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The Cumulant Theory of Cyclostationary
Time-Series, Part II: Development and Applications

Chad M. Spooner, Member, IEEE, and William A. Gardner, Fellow, IEEE

Abstract—The development of the theory of nonlinear process-
ing of cyclostationary time-series that is initiated in the first part
of this two-part paper is continued here in the second part. A
new type of cumulant for complex-valued variables is introduced
and used to generalize the temporal and spectral moments and
cumulants for cyclostationary time-series from real-valued to
complex-valued time-series. The relations between the temporal
and spectral moments and cumulants at the inputs and outputs
of several signal processing operations are determined. Formu-
las for the temporal and spectral cumulants of complex-valued
pulse-amplitude-modulated time-series are derived. Estimators
for the temporal moments and cumulants and for the cyclic
polyspectra are presented and their properties are discussed. The
performance of these estimators is illustrated by several computer
simulation examples for pulse-amplitude-modulated time-series.
The theory is applied to the problems of weak-signal detection
and interference-tolerant time-delay estimation.

1. INTRODUCTION

HIS sequel to [34] (herein referred to as Part I, which

is also in this issue) continues the development of the
theory of nonlinear processing of cyclostationary time-series.
It also applies this theory to the problems of weak-signal
detection and interference-tolerant time-delay estimation. A
cyclostationary time-series is one from which finite-strength
additive sine waves can be generated by using nonlinear
transformations, but which typically does not itself contain
finite-strength additive sine-wave components. The minimum

* order of nonlinearity that is required to generate a sine wave

is called the order of cyclostationarity of the time-series,
and the frequency of a regenerated sine wave is called a
cycle frequency. For example, a suppressed-carrier amplitude-
modulated time-series is second-order cyclostationary because
a sine wave with frequency equal to twice the carrier frequency
can be generated by using a squarer. As another example, a
pulse-amplitude-modulated (PAM) time-series with positive-
frequency bandwidth equal to half the pulse rate is fourth-order
cyclostationary because no nonlinearities of order less than
four can generate a sine wave from such a time-series, but
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a fourth-order nonlinearity can generate a sine wave with
frequency equal to the pulse rate. '

The theory of second-order cyclostationary time-series (or
second-order cyclostationarity (SOCS)) has been developed
over the last decade [10], [11], and has found application
to numerous signal processing problems, such as weak-signal
detection, time-delay estimation, interference removal, system
identification, direction finding, and blind-adaptive spatial fil-
tering (see references in Part I and in [14]). The exploitation
of SOCS is particularly beneficial when the time-series of
interest is heavily corrupted by (stationary or nonstationary)
noise and interference. This is so because the SOCS parameters
associated with a particular cycle frequency « of such a time-
series can, in principle, be reliably extracted regardless of the
amount and type of interference, provided only that neither
the noise nor the interference exhibit SOCS with the same
cycle frequency «. This last requirement typically means that
the time-series of interest must have a unique symbol rate,
chip rate, hop rate, frame rate, carrier frequency, or frequency
associated with some other underlying periodicity.

In order to take advantage of this property of tolerance to
noise and interference for time-series that are cyclostationary
of order n > 2, it is necessary to generalize the theory of
SOCS to a theory of higher order cyclostationarity (HOCS).
The motivation and foundation for this generalization is given
in the first part of this two-part paper. Before continuing the
development of the theory, the key definitions and concepts
from Part I are summarized.

Following the summary of Part I in Section II, the parame-
ters of HOCS are generalized from real-valued time-series to
complex-valued time-series in Section III, and in Section IV
the effects of signal processing operations on the parameters of
HOCS are determined. The temporal and spectral parameters
are calculated for a complex-valued PAM time-series model in
Section V, measurement techniques are discussed in Section
VI, and in Section VII the theory is applied to the problems of
weak-signal detection and time-delay estimation. Conclusions
are drawn in Section VIIL

II. KEY DEFINITIONS AND CONCEPTS FROM PART I

A. Analysis Framework

The analysis framework that is used in this paper is the
fraction-of-time (FOT) probabilistic framework, wherein the
usual expectation operation E{-} is replaced by the sine-
wave-extraction operation E{®}{.}. The sine-wave-extraction
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operation extracts all finite-strength additive sine-wave com-
ponents from its argument, including the sine wave with
frequency equal to zero (the dc component):

E{a}{g(t)} — ZgaeiZﬂa% (1)
where

. 1 (T2 ‘ ,
go = lim —/ g(w)e 2™ dy = (g(u)e ™). (2)
T—oo T -T/2

The operation E‘{“}{-} is actually an expectation operation
with respect to the FOT probability density function (PDF)
for g(t). It is argued in Part I, and in [11] and [39], that the
FOT framework provides the most appropriate set of tools
for developing a pragmatic theory of cyclostationary signals.
However, it is not appropriate for generally nonstationary
signals, since it is based on infinite-time averages. Because the
FOT framework is dual to the stochastic process framework
(for stationary and cyclostationary time-series), we can use all
of the notation and terminology that is associated  with the
probabilistic theory of stochastic processes, such as moment,
cumulant, and characteristic function [13], [39].

It should be emphasized that all of the results in this paper
and in Part I can be understood using stochastic process theory
provided only that the class of processes considered exhibits
appropriate ergodicity properties. Thus, the reader can, if he
or she wishes, interpret £1}{.} to be the familiar stochastic
expectation operation. However, it should also be emphasized
that by avoiding the unnecessary abstraction of ensembles
that underlies the stochastic process, the FOT framework
has enabled us to develop the theory in a manner that is
consistent with the ideas of single-data-record measurement
and application to signal processing problems involving single
data records, and it has resulted in our deriving the cumulant
as the solution to a practically motivated problem involving
sine-wave generation (See Part I, Section II).

B. Pure nth-Order Sine Waves

Since the aim of the present study is to characterize the
additive sine-wave components generated by nonlinearly trans-
forming cyclostationary time-series, it is natural to consider the
sine-wave components in nth-order lag products (elementary
homogeneous nth-order polynomial transformations)

L,(t,7)n Hz(t+7'])

2w 3

of the time-series z(¢) under consideration (see Part I, Section
). For an nth-order cyclostationary time-series z(t), the
quantities

R3(T)n 2 (La(t, Tn

for all « for which they are not identically zero completely
characterize the additive sine-wave components in homoge-
neous nth-order polynomial transformations of z(t), but if z(t)
also exhibits lower order cyclostationarity (order lower than
n), then the lag product L, (¢, 7), can contain sine waves that

e—i27rat> (4)

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 42, NO. 12, DECEMBER 1994

are due to multiplication of sine waves associated with lower
order lag products, namely, factors of L (t,7T)n. A pure nth-
order sine wave is the sine-wave component of the nth-order
lag product that is left after all products of sine waves from
lower order lag products obtained by factoring the nth-order
lag product have been subtracted out. In Part I, it is shown that
the sum of all pure nth-order sine waves for a time-series z(t)
and a particular lag vector 7 is equal to the nth-order temporal
cumulant function for z(t), that is, the nth-order cumulant for
the set of variables {x(t 4 7;)}7_; obtained by using the FOT
PDF’s for z(t) for orders 1 through n (Part I, Section II-B).

C. Time-Domain Parameters of HOCS

Both moments and cumulants are useful in characterizing
the sine-wave components in nth-order nonlinear transforma-
tions of cyclostationary time-series; let us start with moments.
The nth-order temporal moment function (TMF) is defined to
be the temporal expected value of the nth-order lag product

Ro(t,m)n 2 B T a(t+75)

Jj=1

= BN L (t,7)n} 5)

and can be expressed as

= (t, 'r)n

Z Roc (T)n 2mat

where R2(T), is the nth-order cyclic temporal moment func-
tion (CTMF), which is the lag-dependent Fourier coefficient

Ry (1)n = (Ra(t, T)ne™ ™) ©)
and is equal to
RZ (1) = (Lw(ta"')ne_nﬂat>

which is taken to be its definition. The nth-order temporal
cumulant function (TCF) is given by

Colt,)n = [(=)PH(p—1)! 1‘[ Ro(t,70,)n; | (D

P,

where the sum is over all distinct partitions P,, such as
{vk}e_,, of the index set {1,2,---,n}, p is the number of
elements in a partition (1 < p < n), n; = |v;|, and

Ro(t, 70, )n; é E{a}{ H :c(t-l—Tk)}

kev;

where 7,,; is the vector of lags in T with indices in v;. The nih-
order cycllc temporal cumulant function (CTCF) is the Fourier

coefficient of the TCF
CE(1)n £ (Calt, T)ne™ ) ®)

and can be expressed in terms of lower order CTMF’s by
using (7) in (8):

CEmn=3 |- -1 Y HRQ o, )n

Pr, ati=pj=1

®
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In (9), a is a vector of p cycle frequencies [c - - - a;p) and 1
is the vector of ones. The CTCF corresponds to the strength
(magnitude and phase) of the pure nth-order sine wave with
frequency S in the lag product L, (¢, 7),. It can be shown that
the nth-order TMF is related to TCF’s of orders less than or
equal to n by

R, ( t'rn:Z ]:[C(t‘r,,]n

'n.

(10)

from which

RG(T)n = Z Z H ij (Tv;)n;

P, ﬂfl=a 7=1

(11

can be deduced.
As shown in Part I, the following two reduced-dimension
(RD) functions play a central role in the theory

n—1
t) H .T(t-|— U] —z27rat>

u==[u1~--un_1]T (12)
RD-CTCF:  CP(u), 2 CP([u 0]),. (13)

In general, the RD-CTMF is not integrable with respect
to u, whereas the RD-CTCF is for a large class of time-
series models of practical interest, and the RD-CTCF is
signal selective, whereas the RD-CTMF is not (see Part I,
Section II-C). Specifically, if z(t) consists of the sum of M
statistically independent time-series s;(t),

M

RD-CIMF:  RZ(u), <

2(t) = > 54(0)
then
Co(t,T)n Z Cs, (t,T)n

and if [ is an nth-order (pure) cycle frequency that is unique
to si(t) then

Cf(T)n = Ofk (T)n-

D. Frequency-Domain Parameters of HOCS

The spectral parameters of HOCS are defined in Part I in
terms of the complex envelopes

L [T '
Xr(t, f) = / z(v)e v dy

t—T/2

(14

of narrowband spectral components of the time-series z(t) at n
frequencies. The spectral parameters are characterized by the
Fourier transforms of the temporal parameters, as is evident
in the following summary. The nth-order spectral moment
function (SMF) is defined by

Se(f)a 2 Jim Son (P

é;Lxgo<HXT(t,fj>>, F=lffalt a9
=1
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and can be expressed as
n=_ S2(f)nb(f1 [f1e+ faa]t
- (16)
where S2(f'),, is the nth-order reduced-dimension spectral
moment function (RD-SMF)
S2(f)n = FPHR (w)n}

in which F™~1 denotes (n— 1)th-order Fourier transformation.
The nth-order spectral cumulant function (SCF) is defined by

1_0‘)’ f/:

a7

Po(f)a 2 lim Pup(f)n - (18)
£y —P_l—-!pS(f,).
fim 3 |77 0= DT S F)
and can be expressed as
19)

Pe(f)n = PE(f)nb(f11—-B)
B

where PP(f'), is the nth-order cyclic polyspectrum (CP),
which is defined by

PY(f)n
In (18), the vector of frequencies f consists of the elements

of f with indices in the partition element v;. The following
formal relations are useful in subsequent sections of the paper:

F{RE(1)n} = 82(f)nb(f11 - a) 1)
FH{Cl(r)n} = PL(f)nb(fT1 - B). 22)

The CP is the only generally well-behaved spectral char-
acterization of HOCS; the other functions are typically im-
pulsive, and can even contain products of impulses. For
a time-series z(t) that is stationary of order n, we have
PP(f')m = 0 for B # 0 and m < n. If z(t) can be viewed as
a sample path of a cycloergodic stationary stochastic process,
then PO(f'), is equivalent (with probability one) to the
conventional nth-order polyspectrum for the process [1]-[3],
[26], [27], [29]. However, if the cycloergodicity assumption
does not hold, then the CP PO(f'), can differ from the
polyspectrum for the process for almost every sample path. In
this case, both parameters are well-defined, but single-record
estimation of the polyspectrum for the stochastic process is
not possible. A common way to (inadvertently or otherwise)
destroy cycloergodicity is to phase-randomize a process. By
introducing random phase variables into a stochastic model,
a stationary process can be obtained that has cyclostationary
sample paths. This is illustrated with a numerical example in
Section VI-C (other examples are given in [39]).

£ FHCP (), ). (20)

III. COMPLEX-VALUED TIME-SERIES

To allow for arbitrary conjugations in the lag product of a
complex-valued time-series z(t), we use the notation

Lo(t,m)n = [[ s (t+ 7)) (23)

=1
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where (); is either a conjugation * or nothing, that is, (x); is
an optional conjugation of the jth factor z(t + 7;). For each
of the 2™ different choices of conjugations in (23) we define
the CTMF by

Ry (m)n 2 (L

—z'27rat>

2(t, T)ne
and its reduced-dimension counterpart by
R%(u), & R¥(7), for 7, =0 and 7; = u; for 1 < j <n-—1

as in Part I for real time-series. The chosen notation does not
indicate the number or placement of the optional conjugations.
This is done to avoid further complications to an already
complicated notation.

In general, the 2™ functions R%(7), are distinct. This is
immediately clear in the case of n = 2, where we have

R2 (1)2 = (z(t + 1) (t + m2)e ™),
RS (T)2 = (z"(t + 1)z (t + Ty )e 2ty
R2 ()2 = (z(t + m)a* (t + T2)e*2™),
Ry, (1)2 = (a™(t + m)2" (¢t + Ty )e 2oty

For real time-series these four functions are equivalent. For
complex-valued time-series they are not and, instead, the
following relations hold:

R (11, 72)2 =
Ry, (11,72)2 =

Ry (1,7m2)3
R.;ga('rh 7—2);'
For certain complex-valued signal types and certain- values
of n, the cycle frequency sets that are associated with some
choices of conjugations can be disjoint, as illustrated in [11] for
the case of n =2. For many complex-valued communication
signal models, the choice of no conjugations yields cycle
frequencies that are related to the carrier frequency (or carrier
offset), whereas the choice of n/2 conjugations (for n even)
yields cycle frequencies related to the pulse rate.

For an arbitrary collection of time-series translates {y; (¢ +
7;) }4, the cross (or joint) CTMF is defined by

R(T)n < [Twit+ T])e—’2m> (24)
7=1
and the cross SMF is given by
Sy(f)n = lim <HY]T (t, f;) > (25)

By analogy with the analysis in Section III of Part I for
real-valued time-series, (25) is not identically zero only if
fli= Z?:l fj = a, where « is an nth-order cycle frequency
of {y;(t)}j=; (e only if (24) is not identically zero as
a function of 7 for this «), in which case (25) is the n-
dimensional Fourier transform of (24). Choosing y;(t+7;) =
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™) (¢t + 7;), we obtain

t+T/2
Yip(t £) = /

t—T/2

t+T/2 ) ()
= / x(u)e"2"<‘)ffj“du
t—T/2

= X8t (-)i5)

where (—); is the optional minus sign associated with the
optional conjugation (*);. We can express the SMF for {y;(t+
7;)} in terms of X¢(t, f) by

A, < [Tx: ¢ (—)jfj)> @

=1

i (u)e "2 fivdy

Sy(f)n =

which is not identically zero only if ff1 = o, where o is an
nth-order cycle frequency for the set {z(*)i (¢ + 7;)}7_;.

We can construct the RD-CTCF in the same manner as
in Part I for real-valued time-series, that is, by combining
lower order CTMF’s. However, this requires the introduction
of a new type of cumulant for complex-valued variables, as
explained in Appendix A. The CP is the (n — 1)-dimensional
Fourier transform of the RD-CTCF, and is not identically zero
only if fT1 = (3 where [ is a pure nth-order cycle frequency
for {z(")i(t + 7;)}7_,. Just as in the case of the SMF (26),
the SCF can be thought of as the limit (as T — 00) of the
joint simple cumulant of the set {Y;.(¢, f;)}7_;. Thus, the CP
for the set {z(*)7 (¢t + 7;)}7_, is characterized by the limit (as
T — oo) of the cumulant of the set {Xé*)j (t, (=) fi)}i=1>
analogous to the characterization for real-valued time-series
in Part I, Section III.

IV. SIGNAL PROCESSING OPERATIONS

In this section, we obtain input-output relations for the
higher order moments and cumulants of time-series subjected
to various signal processing operations, including addition,
multiplication, periodic time-sampling, and convolution. The
derived relations can be useful in the calculation of higher
order parameters of modulated signals if such signals can be
represented as a series of operations on a simpler signal for
which the higher order parameters are known or can be easily
determined.

A. Addition

Let 2(t) be equal to the sum of two statistically independent
time-series z(t) and y(t)

2(t) = z(t) + y(b).
In this case, the TCF for z(t) is given by (cf. Part I, Section II)
C’z(t,;r)n = Cp(t,T)n + Cy(t, T)n
which implies that the CTCF is given by

CL (1) = CL(T)n + CJ (7)n
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and that the RD-CTCF is given by .
CP(u)y = CP(u), + C’f(u)n,
[he CP is, therefore, given by
PY(f")n = PL(f )+ PJ(f)n-

No equally simple additive relations hold in general for the
CTMF and SMF. The result (27) can be extended by induction
to the case in which z(¢) consists of the sum of M statistically
independent time-series.

@7)

B. Product Modulation

Let the time-series z(t) be the product of two statistically
independent time-series z(t) and y(t)

2(t) = z(t)y(?)-

The statistical independence ([11], [13], Section I of Part I) of
z(t) and y(t) implies that

Eled H ™ (¢ 4 75) H YRt 4 vg)
j=1 k=1

_ o H @i (¢ 4 1)

XE{a}{H *)kt—i—vk}

for all values of n,m,r, and v. The TMF (5) for z(t) is
therefore given by

Ro(t, 1) = B H At 4 1)

= Elo} H 23 (4 ;) y i (¢ + ;)
=1

= Ry(t,7)nRy(t, 7)n.
Using (10), we can represent the TMF in terms of CTMF’s

R.(t,T)n = »_ RZ(1)ne™

S RIS R;*(fr)nei?"vt}
n v
which implies that the CTMF for {2(¢ + 7;)}7_, is given by
R2(7)n = (Ra(t, 7)ne™ ")
(28)

=) RIU1)aRy(1)n

=Y RI(1)uR)(1)n (29)
vy

which is a discrete convolution, where & — 7 is equal to only
nth-order cycle frequencies for y(¢) in (28), and « — 1 is equal
to only nth-order cycle frequencies for z(¢) in (29). The TCF
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and CTCF for {z(¢ + 7;)}}_; can be constructed by using
(7), (8), and (28) or (29). The SMF can be obtained from (28)
using the convolution theorem for the Fourier transform

s =% [

which is a joint continuous and discrete convolution. No
equally simple input-output relations hold for the CTCF and
CP if both z(t) and y(¢) are random. If one of these time-
series, say z(t), is nonrandom (which in the FOT framework
means it is constant, periodic, or polyperiodic [11], [13]), then
its lag product is identically equal to its TMF

Ro(t,7)n = BN L, (t, 7))} = Ly(t,7)n.

. / 2 — 9)uS](g)ndg (30)

In this case, there is a simple formula for the temporal and
spectral moments and cumulants for z(t):

Colt,m)n =Y [(=1)P (p— D ] Ra(t, 7, )ns

P, j=1

P
(1P o= DI [] Relt, 7o, )n;
7j=1

X {H Ry(t, 70 )n, }
k=1

Because z(t) is nonrandom, the product of lower order TMF’s
for z(t) is equal to the nth-order TMF for z(t) for every
partition and can, therefore, be factored out of the sum

Co(t,7)n = La(t,7)nCy (t, T)n = Ra(t, 7)nCy(t, 7).

Thus, in the special case where z(t) is nonrandom (constant,
periodic, or polyperiodic), the formulas (28)—(30) hold with
R.,S., Ry, S, replaced by C., Z,C’y,Py, respectively.

C. Linear Time-Invariant Filtering

Let z(t) be equal to a filtered version of z(t)
oo
o(t) = / R(OV)z(t — \)dA
—00
where the impulse-response function h(-) is assumed to be

absolutely integrable. It is easy to show that the CTMF for
{z(t + 75)}j=, is given by

RS (1), = /

2

h(*)J (M) | RS (1 = X)ndA,

Assuming that it exists, the SMF can be obtained by using the
convolution theorem for the Fourier transform and is given by

TTE® (=) £)| So(F)n (31)

Jj=1
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where

oo
H(f) = / h(t)e~ "It dt
is the transfer function for the filter. The input-output relation
(31) is intuitively pleasing since the effect of filtering z(t)
is to scale the spectral component in z(t) with frequency v
by the complex number H(v). Thus, the individual spectral
components that are averaged to form the SMF are each scaled
by the appropriate value H(f;). It follows from (7) and (18)
that the effects of filtering on the CTCF and the CP are given
by ‘

CP (1), / / Hh<*)ﬂ ()| C8 (T — A)ndr
(32)
and
PE(f)n = [HO"((—)al8 —ﬂf])HH(*)J )i i)
PL(f" ) (33)

D. Periodic Time-Sampling

Let z(t) be the product of an impulse train and the time-
series z(t)

2(t) = y(t)=(t)
[e )
> 6(t —mT)
m=—0oQ
where T, is the sampling increment, and f, = 1/T, is

the sampling rate. Since y(t) is periodic it is statistically
independent of z(t), and the results of Section IV-B can be
used to find the nth-order parameters for z(t).

The nth-order RD-CTMF for z(t) is given by (cf. Section

IV-B)
Z R} (u

By using the formal identity

Z 8(t — mTs)

m=—00

) RS (1)

)
f Z eiZ‘rrmtfs

m=-—0Q

it is straightforward to show that the RD-CTMF for y(t) is
- given by

RI(u)n = 2 [exp{i2n foulm'}u(mTafs —n)]
m
where
m2[myoma)t w2y m]
and
s =10 270
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is the Kronecker delta function. Thus, the RD-SMF for z(t)
is given by

Se(f =12y | D wlmirfs —a+7)

¥ m

S (ff —m fo)n

(34)
Because y(t) is periodic, the cumulant for {z(t + 7;)}7_; is
given by (cf. Section IV-B)

C.(t,T)n = Ry(t, T)nCo(t,T)n
and, therefore, the analysis above for the RD-SMF holds also
for the RD-CTCF

CP(u), = ch (w)n RO (w),

and for the CP

P(f)n=17 Z Z’i(mtlfs —B+1P(f - m/fs)n:|
o m

(35)
The formulas (34) and (35) show that there are two kinds of
aliasing effects due to sampling: (i) frequency aliasing, which
is the overlapping of images of the CP (RD-SMF) with the
same cycle frequency which occurs when v = 8 (v = o)
in the sum and, (ii) cycle aliasing, which is the overlapping
of images of the CP (RD-SMF) with cycle frequencies other
than 8 («).

V. PULSE-AMPLITUDE MODULATION

A. Cumulant Formulas for Complex PAM

In this section, we present the higher order parameters
for complex-valued and, as a special case, real-valued pulse-
amplitude-modulated (PAM) signals, which provide useful
models for the classes of digital baseband and quadrature-
amplitude-modulated (QAM) signals. The PAM time-series is
given by

> amp(t +mTo +to)

m=—00

z(t) = (36)

where {a,, } is an independent and identically distributed (IID)
symbol sequence, 1/T} is the symbol rate (or pulse rate), o
is an unknown constant that represents the absolute timing
of the waveform, and p(t) is the pulse function with Fourier
transform given by P(f)

= [ (et

— o0

It is desired to calculate the CTCF and CP for {z(*)i(t +
7)1} j=1-

The higher order cumulants for PAM time-series can be
derived by using the results of Section IV, as sketched here
The cumulants for arbitrary PAM signals can be derived from
the cumulants for PAM signals that have rectangular pulses (or
any other real-valued pulse shape with duration not exceeding
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the reciprocal of the symbol rate). These latter cumulants can
be shown [35] to be given by (for t; = 0)

Co(t, T)n = Cumulant{;c(*)j (t+ Tj)}?:l

Cam Y ﬁp(t +mTy +75)

m=—oo j=1

(37

where C, ,, is the nth-order cumulant of the symbol sequence,
and is given by :

Can:

P,

(=17 Y( —1)'HRavJ
7j=1
in which

(38)

L (*)q
Rauj —K—>002K+1 Z H

k=—K q€v;

The RD-CTCF and CP follow directly from (37):

A~ Can [ (= —i2m
Chwn == [ o) T oo+ w)e a3
L0

n—1
~4 ) TT P(5)

PA(f), = Zenp (40)

where § = k/T.
An arbitrary PAM time-series (36) can be represented as a
filtered impulse train a(t):

z(t) = a(t) @ p(t + to)

where ® represents the convolution operation, and a(t) is a

PAM signal of the type just analyzed, but with pulses equal

to impulses. The cyclic cumulants and cyclic polyspectra for

z(t) can be determined by using the results in Section IV-C

to determine the effect of filtering on these cyclic parameters.
The CP for a(t) follows from (40) with P(f) = 1:

= Can
Pf(f/)n: T(;~

The effect of filtering the time-series a(t) is easily determined
by using (33) with the filter transfer function

H(f)=/::p

Thus, the nth-order CP for z(¢) is given by

Ca,n *)n /
T—OP( ((=)nlB -1t F])

n—1
% H P (-
j=1

which reduces to the following simpler form for real-valued
time-series:

(t+to)e 2™ Itdt = P(f)et2Ito,
Pf(f/)n =

)ei27r,3t0 (41)

n—1
PE(P ) = S22 P(5 -1 ) [ PO, @)
j=1
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Inverse Fourier transforming (41) yields the RD-CTCF for

PAM:
C o0
- Zan ()n
- / R0

n—
> H p(*)j (t + uj)e—iZw,Btdt ei27rﬂt0’

7 (w)

B=k/Ty. (43)

B. Real-Valued Binary PAM

In the case of binary symmetric real PAM, the symbols take
on the values &1 with equal FOT probability. For n = 2, the
cumulant for the symbol variables is

Cap=1.
Therefore, the second-order RD-CTCF is given by
_ 1 o
Clu)e == [
x (u)2 T, /_ oop

and the second-order CP is given by

(O)p(t+u)e”?P4dt 2P0 B = k/T,
PE(fe = 7-P(8 - P(f)em?

which for 8 = 0 reduces to the well-known formula for the
PSD of a unity-power PAM signal

= 1
P2(f)2 = 7 [P()P.
0
For n = 4, the cumulant for the symbol variables is given by
Caa = Ra4 = 3R, 5 — 4Rg3Re1 + 12R. o R2 | — 6R? |
=Ro4—3R2,=-2

where R, j is given by

K

2 dn

A
Ra,k K—»oo 2K +1

Thus, the fourth-order RD-CTCF is given by

(’ll,)4 — _/ t) Hp(t+ W ) —7.27r,@tdt ez27rﬁt0

J=1

The magnitude of this function for us = 0 is shown in Figs. 1
and 2 for 8 =0 and 3 = 1/Tj for two different pulse shapes.
The pulse shape for Fig. 1 is rectangular:

p(t) = {é

and the pulse shape for Fig. 2 is the inverse transform of the
bandlimited -pulse transform

[t| < To/2

otherwise (44)

(1, 1<y
P(f)‘{o, 71> 1/21

which is sin(wt/Tp)/nt.

(45)
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Fig. 1. Surface and contour plots for the magnitude of the ideal fourth-order
RD-CTCF for binary PAM with full-duty-cycle rectangular pulses for
ui,ug € [—2T5,2To) and uz = 0. Upper plots correspond to § = 0,
lower plots correspond to § = 1/To.

Fig. 2. Surface and contour plots for the magnitude of the ideal fourth-order
RD-CTCF for binary PAM with zero-excess-bandwidth Nyquist pulses for
u1,ug € [—2T0,27To) and ug = 0. Upper plots correspond to 3 = 0, lower
plots correspond to 3 = 1/To.

C. Complex-Valued Quaternary PAM

Consider the complex PAM signal (36) with symbol constel-
lation {1, %7} (equally probable), and a pulse with transform
given by (45). This is a model for the complex envelope of a
bandwidth-efficient quaternary-phase-shift-keyed (QPSK) sig-
nal. This signal has no second-order cyclostationarity because
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for n = 2 and the choice of no conjugations (or for two
conjugations) C, 2 = 0, and for the choice of one conjugation,
C,,2 = 1, but because of (45), the RD-CTCEF is zero:

/ (O™ (¢t + e 2P dt

= [" PP - et =,
8= k/To, k #0.

Nevertheless, this PAM signal exhibits fourth-order cyclosta-
tionarity for two choices of conjugations. In the first case, there
are no conjugations and therefore

Cas = Rau—3R2, —4Ry3Ra1 + 12R,»R2 | — 6R;
=Rya—-3R2;=Ras=1

which implies that

CF (w)s = %g/

—00

oo 3
p(t) H p(t + uj)e—i%ﬁtdteﬂ”ﬂt",
j=1

In the second case, two variables are conjugated, that is, the
set of variables under consideration is '

{z(t+7) z(t+7) z*(t+ 13) o (t + 1)}

In this case, the cumulant for the symbol variables simplifies
to Cp4 = —1, and the cumulant for the PAM time-series is
given by

~ -1 [
Cow=7 [ v (Op(t+mplt+ )
X p*(t + ug)e 2™ Ptdt 2™ B =k/Ty.

Note, however, that a different symbol distribution (e.g.,
uniform over the 8th roots of unity) could render C, 4 = 0 in
both of the preceding cases, but some higher order cumulant
(e.g., n = 8) would be nonzero.

VI. MEASUREMENT OF HOCS PARAMETERS

The measurement (estimation) of HOCS parameters from a
single finite-length data record is considered in this section.
This study is motivated by the need for such estimates that is
demonstrated by the applications discussed in Section VIL

As explained in considerable detail in [11], the FOT-
probability framework for the theory of cyclostationarity arises
naturally when we conceptually start our inquiry with practical
measurements and then idealize these measurements by letting
measurement times approach infinity and, where relevant, .
letting spectral resolution bandwidths approach zero. These
idealized measurements are the statistical parameters in terms
of which the theory is formulated. These parameters include
FOT probability densities, and the various temporal and spec-
tral parameters of HOCS. Thus, it is quite obvious that the
practical measurements can be interpreted as estimates of the
idealized statistical parameters of the theory, which can be
obtained only in the limit.
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The measurement problem as formulated here may be
somewhat confusing for the reader indoctrinated in statistical
inference for stochastic processes because here the theoretical
parameters to be measured are all mathematically defined in
terms of a single infinite-length time-series, whereas the esti-
mation problem formulated in the classical theory of statistical
inference involves using a single finite-length data-record to
estimate a theoretical parameter that is mathematically defined
in terms of an associated stochastic process—an abstraction
that cannot be derived by any form of idealization of actual
measurement on a single time-series. Although the estimation
methods described here can be viewed as the result of “backing
off” from the limits that define the theoretical parameters, and
then manipulaiting the resulting expressions to derive various
estimators, they can alternatively be thought of in conjunction
with a cycloergodic stochastic process (cf. Section I-C of
Part I), in which case the measurements are interpreted as
estimators of the parameters of this stochastic process.

Measurement of the. polyspectrum for strictly stationary
stochastic processes is considered in detail in [3], [30], [29],
‘and [38], and to some extent estimation of the CP is similar.
Because a natural first step (for the reader familiar with
the HOS literature) in constructing estimators for HOCS
parameters is to generalize this work on stationary processes
to cyclostationary time-series, it is important to understand
the estimation methods outlined in these references. This
requires an understanding of the conditions under which the
RD-SMF is equal to the CP because the methods of [3],
[30], and [29] use estimates of the RD-SMF to estimate the
polyspectrum. It should be emphasized that it is not desirable
to estimate the RD-SMF over its entire domain of definition
because it is generally impulsive, and can contain products of
impulses. However, it is desired to estimate the simpler RD-
SMF wherever it is equal to the CP, because it is the CP that
we are interested in.

The conditions for equality between the RD-SMF and the
CP can be determined by expressing the RD-CTMF in terms
of the RD-CTCF and lower order CTMF’s (cf. (9))

Raﬁc("')n = Of(T)n - Z [("1)?_1(13 -

Pp,

p#1l

.
x > J] R (Tyj)nj] (46)
ati1=87=1

where 7 = [u; - - - u,_1 0], and Fourier transforming in the
u; variables to obtain

SeNn =PI )n =D (k) D 527 (Fu)m,
p}:Zl afn=
p—1
x JI 82 (s 8(fL1 = ) 1)
7j=1
where k(p) = (—1)P~1(p—1)!, the f,, correspond to subsets

of the the n-vector

=i fo faer A1l (48)
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and f, , 1s a vector of the first n; — 1 elements of f To
derive (47) it is assumed (without loss of generality) that each
partition is ordered such that v, always contains n as its last
element in (46), and (21) is used to transform each of the
CTMF’s in the products.in the sum over P, in (46), except for
the one with reduced dimension (corresponding to the partition
element 1/,), for which (17) is used.

It is clear that S2(f'), is equal to PS(f'), only if the
sum over P, in (47) is zero, which will happen if one or
more of the impulse functions is zero for each partition. This
will be the case for all f’ except those that lie on a -
submanifold. The [(-submanifolds are the sets of f vectors
for which there is at least one partition with p > 1 for which
there is at least one « in (47) such that the argument of each
associated impulse function is zero, in which case that impulse
is nonzero. Another way to express the S-submanifold set is:
f’ lies on a B-submanifold if the augmented vector (48) can
be partitioned such that the sum of the f; in each subset vector
f,, corresponding to the partition element v, is an nyth-order
cycle frequency for z(¢) (ny = |vg|). This latter expression can"
be derived by forcing equality between the SMF and SCF. By
examining (46) and (47), we see that moments and cumulants
in both the time and frequency domains differ if there are lower
order cycle frequencies, whose orders sum to 7, that sum to the
nth-order cycle frequency of interest. It is important to note
that the function S2(f'),, is not impulsive at a value of f that
lies on a B-submanifold unless all the lower order coefficients
S (f, )nJ of the impulses are themselves nonzero.

If x(t) is strictly stationary, then the set of mth-order cycle
frequencies is either the null set or {0} for each m, and our
condition for equality between the the RD-SMF and CP (for
a = 8 = 0) is that there does not exist any -proper subset of
the elements of the vector

F=1fifare faor —17F]

such that the frequencies in this subset sum to zero, which
is exactly the condition stated in [29] for the equality of the
stochastic RD-SMF and polyspectrum for a strictly stationary
stochastic process.

The method of estimating the polyspectrum for strictly
stationary processes that is proposed in [3] and [29] is based
on the higher order periodogram defined by

0t f)n 2 X‘*”‘ *f)HX(*)’ (t,1;)-

7j=1

The idea is to smooth this function over the n — 1 vari-
ables f' with an (n — 1)-dimensional window W (f') while
avoiding the inclusion of values of I3, (t, f')n for f' that lie
on a 0-submanifold. It is shown in [29] that this method
is asymptotically unbiased and consistent provided that the
window function, which depends on the data-length 7' and on
n, satisfies certain conditions related to its rate of decay. This
frequency-smoothing method is also presented in Priestley’s
book [30]. However, Priestley does not force the smoothing
window to be zero on the 0-submanifolds. His single example
of the method uses a zero-mean time-series and n = 3, in
which case there are no 0-submanifolds to avoid.
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In [2], [3], and [29], the measurement parameter 1" is cou-
pled with the width of the window W (f'). In the approaches
for estimating the CP discussed in this paper, the width of the
spectral smoothing window is a parameter that is decoupled
from the data-length parameter 7. That is, in the methods
for estimating the frequency-domain parameters of the RD-
SMF and CP, two independent measurement parameters are
explicitly used: the frequency-smoothing window width Af
and the data length 7. This is consistent with the theory
of second-order cyclostationarity in [11], and is appropriate
because in actual measurement situations, the operator should
be able to choose T' and Af independently.

Before generalizing the frequency-smoothing technique to
the case of the cyclic polyspectrum, we first consider mea-
surement of the time-domain moments and cumulants. Then
we present several estimators of the CP. All measurement
methods considered here, except for the frequency-smoothing
technique, were obtained by generalizing from order n = 2 to
n > 2 and from moments to cumulants the methods proposed
in [11]. The frequency-smoothing method could also have been
obtained by generalizing the corresponding method from [11]
but, in fact, was obtained by generalizing the method of [2]
and [3].

A. Time-Domain Parameters

We are given the finite-length portion z(u) : v € [t —
T/2,t + T/2] of a persistent time-series. This portion has
length T' and center ¢, and can be expressed as

2(u) rect[u - t]

where

a1, [t<1/2
rect(t) = {0, It > 1/2.

The nth-order lag product for this segment is given by

T u+T7;—1
Ly (u,t,T)n = ]1;11 z(u + 7j)rect [——T]—] .

The estimator for the CTMF R2(7)y, is

1 [ .
Ry (t,T)n e T/ Ly (u, t,'r)ne_’%"‘"du.

—00
which can be expressed as
R , |
RS, () £ 7 / [T @+ m)e ™ dv 49)
ty j=1
where ¢; = t —T/2 — min{7;}, t, = t +7/2 — max{;}, and
t, > t1. If t, < t;, the estimate is defined to be zero because
in this case the delays are so widely separated that the shifted

data segments do not overlap. The estimate (49) converges to
the theoretical CTMF

Jim RS, (1,70 = B2 ()

since R%(7), is defined to be the pointwise limit of
Ry (t, T)n-
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Fig. 3. Fourth-order RD-CTCF’s for binary PAM with full-duty-cycle rect-
angular pulses for w = [0 0 u], 8 = 1/To, and SNR = 0 dB: (a) Theory;
®) T = 512Tp; (¢) T = 2048Tp (To = 8).

The estimator for the CTCF is given by the combination of
lower order CTMF estimates specified by (8):

o8t Y [<-1>p—1<p Ly

P,.

X Z ﬁRa‘Z;(t,n,)nj} (50)

at1=83j=1

where the second sum is over all vectors & = [ay - ap]t of
cycle frequencies with orders ny - - -, that sum to f: a1 =
Q. Since each CTMF estimate converges to its theoretical
parameter, we have the following convergence (assuming that
the possibly infinite but denumerable sum over a can be
interchanged with the limit)

Tlgréo CfT t,T)n = Cf('r)n.

In order to construct the estimate (50), all lower order cycle
frequencies for z(¢) must be known or estimated; an algorithm

. for estimating these frequencies is described in Section VII.

To estimate the RD-CTMF and RD-CTCF, we set 7 =
[ug - un—1 0] in (49) and (50), respectively.

The mean and variance of the estimator (49), derived in
[35], are given in Appendix B.

1) Examples: Consider the PAM signal (36) with full-duty-
cycle rectangular pulses (44), Ty = 8, and a sequence of binary
(£1) symbols that occur with equal probability. A portion
of the theoretical fourth-order RD-CTCF for this signal is
shown in Fig. 1. To verify the correctness of the estimators
of the CTMF and CTCF, we simulate this signal and use
discrete-time versions of the estimators (49) and (50) to obtain
estimates. Fig. 3 shows the theoretical and measured fourth-
order RD-CTCF for 3 = 1/Ty for the PAM signal described
above in white Gaussian noise (WGN) such that the signal and
noise have equal power. These RD-CTCF’s were estimated
using the second-order cycle frequencies k/Tp for |k| < 3.
Contributions from cycle frequencies k/Ty for |k| > 3 were
found to be negligible. A reasonable estimate is obtained for
an observation interval length T' of 512 symbols, and a good
estimate is obtained for 7' = 2048 symbols.

Fig. 4 shows the same measurements for a binary PAM
signal with Nyquist pulses that have 0% excess bandwidth
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Fig. 4. Fourth-order RD-CTCF’s for binary PAM with Nyquist pulses having

zero excess bandwidth for w = [0 0 u], 8 = 1/Tp, and SNR = 0 dB: (a)
Theory; (b) T = 1024Tp; (¢) T = 40967y (To = 8).
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Fig. 5. Fourth-order RD-CTCF and RD-CTMF estimates for the sum of two

equipower PAM signals (z = s1 + s2) with full-duty-cycle rectangular pulses '

having symbol rates 81 and f2, for cycle frequency (1, u = [0 0 u], and
T = 2048Tp: (a) RD-CTCF for s1(¢); (b) RD-CTCF for #(t); (c) RD-CTMF
for s1(t); (d) RD-CTMF for (t) (81 = 1/To = 1/8,82 = 1/5).

(45). A portion of the theoretical fourth-order RD-CTCF for
this signal is shown in Fig. 2. The ‘only lower order cycle
frequency for this signal is o = 0 for n = 2. A much larger
value of T is required to obtain a reasonable estimate for this
signal.

Finally, Fig.5 shows the fourth-order RD-CTMF and
RD-CTCF for the sum of two equipower full-duty-cycle
rectangular-pulse PAM signals with distinct symbol interval
lengths of 8 and 5. The cycle frequency is S = 1/8, and the
lower order cycle frequencies are those corresponding to the
first signal, k/8 for |k| < 3 for n = 2, because these are the
only lower order cycle frequencies that can add to the cycle
frequency of the measurement, 1/8. This figure shows that
the RD-CTCF is signal selective, whereas the RD-CTMF is
not. That is, if the symbol rate is known, the measured RD-
CTCF asymptotically approaches the theoretical RD-CTCF for
the signal of interest, but the measured RD-CTMF does not
approach the theoretical RD-CTMF for the signal of interest.
This confirms the theory regarding signal selectivity given in
Section IV.

B. Estimating the Cyclic Polyspectrum

As explained in [35], the CP can be estimated by Fourier
transforming a windowed estimate of the RD-CTCEF:
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pr(t’f/)Af = /_o:o ) /_°:o wl/Af(u)

~ —izrut f'
x CP (t,wne > qu,  (51)
n—1
wl/Af('u,) = H rect(ujAf).

J=1

The multidimensional window w/af(u) can be replaced
by any function with finite support in (n — 1)-dimensional
Euclidean space such that its Fourier transform converges
(formally) to a product of Dirac delta functions:

n—1
A1}1307'"""1{w1/Af(U)} = 1;[1 6(f5)-

The CP can also be estimated by first constructing the nth-
order cyclic periodogram

. . n—1
It ) 2 X (218 — 1T [T X85 ()i )
T =

= FPURE (u),) (52)

masking it by a special function Zs(f'), and then convolving
with a multidimensional smoothing window [31], [32], [19],
(71, [35):

Pt F)ap = War(F) @ [12,(t, f)nZs(£)].

In (53), ZP(f') is equal to one except at those f' that lie on
(B-submanifolds, in which case it is equal to zero. The vector
[91 - gn], for g, = B — Z;:ll g;» lies on a [-submanifold
if there is at least one partition {v;}%_; in P, with p > 1
such that each sum oy = Zkeyj gr is an njth-order cycle
frequency of () (for the set of optional conjugations that are
chosen). As mentioned previously, these S-submanifolds must
be avoided in the convolution (53) because the smoothed nth-
order cyclic periodogram converges to the function SB(f Y,
which can contain multiple impulsive factors for values of
f' that lie on S-submanifolds, but which, for all other f', is
equal to the nonimpulsive function P?(f),. These impulses
are avoided in the method (51) because the additive sine-
wave components in the u variables of the RD-CTMF estimate
RP(t,u),, are removed in forming the RD-CTCF estimate
C_’fT(t, u)n, and it is these additive sine waves that give rise
to the (smoothed) spectral lines in the transform IZ (¢, f')n
of R (t,u),. This transform relation (52) is a generalization
of the cyclic periodogram-correlogram relation introduced in
[11] from n = 2 to all n.

There are several difficulties associated with this frequency-
smoothing method. The first is that although the impulsive
parts of the RD-SMF are avoided by the smoothing operation,
there can be substantial leakage from the impulses into nearby
regions in f’, which are exactly the regions used to compute
the CP estimate for f’ that are on the $-submanifolds. This can
be seen by considering the simple case of n = 2. If the data
contains additive finite-strength sine wave components, then
the spectrum contains impulses. To estimate the continuous
portion of the spectrum at a point where there is an impulse
due to the discrete portion of the spectrum is problematic when

(53)
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using frequency smoothing because of leakage. This leakage
problem is discussed further and is illustrated with numerical
examples in Section VI-B-2. This leakage problem, which is
common knowledge for n = 2, is not mentioned in [2], [3],
or [30] for the case of stationary stochastic processes, nor in
[19] or [7] for the case of cyclostationary stochastic processes.
In addition to the leakage problem, the frequency-smoothed
cyclic periodogram method is computationally costlier than
the Fourier transformed RD-CTCF method (51) for n > 2,
even when there are no [-submanifolds to avoid [35] This is
surprising since the opposite is known to be true for n = 2.

Finally, the CP can be estimated for values of f’ that do not
lie on [-submanifolds by time-averaging the masked higher
order cyclic periodogram

PPt fjas=9rt) ® [Ifl/Af (t, f/)nZﬁ(f/)]

where

(54)

_JyT, <12
gr(t) = { 0, otherwise.

Unlike the frequency-smoothing method, the time-averaging
method cannot produce estimates of the CP for frequencies f’
that lie on -submanifolds without modification. An example
of such a modification to (54) is to compute estimates of the
CP for values of f that are near to the 3-submanifolds, and
then use interpolation to estimate the value of the CP for the
f' that are on the [(-submanifolds.

The three methods of estimating the CP converge to the
theoretical CP [35] in the sense that

B0 = Y, fim Pep (6 1)as

= Jlim, fim Pt f1yage

(35)

‘It is worth pointing out that the three estimators of the
CP presented in this section each reduce to a well-known
estimator of the PSD for the case of n = 2 and zero-
mean stationary signals. Specifically, (51) reduces to the

Blackman-Tukey method (Fourier transformation of a tapered -

autocorrelation estimate), (53) reduces to the Wiener-Daniell
method (frequency smoothing of the periodogram), and (54)
reduces to the Bartlett-Welch method (time-averaging of the
periodogram) ([11], Chapter 6). Similarly, each of the esti-
mators of the CP can be considered as a generalization of
estimators of the cyclic spectrum from second-order to higher
orders ([11], Chapter 13). Finally, the estimators (51) and
(53) are generalizations of estimators of the polyspectrum that
were proposed by Brillinger and Rosenblatt [1]-[3], [29] from
stationary stochastic processes to cyclostationary time-series.

1) Examples: The fourth-order CP is estimated by the time-
averaging method (54) for the same signals and noises used
to obtain the estimates of the RD-CTCF and RD-CTMF in
Figs. 3-5.

The theoretical and measured fourth-order cyclic polyspec-
tra for the case of binary PAM with full-duty-cycle rectangular
pulses in WGN for 8 = 1/T; are shown in Fig. 6. The
data segment length used to form the fourth-order cyclic
periodogram is 64, which results in a frequency resolution
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Fig. 6. The fourth-order CP from (54) for binary PAM with full-duty-cycle
rectangular pulses, f' = [1/321/64 f], 8 = 1/To, Af = 1/8T,, and SNR
= 0 dB: (a) Theory, (b) T' = 5127y, (c) T' = 2048Ty (Tp = 8).
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Fig. 7. The fourth-order CP from (54) for binary PAM with Nyquis
pulses having zero excess bandwidth, f' = [1/32 1/32 f], 8 = 1/To,
Af = 1/8Tp, and SNR = 0 dB. (a) Theory, (b) T = 512Tp, (c)
T = 40967y (Ip = 8).

of Af =1/64. The lower order cycle frequencies used to

. compute the -submanifold points are k/Tp = k/8 for |k| < 3

for n = 2; cycle frequencies equal to higher harmonics of
the symbol rate (|k| > 3) can be neglected because they
correspond to cyclic features that are relatively small. There
are eight S-submanifold points in the specified domain of the
estimate; these points are marked on the graph. The output of
the estimator is defined (arbitrarily) to be zero at these points.
Note that linear interpolation would yield good estimates of
the CP for the S-submanifold points in the main lobe in Fig. 6.

The theoretical and measured fourth-order cyclic polyspec-
tra for the case of binary PAM with Nyquist pulses having 0%
excess bandwidth are shown in Fig. 7 (cf. Figs. 2 and 4). The
measurement parameters are the same as in the previous case,
except that there is only one lower order cycle frequency:
a = 0 for n = 2. Thus, there are no [(-submanifolds for
B =1/T, = 1/8.

Finally, the CP for the case of the sum of two equipower
PAM signals with full-duty-cycle rectangular pulses, having
distinct symbol rates 1/8 and 1/5 for 8 = 1/8 is shown in
Fig. 8 (cf. Fig. 5). The lower order cycle frequencies used to
compute the [-submanifold points are k/8 for |k| < 3 fc

n = 2.

2) Leakage from [3-Submanifolds: A leakage effect exists
in the method (53) that is due to the smearing of the im-
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Fig. 8. Fourth-order CP from (54) for the sum of two equipower PAM
signals (z = s1 + s2) with full-duty-cycle rectangular pulses, having
symbol rates B; and Bz for cycle frequency 81, f' = [1/32 1/64 f],
Af = 1/8Ty: (a) Theory for s1 (t); (b) CP estimate for x(t) for T' = 2048Tp
(To = 1/p1 = 8,62 = 1/5).

pulses on the (-submanifolds to neighboring regions off the
(-submanifolds [32]. To quantify this leakage effect, the
temporal mean of (53) is computed. From Appendix B

(R (w)n) = R (w)nvr(u)

where
a [1+u(u)/T, |uo(w) <T
vr(u) = { 0, otherwise
and
uo(u) 2 min{0,us, ..., up—1} — max{0,uy, ..., up_1}.

Using this result, it is easy to show that the temporal mean of
(53) is given by the convolution

War(F) @ [(SE(F)n @ V() Zs(f)]

where Vr(f') is the (n — 1)-dimensional Fourier transform of
vr (). The effect of the convolution with Vz(f') is to smear
the impulses in S2(f'),,, thus producing spectral leakage into
nearby regions, which cannot be removed by the masking
function Zg(f').

The method (51) also exhibits leakage when the CTMF’s
(6) are computed using an FFT algorithm, and the cycle
frequencies «; are not “on bin center.” This leakage can be
substantially reduced by computing each CTMF by evaluating
the FST (the Fourier series transform, which is like the DFT
but can be evaluated at an arbitrary value of frequency) for
every o; appearing in the sum in (50), but this can greatly
increase the computational cost of the method [32], [35].

In the following, several fourth-order CP measurements are
displayed graphically for the purpose of illustrating the relative
performances of the CP estimators (51), (53), and (54) in the
presence of leakage from the (§-submanifolds.

The signal of interest is a binary pulse-amplitude-modulated
signal with symbol interval length Ty = 77 and IID symbols.
Both rectangular keying pulses rect(¢/7p) and Nyquist-shaped
pulses are simulated. As before, only the second-order cycle
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Fig. 9. Estimates of the fourth-order CP for binary PAM with full-duty-cycle
rectangular pulses for 3 = 1/Tp, a collect time of 2927, and f' € S1. The
TA estimate is defined to be zero at the two submanifold points f = 0,1/32.

frequencies k/T, for |k| < 3 are used to compute the lower
order CTMF’s and to find the (-submanifolds for the case
of rectangular pulses because the higher harmonics (|k| >
3) produce relatively weak features and can therefore be
neglected. For Nyquist pulses, the only lower order cycle
frequency is o = 0 for n = 2.

The fourth-order CP for 8 = 0 and 8 = 1/Ty is estimated
for the observation interval length of 2048 (= 2927T;) samples
using the following methods:

FS: frequency-smoothing method (53)

FT: Fourier-transformed RD-CTCF method (51) using
FFT’s to estimate the lower order CTMF’s
FST: Fourier-transformed RD-CTCF (51) using the FST
for estimating the lower order CTMF’s ‘
TA: time-averaging method (54).

For the time-domain methods (FT and FST), the RD-CTCF
is estimated on the cubic grid of integers u = [u1 ug us] €
[—8,7]3, and then Fourier transformed. In the FS method, the
spectral smoothing window width is set equal to 128 samples,
and in the TA method, the block size is 32 samples. Thus, each
method uses approximately the same temporal and spectral
resolution parameters and can therefore be compared fairly.

Because computing the entire CP using (53) is relatively
costly, and is difficult to display, only two “slices” of the CP
were estimated. The slices correspond to S; = [0.0 1/32 f]
for the case of rectangular pulses, and So = [1/32 1/32 f] for
the case of Nyquist pulse for f € {k/32,k = —16,...,15}.

The CP estimates for ten independent realizations (with the
same timing parameter tp in (36)) of the signals were averaged
to produce the final set of estimates. The magnitudes of the
estimates are shown in Figs. 9-12. Generally speaking, the
FST method delivers the best performance because it suffers
the least from the aforementioned leakage effect. However, it
is not the best method from the point of view of computational
cost [35].

C. Cycloergodiéity and Measurement of Cumulants

We illustrate here the kind of error that can result from mod-
eling a signal as a stationary stochastic process (or stationary
time-series) when the sample paths are actually cyclostationary
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Fig. 10. Estimates of the fourth-order CP for binary PAM with
full-duty-cycle rectangular pulses for 3 = 0, a collect time of 292Tp,
and f' € S;. The TA estimate is defined to be zero at the two submanifold
points f = 0,1/32.
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Fig. 11. Estimates of the fourth-order CP for binary PAM with Nyquist

pulses having zero excess bandwidth for 8 = 1/Tp, a collect time of 2927y,
and f' € Sp.

time-series, and then measuring higher order parameters from
a single sample path. Specifically, we consider a zero-mean,
noiseless binary PAM signal with full-duty-cyele rectangular
pulses, 8 = 0, T = 51271}, and n = 4. If we think of the signal
as stationary (e.g., by making the pulse timing parameter g
random and hniformly distributed over [0, Tp] in the stochastic
process model, we obtain a stationary process [9]) and compute
the theoretical RD-CTCF we obtain

Clwa= (=17 o~ D' [ Re(ro)n,

P, j=1

(56)

T = Ui, T4 = 0.

Hence, we are explicitly assuming that there are no lower
order sine waves associated with z(¢) by modeling z(¢) as
stationary and ignoring the lack of cycloergodicity in this
model (cf. [39]). A portion of an estimate corresponding
to this cumulant formula is represented by a dotted line in
Fig. 13. The oscillatory portion of the estimate does not die

out for large u. This oscillation is due to the interaction of

second-order sine waves that have not been subtracted out
of the fourth-order moment term in (56). On the other hand,
if we recognize the cyclostationarity of the sample path and,
therefore, take into account the second-order sine waves, we
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Fig. 12. Estimates of the fourth-order CP for binary PAM with Nyquist
pulses having zero excess bandwidth for 3 = 0, a collect time of 2927,
and f’ € So. The TA estimate is defined to be zero at the submanifold point
f = -1/32.
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Fig. 13. Estimates of the fourth-order RD-CTCF for a binary PAM signal
under the assumptions of stationarity and cyclostationarity.

obtain the RD-CTCF

P
CRa=Y [P -1 Y [[RY@o)n, | 67)
P ati=0j=1
T = U, 7a = 0.

A portion of an estimate corresponding to this cumulant
formula is represented by the solid line in Fig. 13. Note
that both graphs are estimates obtained from the same data
record. The CP estimates that correspond to the two different
assumptions are shown in Fig. 14. The size of the peak in the
curve obtained by assuming stationarity grows with collect
length T' because this peak is due to the oscillatory portion of
the RD-CTCF estimate, which does not die out with increasing
u.
Note that this phenomenon is usually not observed in the
case of n = 2 because we typically consider zero-mean
signals that do not contain finite-strength additive sine wave
components. Thus, the PSD estimates agree with the calculated
formula based on a stationary model, even when the signal is
cyclostationary, because there are no lower order sine waves
to deal with. This example suggests that the theory of HOCS
is useful even in the case where cyclostationarity is of no
interest but is exhibited by the data because if cyclostationarity
is ignored, theory and practice will not agree.
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Fig. 14. Estimates of the fourth-order CP for a binary PAM signal under the
assumptions of stationarity and cyclostationarity.

VII. APPLICATIONS OF HOCS

In general, the applications of the theory of HOCS are
similar to those for the theory of SOCS and the theory of
HOS, namely weak-signal detection, signal parameter estima-
tion, system identification and equalization, and array-based
direction-finding and blind adaptive spatial filtering. The use
of cyclic cumulants or cyclic polyspectra rather than conven-
tional cumulants or polyspectra can be advantageous when
the corrupting signals are not Gaussian (manmade signals
are rarely Gaussian), and the use of higher order cyclic
parameters rather than second-order cyclic parameters can
be advantageous when the signal does not exhibit second-
order cyclostationarity, or when there are no cycle frequencies
unique to the signal of interest for order two, but there are
unique cycle frequencies for a higher order.

HOS-based detection algorithms are given in [18] and
[24], and HOS-based time-delay estimation algorithms are
given in [4], [22], and [37], where the signals are modeled
as exponentially distributed stationary processes, and order
three is focused upon. HOCS-based detection and time-delay
estimation algorithms are given in [33], [7], and [20]. The
methods given in [7] and [20] are distinct from those given
in this section; the former attempt to exploit the asymptotic
statistical nature of estimates of third-order cyclic cumulants,
whereas the latter attempt to exploit the structure of arbitrary-
order cyclic moments and cumulants. HOCS-based direction-
finding methods (array based) are given in [21].

A. Weak-Signal Detection

In this section, we consider the problem of detecting the
presence of a_desired signal (or signals) s(¢) in a received
data set z(t) with noise and interference n(t),

z(t) = s(t) + n(t), -T/2<t<T)/2.

There are several versions of the detection problem that are
of interest. The first is called the general search problem, in
which we are interested in analyzing a data set to determine if
there are any cyclostationary signals present. No information
about the received data is assumed in the general search
problem. In the second problem, called the known-cycle-
frequency problem, we have in mind a specific pure cycle
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frequency/order pair (3,n9) and we attempt to determine if
there is a signal present in the data corresponding to this pair.
In the third problem, called the known-modulation problem, we
know the modulation format of the signal of interest, and hence
we know (in principle) the cyclic cumulants of the signal; we
wish to determine if that particular signal is present.

Motivation for using HOCS, instead of SOCS or HOS, to
detect the presence of a signal is provided by the situation
where this detection cannot be reliably accomplished using
these other signal properties. This can be the case, for example,
when a signal has very weak SOCS, and is weak with respect
to the noise and interference background (low SNR), which is
changing unpredictably during the observation interval. It can
also be the case when the signal of interest does not have a
unique cycle frequency for order two, but does for a higher
order. An example of this is a communication system wherein
all the signals are spectrally overlapping QPSK and have the
same symbol rate, but each has a distinct carrier frequency.

Since the computational complexity increases and the output
SNR decreases (when the input SNR is less than 0dB) with
increasing order n of nonlinearity, it is always desirable to use
the smallest possible value of n. This typically corresponds to
the lowest order of (substantial) cyclostationarity of the signal.
Accordingly, it is often the case in the known-modulation
problem that the CTCF and CTMF are (approximately) equal
for the chosen value of n, RY(1), = C%(7),. In addition,
if the noise and interference (hereafter referred to as the
environment) is such that RZ(7), = 0, where {3 is the pure
cycle frequency of interest in s(t), in which case R? (), =
C8 (1), then any detection method that requires an estimate of
the CTCF for s(¢) can be implemented by using an estimate
of the CTMF for z(t), thereby reducing the computational
complexity of the method. However, if the environment is
unknown, it is best to use estimates of the CTCF so that
potential lower order sine wave interactions can be avoided.
Let us now turn to an examination of each of the three
detection problems.

1) The General Search Problem: In the general search
problem, there is a maximum order IV that is to be used
for processing. The goal of the processing is to produce a
list of pure cycle frequencies {(3,} for each value of n from
1 to N. The list {8,} should characterize the detectable
cyclostationarity of order n (and only n) that is associated
with z(¢). Thus, these lists should not be contaminated by
entries that are due to lower order sine-wave interactions. To
accomplish this task, we estimate the TCF for z(t) for each
order n. From this estimate, the cycle frequencies {3, }, which
are needed for the estimate of the TCF for order n + 1, can
be found. More explicitly, the general search problem can be
tackled using the following algorithm:

0. Letn=1

. ) r

L. C;(ta T)'n = La:<ta'r)n - Z H Cz(t,'r,,j )nj
Pp, 7j=1
p#1

2. Y(f)= FFT{C;(t,7)n}
3. Threshold detect the bins of Y to find {3,}
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L O () = (C4 e
5. m,(t,'r)n e Z Cf" (T)neizﬂ’@"t

Bn )
6. n—n+1; if n <N then go to 1.

In step 4, the interval over which the average (-) is performed
is determined- by the amount of data z(¢) available. If any
of the detected cycle frequencies are of particular interest,
a cyclic polyspectral analysis can be performed from which
the modulation type can possibly be determined. Also, a
simple -analysis of the relationship between the estimated
cycle frequencies for the different values of n can be used
to advantage for modulation recognition.

2) The Known-Cycle-Frequency Problem: Here we are
given knowledge of one or more of the signal’s modulation
frequencies, such as a symbol rate or carrier frequency, but
the shape of the CTCF is unknown. The environment is
still assumed to be unknown and, therefore, the general search
algorithm is still of interest. It can be improved for the known-
cycle-frequency problem by combining it with a least-squares
estimation technique. Let (3, ng) be the cycle frequency/order
pair of interest. Use the general search algorithm up to order
ng — 1. Form C',(t,7),, and use a least-squares estimator to
detect the presence of the signal of interest using the statistic

Y = (@€, (1, 7)n,e )
. NP
= wTCm (T)no>

~ where

A N N t
C;<t’7)no = {Ca/c(tﬂ—'l)no t C;(t7TK)no]
~0

)y = [C2ng -+ CEram

and where  is the unity-norm version of the least—squares
weight vector that satisfies

min(|w' €, (8, ), — €27 P). (58)

The normalized solution to (58) is

i = R0 (), || BT C (), 7
where
O (b))

in which H denotes conjugate transpose. Thus, the detection
statistic is

R = (C,(t,T)n,

: A0 148 28 1/2
Y = G RG] (1), [CLTE R0 (1)n0]

This detection statistic is obtained by forming the particular
linear combination of data sets é’/(t,rl)no, . ,C’/(t,'rK)n0
that optimally combines the regenerated sine waves with
frequency [ present in each set, and then correlates this

composite regenerated sine wave with the stored sine wave
127 Bt
e .

" which has several optimality properties [12] and has been
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3) The Known-Modulation Problem: In this problem, we
wish to determine if a signal with known modulation type is
present. In particular, we know the CTCF of s(¢) for n = ng
and pure cycle frequency (. The general search algorithm can
be used to remove all lower order sine waves up to order
no—1. Then, from C%,(t,7)n, the CTCF estimate C2_(u)y, for
cycle frequency [ can beé determined. The proposed detection

statistic is
(o] (o]
— / / CP (u
— 00 — 00

The primary justification for this particular statistic is- that
when no signal is present with pure nth-order cycle frequency
B, then CP_(u)n, — 0, which implies that ¥ — 0; when the
signal of interest is present, then

y_>/°° /Oo |G ().

Thus, y is an asymptotically noise-free statistic on both the
signal-present and signal-absent hypotheses. (Furthermore, the
integral (59) is finite (see Part I, Section II).) Hence, this
statistic is the natural generalization of the single cycle detector
that exploits second-order cyclostationarity [11]

Vacn = [ Z R, (RS (r)dr = [ Z S;*T<f)s_:f(f>*<(1£0)

CP(u)k, du.

(39)

shown to outperform radiometric (energy) detectors for weak
cyclostationary signals in time-varying environments [15]..In
(60), R () is the cyclic autocorrelation for s(¢), Rg . (7) is the
cyclic autocorrelation estimate (cyclic correlogram), Sg (f) is
the cyclic periodogram, and S%(f) is the cyclic spectrum for
s(t) [34].

The detection statistic Y can be generalized to include only
a portion of u-space, denoted by G C R™

/ 'u,)nodu

Choices for G might include those values of w for which
the RD-CTCF C#(u),, is particularly large, or for which the
coefficient of variation (variance divided by squared mean) of
the estimator C2_ (u)n, of the RD-CTCF is particularly small.

B. Time-Delay Estimation

In this section, we consider the problem of time-delay
estimation. We are given the data

z(t) = s(t) + n(t)
y(t) = As(t + d) + mf(t)

from two physically separated sensors and we wish to estimate
the time-delay parameter d, which is sometimes called the
time-difference-of-arrival (TDOA) for s(t). We assume that
s(t) is mth-order cyclostationary with cycle frequency 0.
The time-series n(t) and m(t) consist of arbitrary noise and
interfering signals, except that it is assumed that neither n(t)
nor m(t) is nth-order cyclostationary with the pure nth-order
cycle frequency B.
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Conventional approaches to this problem (those that do
not exploit cyclostationarity) can be collectively referred to
as generalized cross-correlation (GCC) methods [25]. In the
GCC methods, filtered versions of the sensor outputs z(t) and
y(t) are cross-correlated, and the estimate of d is taken to
be the location of the peak in the cross-correlation estimate.
These methods suffer when n(t) and m(t) contain signals
common to both, each with its own TDOA, because each such
signal contributes a peak of .its own to the cross-correlation
function. This causes two problems. The first is a resolution
problem which, to be solved, requires that the differences
in the TDOA’s for each of the signals be greater than the
widths of the cross-correlation functions so that the peaks
can be resolved. The second problem is that it is difficult to
correctly associate each peak with its corresponding signal.
Both of these problems arise because the GCC methods are
not signal selective; they produce TDOA peaks for all the
signals in the received data unless they are spectrally disjoint
and can, therefore, be separated by filtering. Signal selective
methods that exploit the SOCS of the desired signal, which is
assumed to be unique to that signal, are studied in [8], [16], and
[17]. These methods have been shown to outperform the GCC
methods, and have been shown to produce unbiased TDOA
estimates with variance that is smaller than the Cramér-Rao
lower bound on the variance of TDOA estimators that are
based on the assumption that the signal and environment are
stationary. However, these methods do not apply when there
is no SOCS to exploit. In this case, we can turn to HOCS in
order to develop signal-selective TDOA estimators.

Following the approach in [16] for SOCS, the general
methodology considered here for HOCS is least-squares
estimation [33]. The following two examples illustrate the
methodology. To keep the notation simple only real-valued
signals are considered.

Let us define a cross-cumulant as

Cry(t,7)n = Cumulant{z (¢t + 1) - 2(t + Tn-1) Y(t + 70) }

The cyclic component of this cross-cumulant for the signal-
specific cycle frequency (3 is

Cy(T)n & (Czy(t, T)ne” ")
= ACP(T + 6,d)n
where 8., is the unit vector along the nth coordinate. It is easy

to show that the following relations involving RD-CTCF’s
hold:

Cyy(w)n = AC? (u — 1d), ™™,
C8(u)n = CF ().

Thus, we can do a least-squares fit of a measurement of C‘gy to
a measurement of C? over a region G of u-space of interest:

i [ |03y2(00n — AC2, (0 2o
Ad JG

This leads (cf. [16]) to the following estimator of the delay d:

dy = argmax R / C_‘fT (u)nc_'gyT (u+ 1(2):ei2”ﬂ‘idu
d G
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where arg max means the value at which the maximum occurs,
and R means the real part. This estimator is a higher order gen-
eralization of the spectral coherence alignment (SPECCOA)
algorithm for TDOA estimation [16], which exploits second-
order cyclostationarity, and has been shown to possess several
optimality properties [40].

As an alternative, we can avoid using cross-sensor mea-
surements entirely by noting that

Cl(u)n = A™CP (u)ne?™
and
CF (w)n = CF (u)n
which suggests the following least-squares approach:
dy = arg 12}21/0 |CE (u), — A™CL, (u)neﬂ"ﬂ‘ifdu.
The estimator for d is given explicitly by

de = E%angle {/G C’fT ('u,)nC’fT (u):du}
which is a higher order generalization of the second-order
cyclic phase difference (CPD) algorithm for TDOA estimation
without cross-sensor measurements [16]. When generalized to
more than two sensors, CPD becomes a form of cyclic MUSIC
for high-resolution direction finding [41], [42]. This suggests
that similar methods of high-resolution direction finding with
higher order statistics could be obtained by generalizing the
higher order CPD algorithm.

In general, there are as many estimators of the TDOA as
there are ways of choosing | z(t + 7)-type terms and n — I
y(t + 7)-type terms. Thus, for large n there are many different
possibilities. The relative advantages and disadvantages of
these possibilities are currently being sought. The individual
statistics can also be combined using a least-squares technique,
as is done for order two in [8].

VIII. CONCLUDING REMARKS

In this paper, we generalize the basic parameters of higher
order cyclostationarity (HOCS) from real-valued to complex-
valued time-series and derive input-output relations for these
statistical parameters for various signal processing operations;
we use these relations and examine this generalization in
detail for the class of digital QAM signals, and we apply the
parameters of HOCS to some signal processing problems of
current interest, namely weak-signal detection and time-delay .
estimation. Several HOCS-parameter estimation methods are
presented and demonstrated for digital QAM signals in noise
and interference, and some potential pitfalls in the application
of the conventional theory of higher order statistics (HOS)
to modulated signals that are modeled as stationary but not
cycloergodic are explained.

We are currently developing HOCS-based algorithms for
the problems of cochannel interference mitigation [36],
weak-signal detection in variable noise and interference
backgrounds, time-delay estimation for weak signals [33],
and multiple signal detection, sorting, and classification [43],
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and we are applying the theory of HOCS to the design of and imaginary parts of {Y;}7_;:

covert signals.

APPENDIX A
A NEW TYPE OF CUMULANT FOR
COMPLEX-VALUED RANDOM VARIABLES

In this Appendix, we show how to define cumulants directly
for complex-valued random variables in terms of a generalized
characteristic function for complex random variables (even
though PDF’s can be defined only in terms of the real and
imaginary parts). Prior to this, cumulants have apparently
been defined only for the real and imaginary parts of the
complex random variables, which are defined in terms of the
usual characteristic functions for real random variables, or they
were defined only through the moment/cumulant relationship
[34]. This new definition is necessary in order to be able to
characterize pure nth-order sine waves in terms of cumulants.

For the set of real-valued random variables {X;}7_;, the

joint PDF is the n-fold derivative of the probability distribution
function

where

Prob ﬂ X <umj
Jj=1

Fx(z) 2

The moments of {X;}7_; can be found by differentiating the
characteristic function:

x(w) = E

n
exp zE TjWj
=1

Specifically

n n 8n
[ b= 0" g 2 oxo)]
Jj=1

Other moments can be found by other derivatives, for example,
E{X} is given by

BT} = ()" 5 x )l

For complex-valued variables, the situation is a little different.
The n complex-valued variables {Y; }7_; must be be viewed as
2n real-valued variables in order to obtam a PDF. However, a
generalized characteristic function for {Y'}7_; can be defined
in terms of the 2n-fold PDF corresponding to the 2n real

variables {R(Y;), 3(Y;)}7-; = {Z;}32, consisting of the real

Py (w) = E{ exp iZYjwj
:/ / exp 'iZijj fz(z)dz
—oo —00 j=1
2n

— / .. / exp ZZ[Z:, + izﬂ-n]wj fZ(z)dz
—00 —0o0 7=1

where

2RO ---R(Y,) (V) - (Vo))

This multiple integral exists if the integrand is absolutely inte-
grable, but the integral of the absolute value of the integrand
simplifies. to

/ / Hexp I(yJ)“’J)fI(Y)(I( y))dl(y) (61)

where [ (y]) = Zj+n; and for every finite w, this integral exists
if the PDF for the vector of imaginary components fI(Y) of
the complex vector Y decays more rapidly than

H [ o T P @)

Few PDF’s of interest do not decay this rapidly. For example,
all Gaussian PDF’s and all PDF’s with finite support do decay
this rapidly. As a counterexample, the Cauchy PDF does
not decay this rapidly, but its variance does not even exist.
Similarly, all PDF’s for which some moments do not exist do
not decay this rapidly. But we are not interested in such PDF’s
because their corresponding cumulants would not exist either.

Now, the moments of the Y; can be found by differentiating
®y (w). For example

B = () 5y (@)oo

—070 [ [t il i@

—_———
2n

= / / (26 + i2k4n] 20, 20 (205 Zhgn) A2k 2k 4n
oo —00
In addition, the joint moments of the real and imaginary
parts of the Y; can be found similarly by first expressing these
parts as

R{Y;} = 5(% + ;)

1Y} = 2. (% - ¥7)

and then using this to express the joint moment for R(Y;) and
I(Y;) in terms of a joint moment, including conjugations, of
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Y; and then using the generalized characteristic function for
the Y; including conjugations.

The function ®y-(w) can be expanded into a Taylor series
where the various coefficients are the various joint moments
of the Y;. Since the relationship between the coefficients of
this series and the series expansion of In ®y-(w) is purely
algebraic, and this algebraic relation is that between moments
and conventional cumulants, then the cumulants of {Y;},
defined here in terms of moments using the same cumulant-
moment relation that holds for real variables, are given by the
Taylor series coefficients of In @y (w), which can be obtained
by differentiation and evaluation at w = o.

Conversely, if we use the generalized characteristic function
introduced here, and define cumulants for complex variables
in direct analogy to the definition in terms of the conventional
characteristic function for real variables, then we obtain a
moment-cumulant relation for complex variables that is iden-
tical to that for real variables, in which case the temporal
cumulant function for a complex time-series is identical to the
pure-sine-waves function for that time-series.

It is mentioned in closing that the cumulants defined here
cannot in general be expressed directly in terms of cumulants
of real and imaginary parts, and vice versa. This can only
be done through the expression of moments of one in terms
of the other, and is very complicated. Thus, the conventional
approach to cumulants of complex variables [26], [28], [29]
is not useful in the study of pure nth-order sine waves of
complex-valued polycyclostationary time-series unless one is
interested in the real and imaginary parts individually rather
than in the complex time-series as a whole.

APPENDIX B

MEAN AND VARIANCES OF TEMPORAL MOMENT ESTIMATES .

In this section, some results on the mean and variance of the
RD-CTMF estimate RS (t,u),, are presented and discussed.
The derivation of the results is contained in [35].

The temporal variance for a cyclostationary time-series is
defined in terms of the sine-wave extraction operation

Var{z(t)} £ EHjz(t) - BNz} (62)
and it is time-varying. The time-averaged variance is the o = 0
component of the variance .
Varo{z(t)} £ (|z(t) — B {x(t)}?)
= (lz(O)P) = (|EHz()}P).  (63)
The variance formula (62) can result in very complicated
analyses. For this reason, and the assumption that the time-
averaged temporal variance captures the essential behavior
of the temporal variance, the time-averaged variance (63) is
focused on herein.

It can be shown that the time-varying mean of the RD-
CTMF estimate is given by [35]

EHRS (tu),) =
1= 1 _ .
& * a —imla—al(ui+u,
T RE (W (ug +T) + Ta#za [Re(w)emirtomelru)
X (ug + T)sinc([a — a] x (uf + T))e—iZw[a—a]t] (64)

where

A .
w = —min{0,uy, ..., up—1},
A
Uy = —max{0,uy,...,Un—1},
% A
'U:O - ur — U.

Formula (64) reveals that the temporal mean of the CTMF
estimate contains a sine-wave component for each impure
nth-order cycle frequency that is associated with z(¢).

It is shown in [35] that the time-averaged variance for
R2_(t,u), is given by

usj}-T
N

P
Varo (B, (1)} = 3 [ [ 3 ez,
P! —ug =T B1=07=1

ug — |2+ T —i2raz
x (L}J—)e ? dz] (65)

where P, is a subset of the partitions of the index set
{1,2,...,2n} such that for each member of P/, at least
one partition element, say vy, contains at least one element
from {1,2,...,n} and at least one element from {n + 1,n +
2,---,2n}, and

w2 [ur +2/2- - up_1+2/2 2/2
Uy — 2)2up_q —2/2 —z/2]

= [?171 .. .w%]f.

Before specializing (65) to the cases of n = 2, Gaussian
time-series, and stationary time-series, the temporal covariance
between estimates of the CTMF is given. The time-averaged
temporal covariance is defined by

COVO{RC;T (ty u>n7 R:CL‘XT (t7 ‘U)n}
2 (R2 (t,u) RS (t,0)%)
— (BB (t,w) } B {RS, (t,0)5))

and it is shown in [35] that it is given by

Covo = 713 B2 () B2 (003 [(7 + T — (w5 + T)(v5 + 7]

+ > W RS 03((7 + 1)
x sinc?([a — a](§ + T))
— e—imla—a](w +ur"vl_v7‘)(u3 + T)(US +7)
x sinc([a — a](uf + T))sinc([a — o](vg + T))]

70 +T p
+ Z / Z H C (wy, ),
P! -1y =T

,BJ'1=0 j=1

> (Tg — Izl + T>e—i27razdz:| (66)
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where P/ is the same as in (65), and

w2 [uy+2/2 Up_1+2/2 2/2 v1—2/2--
g1 —2)2 —2/2!

[wl""U)Zn]T

—max{0,u;j,v;:1 < j<n—1}
—min{0,u;,v;:1 < j<n-—1}

U.-U

—max{0,v;:1 < j<n-—1}
~min{0,v;:1 <j<n-1}

Up — Vg.

U,
U

E3
To

(67)

> > i el

Uy

[I>

Ut

1>

v

Note that the covariance (66) reduces to the variance (65)
in the case of u = w because in this case 7§ = ug = v
and @ = w. The variance formula (65) is specialized to the
simple cases of n = 2, Gaussian time-series, and stationary
time-series in the following section.

Special Variances: The time-series #(t) is assumed to have
a mean of zero. In the case of n = 2, the sum over P, is the
sum over the following partitions of {1,2,3,4}:

{1,2,3,4} {1,312,4} {1,4}{2,3}.

Therefore, (65) yields )

uo+T uy — |z|+T
oxan (=)
—uy =T X T2
—i27razdz

Varo{Rf;T (t, ul)z} =

X e
ug+T
/ ZC’ﬂ(u1+z/2 u1—2/2)2

XC';ﬁ(z/Z, —2/2)2
+C£(’U,1 + 2/2, —3/2)2

XC;ﬂ(Z/Q,’Ull - 2/2)2

ug — 2|+ T —i2raz
x (i—ilﬁzl—)e meZdy.  (68)

If x(t) is a Gaussian time-series, then the fourth-order
cyclic cumulant C9(-)4 is identically zero. Thus, the variance
of the second-order CTMF for a Gaussian time-series is
(68) with the first integral deleted, which matches Hurd’s
result in [23] on the variance of the cyclic autocorrelation
for Gaussian stochastic - processes. This illustrates that the
time-average framework used here does indeed yield the
same results as those obtained within the stochastic process
framework.

If x(t) is a wide-sense stationary time-series, then the
variance expression simplifies to
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Varo{RgT (t,ul)z}
ug+T

B /—ug—T
xC%(z2/2,—2/2)s + C2(u1 + 2/2, —2/2)2

xC%(z/2,u1 — 2/2)2 (u—o_}#]—ﬂ)dz.

02(12])4 + Cg(ul + z/2,u1 — 2/2)2

The variance of the CTCF estimate is much more compli-
cated, and is not pursued herein. However, in the case that
the CTMF and CTCF are equal, then the variance expressions
derived here apply to the CTCF as well. In addition, methods
of CP estimation that make use of the RD-CTMF or its
transform, the cyclic periodogram, can be statistically analyzed
by using the covariance (66).
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