
fa(t) = z(t + 73)2(t + 74)

that make up L, (¢, 7)4, and if so, the product sine waves
ECHAOYECH fa(0))

are subtracted, along with product sine waves corresponding to
all other unique factorizations of L (¢,7)4, from the moment
E{}{L,(t,7)4} to obtain the cumulant sine waves (cf. (79)).
Thus, a pure fourth-order sine wave contains no products of
lower order sine waves, and cannot be equal to such a product;
this is simply the intuitive notion of a pure fourth-order sine
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wave. To see the degeneracy that we have alluded to, 73 = 74 is
chosen so that the fourth-order lag product under consideration
is '

Lgc(t,’l')4=.’E<t+7'1).’1}(t+’7'2)$2(t-|—7'3). (89)

In this case, since z2(t + 73) = 1, we have the equivalence

Lo(t,7)s = [o(t + 1)z (t + )] [1]
= Lm(ta T1, T2)2~
Thus, L.(t,7)s contains nothing other than products of
second-order sine waves, namely the sine waves in z(t +
71)z(t + 72) multiplied by the second-order sine wave with
frequency zero, x2(t + 73) = 1."Consequently, L (t,7)4 can
contain no pure fourth-order sine waves. However, from the
companion paper Part II, Section V, we have the CTCF

C, >
Cor)a= "t [ plt+ rplt+ mlp(e )
xe—i?ﬂﬁtdt eiZ?Tﬂto, ﬂ — k/T()
which is not identically zero. Another way to see this is to use
(79) to compute the TCF
Colt,T)g = BV L (t,7)4}
- E’{a}{w(t + Tl)x(t + 7'2)}
x B z(t + m3)z(t + 73)}
— Bl a4+ r)a(t + )}
x EXHa(t + m)z(t + 73)}
— B gt 4+ m)a(t +13)}
x BV a(t + m)z(t 4+ 13)}
= 2Bzt + m)a(t + )}
x Elet {z(t + m2)z(t + 73)}.
It is, in fact, reasonable to expect a nonzero result for the
fourth-order TCF of the set {z(t + 71),z(t + 72),z(t +
73), z(t+73)} since there is no proper subset of this set that is
statistically independent of the remaining subset (cf. Section
II-C).
However, since there is a repeated factor in (89), we can
treat the lag product as the product of three, rather than four,

factors {z(t +71),z(t +72),z(t + 73)}. In this case, there is
an independent subset among the three variables and

Bl a(t 4 m)a(t + )2 (t +73)}
= BleNa(t 4+ m)a(t 4+ ) LELH a2 (¢ + ).

The third-order cumulant for these three variables is zero.
However, the presence of a repeated factor in the lag product
is not in itself the cause of the failure of the pure-sine-waves
interpretation of the TCF to hold. It is the fact that the repeated
factor is degenerate:

?(t+7) =1
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This fact leads us to conjecture that the only degenerate
time-series (those for which the correspondence between pure
nth-order sine waves and the TCF is not the simple cumulant)
are those piece-wise constant signals with all values equal to
the mth roots of any fixed real number. In such a case,

z™(t) = constant

and the same fix applies: the (n — m + 1)th-order cumulant
for the variables

{z(t+ 1), z(t+72),..., 2+ Tnem), " (t + Them+1)}

is zero, which is in agreement with the absence of any pure
sine waves.
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