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Abstract 

The standard theoretical foundation for 
statistical signal processing is presently the 
discrete-time and continuous-time Kolmogorov 
stochastic process models for persistent signals 
and especially, but not exclusively, strongly 
ergodic and cycloergodic Kolmogorov stochastic 
process models. After a brief discussion exposing 
drawbacks of these generic models for many 
applications in statistical signal processing, 
particularly those involving empirical data, an 
alternative stochastic process model is proposed 
for statistically stationary signals and a 
complementary model for statistically 
cyclostationary signals also is proposed. For 
these alternative models, defined first in terms 
of a specification of their samples spaces, 
cumulative probability distribution functions 
(CDFs) or, equivalently, probability density 
functions (PDFs) are derived from Fraction-of-
Time (FOT) probability calculations on a single 
member of the sample space, and then shown to 
be valid CDFs over the entire sample space of the 
process. If all such finite-dimensional CDFs are 
specified, then this corresponds to a complete 
probabilistic model for the alternative stochastic 
process. The motivating difference between 
Kolmogorov’s model and this alternative model 
is that the alternative is derived from empirical 
data, at least in principle. It is not posited in an 
abstract manner that typically leads to a number 
of conceptually confusing and usually 
unanswerable questions about the behavior of 
the sample paths. These alternative models are 
then complemented with another model for 

poly-cyclostationary signals that exhibit multiple 
incommensurate periods of cyclostationarity. 
The conceptual and practical advantages of 
these three types of alternative models are 
discussed in some detail, and it is shown that the 
entire framework of stochastic processes, with 
its non-empirical abstraction, can be altogether 
circumvented by using FOT-Probability models 
for single signals, without any reference to 
stochastic processes.  These single-signal models 
are identical to the alternative stochastic process 
models introduced here, but they do away with 
the unnecessary sample space because it is 
redundant. These most elegant of models 
provide all the same tools for statistical 
analysis—including CDFs, PDFs, temporal 
moments and cumulants, spectral moments and 
cumulants, and so on—but without any 
reference to stochastic processes. In the final 
analysis, it is recommended that the alternative 
stochastic process models introduced here be 
used primarily as a pedagogical tool that helps in 
understanding the circumstances under which 
stochastic process models are unnecessary for 
statistical signal processing and probabilistic 
analysis involving stationary, cyclostationary, 
and poly-cyclostationary signals. These 
circumstances are, simply stated, any situation in 
which stochastic processes are appropriate 
provided that only ergodic or cycloergodic or 
multi-cycle generalizations thereof are of 
interest. The general situation for which 
stochastic processes are actually required, 
rather than avoidable, as a mathematical basis 
for statistical processing and analysis is that for 
which the lack of ergodicity is an essential 
characteristic. This is typically those situations 
for which ensembles of signals are an essential 
ingredient. Nevertheless, when a stochastic 
process model is non-ergodic but is conditionally 
ergodic—meaning conditioned on knowledge of 
some finite set of parameters of the signal 
model, the data PDF is ergodic—and when this 
conditioning can be either experimentally 
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implemented or mathematically enforced in a 
data model, then the conditional FOT-PDFs can 
be measured or calculated and used in the same 
manner as PDFs for traditional stochastic 
processes. This enables the incorporation of 
FOT-Likelihood functions in the FOT-Probability 
theory. 

1. Introduction 

The statements of theoretical results and 
discussion of practical ramifications provided in 
this article are written for statistical signal 
processing engineers and like-minded time-
series analysts, which may include physicists and 
other specialists in the physical sciences, and 
other fields where statistical analysis of 
empirical time-series is of interest. It is felt that 
mathematical proofs at any higher level of rigor 
than that which is presented herein would be 
distracting and are not included for this reason 
and others. Because the specific reasoning given 
in this article is not at odds with the day-to-day 
reasoning generally used by the intended 
audience, little of value would be added for this 
audience if a more mathematically rigorous 
presentation were provided. The preference 
acted on here is especially appropriate since the 
whole point of the effort leading to these new 
models is to show practitioners that the 
substantial abstractions and unmet challenges of 
trying to verify strong ergodicity or 
cycloergodicity of traditional stochastic process 
models are in the great majority of applications 
nothing more than distractions from the reality 
of empirical data and its processing and analysis 
and the more elegant theory that is identified 
here and is based on Fraction-of-Time (FOT) 
Probability for single signals. 

Perhaps the most important reason for not 
getting distracted by rigor is that these new 
models are intended for only the pedagogical 
purpose of providing a conceptual transition 
from stochastic process models to FOT-

Probability models of single signals and 
demonstrating that stochastic process models 
are often an unnecessary abstraction: they 
forfeit parsimony and mathematical elegance 
relative to the alternative single-signal models 
with fraction-of-time probability calculated 
directly from the single signal.  

The three-decade history from the 1930s 
through the 1950s of time-average statistical 
theory of time series is traced in [1] but the first 
approach to more comprehensive Fraction-of-
Time Probabilistic Modeling of signals seems not 
to have been introduced until the concise 
publications of Brennan [2] and Hofstetter [3] in 
the 1960s. This approach was later developed 
independently1 and more comprehensively, 
including extension/generalization from 
stationarity to cyclostationarity, with in-depth 
application to the theory of statistical spectral 
analysis by Gardner in 1987 [4] (see also in [5]).  

The time-average approach was the starting 
point for the use of statistical time-series 
analysis in physics but has been largely ignored 
for well over half a century by many college 
instructors and criticized by some 
mathematicians for supposedly being non-
rigorous. However, it has recently been shown 
by Leśkow and Napolitano to have a rigorous 
basis in measure theory, using mathematical 
tools dating back to the work of Kac and 
Steinhaus in 1938 [6]. This basis for measure-
theoretic rigor underlying Fraction-of-Time 
Probability Theory was apparently lost track of in 
the shadow of Kolmogorov’s contributions 
earlier the same decade. But, well over half a 
century later, it was uncovered by Leśkow and 
Napolitano in 2006 [7], where a more complete 
list of early (1920s to 1940s) contributors to 
time-average statistical theory is given (see also 
[8] by Napolitano).  

To counter the appearance of avoiding technical 
detail that may be important in comparing the 
two approaches to stochastic process modeling 
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discussed in this paper, a glimpse into such 
details is provided in this paragraph and here 
and there in following sections. The Relative 
Measure used in [7] for the mathematical 
foundation of FOT-probability model is not sigma 
additive (probabilities of infinite unions of 
nested event sets do not all converge), but in 
Kolmogorov’s stochastic process probability 
model, sigma additivity of the proposed 
probability measure is only assumed by virtue of 
Axiom VI [9]. So, this axiom does not guarantee 
that, for any particular stochastic process model 
one adopts, the probability measure will in fact 
be sigma additive. Kolmogorov simply removes 
the mathematically undesirable general lack of 
sigma additivity of measures by axiomatically 
removing from consideration all probability 
measures that are not sigma additive. But how 
often do we encounter practitioners seeking to 
determine if the probability measure for some 
stochastic process model they have adopted is 
sigma additive or even just seeking to explicitly 
describe the probability measure for their 
adopted model? This is a very rare event. For the 
Fraction-of-Time Probability Theory discussed 
herein, an alternative restrictive assumption is 
required:  the undesirable general lack of relative 
measurability of functions of time series is 
avoided by removing from consideration all time 
series and functions of those time series that are 
not relatively measurable. Such prohibited time 
series can be constructed, but they also can be 
considered anomalous. These restrictions are 
discussed further in [7]. 
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1 In the early 1980s, as I was writing the textbooks [4] and 
[5], I discovered earlier work [2] and [3] as a result of 
discussions with Professor Thomas Kailath of Stanford 
University. I added to the Introduction in my book draft 
citations of this work from two decades earlier. As 
discussed in the present article and in more depth at the UC 
Davis website [22], earlier work on time-average theory, 
including [2] and [3], appears to have been largely forgotten 
as the stochastic process bandwagon trend developed (this 
colorful characterization was passed on to me and my 
colleagues at UC Davis in 1987 by the late coding theorist 
and cryptographer Professor James L. Massey of ETH 
Zurich). 

 

2. Brief Historical Remarks 

To put this proposed evolutionary step in larger 
perspective, some stages of signal modeling that 
this community has passed through over the last 
century are briefly summarized.  Time-series 
analysis goes back more than a century, but the 
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time of R. A. Fisher one century ago seems to be 
a turning point when broader theoretical 
frameworks began to be formulated. This 
includes most notably Fisher’s Principle of 
Maximum Likelihood, which is among the most 
commonly used optimization criteria for 
designing statistical inference and decision 
rules—algorithms—in use today within the 
statistical signal processing community. This 
includes both signal-parameter estimation and 
signal detection and classification. Predating 
Fisher by two centuries was Thomas Bayes, who 
gave birth to the theory of Minimum-Risk 
Statistical Inference and Decision (which 
addresses the same or similar signal parameter 
estimation and signal detection and 
classification problems that Maximum-
Likelihood addresses, but with the added axiom 
that prior probabilities [prior to experimentation 
including observation or data collection] are 
assumed to exist). More recently, just preceding 
the middle of last century, Norbert Wiener used 
his developing statistical theory of single time 
functions (signals) to derive what we now call the 
Wiener Filter and related linear time-invariant 
signal processors, using a time-average 
counterpart of the Bayes Minimum-Risk design 
criterion, where risk was specified to be 
expected squared error, reformulated as time-
averaged squared error. This was the 
continuous-time counterpart of Carl Friedrich 
Gauss’s discrete least-squares optimization 
criterion used two centuries ago.  Wiener’s time-
average theory and its applications to the 
nascent field of statistical communication theory 
was given a boost in visibility and further 
developed in 1960 with the publication of a book 
by one of Wiener’s previous students at M.I.T, 
Yuk Wing Lee [10]. That same year, David 
Middleton’s landmark book An Introduction to 
Statistical Communication Theory was 
published. In contrast to Lee’s book, Middleton’s 
used was solidly based on the theory of 
stochastic processes. It has been said to cover a 

panoramic view unmatched by any other 
publication in the field [11]. This book was likely 
instrumental in cementing the place of the 
stochastic process in statistical signal processing.  
Middleton states in his preface “The 
mathematical exposition is for the most part 
heuristic”. Although he does favor obtaining 
autocorrelation functions from signal models 
using time-averaging, he then takes an expected 
value to obtain an ensemble autocorrelation. 
Because of this approach, he misses the fact that 
some of his signal models are cyclostationary, 
not stationary. Nevertheless, he does note that, 
in general, his approach produces stationary 
autocorrelations for nonstationary processes. 
This precedes more theoretical work decades 
later on what are called asymptotically-mean 
stationary processes, which includes as special 
cases cyclostationary and almost cyclostationary 
processes. Middleton, however, does not adopt 
the Kolmogorov model for stochastic processes. 
He uses heuristics instead. 

Contemporaneously with Wiener in the 1930s 
and 1940s, Kolmogorov introduced the now-
standard theory of the stochastic process as a 
probabilistic model for time-series. Also 
contemporaneous was the establishment of 
Information Theory by its originators, Harry 
Nyquist, Ralph Hartley, and Claude Shannon 
during the 1920s – 1940s. The landmark 
event establishing the discipline of information 
theory and bringing it to immediate worldwide 
attention was the publication of Claude E. 
Shannon's classic paper "A Mathematical Theory 
of Communication" in the Bell System Technical 
Journal in 1948. This theory is strongly 
probabilistic. From 1960 forward, Wiener’s time-
average approach quickly faded into the 
background, and Kolmogorov’s expected-value 
approach grew into the standard we use today. 
It is conceivable that this was in large part a 
result of the boom that information theory 
initiated and possibly also a result of the 
mathematical rigor of Kolmogorov’s book on the 
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theory of stochastic processes. Interestingly, 
though, information theory involving signals is 
valid for time-average probabilities, not just 
ensemble-average probabilities, as discussed 
further on in this paper.  

What has for almost a century been referred to 
as statistical time-series analysis has in-
creasingly come to be relabeled statistical signal 
processing, perhaps because of the lead 
electrical engineers have taken in developing the 
technology used for implementation. This field 
of study, born within the field of electrical 
engineering, was originally based in large part on 
what is called statistical communication theory, 
which arose out of the work of Wiener and his 
contemporaries but was reformulated in terms 
of expected values and stochastic process 
models. This theory is more probabilistic than it 
is statistical, yet it is called a statistical theory by 
the authors of classic books on the subject, 
written starting in the 1950s-1960s, particularly 
Middleton’s book. Middleton is, however, 
precise in his distinction between statistical and 
probabilistic quantities. But, over time, the 
language has become less precise. Today, the 
terms signal and time series are often used 
interchangeably by more broadly educated 
practitioners, with some preference given to 
time series by statisticians and preference given 
to signals by electrical engineers. The primary 
difference between time-series analysis and 
signal processing is that, prior to the 
communications technology revolution, the 
term signal was not yet being used for essentially 
any time-record of data. In communication 
theory, the stochastic process model of signals 
was adopted because a key concept was to 
design inference-making algorithms that 
optimized expected performance (minimized 
expected cost, which is the definition of Bayesian 
Risk). That is, performance was to be optimized 
over the ensemble of all sample paths of a 
stochastic process model of a type of signal of 
interest. For example, in telecommunications, 

the Wiener filter—according to modern 
theory—was the solution to minimum-mean-
squared-error estimation of a transmitted signal, 
given a corrupted version of that signal obtained 
from a remote receiver. Thus, the statistical 
averaging of interest, performed by the 
expectation operation, was performed for 
example over all speech to be telecommunicated 
(referring back to the early days of Bell 
Telephone Laboratories), as well as all noise 
corrupting the transmitted signal. This included 
all speaker physiologies, all languages, and all 
accents. Standardized fixed ensemble-statistics 
computed empirically and expected values were 
used for designing channel filters and equalizers, 
which themselves were fixed or manually 
adjustable. But, as technology progressed, fixed 
optimum solutions began to be replaced with 
adaptive solutions that automatically optimized 
performance for each and every single signal. 
This required working with statistics obtained 
from time averaging single signals, not ensemble 
averaging multiple signals. This gave impetus to 
preferring ergodic stochastic process models for 
signals because then solutions implemented 
with algorithms that computed and used time-
average statistics gave good approximations to 
the ensemble-averages dealt with in the 
mathematical models used for deriving the 
algorithms, and this rendered the stochastic 
process theory, in which electrical engineers had 
been indoctrinated, adequate for these.  But 
despite ergodic theory, users did not know how 
to test their mathematical signal models for 
strong ergodicity. Birkhoff’s ergodic theorem 
provided the ergodicity condition only in terms 
of the abstract mathematical probability 
measure defined (generically specified) in terms 
of a function of arbitrary subsets in a sigma 
field—the mathematical sample space—which 
also was defined (generically specified) in terms 
of sample paths often having no explicit 
description, e.g., interfering signals known only 
by their power spectral densities. So, the 
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ergodicity condition was rarely able to be tested. 
Empirical data was of no use for this purpose 
because the condition involves only the abstract 
probability measure; it’s a property of the 
mathematical model, not the empirical data. 
Practitioners often just evoked the Ergodic 
Hypothesis and typically left it untested. This is 
discussed early on by Middleton and remained 
the status quo up to and including today. But, 
once ergodicity was invoked, the stochastic 
process model was, in principle, no longer the 
most appropriate model, as explained in this 
paper and its references. With time-averages of 
primary concern, ensemble averages became, in 
principle but often unknowingly, irrelevant, and 
the abstraction of stochastic processes became 
unnecessary and nothing more than a 
distraction—something not recognized by most 
users. Although Middleton uses time averages, 
especially for calculating autocorrelation 
functions and associated quantities, before he 
takes the expected value, he does not appear to 
comment on the broader concept of FOT- 
probability. 

Although 35 years have passed since a 
comprehensive development of an alternative 
probability theory for random signals that is 
based entirely on time averages was published in 
textbook form [4], this alternative theory has 
been largely ignored by all but a small minority 
of users of stochastic processes.  For instructors 
of courses on statistical signal processing, 
teaching this alternative requires an 
introductory textbook, since the only textbook 
available [4] is written for advanced students. 
Similarly, a 2nd book (not a textbook with 
exercises) treating this alternative theory that 
appeared just two years ago is written for 
experts or at least mathematically mature 
readers. This stagnation in statistical signal 
processing pedagogy in universities occurred 
even though this simpler more transparent 
theory was proven in [4] to be analogous and 
actually operationally equivalent in many ways 

to the probability theory based on abstract and, 
one might even say, mysterious ergodic 
stochastic process models and, with regard to 
calculations, yields the same results in many 
cases (when Axiom VI is unnecessary). It is hoped 
that the pedagogical approach taken in this 
paper, whereby alternative stochastic process 
models are introduced as a conceptual transition 
from Kolmogorov’s abstract stochastic process 
to concrete FOT-Probability models for single 
signals will spark interest in universities in 
developing new introductory courses based on 
the time-average theory of signals. Some of the 
many practical advantages of doing so are 
discussed in this article. 

To be especially clear at the outset about 
limitations of FOT-Probability Theory, the 
particularly important area of statistical 
inference and decision-making on the basis of 
time-series observations is briefly discussed. 
Generally speaking, FOT-Probability models are 
well matched to what might be loosely called 
non-parametric inference and decision, for which 
no use is made of assumed functional forms of 
Cumulative Distribution Functions (CDFs) of the 
data with or without known, unknown, or 
random parameters of the functional form; the 
only CDF used is that measured from the 
observed time-series data. The complementary 
area of statistical inference and decision-making 
denoted with the adjective parametric partitions 
into two general types, one of which is 
accommodated by FOT-Probability models and 
the other of which is not. 

The type of parametric statistical inference and 
decision making that is not accommodated by 
FOT-probability theory is that which is based on 
non-ergodic stochastic process models and some 
ergodic models for which probability functions, 
including CDFs or possibly just some moments, 
for the data conditioned on knowledge of some 
model-parameter values and/or hypotheses are 
needed but cannot be measured or calculated 
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from a model for the observed data. Such cases 
can arise in Maximum-Likelihood Methods and 
Bayesian Minimum-Risk Methods of inference 
and decision making. If such parameters are 
modeled as random variables, the data must be 
considered to have arisen from a non-ergodic 
process since observation of one record of data 
cannot be used to learn about the influence of 
other values of the parameters that did not 
occur in the record of data. For example, if 
received data consists of signal plus noise under 
one hypothesis and noise only under an 
alternative hypothesis, the stochastic process 
model for the data that is not conditioned on a 
specific hypothesis cannot be ergodic.   

In contrast to these parametric methods based 
on non-ergodic models, there is a type of 
parametric inference and decision making that is 
based on formulaic data models (sample-path 
models) in which the values of some parameters 
are unknown but are not treated as random 
variables. These are stochastic process models 
that are known only partially. For such models, 
one can in principle use the expectation 
operation to mathematically calculate the 
dependence of theoretical probability functions, 
such as moments, on the unknown parameters 
and determine equations interrelating multiple 
instances of these functions (different 
moments); these equations generally involve the 
unknown parameters. The approach consists of 
solving these equations, when possible, for the 
unknown parameters and then substituting 
empirical measurements of moments in place of 
the expected-value moments. This is called the 
Method of Moments for inferring parameter 
values.  

Popular sample-path models used in the Method 
of Moments are autoregressive (AR), moving 
average (MA), and ARMA models and their 
periodic and poly-periodic generalizations. All 
such parametric methods are accommodated by 
the theory of FOT-moments associated with 

FOT-probabilities, for which the expected values 
in the Method of Moments used to derive from 
the data model interrelating equations are 
replaced with limits of time averages, and the 
empirical counterparts that were used to replace 
expected values in the solution are still finite-
time averages, and they are now used to replace 
the limits of time averages. A survey of FOT 
parametric statistical spectral analysis is 
available in [4]; see also [8], [16], [17]. 

3. Results 

3.1 Kolmogorov’s model of a stochastic 
Process 

We are interested here in discussing alternatives 
to both the discrete- and continuous-time 
versions of Kolmogorov’s 1933 definition [8] of a 
stochastic process consisting of a sample space 
(the set of all sample paths, or signal 
realizations), a sigma field of subsets (events) in 
the sample space with a sigma algebra, and a 
probability measure on the event sets. These 
“sigma” requirements, meaning “convergence 
requirements for countably infinitely many 
operations”, derive from Kolmogorov’s Axiom VI 
in his definition of a stochastic process. In 
practice, the specification of a particular 
probability measure is rarely carried out because 
this is a difficult mathematical challenge for 
which there is no recipe. Sometimes 
practitioners will specify some lower order CDFs 
or Probability Density Functions (PDFs) as a half-
hearted attempt. In the special case of a 
Gaussian process, the specification of the 2nd-
order CDF or PDF is all that is needed to derive 
from it all orders of CDFs and PDFs. Once all 
orders are specified, one can invoke the 
Kolmogorov Extension Theorem to conclude that 
the measure for the sample space has been 
effectively, if not explicitly, specified.  

Because the probability measure for a stochastic 
process is rarely specified in practice, Axiom VI 



8 
 

can only rarely be tested. Consequently, it is 
common practice to simply assume Axiom VI is 
satisfied by the selected model and proceed to 
use the consequences of that axiom in 
performing calculations involving infinite sums—
not a particularly justifiable approach. 

In other cases, practitioners will construct a 
formulaic model of a stochastic process as some 
combination of specified deterministic functions 
and some random variables. For example, 
essentially all digital communications signal 
models are specified in this manner. This 
typically provides no insight into the probability 
measure for the process but does often enable 
the practitioner to calculate some moments 
and/or cumulants and, much less frequently, 
some CDFs or PDFs. In a number of cases for 
which statistical inference using the stochastic 
process model is of interest, it suffices to 
calculate only the PDF for the observed data, 
conditioned on knowledge of the random 
variables in the model that are to be estimated, 
or conditioned on hypotheses to be tested. This 
can be adequate for deriving maximum-
likelihood inference rules and in some cases 
minimum-Bayes-Risk inference rules.   

In summary, it is a rare occasion when 
Kolmogorov’s model of a stochastic process is 
able to be specified and used for time-series 
analysis, aka statistical signal processing. A 
particularly egregious consequence of this 
common practice is having to assume an 
adopted and possibly only partially specified 
model is strongly ergodic. This assumption—
when valid—enables one to accurately 
approximate expected values calculated from 
the model using time averages on sufficiently 
long finite segments of a single realization of the 
signal being modeled. Without actually knowing 
that the model used for calculating expected 
values is ergodic, such time averages may or may 
not be accurate approximations.  In the 
frequently encountered cases for which the 

expected values to be approximated are not 
calculated, the practitioner has no idea of 
whether or not the calculated time averages are 
useful approximations.  

The above less-than-desirable situation 
concerning the use of Kolmogorov’s stochastic 
process model has been tolerated for nearly a 
century now. Evidently, we’ve “gotten by” 
despite the unsavory facts summarized above. 
Nevertheless, there do exist alternative 
approaches to modeling signals for purposes of 
statistical inference and analysis. The purpose of 
this paper is to present such a model—the FOT-
Probability model of a single signal—and explain 
how it relates to Kolmogorov’s model and how 
much easier it is to use in practice in a more 
justifiable manner for applications in statistical 
signal processing. It should however be 
mentioned here that the FOT-Probability model 
can be used for statistical inference and 
decision-making involving likelihood functions 
only when such likelihood functions can be 
measured or calculated as conditional FOT-PDFs. 
This is further discussed in Section 4. 

For the purpose at hand, let ( )tT A denote the 
time-translation set-operator that shifts, by any 
real number t R∈ , typically representing time, 
all sample paths in an event set A , and let ( )nT B

denote the discrete-time counterpart for any 
integer n Z∈ .  Following are the two ergodic 
theorems that are assumed to apply in many 
applications: 

Birkhoff’s Ergodic Theorem for Discrete Time 
(BET--DT)  

Consider a discrete-time Kolmogorov 
stochastic process with integer-valued time, 
satisfying Kolmogorov’s 6 defining axioms 
[9], for which all event sets E  that are 
translation-invariant, { }nT E E=  for all 
integers n , have probabilities of either 

( ) 0P E =  or ( ) 1P E = . By Birkhoff’s 1931 
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Ergodic Theorem [12], this stochastic 
process is ergodic w.p.1, and is also referred 
to as strongly ergodic. Birkhoff’s ergodicity 
condition here is not only sufficient but is 
also necessary for discrete-time-averages of 
functions of the stochastic process to 
converge to the corresponding expected 
values, as the averaging time approaches 
infinity. 

Birkhoff’s Ergodic Theorem for Continuous 
Time (BET--CT)  

Consider a continuous-time Kolmogorov 
stochastic process, satisfying Kolmogorov’s 6 
defining axioms [9], for which all event sets 
E  that are translation-invariant, { }tT E E=

for all real t , have probabilities of either 
( ) 0P E =  or ( ) 1P E = . By Birkhoff’s 1931 

Ergodic Theorem [9], extended from 
discrete- to continuous-time (e.g., page 1 of 
[13]), this stochastic process is ergodic w.p.1, 
and is also referred to as strongly ergodic. 
Birkhoff’s ergodicity condition here is not 
only sufficient but is also necessary for 
continuous-time-averages of functions of 
the stochastic process to converge to the 
corresponding expected values as the 
averaging time approaches infinity. 

These theorems require an additional axiom, 
here labeled Axiom VII, or they require a proof of 
a proposition. Without this Axiom VII or a proof, 
these theorems are not applicable in the way 
they have been applied for many years. This 
needed axiom or proof guarantees that the limits 
of the time averages of interest in practice exist.  
If they do exist, then the relevant ergodic 
theorem establishes that they equal w.p.1 the 
corresponding expected values. For discrete 
time, this proposition has been proved at least in 
some cases such as for finite-alphabet processes. 
As per my knowledge, it may or may not have 
been proved for continuous time. The 
propositions can be stated as follows: For a 

Kolmogorov discrete-time (continuous-time) 
process, the samples paths of well-behaved 
functions of the process are relatively 
measurable, as defined below.   

One example of a sufficient condition for 
existence of the continuous-time average, which 
has been assumed in the early work on ergodic 
theorems, like Birkhoff’s work (cf. [1]) is that the 
function of time is any well-behaved function of 
the positions of the particles of a dynamical 
system described by differential equations for 
which the sum of kinetic energies of all the 
particles in the system is time invariant. 
Unfortunately, this is typically not an 
appropriate model for the manmade signals 
used in communication systems. 

3.2 The Measure Theory of FOT-
Probability 

The material in this subsection is taken from [7], 
also cf. [8, Chap. 2]. Let us consider the set A∈





, where 


 is the σ -field of the Borel subsets 
and let µ  be the Lebesgue measure on the real 
line R . The relative measure of A  is defined by 
Kac and Steinhaus [6] as follows 

[ ]( )0 0

1
( ) lim / 2, / 2R T
A A t T t T

T
µ µ

→∞
∩ − +

 

provided that the limit exists. In such a case, the 
limit does not depend on 𝑡𝑡0 and the set 𝐴𝐴 is said 
to be relatively measurable (RM). 

Let ( )x t  be a Lebesgue measurable function on 
the real line. The function ( )x t  is said to be 
relatively measurable [6] if the set 
{ : ( ) }t R x t ξ∈ ≤  is RM for every 0R Nξ ∈ − , 

where 0N  is at most a countable set of points. 
Each RM function ( )x t  generates the function 
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[ ]{ }( )
0

0

0 0

/2

/2

( ) ({ : ( ) })

1
   lim / 2, / 2 : ( )

1
  lim u( ( )) d 

x R

T

t T

t TT

F t R x t

t t T t T x t
T

x t t
T

ξ µ ξ

µ ξ

ξ

→∞

+

−→∞

∈ ≤

= ∈ − + ≤

= −∫



 

  
at all points ξ where the limit exists. In this 
equation, u( )ξ denotes the unit step function:
u( ) 1ξ =  for 0ξ ≥ and u( ) 0ξ =  for 0ξ < . 

The function ( )xF ξ has all the properties of a 
valid cumulative distribution function (CDF), 
except for the right-continuity property (at 
points of discontinuity). It represents the 
fraction-of-time (FOT) that the function ( )x t  is 
below the threshold ξ , as illustrated in Fig. 1. 

For this reason, ( )xF ξ  is referred to as the FOT- 
distribution of the function ( )x t . 

Since the relative measure of every finite set is 
zero, the relative measure of every finite-energy 
or transient function ( )x t  has the trivial 
distribution function ( ) u( )xF ξ ξ= . Only finite-
average-power or persistent functions, such as 
almost periodic functions, can have a non-trivial 
FOT-distribution. 

 

Fig. 1 The measure of the set
[ ]{ }0 0/ 2, / 2 : ( )t t T t T x t ξ∈ − + ≤ (blue thick line) 

normalized by the total time T is the fraction of time 
that the function ( )x t  is below the threshold ξ as t  
ranges over[ ]0 0/ 2, / 2t T t T− + . 

 

If ( )x t  is a relatively measurable and not 
necessarily bounded persistent function and 

( )g ⋅  is a well-behaved function, then the 
following Fundamental Theorem of Time 
Average [4] can be verified [6, Theorem 3.2] 

0

0

/2

/2

1
lim ( ( )) d ( ) d ( )

R

t T

xt TT
g x t t g F

T
ξ ξ

+

−→∞
=∫ ∫  

where the first integral in the left member is in 
the Lebesgue sense and does not depend on 0t , 
and the integral in the right member is in the 
Riemann-Stieltjes sense. When ( )xF ξ  is 

differentiable, its derivative, denoted by ( )xf ξ , 

is the probability density function, and ( )xdF ξ  
can be replaced in the right member with 

( )dxf xξ , in which case the integral is in the 
Riemann sense. 

From this theorem, it follows that the infinite-
time average is the expectation operator for the 
FOT-distribution ( )xF ξ  and for every bounded 

( )x t  we have 

0

0

/2

/2

1
( ) lim ( ) d d ( )

t T

t xt TT R
x t x t t F

T
ξ ξ

+

−→∞
〈 〉 ≡ =∫ ∫  

The analogy between FOT-probability and 
Kolmogorov probability [4], [19] is evident.  

For a 1st-order strict-sense stationary process 
( )X t  with distribution ( ) [ ( ) ]XF P X tξ ξ≤ , the 

stochastic counterpart of the above time-
average definition of the distribution is 

( ) E{u( ( ))}XF X tξ ξ= −  

where E{}⋅  is the expected value operation, 
which equals the limit ensemble average 
operation, and which replaces the time average 
operation used in the FOT-probability approach. 
Similarly, the Kolmogorov counterpart of the 
Fundamental Theorem of Time Average is the 
following Fundamental Theorem of Expectation 

E{ ( ( ))} ( ) d ( )
R Xg X t g Fξ ξ= ∫ . 
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A necessary and sufficient condition for the 
relative measurability of a function is not known. 
However, if ( )x t  is a bounded function, the 
existence of the time average 

0

0

/2

/2

1
lim ( ) d

t T p

t TT
x t t

T
+

−→∞ ∫ . 

for every positive integer p  is a necessary 
condition for the relative measurability of ( )x t . 
In addition, it follows from the Fundamental 
Theorem of Time Average that, if ( )x t  is 
continuous and bounded and the left-hand side 
of the equation 

0

0

/2

/2

1
lim ( ) d  d ( )

t T p p
xt TT R

x t t F
T

ξ ξ
+

−→∞
=∫ ∫  

exists for every positive integer p , then ( )x t  is 
relatively measurable, and the above equation is 
valid. 

As a final remark, it is noted that the absence of 
right-continuity of the FOT-distribution is not 
important in applications where integrals in 
d ( )xF ξ  are of interest. For stochastic probability 

the right-continuity of the distribution is a 
consequence of the assumed σ -additivity of the 
probability measure P . 

The preceding theory has a completely 
analogous discrete-time counterpart, which can 
be obtained by simply replacing integrals over 
continuous time with sums over discrete time [8, 
Chap. 2]. The same terminology is used. For 
example, the relative measure of a finite set A  
is defined by 

[ ]( )0 0

1
( ) lim # /,

2 1R N
A A n N n N

N
µ

→∞
∩ − +

+
  

where #( )A  is the counting measure of the finite 
set A , which equals the number of elements in 
A . 

We can now proceed with the definition of the 
stationary FOT-stochastic process. As above,

( )x t  represents a persistent relatively 
measurable real-valued function of time defined 

over the entire real line and nx  represents a 

persistent relatively measurable real-valued 
sequence indexed by discrete time over the 
entire set of integers. 

Multiple functions are said to be Jointly 
Relatively Measurable if they each are relatively 
measurable, meaning there FOT-CDFs exist, and 
their joint FOT-CDFs exist. 

3.3 Definition of Stationary FOT- 
Stochastic Process 

Axiom S1: The Sample Space of the 
Stationary FOT-Stochastic Process is 
comprised of all the time translates of a 
single relatively measurable discrete- or 
continuous-time sample path, x , subject to 
the constraint that replications are 
disallowed (no two sample paths can be 
identical): 

{{ ; }; },  

{{ ( ); }; }
d n

c

x n Z Z

x t t R R
ω ω

ω ω
−Ω = ∈ ∈

Ω = − ∈ ∈
 

Axiom S2: The probability of any relatively 
measurable subset of elements from the 
sample space index set R  or Z , called an 
event, is the value of the relative measure of 
that set.  

Axiom S3: The FOT-CDF of any relatively 
measurable discrete- or continuous-time 
function, [ ]( )f x t  or [ ]nf x , which is jointly 

relatively measurable, for m real-valued 
time points 1 2 3{ , , , ..., }mt t t t  or m integer-

valued time points 1 2 3{ , , , ..., }mn n n n , 

respectively, of the Stationary FOT- 
Stochastic Process ( )x t  or nx is the relative 

measure of the event set 
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1 1

2 2

{ ; [ ]( ) ,
        [ ]( ) ,..., [ ]( ) }

c
m

m m

E f x t
f x t f x t

Rω ω ξ
ω ξ ω ξ

− ≤
− − ≤

∈
≤



 

or 

1

2

1

2

{ ; [ ] ,

          [ ] ,..., [ ] }
m

d
m n

n n m

E Z f x

f x f x
ω

ω ω

ω ξ

ξ ξ
−

− −

∈ ≤

≤ ≤



 

for all real-valued m-tuples 1 2 3{ , , ,..., }mξ ξ ξ ξ  

It follows from Axiom S3 that the 1st order FOT-
CDF for a continuous-time stationary FOT 
process is given explicitly by the formula 

[ ]{ }( )
0

0

0 0

/2

/2

( ) ({ : ( ) })

1
lim / 2, / 2 : ( )

1
lim u( ( ))d

x R

U

t U

t UU

F t x t

t t U t U x t
U

x t t
U

ξ µ ξ

µ ξ

ξ

→∞

+

−→∞

∈ ≤

= ∈ − + ≤

= −∫

 

  

 
for all real ξ , and similarly for higher-order FOT-
CDFs; and, for discrete-time, the FOT-CDF is 
given by

 

{ }( )

[ ]{ }( )

( )
0

0

0 0

( ) :

1
  lim # , :

2 1
1

  lim u
2 1

x R n

nN

n N

nN
k n N

F n Z x

n n N n N x
N

x
N

ξ µ ξ

ξ

ξ

→∞

+

→∞
= −

∈ ≤

= ∈ − + ≤
+

= −
+

∑



 

As an example, for 2m = ,we have the 2nd order 
FOT-CDF

 

( ) ( )

1 2 1 1

2 2

1 1 2 2

/2

1 1 2 2
/2

( , )  ({ : ( ) ,   

                                            ( ) }}

1
lim ({ : ( ) ,  ( ) })

1
lim u ( ) u ( ) d

o

o

x R

U

t U

U
t U

F t R x t t

x t t

t R x t t x t t
U

x t t x t t t
U

ξ ξ µ ξ

ξ

µ ξ ξ

ξ ξ

→∞

+

→∞
−

∈ + ≤

+ ≤

= ∈ + ≤ + ≤

= − + − +∫



for all real ξ . Note: The constraint in Axiom S1 
that disallows replications in the sample space 
also disallows constant signals, which are a 
degenerate case of stationary signals. A viable 
alternative is to remove this constraint. 

The probability of the entire sample space of the 
Stationary FOT-Stochastic Process is equal to 1, 
meaning every experimental outcome is one of 
the members of the sample space. That is, for a 

discrete sample space N
dΩ  with a finite number 

N of translates, the probability of each translate 
is 1/ N and since these translates are mutually 
exclusive events, the probability of the entire set 
of N  translates is the sum over N probabilities, 
each equal to 1/ N , which sum equals 1. In the 
limit, as the number of translates N included in 
the sample space approaches infinity, we get the 
result that the probability of each sample path is 
0 and the probability of the total sample space 

dΩ is 1. Similarly, for a continuous sample space, 

the probability of each sample path is 0, because 
the relative measure of a single point on the real 
line is 0, and the probability of the total sample 

space cΩ is 1, because the relative measure of 

the entire real line is 1. 

For this FOT-stochastic process, any one of the 
translates, { ( ) : }x t t Rω− ∈  for any particular 

Rω∈  or  { : }nx n Zω− ∈  for any particular 

Zω∈ , can be taken as the Sample Space 
Generator. In practice, the sample space 
generator would be taken to be the single 
observed signal, conceptually extended from the 
finite observation interval to the real line, or to 
the integers; and when a formulaic specification 
of the process is made, the sample space 
generator would be obtained from the formula 
for any specified set of random samples of the 
random variables in the formula. So, given a 
specification of one sample path, we have a 
specification of the entire sample space.  Here 
are some examples that are commonly 
encountered in communications.  

Example 1: Binary Amplitude Modulated 
Pulse Train Signal  
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1 1 1
  

( ) ( )k
k

x t a p t kT
+∞

= −∞

= −∑  

where { }ka  is an FOT-stationary sequence of 

1±  values having equal FOT-probabilities 
and some specified continuous FOT power 
spectral density function and 1( )p t  is an 

absolutely integrable pulse of essentially 
arbitrary shape 

Example 2: Amplitude Modulated Sine Wave 
Carrier Signal 

2 2 2 2( ) ( ) cos(2 )x t a t f tπ θ= +  

where 2 ( )a t  is an FOT stationary Gaussian 

signal with some specified continuous FOT 
power spectral density function 

Example 3: Amplitude-Shift Keyed Sine 
Wave Carrier Signal 

3 3 3 3 3
  

( ) ( ) cos(2 )k
k

x t a p t kT f tπ θ
+∞

= −∞

= − +∑  

where { }ka  is an FOT-stationary sequence of 

1±  values having equal FOT-probabilities 
and some specified continuous FOT power 
spectral density function and 3 ( )p t  is an 

absolutely integrable pulse of essentially 
arbitrary shape 
 
Example 4: Phase Modulated Sine Wave 
Carrier Signal 

4 4 4 4( ) cos(2 ( ))x t a f t tπ θ= +  

where 4a is a constant, 4 ( )tθ  is an FOT- 

stationary signal with uniform FOT-PDF on 
[0, 2 ]π  and some specified FOT power 
spectral density function 

Example 5: Multiplexed Signal with two 
statistically independent components  

5 2 4( ) ( ) ( )x t x t x t= +  

There are numerous examples of calculations of 
FOT probabilistic parameters for formulaic 
specifications like those in the above examples; 
the first extensive catalog appeared in the book 
[4] and this was recently supplemented with 
additional examples in the book [8]. The great 
majority of these are calculations of cyclic 
autocorrelations and cyclic spectra (spectral 
correlation functions), but there are also some 
examples of calculations of higher-order 
moments and cumulants, both temporal and 
spectral types, cf. [23]. Calculations of cumu-
lative FOT-probability distribution functions are 
less common. The reason is undoubtedly a result 
of the effort required. It is more practically 
feasible to use computer simulations to 
numerically evaluate FOT-CDFs, and likely there 
are results available in the literature. 

Stationary FOT Ergodic Theorem:  

a) Every Stationary FOT-Stochastic Process is 
Strongly Ergodic, by construction, meaning 
the infinite time averages of relatively 
measurable functions of the process exist 
and are independent of the particular 
sample paths selected and are equal to the 
expected values of those functions obtained 
using the FOT-CDF or FOT-PDF.  

b) Every Finite-Ensemble Average of every 
function of a Stationary FOT-Stochastic 
Process is identical to a Finite-Time Average 
of that function.  

 
The validity of this theorem follows directly from 
the defining Axioms. It is noted here that 
ensemble averages are typically conceived of as 
being performed on randomly selected 
ensemble members, which do not occur in any 
ordered fashion. In contrast, time averages are 
typically performed on time-ordered time 
samples or time translates. Item b) in this 
theorem does not assume any ordering. 
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However, when one approaches the question of 
convergence of time averages as the length of 
averaging time approaches infinity, time 
ordering is desirable and typically assumed (e.g., 
as in a Riemann integral), but no such ordering 
can be assumed for random selection of 
ensemble members. To avoid the technical 
details involved here (which are of no pragmatic 
interest), Item b) addresses only finite averages 
and, like Item a), states a fact that is obvious 
from the construction of the sample space.  

Relation to Wold’s Isomorphism 

Wold introduced an isomorphism in 1948 
[14], which is referred to here in its extended 
form that accommodates continuous-time 
processes, between (1) the sample space of 
a stochastic process, defined to consist of 
the collection of all time translates of a single 
time function, including that time function 
itself, and (2) this single time function. This 
isomorphism establishes a distance-
preserving relationship between the 
stochastic process, with its definition of 
squared distance as the ensemble-averaged 
squared difference between two processes, 
and a single sample-path of that stochastic 
process, with its definition of squared 
distance as the time-average of the squared 
difference between two sample-paths. This 
mapping between the metric space of a 
stochastic process and the metric space of a 
single sample path therefore preserves 
distance and is consequently an 
isomorphism. The above sample space is 
identical to that in Axiom 1 in the definition 
of a Stationary FOT-Stochastic Process. By 
complementing this sample space with an 
FOT-Probability measure satisfying Axioms 
S2 and S3, we obtain a Stationary FOT- 
Stochastic Process. 

3.4 Comparison of Kolmogorov and FOT- 
stochastic Process Models 

To illustrate how simple the sample space of a 
stationary FOT-stochastic process is, compared 
with one of the simplest examples of the sample 
space of a Kolmogorov process, consider an 
infinite sequence of statistically independent 
finite-alphabet real-valued equally probable 
symbols, with alphabet size K. The Kolmogorov 
sample space for a finite sequence of length N  
contains NK distinct sequences and the 
probability of each is (1 / )NK . The probability of 
the entire sample space is the sum of the 
probabilities of the NK mutually exclusive and 
exhaustive sample paths, each having 
probability (1 / )NK , which sum equals  1. In the 
limit, as the sequence length approaches infinity, 
we get the result that the probability of each 
sample path is 0 and the probability of the total 
sample space is 1. This sample space includes as 
a strict subset the entire FOT sample space for 
any one of the Kolmogorov sample paths. The 
Kolmogorov probability of this FOT sample space 
is the limit, as N  approaches infinity, of 

(1 / )NN K . Therefore, this probability of the 
entire FOT sample space is 0. This is a result of 
the fact that the sample space represents a 
single signal—a single infinite sequence of K-ary 
symbols, not all possible infinite sequences of    
K-ary symbols. The Kolmogorov sample space 
apparently contains not only the FOT sample 
space of all translates of one infinite sequence, 
but also contains the FOT sample spaces of all 
translates of every possible infinite sequence.  

As a reminder, the Birkhoff ergodic theorem 
guarantees that the time average of every 
sample path in this immense sample space 
equals w.p.1 the expected value and this equals 
w.p.1 every ensemble average.  This mysterious 
result is not necessary in practice; it is not a 
prerequisite for having a probability theory for 
time-series analysis. The much simpler FOT- 
stochastic process will do for types of 
applications described earlier in this paper and 
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further in the Results section, and this means 
that the entire stochastic process concept can be 
discarded for these types of applications and 
replaced with a single signal and its FOT- 
probability model. Sample spaces are then 
irrelevant. The cost of abandoning the 
Kolmogorov stochastic process model is that the 
FOT-probability measure is not sigma-additive, 
and the corresponding FOT-expectation 
operation is not sigma-linear. However, the 
utility of these sigma properties exists only when 
performing calculations involving infinitely many 
subsets of the sample space or sums of infinitely 
many functions of the process. Moreover, to 
benefit from these properties, one must verify 
that a specified probability measure does indeed 
exhibit these assumed properties. This is rarely 
done in practice, except when well-known 
probability measures, like the Gaussian, which 
have already been verified, are adopted. But 
there are no models for manmade 
communications signals in use that are Gaussian 
and the same is apparently true for models of 
naturally occurring biomedical signal.  

Another way to compare these two models of 
stochastic processes is as follows. Consider, as an 
example, a Bernoulli sequence with parameter p 
= 0.3. This is a sequence of statistically 
independent binary random variables with 
values of 0 and 1 having probabilities of 0.3 and 
0.7, respectively. A sample path for the 
Kolmogorov model is denoted by ( , )x n ω , where 
n  is integer-valued and ω  also need only take 
on a countable infinity of values, and can 
therefore be taken to be integer valued.  The 
values this function of two integer variables can 
take on are 0 and 1. The specification of the 
actual 2-dim array of 0’s and 1’s is such that 
every possible sequence of 1’s and 0’s is included 
once and only once. So, the specification of the 
sample space is simply exhaustive. But there is a 
specification of a probability measure for this 
function of ω  for subsets of values of t . The 
measure tells us the limit, as the number of 

randomly selected values of ω  approaches 
infinity, of the relative frequency of 0’s and 1’s 
that will occur as outcomes. This probability 
measure is like a magic hand that guides the 
selection of experimental outcomes so that 1’s 
are selected in 0.7% of the experiments and 0’s 
are selected in 0.3% of the outcomes. And, for 
example, the pair of adjacent outcomes of 0 
followed by 1 are selected in (0.7)(0.3) = 0.21% 
of the outcomes. There is an inherent 
abstractness here, which I call a magic hand. It 
cannot in general be made concrete or given a 
concrete interpretation. And it is not a property 
of the sample space. 

It should be clarified here that the strong law of 
large numbers [9] establishes that averages over 
ensembles of random samples converge to 
expected values w.p.1 not because of replication 
in the sample space, but rather because of the 
magic hand. Replications of entire sample paths 
occurring with non-zero probability are 
disallowed in the Kolmogorov model, as they are 
in the FOT model; however, for any finite set of 
time samples, the same finite set of sample path 
values can occur in infinitely many distinct 
sample paths all of which differ in at least some 
of the values at other time points. But the 
numbers of these partial replicas are determined 
by nothing more than combinatorics. The 
relative frequency of occurrence in random 
samples of sets of process values at subsets of 
time points is determined by only the magic 
hand.  This fact is often not recognized in the 
literature. For example, even the classic book by 
Middleton [11, Sec. 1.3] includes attempts at 
explaining the convergence of ensemble 
averages to expected values in terms of 
replications of sample paths in the sample space. 
Similarly, for the sample space defining the FOT-
stochastic process (e.g., continuous time), 
replications like 

 1 2{ ( );  } { ( );  }x t t R x t t Rω ω− ∈ = − ∈ , 1 2ω ω≠ ,   



16 
 

are disallowed (Axiom S1) because they do not 
produce what we think of as random functions 
since they imply ( )x t  is simply periodic with 

period 1 2ω ω= − . 

In contrast to the Kolmogorov sample space for 
the Bernoulli process, a sample path for the 
corresponding FOT-stochastic process is given by 
(with some abuse of notation)
{ } { }( , ); , ( ); , )x n n Z x n n Zω ω ω ω∈ = − ∈ and 

this function ( )x n  takes on values of 0 and 1. 
Given a single sample path ( )x n on the integers, 
we have a full but non-exhaustive specification 
of ( , )x n ω  throughout the entire sample space 
(2 dim array). Because of this, there is no need 
for a magic hand. We can derive the probability 
measure by simply calculating (in principle, at 
least) the limit of the relative frequencies of 1’s 
in ( )x n . Any statistical dependence of these 
binary variables in the sequence also can (in 
principle, at least) be calculated from joint FOT- 
probabilities. Work on designing sequences that 
exhibit specified relative frequencies can be 
found in the early literature (cf. references in 
[22]).  

The above discussion illustrates that the details 
and level of abstraction of the Kolmogorov 
stochastic process model are often not observed 
in applied theoretical work in statistical signal 
processing. Consequently, there is little 
pragmatic justification for continuing to hang on 
to the baggage (abstraction) that comes with this 
standard model, when we have the much 
simpler and more concrete alternative, the FOT-
probability model for single signals. 

3.5 Definition of Cyclostationary FOT- 
Stochastic Process 

Axiom CS1: The Sample Space of the 
Cyclostationary FOT-Stochastic Process with 
Period T is comprised of all the time 
translates, by integer multiples of the 

period, of a single relatively measurable 
discrete- or continuous-time sample path,  
x , subject to the constraint that replications 
are disallowed (no two sample paths can be 
identical): 

{{ ; }; },  

{{ ( ); }; }
d n T

c

x n Z Z

x t T t R Z
ω ω

ω ω
−Ω = ∈ ∈

Ω = − ∈ ∈
 

The period T can be any real number for 
continuous-time processes but must be an 
integer for discrete-time processes. 
 
Axiom CS2: The probability of any relatively 
measurable subset of elements from the 
sample space index set R  or Z , called an 
event, is the value of the relative measure of 
that set. 
 
Axiom CS3: The FOT-CDF of any relatively 
measurable discrete- or continuous-time 
function, [ ]( )f x t  or [ ]nf x , which is jointly 

relatively measurable, for m real-valued 
time points 1 2 3{ , , , ..., }mt t t t  or m integer-

valued time points 1 2 3{ , , , ..., }mn n n n , of the 

Cyclostationary FOT-Stochastic Process ( )x t  

or nx , with PeriodT , is the relative measure 
of the event set 
 

1 1
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E Z f x
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ω
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≤ ≤



 

 
for all real-valued m-tuples 1 2 3{ , , , ..., }mξ ξ ξ ξ , 

and all these FOT-CDFs are periodic 
functions of time: If   1 2 3{ , , , ..., }mt t t t  is 

replaced with 1 2 3{ , , , ..., }mt T t T t T t T+ + + +  
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or, if 1 2 3{ , , , ..., }mn n n n  is replaced with 

1 2 3{ , , , ..., }mn T n T n T n T+ + + + , the FOT- 
CDF remains unchanged.  

 
It follows from Axiom CS3 that the first-order 
FOT-CDF for a continuous-time cyclostationary 
FOT process is given explicitly by the formula 
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for all real t  and ξ , and similarly for higher-
order FOT-CDFs; and the first order FOT-CDF for 
a discrete-time FOT process is given explicitly by 
the formula  
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for all real ξ  and all integer n . In contrast to the 
periodicity of these FOT-CDFs, the FOT-CDFs for 
a stationary FOT-stochastic process remain 
unchanged for all real-valued or integer-valued 

.T  They are periodic with every period and are 
therefore time-invariant.  
 
Note: The constraint in Axiom CS1 that disallows 
replications in the sample space also disallows 
periodic signals, which are a degenerate case of 
cyclostationary signals. A viable alternative is to 
remove this constraint.  
 
For this FOT-stochastic process, any one of the 
translates, { ( ) : }x t T t Rω− ∈ for any particular 

Zω∈  or { : }n Tx n Zω− ∈  for any particular 

Zω∈ , can be taken as the Sample Space 
Generator. Observe that, whereas the sample 
space for the stationary FOT process is 
uncountably infinite for continuous time, it is 
only countable infinite for the continuous-time 
cyclostationary FOT process. 

Although not immediately obvious, a single 
sample-space generator (a single signal) can, in 
general, generate a stationary FOT process or a 
cyclostationary FOT process with any one of 
multiple incommensurate periods. If the single 
signal exhibits no cyclostationarity, all the FOT- 
CDFs will be time-invariant and identical. If the 
single signal exhibits only one period, then its 
cyclostationary FOT-CDF will be periodic, not 
time-invariant and it will therefore be distinct 
from the stationary FOT-CDF. And if the single 
signal exhibits two incommensurate periods, the 
sample space generator can generate a time 
invariant FOT-CDF and two distinct periodic FOT-
CDFs, by using different sets of translation 
amounts. And so on. For the five example signal 
models specified above, we have the following 
results for the distinct FOT-CDFs that can be 
produced from each signal. 

Example 1: 1( )x t  has stationary FOT-CDF 

and one cyclostationary FOT-CDF with 
period 1T T=  

Example 2: 2 ( )x t  has stationary FOT-CDF 

and one cyclostationary FOT-CDF with 
period 21 / 2T f=  

Example 3: 3 ( )x t  has stationary FOT-CDF 
and multiple cyclostationary FOT-CDFs with 

periods ( )
3 31 / (2 / )jT f j T= +  for possibly 

all integers j , assuming that 3f and 31 / T are 
incommensurate 
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Example 4: 4 ( )x t  has stationary FOT-CDF 

and one cyclostationary FOT-CDF with 
period 41 / 2T f=  

Example 5: 5 ( )x t  has stationary FOT-CDF 

and multiple cyclostationary FOT-CDFs with 

periods ( )
2 31 / ( )jT nf mf= +  for possibly all 

pairs of integers ( , )n m  (except those for 

which 2 2 1 1( , ( ,) )n m kn km=  for any integer  

k ) if 2f  and 3f  are incommensurate; 

otherwise just one cyclostationary FOT-CDF 
with period 2 31 / 1 /T nf mf= =  for the 

smallest pair of integers ,n m  for which this 
equality holds. 

Cyclostationary FOT Cycloergodic Theorem:  
 
a) Every Cyclostationary FOT-Stochastic 

Process is Strongly Cycloergodic, by 
construction, meaning the infinite time 
averages, with cyclostationarity period T , 
of relatively measurable functions of the 
process exist and are independent of the 
particular sample paths selected and are 
equal to the time-periodic expected values 
of those functions obtained using the FOT-
CDF or FOT-PDF.  

b) Every Finite-Ensemble Average of every 
function of a Cyclostationary FOT- 
Stochastic Process is identical to a Finite-
Time Periodic Average of that function.  

 
The validity of this theorem follows directly from 
the defining Axioms. It is noted here that 
ensemble averages are typically conceived of as 
being performed on randomly selected 
ensemble members, which do not occur in any 
ordered fashion. In contrast, time averages are 
typically performed on time-ordered time 
samples or time translates. Item b) in this 
theorem does not assume any ordering. 
However, when one approaches the question of 

convergence of time averages as the length of 
averaging time approaches infinity, time 
ordering is desirable and typically assumed, but 
no such ordering can be assumed for random 
selection of ensemble members. To avoid the 
technical details involved here (which are of no 
pragmatic interest), Item b) addresses only finite 
averages and, like Item a), states a fact that is 
obvious from the construction of the sample 
space.  

3.6 The FOT-Probability Model for 
Almost Cyclostationary Processes 

The approach taken here consists of starting 
with the concept of a standard CDF defined by 
the expected value of an indicator function as 
normally done for Kolmogorov processes, and 
then using the well-known Fourier decom-
position of an almost periodic function into a 
sum of sinusoidal components, with one 
component for each of all the sine-wave 
frequencies exhibited by the process.  However, 
there is no need to assume a Kolmogorov 
stochastic process model, in particular; this 
would introduce major unnecessary abstraction 
and complexity. We consider the CDF 
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where the expectation operation {.}E is nothing 
more than a notion and where 

/2

/2

/2

/2

1
( ) lim ( , ) exp[ 2 ]

1
      lim {u( ( ))}exp[ 2 ]

U

X XUU

U

UU

F F t i t dt
U

E X t i t dt
U

α ξ ξ πα

ξ πα

−→∞

−→∞

= −

= − −

∫

∫
 

and ( )X tΘ  represents any non-cyclic non-

stationarity that might be present in the process 
model, meaning  

/2

/2

1
lim ( ) exp[ 2 ] 0

U

UU X t i t dt
U

πα
−→∞

Θ − =∫  
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for all α . For our purposes, we assume     
( ) 0X tΘ ≡ .  Then, as a final step, the unspecified 

expectation operation is removed to obtain the 
following definition in terms of a single sample 
path: 

/2

/2

1
( ) lim u( ( )) exp[ 2 ]

U

x UU
F x t i t dt

U
α ξ ξ πα

−→∞
= − −∫ . 

The almost periodically time-varying CDF is then 
given by 

( , ) ( ) exp[ 2 ]x xF t F i tα

α

ξ ξ πα∑ . 

The reader must be careful to distinguish 
between capital X , which represents a 
stochastic process, and lower case x , which 
represents a single sample path, or simply a 
single signal, such as one specified formulaically, 
as in Examples 1 – 5. 

It has been shown, in several distinct ways [4], 
[5], [8], that the above definition of an FOT-CDF 
is indeed a valid cumulative probability 
distribution function. The Fourier components 

( )xFα ξ of the FOT-CDF are called the cyclic CDFs 
[4], although they are not actually CDFs for  

0α ≠ ; they are a generalization to complex-
valued distribution functions. But this doesn’t 
matter if their combination in the formula for 

( , )xF tξ  is indeed a valid FOT-CDF. In fact, this is 

true for various choices of values of α  to include 
in the Fourier series formula. This includes the 
choice of only 0α = , and it includes the choice 
of all harmonics of 1/ Tα =  for each incommen-
surate period T chosen, although the periods 
chosen are arbitrary.  For every non-zero value 
of α  chosen, its negative must also be chosen, 
but this is apparently not sufficient. It is 
conceivable that not all harmonics for each 
chosen period must be included. This would 
certainly be true if the cyclic CDFs for some of the 
harmonics were zero; but this may not be 
possible and is considered unlikely because of 

the infinity of step discontinuities in the function 
u( ( ))x tξ − . Research on this topic is ongoing. In 
any case, the above-listed allowable choices 
illustrate that a multiplicity of FOT-CDF models 
for a single signal is possible. 

Even though the formula for calculating the 
cyclic FOT-probability models does not directly 
use actual FOT calculations—it uses the modified 
relative measure that includes sinusoidal 
weighting—it is identical to an actual FOT 
calculation, according to the synchronized 
averaging identity [4]: 
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where 0 ( )xF ξ  (defined in Sec 3.3) and , ( , )
jx TF tξ

(defined in Sec 3.5) are FOT-stationary and FOT- 
cyclostationary CDFs, respectively. In this 
formula for the FOT-CDF of an almost 
cyclostationary time series, { }jT represents the 

set of periods of the possibly countably infinite 
number of periodic components of the almost 
periodic FOT-CDF. When this set is finite, the 
time series is said to be Poly-Cyclostationary. 

This completes the specification of an Almost 
Cyclostationary FOT-Probability Model for single 
signals. It is very flexible, involves no weird 
stochastic process abstractions like the magic 
hand referred to above, and is compatible with 
both the commonly used formulaic signal 
models and purely empirical data. That is, when 
all one has is empirical data—a single signal with 
possibly no information upon which to base a 
formulaic signal model, the Fourier components 
in the CDF formula can still be calculated directly 
from the data by using the above formula with 
the limit operation removed (as justified in 
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subsequent sections). This still produces a valid 
CDF from the Fourier series formula. In this case, 
there is no formulaic signal model from which to 
identify the periods whose harmonics 
frequencies are to be used for α ; however, 
there may be information from the physical 
source of the data that can be used to 
hypothesize cycle frequency values. Otherwise, 
an exhaustive search over all feasible values of 
α  must be performed using a significance test of 
some sort on each calculated cyclic CDF. 

3.7 Cycloergodicity for Multiple 
Incommensurate Periods 

Many communications signals with sample paths 
specified formulaically exhibit cyclostationarity 
with multiple incommensurate periods (they are 
poly-cyclostationary or almost cyclostationary, 
but not purely cyclostationary or purely 
stationary) and, as shown by Boyles and Gardner 
in 1983 [15], they can be tested for what is here 
called Sinusoidal Ergodicity (SE). This means 
some such processes can exhibit the strong 
sinusoidal ergodic properties required to 
support the commonly assumed convergence of 
estimates of sinusoidal components (which are 
typically called cyclic components) of their 
almost-periodically time-varying probabilistic 
parameters, such as cyclic autocorrelations and 
cyclic spectral densities (also called spectral 
correlation functions). However, these processes 
cannot be included in the traditional ergodic 
theory stemming from Birkhoff’s work or its 
extension to the cycloergodic theory of 
cyclostationary processes of Boyes and Gardner. 
This is mathematically proved in [15] and 
illustrated with the example of a Bernoulli 
process with a periodically time-varying 
probability of success having its period 
incommensurate with the sampling-time 
increment. What has essentially invariably been 
done since the introduction of almost 
cyclostationary processes in 1978 [26] is to 
specify such processes in a formulaic manner 

(e.g., Examples 3 and 5 above) and to then 
invoke a strong cycloergodic hypothesis, 
sometimes based on the demonstration of a 
much weaker form of cycloergodicity, such as 
cycloergodicity in the mean square sense. But we 
are now going to go beyond this. 

The sample spaces for the cyclostationary FOT- 
stochastic processes reveal why there cannot 
exist a single FOT-stochastic process with more-
than-one incommensurate period: A single 
sample space cannot consist of only translates of 
one period if it also consists of only translates of 
another incommensurate period. What one 
must therefore do with the FOT model 
introduced in Section 3.6 is to introduce a unique 
sample space for each and every 
incommensurate period of cyclostationarity of 
interest for a single record of data or a single 
formulaic model. However, this is just a 
conceptual aid. For operational purposes, all one 
needs is the formula for almost cyclostationary 
CDFs given in Section 3.6 and the method 
presented in Section 3.5 for calculating 
cyclostationary CDFs for each period. This 
calculation can be empirical, using a record of 
observed data, or it can be performed 
mathematically using a formulaic specification of 
the time series. This, in turn, provides insight into 
how to generalize Birkhoff’s ergodic theorem to 
accommodate almost cyclo-stationary processes 
of the Kolmogorov type, as explained next. 

But first, let us sum up the situation for formulaic 
FOT-Probability models for almost 
cyclostationary time series. The deterministic 
periodicity with multiple periods combined in a 
sample-path formula, such as those in Examples 
1 – 5, with stationary FOT time-series 
components, provides the basis for constructing 
the CDFs or PDFs from FOT calculations using the 
time-series model. Nonlinear functions of a time 
series whose sample-path formula contains 
multiple periodicities contain in general not only 
harmonics not originally present, of the 
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fundamental frequencies originally present, but 
also linear combinations with integer-valued 
coefficients, of all these harmonics. 
Consequently, in constructing the CDFs for such 
a time series, it must be assumed at the outset 
that the CDFs will contain sinusoidally time-
varying components with all these various mixed 
frequencies. 

How to Generalize Birkhoff’s Ergodic Theorem 
for Continuous-Time Almost Cyclostationary 
Kolmogorov Stochastic Processes 

The content of this section does not contribute 
to the primary objective of this article, but it 
does follow easily from the concepts introduced 
in the previous section and it does provide a 
genuine generalization of ergodic theory of 
stationary and cyclostationary processes to poly-
cyclostationary and almost cyclostationary 
Kolmogorov stochastic processes. Strong 
Cycloergodic theory of Kolmogorov stochastic 
Processes, which extends and generalizes 
existing ergodic theory, is developed in (Boyles 
and Gardner 1983), where it is shown that 
sinusoidal and periodic components of time-
varying probabilistic parameters can be 
consistently estimated w.p.1 from time averages 
on one sample path. It is also established that a 
strong theory of cycloergodicity inclusive enough 
to cover all applications of practical interest had, 
at that time, not yet be shown to exist. 
Moreover, it is shown that such a theory cannot 
presuppose the existence of a dominating 
stationary measure, as does the theory 
presented therein. Nevertheless, it would 
appear that it can be argued that because a 
continuous-time cyclostationary process can be 
characterized as a discrete-time vector-valued 
(or function-valued) stationary process, 
Birkhoff’s Ergodic Theorem (Birkhoff 1931) for 
scalar-valued discrete-time stationary processes, 
if generalized to vector-valued processes, leads 
to a completely analogous cycloergodic theorem 
for continuous-time cyclostationary processes. 

The vector (or function), at any discrete time 
equal to an integer multiple of the period of 
cyclostationarity, consists of the infinite set of 
process values over the period between that 
discrete time and the previous discrete time. 

Furthermore, it is shown in (Gray 2009, Chap. 7, 
and refs. therein) that Birkhoff’s ergodic 
theorem has been extended from stationary to 
asymptotically-mean stationary (AMS) discrete-
time processes. This extension guarantees the 
existence of consistent estimators for the 
discrete-time averages of time-varying 
probabilistic parameters, such as probability 
density functions. Because almost-cyclo-
stationary (ACS) discrete-time processes are 
AMS, this extended theorem applies to discrete-
time ACS processes (and the same might well be 
true for continuous-time ACS processes after 
discrete-time sampling) but it does not apply 
directly to estimation of the sinusoidal and 
periodic components of almost-periodically 
time-varying probabilistic parameters. 

Nevertheless, (Gray 2009, Chap. 7) does discuss 
ergodicity of N -stationary discrete-time 
processes, which are N -dimensional vector-
valued representations for discrete-time 
cyclostationary processes with period N .  
Furthermore, the discrete-time infinite-dimen-
sional vector-valued process described above 
that represents a continuous-time scalar-valued 
process is AMS if that continuous-time process is 
ACS (which includes, as special cases, poly-
cyclostationary, cyclostationary, and stationary 
processes). 

Consequently, for any selected period of a 
continuous-time ACS process, one can form a 
discrete time vector-valued AMS process as 
explained above. Then the time average of a 
probabilistic parameter of this vector-valued 
process will equal the periodic component of 
probabilistic parameter of the original ACS 
process. In this way any periodic component for 
any real-valued period T  of the almost 
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periodically time-varying probabilistic para-
meters of the original scalar-valued continuous-
time ACS process can be guaranteed to be 
consistently estimable by applying the proposed 
ergodic theorem to the infinite-dimensional 
vector-valued discrete-time AMS process. 

It follows that the discrete-time AMS version of 
the Birkhoff ergodic theorem can be extended / 
generalized to accommodate cycloergodicity for 
continuous-time ACS processes by requiring that 
the ergodicity condition for discrete-time AMS 
processes be satisfied by the vector-valued 
representation for each and every period T of 
the continuous-time process. In addition, there 
appears to be a partially cycloergodic version of 
this proposed theorem that requires the 
ergodicity condition for some but not all periods 
be satisfied.  

This leaves one class of ACS processes for which 
a cycloergodic theorem remains to be proposed, 
and this is the class of discrete-time processes 
having measures that possess non-zero 
sinusoidal components with sine-wave 
frequencies that are incommensurate with the 
time-sampling rate. Some such processes do 
indeed allow for consistent estimation of such 
sinusoidal components, but others do not. A 
necessary and sufficient condition for consistent 
estimation has apparently not yet been 
proposed but the Author expects one to be 
discovered by following ideas in the present 
paper 

3.8 Purely Empirical FOT-Probability 
Models for Regular Cyclicity 

We can obtain finite-data probability models by 
using the FOT-CDF formula in Section 3.6, but 
without taking the limit as the averaging time 
approaches infinity, and still get CDFs that are 
exactly constant (using only 0α = ) or periodic 
(using 0α =  and  and kT kTα α= = −  for 

1,  2,  . . . ,k K= ) or poly-periodic (using 0α =  
and  and kT kTα α= = −  for 1,  2,  . . . ,k K=  

and any finite set of incommensurate real-
valued periods T ). We consider here only finite 
numbers of cycle frequencies since calculation 
involving an infinite number cannot be purely 
empirical. However, it appears from recent 
unpublished work by Napolitano and coworkers 
that omission of cycle frequencies for which the 
cyclic components are not identically zero 
renders the formula for the CDF only 
approximate. Such approximations do not 
necessarily retain the characteristic properties of 
valid CDFs. 

Nevertheless, it is expected that the approach 
with finite K  can produce accurate 
approximations with sufficiently large but finite 
values of K . Moreover, by recognizing that the 
above CDF formula can be used for all time t , 
even though it is calculated from only a finite 
interval U of time, we see that these purely  
empirical models are not just approximately 
constant or periodic or poly-periodic, they are 
exactly so. 

More generally, the program of calculation for 
any probabilistic parameters, such as joint 
moments, using a finite segment of data ( )x t , is 
that everywhere the data occurs, in the infinite-
interval formula for the parameter of interest 
[4], for some function of the data that is of 
interest, such as a lag product, the time support 
of that data is windowed to the finite 
observation interval, just like what is done in the 
conventional correlogram & cyclic correlogram, 
and periodogram & cyclic periodogram [4]. Then 
the time-invariant Fourier coefficient of the 
sinusoidal component, with frequency α , of the 
function of the time series over the finite 
observation window is extracted and multiplied 
by exp[ 2 ]i tπα (with t extending over the reals) 
in the usual manner, but without the limit as 
integration time approaches infinity. These 
components when added together for all 
detected or selected cycle frequencies comprise 
an almost periodic function over all time and, 
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when restricted to the finite time support of the 
function of the data, comprise an approximation 
to that function. The approximation is not a 
least-squares fit because the sinewave 
components are not mutually orthogonal except 
over the entire real line unless their frequencies 
are commensurate. It also does not equal the 
limit almost periodic component, but it would 
hypothetically converge to it as the observation 
time approaches infinity, provided that the 
function is relatively measurable. But the theory 
does not use the limit together with conditions 
for or assumptions of convergence of the 
probability of events. It simply uses the finite 
time statistics (approximate Fourier 
components) that are artificially extended over 
all time.  These extracted almost periodic 
representations can be used just as they are used 
in the limit theory and can be calculated from 
either a finite-time record of ( )x t or an explicit 
mathematical model of ( )x t . The data 
windowing used does not affect the theoretical 
equality of these two calculations provided that 
the data record is producible from the 
mathematical model, except for the difference 
between the values of the random elements in 
the mathematical model and the actual values of 
those elements in the record of data, such as the 
amplitude sequence in an amplitude modulated 
periodic pulse-train signal. The link here, which 
replaces the ergodic theorem, is the assumption 
that the single data record is indeed a segment 
of one translate of a single time series and that 
the functions of this time series that are of 
interest are relatively measurable. This then 
enables a standard type of argument that 
agreement between the two methods of 
calculation (finite-time and infinite-time 
averaging) can be made as close as desired by 
using a long-enough finite-segment of data [7]. 

All the usual tools still apply. For example, the 
proof of the central limit theorem for FOT- 
probability [24] is applicable to the theory for 

finite records by simply arguing that for any 
arbitrarily small error, epsilon, in equality 
between the limit quantity (Gaussian 
distribution) and the measured quantity, one can 
in principle chose a finite record length that is 
long enough to achieve an error size not 
exceeding epsilon. 

There’s nothing here of any technical 
sophistication. The novelty is in recognizing that 
finite-time FOT models that are precisely 
stationary or poly-cyclostationary can be 
constructed from a finite record of data, and 
these models can be used for all the usual 
probability calculations to within some finite 
precision determined by the length of the data 
segment and particular cycle frequencies used. 
The sensitivity of the precision to the numbers of 
harmonics of each fundamental frequency that 
are used increases as the degree of nonlinearity 
of the function of the data increases. A lag 
product, for example, has a low degree of 
nonlinearity, but the step discontinuities of the 
indicator function used to calculate CDFs results 
in a high degree of nonlinearity. Much research 
remains to be done on methods for calculating 
approximate poly-cyclostationary CDFs 

In the Fourier-coefficient formulas for the 
function (of the data) of interest, the time-
shifted finite segments of data will force the 
integrand to be zero outside of a subinterval 
defined by the intersection of the time-
translated finite-segment support intervals and 
the integration interval. Assuming all time-shifts 
of interest are much smaller than the segment 
length, this approach is acceptable. But it will 
window the -dimn space of n  time shifts. 
Assuming desired spectral resolution width in 
any spectral parameters (PSD, SCF, etc.) is larger 
than the reciprocal of the smallest value,

{ }max i jU t t− − , for data-segment length U , 

the achieved spectral resolution can be 
acceptable. Ideally, we’d like this smallest value 
to be much larger than the coherence length of 
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( )x t  (here meant to be the time separation 
between time samples that is just large enough 
to result in negligible statistical dependence) to 
ensure statistical reliability. 

A refinement that should moderately improve 
reliability and reduce bias is to truncate the 
integration interval involving time-shifts { }it  to 

the closest integer multiple of 1/α  that does not 

exceed { }max i jU t t− − . 

3.9 Purely Empirical FOT-Probability 
Models for Irregular Cyclicity 

Cyclicity is ubiquitous in scientific data, but for 
many if not most natural sources of data, the 
cyclicity is irregular: the period of cyclic time-
variation itself changes with time, slowly in some 
applications and rapidly in others. One approach 
to accommodating this is to restrict 
cyclostationary modeling to data segments that 
are short enough for the period to be treated as 
if it were constant. A more general and less 
restrictive approach is to hypothesize that the 
irregularity results from a time-warping of an 
otherwise regular cyclicity. This is true for some 
irregularly cyclic data sources and not true for 
others, such as rotating machine vibrations with 
time-varying rotational speed as explained in 
[16].  Fortunately, there is a middle ground of 
natural sources of data for which the irregular 
cyclicity—though irregularly fluctuating too 
rapidly to treat as regular—is due to time 
warping of otherwise regular cyclicity and the 
rate of variation of the warping function is slow 
enough to be tracked. A broadly applicable 
approach to doing this is introduced in [16] and 
is based on the concept of property-restoral 
adaptation.  

Methodology and algorithms for such 
adaptation are presented therein for restoral of 
regular cyclicity. The adaptation process 
produces both a time-dewarped version of the 
original data, which is more nearly 

cyclostationary, and explicitly identifies the 
dewarping function. In some applications, 
identification of the warping function inherent in 
the data, by inverting the identified dewarping 
function, is the end goal for this time-series 
analysis; in other cases, further time-series 
analysis that exploits the restored 
cyclostationarity is the end goal. In this latter 
case, by preprocessing data that exhibits 
irregular cyclicity to restore cyclostationarity 
enables the user to go on to construct 
cyclostationary FOT-probability models. These 
models can be used directly for some 
applications and can be time-warped to obtain 
irregularly cyclic probability models. A generally 
applicable rule of thumb for predicting how well 
this methodology can perform is described in 
[16] in terms of a comparison between (1) what 
can be called the coherence time (or statistical 
dependence time) of the data or the data 
memory length and (2) the constancy time 
(reciprocal of some measure of the rate of time 
variation) of the warping function. Best 
performance is expected when (2) exceeds (1) by 
a factor much larger than unity. This is akin to the 
well-known concept of local stationarity but 
generalized to local cyclostationarity and also 
the more esoteric concept of local ergodicity 
generalized to local cycloergodicity. But 
fortunately, such abstractions are avoided when 
using FOT-probability models. Complementary 
work on property-restoral de-warping has been 
conducted in [25]. 

4. Discussion of Results 

We have known for nearly a century that 
Birkhoff’s Ergodic Theorem, extended from 
discrete-time to include continuous-time, 
provides a condition on the sample space and 
probability measure of Kolmogorov’s generic 
stochastic process model that makes time-
averages of measurements on (functions of) the 
process converge, with probability equal to 1 
(w.p.1), to expected values of those 
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measurements. And, we also have known all this 
time that Kolmogorov’s Law of Large Numbers 
proves that ensemble averages converge to 
expected values w.p.1. However, practitioners 
using these results are generally unable to 
understand, with any level of intuition, why 
these equalities between fundamentally 
different entities are valid. 

In contrast, the alternative and greatly simplified 
stochastic process models presented in this 
paper are transparent. It is obvious why time 
averages equal ensemble averages, because the 
sample space consists of all time-translated 
versions of a single signal, and it is obvious why 
these both equal expected values.  

In applications where we are interested in only 
ergodic processes, there does not appear to be 
any pragmatic reason for adopting the 
complicated abstract Kolmogorov model instead 
of the simpler more concrete alternative model. 
In fact, once we’ve accepted the alternative 
model as sufficient for our purposes, we can take 
the next step of recognizing that this alternative 
model is identical to the entity comprised of a 
single signal and its Fraction-of-Time (FOT) 
Probabilities which are derived directly from this 
single signal. The conclusion is that sample 
spaces and stochastic processes are unnecessary 
unless non-ergodic models are the entities of 
interest. 

This is a situation where a pragmatic person 
would ask “what’s the point of teaching students 
of statistical signal processing about the strongly 
ergodic Kolmogorov stochastic process model as 
a tool for problem solving, with its unnecessary 
abstraction and its ergodic hypothesis which can 
almost never be tested in practice, when the 
model of a single time series (a persistent 
function of time), together with the concrete 
time-average operation is operationally 
equivalent? If we hold to the principle of 
scientific parsimony and we value mathematical 
elegance and we act logically and rationally, 

shouldn’t we terminate this nearly-one-century-
long practice immediately? It is relevant here 
that it has been said: If elegance in science is just 
an attractive attribute, then elegance is not a 
necessary goal but simply something to be 
admired when it happens. However, if elegance 
is a requisite feature of good science, then the 
characteristics defining elegance deserve the 
same attention given to scientific rigor. 

To be sure the ramifications of what is stated 
above are understood by the reader, it is also 
stated explicitly here, and shown in [4] (see also 
[5] and [17, Chapt 1]) that the temporal-
expectation (time-average) operation behaves 
just like the stochastic-expectation operation 
and produces all probabilistic quantities we are 
familiar with: cumulative probability distribution 
functions, probability density functions, 
moments, characteristic functions, cumulants, 
etc. For example, both operations obey a 
Fundamental Theorem of Expectation. It’s just 
that, for temporal expectation, the term 
probability means Fraction of Time (FOT) of 
occurrence of an event at all sets of times, with 
specified time-separations, over the temporal 
lifetime of the time series, instead of fraction of 
repeated experiments (each producing a time-
series) over which an event occurs at a particular 
set of times.  

There are two exceptions to this equivalence, 
and they are the sigma linearity property of 
expectation and the relative measurability 
property of single time functions; these 
properties are simply dictated by the creators of 
these two theories: the first by Kolmogorov’s 
Axiom VI and the second by the Kac-Steinhaus 
Axiom of Relative Measurability. Axiom VI may 
or may not be satisfied by a stochastic process 
model that some practitioner specifies. And 
relative measurability is not necessarily satisfied 
by all the time-series models practitioners may 
specify. For example, the samples paths of a 
strongly ergodic stochastic process are not 
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necessarily relatively measurable; so, this 
property must be assumed for the strongly 
ergodic stochastic process (call it Axiom VII) for 
continuous time if the limits of time averages in 
the Birkhoff ergodic theorem are to exist. 
Although there’s no question that sigma 
additivity of probability measures and sigma 
linearity of expectation are useful 
mathematically, users can rarely verify that the 
models they use actually exhibit these 
properties. Nice mathematical properties for 
both stochastic processes and single time 
functions come at a cost of restricted 
applicability. This is the nature of models, 
especially those involving infinity. It is not 
necessarily a basis for arguing the superiority or 
inferiority of the ensemble-average theory over 
the time-average theory. More in-depth analysis 
of this topic is provided in [1]. But it is important 
to mention here that just because the use of the 
relative measure (time-averaging operation) 
does not generally enable the user to 
interchange the limit in the time-averaging 
integral with the summation over a countable 
infinity of additive terms does not mean that one 
cannot proceed with the calculation. The 
interchange of operations must be executed 
before the limit is taken. In some cases, this is 
required only for the limit that defines the time 
average; in other cases, it may be required also 
for the limit that defines the infinite summation.  

A comprehensive theory and methodology of 
FOT-Probability and statistical spectral analysis is 
presented in the 35-year-old book [4]. In 
addition, this book extends/generalizes the 
theory from stationary time series to 
cyclostationary, poly-cyclostationary, and 
almost cyclostationary time series, which 
provide higher fidelity models of many time 
series encountered in engineering and the 
sciences, as evidenced by the many new signal 
processing algorithms it has engendered over 
the last 35 years. The similar-vintage book [18] 
provides the theory of the stochastic-process 

counterparts of these extended/generalized 
time-series theories. A much more recent and 
more comprehensive book on both these 
stochastic-process and time-series models is also 
available [8] and is recommended. This latter 
book is encyclopedic and is the most scholarly 
treatment of cyclostationarity available.  

For example, some continuous-time functions 
for which averages over discrete times exist may 
not be relatively measurable on the real line and 
therefore may not be averageable over all real 
time. This requires the addition of a 7th axiom to 
Kolmogorov’s stochastic process model to 
accommodate Birkhoff’s ergodic theorem for 
continuous time averages. As another example, 
the Channel Coding Theorem of Information 
Theory cannot be based on FOT-probability 
because it is formulated in terms of a non-
ergodic stochastic process: The stochastic-
process output from any and every random 
channel except for a random time-delay, is non-
ergodic, regardless of whether or not the 
channel input is ergodic. (The random-delay 
exception is not allowed for cycloergodicity.) For 
example, Middleton’s classic models of non-
Gaussian noise are non-ergodic, because these 
noise models depend on random time-invariant 
parameters such as the random number of noise 
sources seen by the receiver and their random 
locations relative to the receiver (see, for 
example, [19], and references therein). 

As another example, the theories of maximum-
likelihood parameter estimation and hypothesis 
testing are based on the likelihood function, 
which is the PDF of the observed data, 
conditioned on each specific hypothesis and/or 
hypothetical parameter value. Also, Bayesian 
minimum-risk parameter estimation and 
hypothesis testing inference rules can be 
expressed in terms of likelihood functions. 
Consequently, these theories and 
methodologies can only be based on FOT-
Probability if conditional FOT-Probabilities 
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and/or PDFs can be experimentally measured or 
mathematically calculated from mathematical 
sample-path models of the data. Frequently this 
can indeed be done as demonstrated with many 
examples in [4], [8], [17]. However, it cannot 
always be done. 

The example of the channel coding theorem 
provides a segue to the question “what does the 
FOT-Probability perspective presented in this 
paper on signal modeling leave out that 
Kolmogorov stochastic processes encompass?” 
The answer is that the theory of non-ergodic 
stochastic processes does not have an FOT-
Probability counterpart. Non-ergodic models of 
signals do have their uses. Specifically, when 
important conditions of an experiment change 
from one trial of the experiment to another, the 
impact revealed in an ensemble average of these 
changes cannot be determined from a time 
average on the time series from a single 
experimental trial. A common example in signal 
processing is the speech signal. In bandpass 
analog modulated signals such as AM, PM, and 
FM sinewave carriers and baseband (lowpass) 
pulse-modulated analog signals, such as PAM, 
PPM, and PWM, modulated by possibly 
quantized but not digitally encoded speech, 
there is no physical reason to assume that an 
ensemble of speakers will produce speech 
records that are simply time-translated versions 
of each other. Therefore, none of these 
modulated signals for multiple speakers can be 
expected to be simply time-translated versions 
of each other.  The character of speech differs 
from one speaker to another due to 
physiological, language, and accent differences. 
So, an ergodic stochastic process model is 
inappropriate; but this does not mean the use of 
time-average statistics for a speaker is 
inappropriate. Consequently, FOT-probabilistic 
models for single speakers are appropriate and 
can be used in algorithms for signal processing 
that will be used for multiple speakers as 
explained next. But it is first mentioned that non-

ergodic stochastic process models are also used 
for non-Gaussian noise modeling, not just signal 
modeling [19]. 

If one wants to design a speech processing 
algorithm that provides optimum performance 
averaged over all speakers in a group, a non-
ergodic stochastic process model for the speech 
is appropriate. However, if one wants to design 
a data-adaptive algorithm that provides 
optimum performance for each and every 
speaker, then an FOT-Probability model is the 
appropriate conceptual tool, and the speech 
statistics required by the algorithm will be 
learned and adapted to for each individual 
signal.  There is no place for an ergodic stochastic 
process model for a non-adaptive algorithm 
design for multiple speakers. The same remarks 
apply for applications involving communications 
channels that introduce noise that is collectively 
modeled in terms of multiple noise sources, 
random in number, and with multiple locations, 
random in their coordinates, relative to the 
receiver [19]. 

The same type of situation arises for many forms 
of information-modulated pulse and carrier 
signals, whether the information is discrete-
time, continuous-time, analog, or digital. If there 
are different sources of information, such as 
telemetry for a variety of measurement types, 
different types of files of information exchanged 
between computers, etc., then there will be 
situations where one member from an ensemble 
of signals cannot be expected to be simply a 
time-translated version of some other member.  
So ergodic stochastic process models will 
typically be of poor fidelity, but FOT-Probabilistic 
models can be of high fidelity for each individual 
signal and are therefore the most appropriate 
for analysis and performance prediction for 
adaptive signal processing algorithms.  

Finite-time time-average statistics are 
ubiquitous in statistical signal processing 
algorithms, and such algorithms are typically 
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implemented with DSP software and/or 
hardware, which greatly facilitates adaptivity. 
The potential for considerably higher fidelity of 
the FOT-Probability models and the fact that 
these models, using idealized infinite-time 
averages follow all the same rules for finite 
mathematical manipulation as do stochastic 
process models, should encourage DSP 
algorithm designers to use FOT-Probability 
models in place of the traditional stochastic 
process models. And it is important to note that, 
as discussed in this paper, the Fundamental 
Theorem of Time Averaging applies to not only 
limits of time-average statistics but also finite-
time averages: it applies to completely empirical 
quantities! Yet, there is a caveat: For the models 
derived from finite-time averages, some 
properties of the expectation and infinite-time-
average models are only approximated. This 
appears to be more of an issue with poly-
cyclostationary models, less so with 
cyclostationary models, and even less so with 
stationary models. This is due, at least in part, to 
the loss of the exact orthogonality of the 
harmonics of 1) a periodic function on a finite 
interval that is not an integer multiple of the 
period, and 2) a poly-periodic function on all 
finite intervals, and also due to the loss of exact 
statistical independence of random time series 
on all finite intervals. Consequently, the accuracy 
of these approximations becomes an important 
issue. 

For readers who have been indoctrinated in 
stochastic process theory, the question that 
should be popping up at this point is: “where 
does the concept of mean-square (m.s.) 
ergodicity and ergodicity in probability (weak 
ergodicity), as distinct from ergodicity w.p.1 or 
strong ergodicity, arise in these 
considerations?”. Typical engineering textbooks, 
such as the popular book by A. Papoulis [20], do 
not treat strong ergodicity. The fact of the 
matter is that m.s. and weak ergodicity and their 
extension/generalization to m.s. and weak cyclo-

ergodicity introduced by Boyles and Gardner [15] 
(see also [8]) is of some use in practice. But it 
must be realized that these forms of ergodicity 
are much weaker than strong ergodicity. For 
example, m.s. ergodicity guarantees that the 
squared difference between a time average and 
an ensemble average (both possibly modified for 
cyclostationarity) does go to zero in the limit as 
averaging time approaches infinity, but only on 
average over the typically infinite ensemble. 
Therefore, this difference need not go to zero for 
many members of the ensemble. And these 
members need not be exotic as may those that 
may be present but are ignored by using the 
w.p.1 modifier. One might think that because 
squared error cannot be negative, the average 
squared error can be zero only if every individual 
error is zero. But this is not true because we are 
considering infinitely many errors. For 
continuous-time averages, a countably infinite 
number of errors can be non-zero while the 
average is still equal to zero. Although less 
commonly known, the average over all time can 
be zero even if the error at an uncountably 
infinite number of times is non-zero. The error 
can be non-zero throughout any finite interval, 
while the average error over all time is zero. Such 
are the vagaries of infinity. Consequently, signal 
processing engineers designing algorithms based 
on a theory of expected performance using a 
model that is only m.s. or weakly ergodic can be 
surprised by the occurrence of sample paths for 
which time averages differ greatly from the 
ensemble averages used in the design. If the 
algorithm is data-adaptive, it will use its own 
time-averages, and the resultant difference will 
be between performance predicted and 
performance achieved when ensemble average 
statistics and even the time-average statistics 
used for design and test are different from those 
arising in operation; and this difference might be 
either a pleasant or disappointing surprise. But, 
if the algorithm has been only theoretically 
optimized using ensemble-averages, and is not 
data-adaptive, the surprise can be expected to 
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be disappointing for many signal realizations. 
Examples of fixed optimum vs. adaptive 
algorithms, as referred to here, are fixed Wiener 
filters vs. adaptive filters using least-mean-
squares (LMS) and recursive least squares (RLS) 
algorithms; and also, for parameter estimators, 
detectors, and classifiers, as well as filters, there 
are fixed optimized implementations and there 
are adaptive implementations such as property 
restoral (PR) algorithms including modulus-
restoral and cyclostationarity-restoral 
algorithms [21].  

As another example, the direction in which 
communications technology has been moving 
for the last four or five decades is from primarily 
fixed and slowly adjustable channel equalizers 
(e.g., mid-century Bell Telephone Laboratories) 
to rapidly adaptive channel equalizers. This is a 
consequence, in part, of the evolution from 
hard-wired telephone channels for analog 
signals to wireless channels (e.g., for digital 
cellular communications signals) carrying not 
only voice but also data. This evolution has made 
non-ergodic stationary stochastic-process signal 
models as well as non-ergodic noise models less 
relevant and single-signal and single-noise FOT-
Probabilistic models more relevant, as discussed 
above. The problem, however, is that 
engineering education in theoretical tools, 
unlike education in technology—which is 
typically at the forefront—has not kept up with 
this evolution. It is stuck teaching stochastic 
processes now much as it did five decades ago—
except for a shift from mostly continuous-time 
signals to mostly discrete-time signals—even 
though the more relevant theory of FOT-
Probability models was made available 35 years 
ago [4], [5]. 

The difference between the terms statistical and 
probabilistic are pointed out here for further 
clarity. Probabilities and probabilistic 
parameters, such as means, variances, 
correlations, probability densities, etc., defined 
in terms of mathematical expectation calculated 

from mathematic models, are theoretical or 
mathematical constructs. They come from 
within our heads through our imagination or as 
solutions to mathematical equations. In 
contrast, averages of empirical measurements, 
such as estimates of these theoretical quantities, 
are statistics. They can be obtained from finite 
ensemble averages derived from repeated 
experimentation or from finite-time averages 
performed on a single time series of 
measurements. This difference is very often 
ignored in the terminology chosen by users of 
these tools. This can cause the same type of 
confusion as that resulting from use of 
theoretical stochastic process models for 
implementations based on time-averages from 
single time series. Because stochastic processes 
are mathematical entities, no actual single signal 
can ever be considered to be ergodic or non-
ergodic. It is a real statistic, not an imaginary 
probability model. For example, the Statistical 
Theory of Communication and Information 
Theory are both primarily probabilistic theories, 
but they do deal with statistics to some extent. 
When the focus is on statistics in 
communications, the traditional name for these 
theories is appropriate, but many if not most 
books on this subject focus on probabilities. In 
contrast, turbulence studies are especially 
interested in ensembles, for example, all aircraft 
of a specified design in all operational 
environments, or even a single aircraft in all 
operational environments. Here the ensemble in 
the definition of a stochastic process can be real, 
not just imagined. Yet, the stochastic process 
models used in turbulence studies are not real, 
only the finite ensembles of actual measured 
turbulence—the statistics—are real. The 
example set in Middleton’s classic book [11], of 
being consistently clear about this distinction, 
has not been as diligently followed as would 
behoove the statistical signal processing 
community. It is my belief that the all-too-
common lack of distinction between 
probabilities and statistics is a clear reflection of 
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the confusion caused, at least in part, by the 
abstraction of the stochastic process model that 
engineers are indoctrinated in. 

The entire subject of this article is but one 
example of a philosophical challenge of great 
practical import which we face every day in every 
endeavor: distinguishing between models of 
reality that our brains create and the real thing—
reality itself. People generally act on the basis of 
their models of reality for better or for worse. 
The effectiveness of interpersonal 
communication is dictated by the models in 
terms of which the communicators think.  
Further discussion of the impact, of the 
challenge to better match models with reality, 
on the conduct of science is available on page 7 
of this University of California website [22]. 
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