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ABSTRACT Time series arising from measurements in many fields of physics, engineering, chemistry,
biology, and econometrics, are commonly modeled as sample paths from an ensemble which, together with a
probability measure, is called a stochastic process. Stationarity and ergodicity assumptions about this model
are generally made for analytical convenience and mathematical tractability of the model. In this article,
it is shown that a dichotomy, which can be very misleading in practice, exists between the properties of a
stochastic process and those of its individual sample paths. This dichotomy can be eliminated by adopting
the fraction-of-time (FOT) probability approach reviewed in this article for which a probabilistic model is
constructed from a single time series without introducing the abstraction of the stochastic process. Two
FOT-probability models are reviewed. The first considers probabilistic functions that do not depend on
time and employs the relative measure on the real line as a probability measure and the time average as
an expectation operator. Such time series are called stationary signals. The second considers periodic, poly-
periodic, and almost periodic probabilistic functions and employs the operator that extracts the finite-strength
additive sine-wave components of its argument as an expectation operator. This latter model is appropriate
for describing time series originating from phenomena involving a combination of periodic and random
phenomena. Such time series are called cyclostationary, poly-cyclostationary, and almost cyclostationary
signals. The FOT-probability alternative provides a means for circumventing two standard but undesirable
practices: (1) Adopting the Kolmogorov stochastic process model by using its Axiom VI without being able
to verify its validity for the specific application and (2) Assuming Birkhoff’s ergodicity condition holds
without being able to verify its validity for the specific application.

INDEX TERMS Fraction-of-time probability, cyclostationarity, ergodicity, cycloergodicity, stochastic
processes, time series.

FOREWORD
The Periodogram is a well-known statistic comprised of the
squared magnitude of the Fourier transform of a finite seg-
ment of data, normalized by the segment length, T . One of
several equivalent standard definitions of the power spectral
density function of a stationary stochastic process is that it is
the limit as T approaches infinity of the expected value of the
periodogram. A convergence issue arising in this definition
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that many statistical signal processing engineers are at least
aware of is that one cannot interchange the order of expecta-
tion and limit. The reason is that, before expectation, the limit
of the periodogram does not exist. In addition, the variance of
the periodogram does not converge to zero as T approaches
infinity.

These fairly well-known mathematical facts are responsi-
ble for the practical guideline that one cannot obtain a reliable
power spectrum estimate from the periodogram, no matter
how long the segment length is, unless that periodogram
is either 1) frequency smoothed (averaged over frequency
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throughout every frequency sub-band of width much larger
than the reciprocal of the length of the data segment,
or 2) time smoothed (averaging of a sliding periodogram over
an interval much longer than the segment length).

So, what may appear to some to be an esoteric mathe-
matical curiosity–the invalidity of interchanging the order
of the abstract expectation operation and abstract limit
operation–is, in fact, the reason why the practical guide-
lines for measurement of reliable power spectra are what
they are, as summarized above. This important fact of
statistical spectral analysis, which extends and general-
izes to cross-spectrum analysis and spectral-correlation
analysis of cyclostationary processes as I have shown in
this article [42] becomes transparent only when studied
within the fraction-of-time-probability framework as first
explained in considerable detail in my advanced-level text-
book [37]. By comparison, attempted explanations in other
textbooks, in terms of stochastic processes, cannot be said
to be transparent. The reason for this is that properties
of ensemble averages of sample paths are typically dif-
ferent than properties of individual sample paths, which
is a theme of this article. This difference does not van-
ish as commonly thought if the stochastic process is
ergodic.

Engineers often deal mathematically with expected values
and deal in practice with single sample paths or their time
averages, and they often tend to freely interchange these
quantities by replacing expected values with finite-time aver-
ages and, in some cases, simply deleting the expectation
operation in deriving algorithms. Sometimes this is theoret-
ically justifiable, and sometimes it is not. What percentage
of practicing statistical signal processing engineers know
when and why this interchange is not justifiable? Whatever
small percentage this might be, it is likely far larger than the
percentage of those who are aware of the fact that this fre-
quently used interchange is not only sometimes unjustifiable
but is also avoidable by adopting a little-known analytical
tool that replaces the unnecessarily abstract stochastic pro-
cess tool with a less abstract alternative. The issue here is
not resolved by simply using stochastic process models that
are ergodic.

The purpose of this tutorial is to teach engineers about this
alternative tool and provide a deep understanding of how it
relates to the stochastic process.

Many alternative titles for this article were considered;
a number of alternatives to the choice made had the advantage
of being attention getters and, for that reason, I mention a few
of them here: ‘‘Why Ergodic Stochastic Processes are Inap-
propriate Models in Many Empirical Studies’’, ‘‘The Untold
Truth About Stochastic Processes: They Tell Us Nothing
About Sample Path Behavior’’, and ‘‘How to Avoid Making
Standard Unverifiable Assumptions in the Use of Stochastic
Process Models’’.

–William A. Gardner

I. INTRODUCTION AND HISTORICAL PERSPECTIVE
In many fields of physics, engineering, chemistry, biology,
and econometrics, randomness in time-series measurements
and observations on phenomena being studied has typi-
cally been modeled by resorting to the abstract concept of
a stochastic process. That is, an empirical time series is
modeled as a representative (sample path or realization) of
an ensemble of time series with ‘‘similar characteristics’’,
together with a probability measure defined on the set of
ensemble members, namely, a stochastic process. A desirable
property of the model is that the probabilistic functions com-
prising the stochastic process be estimable by measurements
made on the single empirical time series.

That is, the ‘‘similar characteristics’’ of the sample paths
should be such that the properties and, in particular, the
probabilistic functions of the whole ensemble such as mean,
covariance, and amplitude distribution, can be inferred by
measurements made on any one of the sample paths, with the
exception of a set of sample paths that occurs with zero prob-
ability. This desirable property is called ergodicity in classical
stochastic process theory. This provides the all-important tie
for signal processing applications between the model and that
which can be measured. However, it is shown in this review
article that this tie is not as strong a tie as one would like for
empirical signal processing purposes.

The ergodicity concept was first treated mathematically in
1931 by Birkhoff [14] and in 1932 by von Neumann [105]
with reference to dynamical systems. They established con-
ditions under which averaging, at a single time instant, a func-
tion of the variables of what was called the phase space
across an ensemble of different copies of the same system is
equivalent to averaging over time for a single system. See [87]
for a discussion on the slightly different points of view of
Birkhoff and von Neumann.

Subsequently, ergodicity has played a key theoretical role
in multiple fields [3], [18], and has been the subject of
much thought and discussion. As examples, see the recent
treatments in the fields of economics [26], [19], [93], [94],
atomic physics [65], and condensed matter systems [83].
Theoretical research on ergodicity has continued for nearly
a century; see, for example, the more recent work by Boyles
and Gardner [16], Shields [98], Katznelson and Weiss [63],
and Gray [47], and the latest work by the Authors reported in
this review. For a comprehensive bibliography on ergodicity,
see [69].

The adoption of the stochastic process model requires a
substantial abstraction, the hypothesized mathematical exis-
tence of the ensemble which, in various circumstances, cre-
ates serious conceptual problems [45, page 3.4]. In fact,
for many applications in the various fields of science and
engineering, there is only one record of real data; there is no
ensemble of statistically independent random samples of data
records. For stochastic processes, mixing (a type of asymp-
totic independence of time-samples with increasing separa-
tion in time) assumptions are typically used as sufficient
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conditions for ergodicity. But such conditions often cannot
be verified for the adopted mathematical models; generally,
they are simply assumed to hold on the basis of little more
than faith. It is explained in this review that properties of
probabilistic functions defined in terms of ensemble averages
in most cases do not correspond to similar properties of
analogous functions defined in terms of time averages on
single sample paths, even if the stochastic process is ergodic.
Consequently, there is a dichotomy between the properties of
a stochastic process–the model–and the properties of its indi-
vidual sample paths–the physical signals. The idea that aver-
aging over an ensemble does not necessarily correspond to
averaging over time–the lack of ergodicity of some stochastic
process models–is receiving increasing attention in various
fields of study [28], [83], [84]. Furthermore, it is explained in
the following sections that the critical nature of some assump-
tions made in the classical probability theory of stochastic
processes was already pointed out by Kolmogorov in his
seminal work 90 years ago [66, p. 15]. An attempt to describe
randomness without introducing an abstract sample space and
probability was made by Kolmogorov himself by introducing
the concept of complexity for a single random sequence [67].
Such an alternative approach, however, did not enjoy the same
success probability theory did. See [21], [80], and [104] for
development and discussions.

In this paper, more concrete models based on properties
of time averages of individual signals, instead of averages
over hypothetical ensembles of signals, are reviewed and new
results on the concrete benefits of this alternative are reported.
This approach is based on what is called fraction-of-time
(FOT) probability, which was first introduced in earnest in
1987, with a comprehensive book [37] devoted exclusively
to this theme by Gardner, and the duality between these two
alternative models was a theme of the earlier book [34].
But, important advances in the theoretical underpinnings of
the FOT-probability theory of signals have been made quite
recently.

In this approach, starting from a single function of time,
a valid distribution function and all other familiar proba-
bilistic parameters such as means, moments, and cumulants
are constructed. That is, formulas for calculating these func-
tions/parameters directly from time series are developed.
The approach can be put in a rigorous measure-theoretic
framework built on the conceptual foundation of relative
measure introduced by Kac and Steinhaus in the 1930s
[60]–[62]. Developments were presented during the 1940s
and 1950s in [1], [100]–[102]. More recently, in the 1980s
there was [30] and, in the mid-2000s, the concept was revis-
ited by Leśkow and one of the Authors, Napolitano in [72].
Very recent (unpublished) work by the other Author, Gardner,
on generalizations of ergodicity to cycloergodicity that ame-
liorate some of the drawbacks of the standard assumptions of
stationarity and ergodicity are included in this review.

The FOT probability approach is methodological, it does
not necessarily provide new signal processing recipes.

However, in the paper it is shown that the adoption of
this approach allows the experimenter to avoid dichotomies
between properties of the stochastic process model and those
of its sample paths. The dichotomies illustrated in the paper
regard issues frequently encountered in signal processing
applications: The expectation of a digitally modulated signal;
the linear transformation of a Gaussian signal; and the con-
cept of statistical independence. In addition, in the paper it is
shown that some properties of the probabilitymeasure and the
expectation operation render these entities more amenable to
some mathematical operations than do the temporal counter-
parts of these properties for the sample paths. In contrast, the
properties of the relative measure and the infinite time aver-
age are exactly the properties of the functions at the hand of
the experimenter, the only abstraction being the concept of an
infinite observation interval. (Infinite-time averages of single
records of data are somewhat loosely said to be ‘‘at hand’’;
the justification for this is the fact that finite-time averages
of single time records–the items that are truly ‘‘at hand’’–
can closely approximate infinite-time averages as explained
in Sec. V-B; this close relationship between an empirical
quantity and a corresponding theoretical quantity is to be
contrasted with the major distinction made in this paper
between the theoretical expected value (an ensemble prop-
erty) and both finite-time and infinite-time averages (sample-
path properties).)

A precursor of the spectral analysis of a single time series
is due to Einstein in his work reported in 1914 [29] (see [36]
for Gardner’s introduction to and technical commentary on
this work and the comments of Yaglom in [113]).

The FOT approach has its roots inWiener’s work on gener-
alized harmonic analysis (GHA) for single time series dating
back to 1930 [106] [107, Chap. 4], [108, pp. 37-45]. Wiener’s
GHA approach was followed by some of his students
[70, Chap. 2] and a few authors: Bochner, Hartman,
Jessen, Kershner, and Wintner [15], [50], [59], [64], [109],
[111], Haviland [52], Bass and his students [4]–[6], [7,
part 5, chap. 1-3], [8]–[10], [12], [54], Furstenberg [31],
Brennan [17], Hofstetter [55], Benedetto [11, Sec. 2.9],
Mäkilä [75], [76], and Nobel [91], [92]. Results have been
presented in spectral analysis [20], [53], [95], and for the
prediction of individual sequences [86]. Ziv developed a cod-
ing theory for individual sequences [118]. The definition of
jointly relatively measurable functions [72], and the issues of
quantile prediction [71], central limit theorem [24], and time
average estimation [25] were addressed by Dehay, Leśkow,
and Napolitano.

Roughly speaking, in the above-mentioned papers,
an underlying stationary model is assumed. In fact, the
FOT expectation operator is the infinite time average
and the probabilistic functions derived therefrom are time
invariant.

The extension of the FOT approach and GHA to peri-
odic phenomena was made by Gardner in the mid 1980s
[37, Part II], [43]. Periodic phenomena are generated by the
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interaction of periodic mechanisms and random phenomena.
The results are processes that are not periodic but whose
probabilistic functions vary periodically with time. These
signals have been referred to as cyclostationary or poly-
cyclostationary if, respectively, only one periodicity or a
finite number of incommensurate periodicities are present in
the probabilistic functions. If the probabilistic functions are
almost-periodic functions of time (which can generally be
represented by infinite numbers of incommensurate periods),
the signals have been named almost-cyclostationary [37,
Part II] and provide an alternative to almost-cyclostationary
stochastic processes first introduced in the late 1970s [33].

The extension of the FOT approach and GHA presented in
[37, Part II], [43] is of great importance in practice due to the
ubiquity of science data generated by periodic phenomena.
In communications, radar, sonar, and telemetry, periodicities
in the statistical functions arise from the modulation by ran-
dom data of sinusoidal carriers or periodic pulse trains [37,
Chap. 12], [90, Chap. 7]. In vibro-acoustic signals collected
from mechanical machinery, periodicities in the statistics are
due to rotations of gears, belts, and bearings [90, Sec. 10.6].
In econometrics, the weekly opening and closing of markets
and the seasonal supply and demand of products give rise to
periodicities in the statistical functions of prices and exchange
rates [90, Sec. 10.7]. In radio astronomy, periodicities are due
to the revolution and rotation of planets and pulsation of stars;
and in human biological signals, by the heart pulsation and
other biological rhythms. Periodicities are present in genome
sequences, diffusion processes of molecular dynamics, and
signals encountered in neuroscience (see [90, Chap. 10] and
references therein, and also the 2018 results of an inter-
net search producing 135,000 published research papers on
cyclostationarity across essentially all fields of science and
engineering [46]).

The extension of FOT and GHA to periodic phenomena
made in [37, Part II], [43] is not obvious since Gardner’s peri-
odically or almost-periodically time-variant distribution is
constructed from a single function of time by recognizing the
non-obvious fact that the operator that extracts all the finite-
strength additive sine-wave components of its argument is a
valid expectation operator.

The reader is informed that the very brief use in the paper
of a very few mathematical terms, like σ -field and Borel
subsets, can be ignored without loss of comprehension. And
the term Lebesgue measure can be thought of as nothingmore
than a formalization of standard measures of length, area, and
volume in Euclidean space. Finally, the differences between
the more familiar Riemann integral and the Lebesgue and
Riemann-Stieltjes integrals can be ignored, or standard def-
initions of these integrals can be looked up on the Web, but
adequate comprehension for the non-mathematician does not
require this.

The paper is organized as follows. In Section II, motivation
for introducing FOT probability is presented. In Section III,
the relative measure–the analog of the classic probability
measure–and its properties are reviewed. In Section IV, the

extension/generalization of the FOT-probability theory to
almost-periodic phenomena is treated. In Section V, new
insight into the mostly unstudied topic of cycloergodicity is
provided and the task of statistical function estimation in the
FOT approach is addressed. Examples of the dichotomy exist-
ing between the properties of a stochastic process and those
of its sample paths are presented in Section VI. Conclusions
are drawn in Section VII.

NOTATION
µ(·) Lebesgue measure
µR(·) relative measure (see (1))
〈·〉t infinite-time average (see (7))
1A(·) indicator of the set A
x(t) time series (small letters)
X (t) stochastic process (capital letters)
Fx(·) fraction-of-time distribution function (see (4a))
FX (·) (stochastic) probability distribution function
u(·) unit-step function
δ(·) Dirac delta
E{·} ensemble average
E{α}{·} almost-periodic component extraction operator

(see Sec. IV)

ABBREVIATIONS
ACS almost cyclostationary
AMS asymptotically-mean stationary
AP almost periodic
CLT central limit theorem
FOT fraction-of-time
GHA generalized harmonic analysis
PAM pulse-amplitude modulated
RM relatively measurable

II. MOTIVATION
The relative measure µR and the infinite-time average
are the fraction-of-time (FOT) counterparts of the proba-
bility measure P and the ensemble average, respectively
[62], [72].

Due to the differences between the relative measure, µR,
on the relatively measurable sets (which are a subset of the
σ -field of Borel subsets of the real line) and the probability
measure, P, on the σ -field of Borel subsets of a probability
sample space, mathematical properties holding for stochastic
processes do not necessarily have counterparts that hold for
functions of time representing sample paths of these stochas-
tic processes.

The key differences include:
• The class of the P-measurable sets is closed under union
and intersection; the class of the relatively measurable
sets is not.

• P is a σ -additive (additivity of countably infinite num-
bers of terms) measure; µR is not.

• Expectation is σ -linear (linearity of an operator applied
to a linear combination of a countably infinite number
of terms); infinite-time average is not.
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• Joint P-measurability of sample spaces is typically
assumed but cannot be verified; joint relative measur-
ability is a property of functions that can be verified.

• The assumed σ -additivity property of the probability
measure is typically unverifiable and restricts the admis-
sible sample spaces of time functions in ways that the
relative measure does not.

• The relative measure is applied to the single time func-
tion at hand, and functions of this time function, with no
restrictions other than its assumed existence. The fact
that the relative measure cannot be guaranteed to be
σ -additive is a reflection of the reality of the time func-
tion at hand, not a deficiency.

These differences clearly show that the mathematical prop-
erties of the relative measure render it less amenable to math-
ematical study than do those of the probability measure P.
This, however, does not constitute an obstacle to using the
FOT approach for signal analysis but, rather, as explained
in this paper, provides motivation for using this approach
instead of the classical stochastic-process approach based
on P. In fact, the σ -additivity of the probability measure
and σ -linearity of the expectation provide mathematically
desirable tractability. But, as explained below, they give rise
to a dichotomy between the stochastic process properties
and the properties of concrete individual sample paths of the
stochastic process–the entities of primary interest to practi-
tioners in many applications. In contrast, such dichotomies
do not arise in the FOT probability approach. In addition, the
adoption of the FOT approach overcomes all problems arising
from the need to check sufficient conditions for validating
assumptions for ergodicity–problems which occur frequently
in time-series analysis applications.

The proposal to adopt the FOT-probability alternative to
the Kolmogorov formulation of a stochastic process is by no
means as outrageous as somemay think. In fact, there is a long
history of discontent with Kolmogorov’s model, as discussed
at length in [74].

III. FRACTION-OF-TIME PROBABILITY VERSUS
CLASSICAL PROBABILITY
A. RELATIVE MEASURE
Let us consider the set A ∈ BR, where BR is the σ -field
of the Borel subsets of the real numbers and let µ be the
Lebesgue measure on the real line R. The relative measure
of A is defined by [62]

µR(A) , lim
T→∞

1
T
µ(A ∩ [t0 − T/2, t0 + T/2]) (1)

provided that the limit exists. In such a case, the limit does not
depend on t0 and the set A is said to be relatively measurable
(RM).

For example, the set

A ,
⋃
n∈Z

(n, n+ 1/3) (2)

whereZ is the set of positive and negative integers, is RM and
µR(A) = 1/3. The set

A ,
⋃
n∈N

(
−102n,−102n−1

)
∪

(
102n−1, 102n

)
(3)

is not RM since 1
T µ(A ∩ [−T/2,T/2]) oscillates between

0 and 1 in a continuous piecewise linear manner as T →∞.
The relative measure is the Lebesgue measure normalized

so that the relative measure of the real line is equal to 1, that
is, µR(R) = 1. Note that such a normalization is obtained by
a limit operation (as T →∞) since the Lebesgue measure of
the real line is infinite. Therefore, only Lebesgue-measurable
sets with infinite Lebesgue measure can have a finite relative
measure. For a set of points on the real line to have non-zero
relative measure, it must contain subintervals of non-zero
Lebesgue measure that cannot be contained within any finite
interval. As defined above, the relative measure of such a set
is the limit of the ratio of 1) the total Lebesgue measure of
those points in the set contained in a contiguous window of
width T to 2) the window width, as T approaches infinity.
In other words, it is the fraction of the real line that the set
occupies.

The normalization µR(R) = 1 makes the relative measure
of subsets of the real line a counterpart of the probability
measure P defined on sets belonging to the σ -field F of the
sample space �. For the probability measure, however, the
normalizationP(�) = 1 is obtainedwithout a limit operation.
That is, the sample space, before the measure normalization,
is assumed to have finite measure. Thus, the normalized
probability measure of a set is obtained by the ratio of the
original un-normalized measure and the assumed-to-be-finite
measure of the whole sample space.

Such a subtle property of the sample space of the classical
probability measure has been surfaced by only a few authors
(see e.g., Halmos [48] and [49, p. 31]) even if the criticality
of considering an infinite sample space (although with finite
measure) was already surfaced by Kolmogorov in his funda-
mental work on the theory of probability where he addressed
the necessity to introduce Axiom VI (Axiom of Continuity)
which cannot be derived fromAxioms I–V. Citing [66, p. 15]:
‘‘For infinite fields, on the other hand, the Axiom of Continu-
ity, VI, [is] proved to be independent of Axioms I–V. Since the
new axiom is essential for infinite fields of probability only,
it is almost impossible to elucidate its empirical meaning,
as has been done, for example, in the case of Axioms I–V
in § 2 of the first chapter. For, in describing any observable
random process we can obtain only finite fields of probability.
Infinite fields of probability occur only as idealized models
of real random processes. We limit ourselves, arbitrarily,
to only those models that satisfy Axiom VI. This limitation
has been found expedient in researches of the most different
sort.’’

The normalization of the relative measure obtained by a
limit operation results in µR having mathematical properties
that render it less amenable to mathematical analysis than do
those of the probabilitymeasureP, as explained subsequently.
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The class C of the RM sets is not closed under union and
intersection. That is, there exist A,B ∈ C such that A∩B 6∈ C
[72, Fact 2.1] and there exist A,B ∈ C such that A ∪ B 6∈ C
[72, Fact 2.2]. As an immediate consequence of [72, Fact 2.1],
we have that not all Lebesgue-measurable sets (with infinite
measure) are relatively measurable. In addition, non-RM sets
are not so rare or exotic (see (3)) as non-Lebesgue-measurable
sets [68, Par. 27, problem 7].

B. ABSENCE OF σ -ADDITIVITY OF THE RELATIVE
MEASURE
Since the Lebesgue measure is additive, the relative measure
is also additive. That is, if A,B ∈ C, and A ∩ B = ∅,
then µR(A ∪ B) = µR(A) + µR(B) [72, Fact 2.4]. However,
the relative measure is not σ -additive. In fact, following the
Kac example [60, p. 46], if Ai = (i, i + 1), i ∈ Z, then
µR
(⋃

i∈Z Ai
)
= µR(R) = 1 but

∑
i∈Z µR(Ai) = 0 since

µR(Ai) = 0.
The absence of the σ -additivity property makes µR less

attractive from a mathematical point of view than the prob-
ability measure P whose σ -additivity is a consequence of
Axiom VI [66, p. 15]. The criticality of such an Axiom (and
its consequences) has already been discussed in previous
paragraphs. The importance of σ -additivity for ergodicity,
and in particular in the Poincaré’s proof of the Recurrence
Theorem, is surfaced in [69, p. 17], [82, p. 80].

From the above considerations, it is clear that a proba-
bilistic model built for a persistent single function of time
starting from the relative measure will have mathematical
properties less amenable to mathematical analysis than will
the classical probabilistic model of a stochastic process which
is built starting from the probability measure P. As explained
below, this fact, which could initially appear to be a weakness
of µR in comparison to P, constitutes, instead, a motivation
to adopt the FOT approach for signal analysis instead of the
classical stochastic-process approach.

C. RELATIVELY MEASURABLE FUNCTIONS
Let x(t) be a real-valued Lebesgue measurable function. The
function x(t) is said to be relatively measurable if the set {t ∈
R : x(t) 6 ξ} is RM for every ξ ∈ R−40, where40 is at most
a countable set of points. Each RM function x(t) generates a
function

Fx(ξ ) , µR({t ∈ R : x(t) 6 ξ}) (4a)

= lim
T→∞

1
T
µ({t ∈ [t0 − T/2, t0 + T/2] :

x(t) 6 ξ}) (4b)

= lim
T→∞

1
T

∫ t0+T/2

t0−T/2
u(ξ − x(t)) dt (4c)

at all points ξ where the limit exists. In (4c), u(ξ ) denotes the
unit step function, that is, u(ξ ) = 1 for ξ > 0 and u(ξ ) = 0 for
ξ < 0.

The function Fx(ξ ) is non decreasing and with values in
[0, 1]. Thus, it has all the properties of a valid distribu-

FIGURE 1. The measure of the set {t ∈ [t0 − T /2, t0 + T /2] : x(t) 6 ξ}

(blue thick line) normalized to T is the fraction of time that the function
x(t) is below the threshold ξ when t ranges in [t0 − T /2, t0 + T /2].

tion function, except for the right-continuity property (at the
discontinuity points). It represents the fraction-of-time (FOT)
that the function x(t) is below the threshold ξ (Fig. 1) [34],
[37], [55]. For this reason, Fx(ξ ) is referred to as the FOT
distribution of the function x(t).
Since the relative measure of finite sets is zero, every

finite-energy or transient function x(t) has the trivial distri-
bution function Fx(ξ ) = u(ξ ). Only finite-average-power or
persistent functions can have a non-trivial FOT distribution.
The FOT distribution of almost-periodic functions is studied
in [64], [109], [111].

Sets that are non Lebesgue measurable are difficult to be
visualized and are very rarely, if ever, encountered in applica-
tions. In contrast, non-RM sets are not rare or exotic (see (3))
and non-RM functions also can easily be constructed. In fact,
let 1A(t) be the indicator of the set A, that, is 1A(t) = 1 if
t ∈ A and 1A(t) = 0 if t 6∈ A. The function x(t) = 1A(t) is
RM if and only if A is a RM set and it follows that

Fx(ξ ) =


0 ξ < 0
1− µR(A) 0 6 ξ < 1
1 ξ > 1

(5)

This fact has been exploited in [73] to design modula-
tion formats for which statistical functions cannot be mea-
sured by time averages, for the purpose of obtaining secure
communications.

Let x(t) be a relatively measurable, not necessarily
bounded function and let g(·) be continuous, bounded, and
such that for any ` ∈ R, the equation g(ξ ) = ` admits at
most a finite number of solutions for ξ belonging to any finite
interval. The following Fundamental Theorem of Expectation
[72, Theorem 3.2] holds

lim
T→∞

1
T

∫ t0+T/2

t0−T/2
g (x(t)) dt =

∫
R
g(ξ ) dFx(ξ ) (6)
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where the first integral is in the Lebesgue sense and does not
depend on t0 and the second one is in the Riemann-Stieltjes
sense (see [72, pp. 3816-3817] for details).

From (6) it follows that the infinite-time average is the
expectation operator for the FOT distribution Fx(ξ ) and for
every bounded x(t) we have

〈x(t)〉t ≡ lim
T→∞

1
T

∫ t0+T/2

t0−T/2
x(t) dt =

∫
R
ξ dFx(ξ ) (7)

The analogy of the FOT approach with the classical
stochastic-process approach [34, Sec. 8.6], [40], is evident.
On the nexus between the two approaches see also [31]
and [81]. For a 1st-order strict-sense stationary process X (t)
with distribution FX (ξ ) , P[X (t) 6 ξ ], the stochastic
counterpart of (4c) is

FX (ξ ) = E{u(ξ − X (t))} (8)

where E{·} is the ensemble average and the stochastic coun-
terparts of (6) and (7) are

E{g(X (t))} =
∫
R
g(ξ ) dFX (ξ ) (9)

and

E{X (t)} =
∫
R
ξ dFX (ξ ) (10)

respectively.
A necessary and sufficient condition for the relative mea-

surability of a function is not known. However, if x(t) is a
bounded function, the existence of the time average

lim
T→∞

1
T

∫ t0+T/2

t0−T/2
xp(t) dt

for every positive integer p is a necessary condition for the
relative measurability of x(t). In addition, accounting for the
Fundamental Theorem of Expectation, if x(t) is continuous
and bounded and the left-hand side of

lim
T→∞

1
T

∫ t0+T/2

t0−T/2
xp(t) dt =

∫
R
ξp dFx(ξ ) (11)

exists for every positive integer p, then x(t) is relatively
measurable, and equality (11) holds [110].

Finally, note that the absence of right-continuity of the FOT
distribution is not important in applications where integrals
in dFx(ξ ) are of interest (see (6) and (7)). In fact, in the
discontinuity points, only the amplitude Fx(ξ+) − Fx(ξ−)
of the jump and not the value of Fx(ξ ) influences the value of
the integral. In the stochastic approach the right-continuity
of the distribution is a consequence of the σ -additivity of the
probability measure P.

D. JOINTLY RELATIVELY MEASURABLE FUNCTIONS
By building counterexamples, it can easily be shown that
the class of the RM functions is not closed under addition
and multiplication [72, Theorem 3.5]. Thus, the class of the
RM functions is not a function space. Such a results is in
accordancewith the fact that the class of finite-average-power
functions is not a linear vector space [4], [76], and [79].

Note that, in contrast, the linear combination of two
stochastic processes is still a stochastic process, provided that
the two sample spaces are assumed to be jointly measur-
able. This, however, is not an innocuous assumption. Con-
sequently, even if there exists an analogy of results between
the FOT and stochastic approaches (compare (7) and (10)),
the stochastic process model for a single realization at hand
should be used carefully, since properties of the stochastic
process do not necessarily correspond to analogous proper-
ties of the function of time at hand. Such a deep difference
between properties of stochastic processes and properties of
functions constitutes a strong motivation for adopting the
FOT approach for signal analysis. In fact, the experimenter is
interested in actual properties of the time series at hand rather
than better properties of an abstract model.

The uniformly almost-periodic functions constitute a lin-
ear vector space [22, Chap. 1]. However, such a class of
function, albeit broad and useful for approximating every
function on a finite observation interval, does not provide
a suitable model for most signals encountered in practice.
An example is the class of communications signals. Several
attempts have been made to consider sub-classes of the class
of the finite-average-power functions in order to obtain linear
vector spaces [5], [76], [103], [115]–[117]. None of these
approaches involve FOT distributions or allow one to con-
struct a (non-stochastic) probabilistic model.

Alternatively, in the FOT approach, the joint characteri-
zation of two (or more) functions is made by introducing
the concept of joint relative measurability of functions [72].
In particular, it can be shown that the sum and product of
jointly RM functions is in turn a RM function. Thus, for such
a function, an FOT probabilistic model can be constructed.
The joint relative measurability is an analytical property of
functions and is therefore easier to verify than is the anal-
ogous property in the stochastic process framework, that is,
the joint measurability of sample spaces. The latter property,
in fact, cannot easily be verified in practice since, generally,
the sample spaces are not specified.

Two Lebesgue measurable functions x(t) and y(t) are said
to be jointly RM [72, Definition 4.1] if the limit

Fxy(ξ1, ξ2)

, µR({t ∈ R : x(t) 6 ξ1}

∩{t ∈ R : y(t) 6 ξ2}) (12a)

= lim
T→∞

1
T
µ({t ∈ [t0 − T/2, t0 + T/2] :

x(t) 6 ξ1, y(t) 6 ξ2}) (12b)
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= lim
T→∞

1
T

∫ t0+T/2

t0−T/2
u(ξ1 − x(t)) u(ξ2 − y(t)) dt (12c)

exists for all (ξ1, ξ2) ∈ R2
− 40, where 40 is at most a

countable set of straight lines in R2. The function Fxy has all
the properties of a bivariate joint distribution function with
the exception of right continuity at the discontinuity points.
Such a definition extends naturally to n > 2 functions.
Let x(t) and y(t) be jointly RM functions. Then each func-

tion is RM [72, Theorem 4.1]. In addition, the sum x(t)+y(t)
and the product x(t) y(t) are RM, provided that at least one of
the functions is bounded [72, Theorem 4.2].

An extension to the multivariate case of the fundamental
theorem of expectation (see (6)) can be derived [72, Theorem
4.5]. In particular, if x(t) and y(t) are bounded functions and
x(t+τ ) and y(t) are jointly RM for every τ , then the temporal
cross-correlation function [106] of x and y is given by

Rxy(τ ) , lim
T→∞

1
T

∫ t0+T/2

t0−T/2
x(t + τ ) y(t) dt (13a)

=

∫
R2
ξ1 ξ2 dFxy(ξ1, ξ2; τ ) (13b)

where

Fxy(ξ1, ξ2; τ )

, µR ({t ∈ R : x(t + τ ) 6 ξ1, y(t) 6 ξ2}) . (14)

E. ABSENCE OF σ -LINEARITY OF THE INFINITE-TIME
AVERAGE
As a consequence of the absence of σ -additivity of the relative
measureµR, although the corresponding expectation operator
is linear, it is not σ -linear.
The infinite-time average of the linear combination of a

finite number of jointly RM (not necessarily bounded) func-
tions of time is equal to the linear combination of the time
averages [24, Theorem 2.7]. However, this result cannot be
extended to the case of a countable infinity of functions of
time.

For example, accounting for the identity

cos2(t) =
+∞∑

k=−∞

cos2(t)1[k,k+1)(t) (15)

we have

1
2
=

〈
cos2(t)

〉
t
=

〈
+∞∑

k=−∞

cos2(t)1[k,k+1)(t)

〉
t

6=

+∞∑
k=−∞

〈
cos2(t)1[k,k+1)(t)

〉
t
= 0 (16)

since
〈
cos2(t)1[k,k+1)(t)

〉
t = 0.

This result is different from the corresponding one in
the stochastic approach where the expectation operator is
σ -linear, provided that the underlying infinite series of ran-
dom variables is absolutely convergent [66].

As for the absence of σ -additivity of the relative mea-
sure µR, the absence of σ -linearity of the corresponding

FIGURE 2. Along ω ∈ �, the probability measure P(·) is σ -additive and the
expectation operator, i.e., the ensemble average E{·}, is σ -linear. Along
t ∈ R, the relative measure µR (·) is not σ -additive and the expectation
operator, i.e., the infinite-time average 〈·〉t , is not σ -linear.

expectation operator, the infinite-time average, could ini-
tially appear to be a weakness of µR in comparison with
P; however, it actually constitutes, a motivation to adopt the
FOT approach for signal analysis instead of the classical
stochastic-process approach. In fact, the realizations of a
stochastic process do not necessarily exhibit properties anal-
ogous to those of the stochastic process (Fig. 2).

The absence of σ -linearity of the expectation operator in
the FOT approach is illustrated by a suitable example also
with reference to the most general case, the almost-periodic
component extraction operator, in Section VI-A.

In Appendix I, with reference to the signal considered in
Section VI-A, it is shown that the absence of σ -linearity does
not necessarily prevent one from performing calculations of
infinite time averages; it simply prevents one from using the
short cut of interchanging infinite time average and infinite
summation operations.

F. CONDITIONAL RELATIVE MEASURABILITY AND
INDEPENDENCE
Let A and B be Lebesgue measurable sets and {Bn} be an arbi-
trary increasing sequence of Lebesgue measurable subsets of
B with 0 < limn→∞ µ(Bn)/n < ∞, ∪n∈NBn = B. The
conditional relative measure of the set A given B is defined
by [72, Def. 5.1]

µR(A|B) , lim
n→∞

µ(A ∩ Bn)
µ(Bn)

(17)

provided that the limit exists. In such a case, it is inde-
pendent of the particular choice of the set sequence {Bn}
[72, Theorem 5.1].

Let the sets A and B be such that µR(A|B) exists and A is
RM. The sets A and B are said to be independent if and only
if µR(A|B) = µR(A) [72, Def. 5.3].

Consider the definitions A(ξ1) , {t ∈ R : x(t) 6 ξ1}, with
x(t) RM, andB(ξ2) , {t ∈ R : y(t) 6 ξ2}, with y(t) Lebesgue
measurable. Assume that ∀(ξ1, ξ2) ∈ R2

− 40, where 40 is
at most a countable set of lines, µR(A(ξ1)|B(ξ2)) exists. The
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functions x(t) and y(t) are defined to be independent if and
only if µR(A(ξ1)|B(ξ2)) = µR(A(ξ1)) ∀(ξ1, ξ2) ∈ R2

−40.
Let x(t) and y(t) be jointly RM. In [72, Theorem 5.2] it

is proved that the functions x(t) and y(t) are independent if
and only if, ∀(ξ1, ξ2) ∈ R2 except at most a countable set of
straight lines, we have the equality

Fxy(ξ1, ξ2) = Fx(ξ1) Fy(ξ2). (18)

As an example, two sine waves with incommensurate peri-
ods are independent [60], [62].

If x(t) and y(t) are independent, then, for every ξ1 and ξ2,

µR(A(ξ1)|B(ξ2))

, lim
n→∞

µ(A(ξ1) ∩ Bn(ξ2))
µ(Bn(ξ2))

≡ lim
n→∞

µ(A(ξ1) ∩ [−n/2, n/2])
n

, µR(A(ξ1)). (19)

That is, the normalization of µ(A(ξ1)) to obtain a relative
measure can be made by considering either subsets Bn(ξ2)
of the set B(ξ2) built from y(t) or subsets Bn = [−n/2, n/2]
(not depending on y(t)). Moreover, the subsets Bn(ξ2), can
be arbitrary [72, Theorem 5.1], provided that they satisfy
the conditions preceding (17). In other words, the function
y(t) from which the normalizing sets Bn(ξ2) are constructed,
has no influence on the relative measure µR(A(ξ1)|B(ξ2)) and
such a relative measure equals µR(A(ξ1)). This result is in
agreement with the intuitive concept of independence of two
functions or signals in the sense that they have no link with
each other.

The intuitive interpretation of the definition of indepen-
dence in the FOT probability framework has no counterpart
in the stochastic process framework where independence of
processes is defined as the factorization of the joint distri-
bution function into the product of the marginal ones [13],
[27], [66]. In contrast, in the FOT probability framework
such a factorization is proved to be true as a consequence
of the intuitive definition in terms of conditional relative
measurability [72, Theorem 5.2].

Note that, in classical probability theory, several authors
define independence of events A and B by the condition
P(A|B) = P(A), which is equivalent to the condition
P(A,B) = P(A) P(B) due to the definition P(A|B) ,
P(A,B)/P(B) of conditional probability. However, such a
definition of independence, unlike the definition in the FOT
approach, does not involve the sequence of subsets Bn arbi-
trarily constructed starting from B (provided that they satisfy
the conditions preceding (17)). Hence, the definition of inde-
pendence in the classical probability theory does not lead to
an intuitive interpretation of independence as does that in the
FOT approach.

The concept of independent functions has been considered
in [60] and [62], [100], and [101], where equation (18) is
taken to be the definition of independence and, consequently,
no link with an intuitive concept of independence is estab-
lished. A similar point of view is adopted in [77], [78]. In [51],

a condition equivalent to the joint relative measurability is
considered before defining independence as the factorization
of the joint distribution into the product of the marginals.

G. CENTRAL LIMIT THEOREM
If a sequence of independent zero-mean time series
{ϕk (t)}k∈N satisfies some mild regularity assumptions, then
the FOT distributions of the functions

xn(t) ,
1
√
n

n∑
k=1

ϕk (t) (20)

in this sequence approach a zero-mean normal distribution as
n→∞ [24, Theorem 3.5]. That is, we have the FOT Central
Limit Theorem (CLT)

lim
n→∞

µR ({t ∈ R : a < xn(t) 6 b})

=
1

√
2πσ

∫ b

a
e−

ξ2

2σ2 dξ (21)

with σ 2 equal to the average-over-k value of the FOT vari-
ances of the functions ϕk (t).

The proof of this FOT CLT is based on the Taylor series
expansion of the characteristic functions of xn(t) similarly
to the proof of the CLT in the classical stochastic approach.
The proof in the FOT approach, however, is more challenging
due to the presence of the limit operation in the definition
of the relative measure µR, which limit is not present in the
definition of probability measure P.
The exploitation of the FOT CLT theorem allows one

to overcome some difficulties that arise in the classical
stochastic-process approach in the derivation of a widely
adoptedmodel for a communication channel [24, SectionVI].
In the stochastic approach, a multipath Doppler channel is
shown to introduce normally distributed gains under mild
assumptions on the input signal and the channel charac-
teristics [32, Chap. 9.2-9.5, pp. 334-359], [96, Chap. 14-1,
pp. 759-762], The justification, however, is only heuristic.
In fact, in all the justifications, the input/output relationship of
the channel is described in terms of deterministic signals and
systems. Then, a stochastic model, whose statistical behav-
ior should reproduce the time behavior of the deterministic
model, is heuristically constructed.

In contrast, in the FOT approach in [24, Section VI], it
is shown that the multipath Doppler channel introduces a
time-varying gain which is RMwith normal FOT distribution
when the length of the observation interval approaches infin-
ity and the number of paths approaches infinity. The order
of these two limit operations cannot be interchanged. More-
over, even for a moderate number of paths, the distribution
is almost normal, provided that the observation interval is
sufficiently large.

H. WOLD’s ISOMORPHISM
In [112], Wold constructs a discrete-time stochastic process
whose sample paths are time-shifted versions of a single
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time series, and he thereby establishes an isomorphismwhose
continuous-time counterpart is

X (t, s) = x(t − s) t ∈ R, s ∈ R. (22)

In such a case� = R. Thus, in order to have P(�) = 1 we
must have P(·) ≡ µR(·). This is an example of probabil-
ity space for which measure normalization involves a limit
operation. This fact, however, is not in agreement with the
fundamental assumption that the probability space has finite
measure (even before normalization), which assumption is
made in the classical construction of a probability space
[48, Sec. 5]. Therefore, Wold’s isomorphism (for discrete
time or extended to continuous time) is not compatible with
the classical definition of a stochastic process.

Kolmogorov, in [66, p. 15], says that Axiom VI is nec-
essary when the field is infinite. He does not point out the
difference, at least in [66], between the case of infinite
measure before normalization (e.g., the sample space is the
real line) and the case of finite measure before normalization
(e.g., the sample space is any finite interval). If the sample
space has infinite measure before normalization, then the
normalization P(�) = 1 is obtained by a limit operation
as for the relative measure. In such a case, the probabil-
ity measure is not σ -additive. Adding Axiom VI adds the
σ -additivity property, and this is generally allowable when
the sample space is not specified and also allowable when it
is specified and does not contradict this axiom. But, of course,
AxiomVI is not allowable when the sample space is specified
and contradicts the axiom. For example, the sample space
specified in Wold’s isomorphism requires that the probability
measure be normalized through a limiting process, and this
normalization does not allow the measure to be σ -additive.

Wold’s isomorphism is extended in [37], [43] to cyclo-
stationary time series. In such a case, a stochastic process
is constructed such that its sample paths are time-shifted
versions of a single time series with time shifts that are integer
multiples of the period of cyclostationarity T0. That is,

X (t, s) = x(t − s) t ∈ R, s = nT0, n ∈ Z. (23)

In [56], the details of Wold’s isomorphism between cyclosta-
tionary stochastic sequences and cyclostationary numerical
sequences are presented. It is shown how Hilbert-space rep-
resentations of cyclostationary stochastic sequences are inter-
preted in the case of numerical cyclostationary sequences.

IV. ALMOST-PERIODIC PHENOMENA
For every time series x(t) for which the sinusoidally weighted
time average

xη ,
〈
x(t) e−j2πηt

〉
t

(24)

exists ∀η ∈ R, there exists the decomposition

x(t) =
∑
η∈E1

xη ej2πηt + xr (t) (25)

where E1 is the countable set of frequencies η such that
xη 6= 0 and the residual term xr (t) does not contain any
finite-strength additive sine-wave component〈

xr (t) e−j2πηt
〉
t
= 0 ∀η ∈ R. (26)

The periodic component with period T0 contained in the
time series x(t) can be extracted by the synchronized averag-
ing theorem [34], [37]

xT0 (t) = lim
N→∞

1
2N + 1

N∑
n=−N

x(t−nT0) (27a)

=

+∞∑
k=−∞

xk/T0 e
j2π (k/T0)t (27b)

provided that the Fourier series is absolutely convergent. The
periodic component extraction operator is generalized by the
almost-periodic (AP) component extraction operator E{α}{·},
that is, the operator that extracts all the finite-strength additive
sine-wave components of the function in its argument. If the
AP component is poly-periodic with incommensurate periods
T1, . . . ,TP, then

E{α}{x(t)} = 〈x(t)〉t +
P∑
p=1

[
xTp (t)− 〈x(t)〉t

]
(28)

where each periodic component xTp (t) is given by (27b) with
T0 replaced by Tp.

From decomposition (25) we have

E{α}{x(t)} = E{α}

∑
η∈E1

xη ej2πηt + xr (t)

 (29a)

=

∑
η∈E1

xη ej2πηt . (29b)

In [43] it is shown that, under mild assumptions on the real
valued time series x(t), for every fixed t the function of ξ

F {α}x(t)(ξ ) , E{α} {u(ξ − x(t))} (30)

is a valid cumulative distribution function except for the
right-continuity property (at the discontinuity points) (Fig. 3).
For a further proof see also [90, Chap. 2].

The cumulative distribution function is almost-periodic by
construction. It can be expressed by its Fourier series

F {α}x(t)(ξ ) =
∑
γ∈01

Fγx (ξ ) e
j2πγ t (31)

where 01 is a countable set and the complex-valued Fourier
coefficients are (Fig. 4)

Fγx (ξ ) ,
〈
u(ξ − x(t)) e−j2πγ t

〉
t

(32)

For γ = 0 the coefficient F0
x (ξ ) is coincident with the FOT

distribution (4c). In addition, E1 ⊆ 01 and

xη =
∫
R
ξ dFηx (ξ ). (33)
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FIGURE 3. Periodically time-variant cumulative distribution function for a
double-sideband amplitude-modulated time series.

FIGURE 4. Magnitude of the Fourier coefficients of the periodically
time-variant cumulative distribution function for a double-sideband
amplitude-modulated time series.

Moreover, for a well-behaved function g(·), the following
fundamental theorem of expectation can be proved [43]:

E{α} {g(x(t))} =
∫
R
g(ξ ) dF {α}x(t)(ξ ) (34)

Equation (34) is the FOT counterpart of the fundamental
theorem of expectation in the stochastic approach (9) with
FX (ξ ) therein replaced by a time-variant FX (ξ ; t).

From (30) and (34) it follows that E{α}{·} is the expecta-
tion operator corresponding to the almost-periodically time-
variant distribution F {α}x(t)(ξ ). In addition, the almost-periodic
probability density function (pdf) of a time series x(t) can be
formally written as

f {α}x(t) (ξ ) ,
d
dξ
F {α}x(t)(ξ ) (35a)

=
d
dξ

E{α} {u(ξ − x(t))} (35b)

= E{α} {δ(ξ − x(t))} (35c)

FIGURE 5. Magnitude of the Fourier coefficients of the periodically
time-variant probability density function for a double-sideband
amplitude-modulated time series.

where δ(·) denotes Dirac’s delta. It can be expressed by its
Fourier series

f {α}x(t) (ξ ) =
∑
γ∈01

f γx (ξ ) ej2πγ t (36)

whose convergence is in the sense of generalized func-
tions [114] and the complex-valued Fourier coefficients are
given by (Fig. 5)

f γx (ξ ) =
d
dξ
Fγx (ξ ) =

〈
δ(ξ − x(t)) e−j2πγ t

〉
t
. (37)

The formal expressions (35c)–(37) allow to prove (34) by
formal manipulation of Dirac’s delta [43], [90, Sec. 2.3].

In [37, Part II], [43], [44], an extension of the FOT
approach from stationary time series to time series that exhibit
cyclostationarity is constructed; this class of time series is
comprised of all those that are cyclostationary, or polycy-
clostationary, or almost cyclostationary. Such time series,
by definition, have time-variant FOT distribution functions
that are periodic, polyperiodic, or almost periodic.

The result that (30) is a valid distribution function is
not obvious and opens a new and wider perspective on the
FOT approach. Specifically, periodically, poly-periodically,
or almost-periodically time-variant probabilistic functions
can be constructed starting from the unique observed time
series at the hand of the experimenter. This completely cir-
cumvents the typically unjustifiable assumption that there
exists a stochastic processmodel that is stationary and ergodic
and for which the time series at hand is a sample path.

Furthermore, periodic phenomena–those obtained from
combinations of periodic or almost-periodic mechanisms and
random phenomena–can now be modeled without incurring
the dichotomy between abstract properties of stochas-
tic processes and concrete properties of individual sam-
ple paths [41]. Examples of this dichotomy are given in
Section VI.
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For an AP function xap(t), we have

E{α}{xap(t)} = xap(t). (38)

That is, the AP component extraction operator, applied to
an AP function, produces the AP function itself. In addition,
according to (35c), for an AP function, the time-varying prob-
ability density function above the (ξ, t) plane is an impulse
fence

f {α}xap(t)
(ξ ) = E{α}

{
δ(ξ − xap(t))

}
= δ(ξ − xap(t)). (39)

Since the AP component extraction operator is the expecta-
tion operator in the AP FOT probability framework, it follows
from (38) that the AP functions are the deterministic signals
in the AP FOT probability framework. All other signals are
the random signals. Note that the term ‘‘random’’ here is not
intended to be synonymous with ‘‘stochastic’’. In fact, the
adjective stochastic is adopted, as usual, when an ensemble
of realizations or sample paths exists, whereas the adjective
random is used in reference to a single function of time.
In other words, decomposition (25) can be interpreted as

the decomposition of a generic random signal x(t) into its
deterministic (that is, AP) component xap(t) and a residual
component xr(t)

x(t) = xap(t)+ xr(t). (40)

A detailed decomposition for a class of functions that suitably
models communication signals is presented in the Appendix
of [9].

Decomposition (40) is the FOT counterpart of the classical
decomposition of a stochastic process into the sum of its mean
value and a zero-mean (centered) stochastic process.

Starting from decomposition (40) an analogous decompo-
sition can be determined for the impulse-response function of
a linear time-variant system [58].

It is worth illustrating with a concrete example that a
single time series can admit more than one FOT probability
model, depending onwhich cycle frequencies, if any, are to be
recognized. Here we consider a signal that admits two distinct
FOT probabilistic descriptions. The time series

c(t) = cos(2π f0t + φ0) (41)

is random in the stationary FOT framework and has FOT
density (Fig. 6)

fc(ξ ) =
1
π

1√
1− ξ2

rect(ξ/2) (42)

whereas it is deterministic in the almost-periodic FOT frame-
work and, according to (39), has FOT density (Fig. 7)

f {α}c(t) (ξ ) = δ(ξ − cos(2π f0t + φ0)). (43)

The important consequences of making a specific choice
among the three options of stationary, cyclostationary, and
almost-cyclostationary models for a time series is thoroughly
discussed in [37, Chap. 15], [41, Chap. 1], and [88, Sec. 6.4].

FIGURE 6. Stationary FOT pdf of the time series c(t) = cos(2πf0t + φ0).

FIGURE 7. Periodically time-variant FOT pdf of the time series
c(t) = cos(2πf0t + φ0) with φ0 = 0.

In Section VI-B, a presented example shows how a
proper choice of the FOT model enables one to avoid
stochastic-process discrepancies existing between properties
of a stochastic process model and those of its sample paths.

By adopting the almost-periodic component extraction
operator as an expectation operator, a valid second-order
almost-periodically time-variant joint distribution

F {α}x(t+τ ) x(t)(ξ1, ξ2) , E{α} {u(ξ1−x(t+τ )) u(ξ2−x(t))} (44)

and a valid almost-periodically time-variant autocorrelation
function

E{α} {x(t + τ ) x(t)} (45a)

,
∫
R2
ξ1 ξ2 dF

{α}
x(t+τ ) x(t)(ξ1, ξ2) (45b)

=

∑
α∈A

Rαx (τ ) e
j2παt (45c)

can be defined [37], [43], where A is a countable set
of (possibly incommensurate) cycle frequencies α and
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the Fourier coefficients

Rαx (τ ) , lim
T→∞

1
T

∫ t0+T/2

t0−T/2
x(t + τ ) x(t) e−j2παt dt (46)

are the cyclic autocorrelation functions.
The finite-time Fourier transform

X 1
1f
(t, f ) ,

∫ t+1/21f

t−1/21f
x(s) e−j2π fs ds (47)

at a particular frequency value f is the spectral component of
the time series x(t) at frequency f with approximate finite-
bandwidth 1f . Thus, the cyclic spectrum

Sαx (f ) , lim
1f→0

lim
T→∞

1
T

∫ t0+T/2

t0−T/2
1f X 1

1f
(t, f )

·X∗1
1f
(t, f − α) dt (48)

represents the temporal correlation of two spectral compo-
nents separated by the quantity α when the bandwidth 1f
becomes infinitesimal. For an almost-cyclostationary signal,
Sαx (f ) is non zero for only α ∈ A. That is, only spectral
components that are separated by quantities equal to one of
the cycle frequencies are correlated. In addition, the following
Gardner relation [90, pp. 10, 20, 56, 57, 139], originally
introduced in [35], [37], holds.

Sαx (f ) =
∫
R
Rαx (τ ) e

−j2π f τ dτ. (49)

For α = 0 it reduces to theWiener relation between the power
spectrum and the time-average autocorrelation function. For
this reason, Gardner originally referred to (49) as Cyclic
Wiener Relation.

The extension of Wiener’s GHA to time series that exhibit
cyclostationarity can also be achieved by defining cyclosta-
tionarity as the property of time series that enables the regen-
eration of additive finite-strength sine wave components from
hidden periodicities in the time series by using homogeneous
quadratic time-invariant transformations [35], [37], [39].

Further approaches for signal analysis based on single
functions of time are possible by considering as deterministic
signals the polynomial phase signals [31], [85].

V. STATISTICAL FUNCTION ESTIMATION
A. CYCLOERGODICITY
Cycloergodic theory, which extends and generalizes existing
ergodic theory, is developed in [16], where it is shown that
sinusoidal and periodic components of time-varying proba-
bilistic parameters can be consistently estimated from time
averages on one sample path. It is also established that a
strict-sense theory of cycloergodicity inclusive enough to
cover all applications of practical interest had, at that time,
not yet be shown to exist. Moreover, it is shown that such
a theory cannot presuppose the existence of a dominating
stationary measure, as does the theory presented therein.
Nevertheless, it would appear that it can be argued that
because a continuous-time cyclostationary process can be

characterized as a discrete-time vector-valued (or function-
valued) stationary process, Birkhoff’s Ergodic Theorem [14]
for scalar-valued discrete-time stationary processes, if gen-
eralized to vector-valued processes, leads to a completely
analogous cycloergodic theorem for continuous-time cyclo-
stationary processes. The vector (or function), at any discrete
time equal to an integer multiple of the period of cyclosta-
tionarity, consists of the infinite set of process values over the
period between that discrete time and the previous discrete
time.

Furthermore, it is shown in [47, Chap. 7, and refs. therein]
that Birkhoff’s ergodic theorem has been extended from sta-
tionary to asymptotically-mean stationary (AMS) discrete-
time processes. This extension guarantees the existence of
consistent estimators for the discrete-time averages of time-
varying probabilistic parameters, such as probability density
functions. Because almost-cyclostationary (ACS) discrete-
time processes are AMS, this extended theorem applies to
discrete-time ACS processes (and the same might well be
true for continuous-time ACS processes after discrete-time
sampling) but it does not apply directly to estimation of the
sinusoidal and periodic components of almost-periodically
time-varying probabilistic parameters.

Nevertheless, [47, Chap. 7] does discuss ergodicity of
N -stationary discrete-time processes, which are
N -dimensional vector-valued representations for discrete-
time cyclostationary processes with period N . Furthermore,
the discrete-time infinite-dimensional vector-valued process
described above that represents a continuous-time scalar-
valued process is AMS if that continuous-time process is
ACS (which includes, as special cases, poly-cyclostationary,
cyclostationary, and stationary processes).

Consequently, for any selected period of a continuous-time
ACS process, one can form a discrete time vector-valued
AMS process as explained above. Then the time average of
a probabilistic parameter of this vector-valued process will
equal the periodic component of probabilistic parameter of
the original ACS process. In this way any periodic compo-
nent for any real-valued period T of the almost periodically
time-varying probabilistic parameters of the original scalar-
valued continuous-time ACS process can be guaranteed to
be consistently estimable by applying the proposed ergodic
theorem to the infinite-dimensional vector-valued discrete-
time AMS process.

It follows that the discrete-time AMS version of the
Birkhoff ergodic theorem can be extended/generalized to
accommodate cycloergodicity for continuous-time ACS
processes by requiring that the ergodicity condition
for discrete-time AMS processes be satisfied by the
vector-valued representation for each and every period T .
In addition, there is a partially cycloergodic version of this
proposed theorem that satisfies the ergodicity condition for
some but not all periods.

This leaves one class of ACS processes for which there
is so far no known cycloergodic theorem, and this is the
class of discrete-time processes having measures that possess
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non-zero sinusoidal components with sine-wave frequencies
that are incommensurate with the time-sampling rate. Some
such processes do indeed allow for consistent estimation of
such sinusoidal components, but others do not. A neces-
sary and sufficient condition for consistent estimation is not
presently known.

B. FOT INTERPRETATION OF THE TASK OF STATISTICAL
FUNCTION ESTIMATION
In the stochastic approach, the estimator of the expected
value of a wide-sense stationary stochastic process is the
time average of one sample path of the process over the
finite time interval [t − T/2, t + T/2] with center t and
width T . Similarly, in the FOT approach, the estimator of the
infinite-time average of a time series is the finite-time average
of this time series over [t − T/2, t + T/2].
In the stochastic approach, t is fixed (and typically assumed

to be 0 or T/2). The estimate is a random variable, that is,
it depends on the sample point ω ∈ � which determines the
sample path or realization of the process. The variability of
the estimate reflects its dependence on the sample path used
for the estimation. Under appropriate mixing and stationarity
assumptions, the estimate converges in some probabilistic
sense as T → ∞ to the expected value of the process.
In the FOT approach, the variability of the estimate reflects
its dependence on t , the central point of the observation
interval, when t ranges over a wider temporal interval, say
[−Z/2,Z/2], with Z � T [37, Chap. 15], [88, Sec. 6.3.5].

In the FOT approach, asymptotic characterization of the
convergence of the estimator is expressed in terms of a double
limit as Z → ∞ and T → ∞, provided that Z/T → ∞.
The limit in Z produces the average-over-t behavior of the
estimate, such as the average error (bias) and the average
squared deviation of the estimate about its average value
(the variance), where t is the central point of the observation
interval. The limit in T produces an estimate that uses the
whole time series for estimation.

Let z(t) be a RM time series obtained as a frequency-
shifted second- or higher-order lag product of another time
series x(t). That is,

z(t) ,
K∏
k=1

x(t + τk ) e−j2παt . (50)

Second- and higher-order cyclic moments of x(t) are
infinite-time averages of z(t) [44], [99].

The finite-time average

m̂(T )
z (t) ,

1
T

∫ t+T/2

t−T/2
z(u) du (51)

is the estimator of the infinite-time average

mz , lim
T→∞

1
T

∫ T/2

−T/2
z(u) du. (52)

For T sufficiently large (much greater than the longest

period of cyclostationarity of z(t)) the function t 7→ m̂(T )
z (t)

is approximately (asymptotically exactly) wide-sense station-
ary in the FOT sense. That is, m̂(T )

z (t) and its homogeneous
nonlinear transformations do not contain any substantive (or,
in the limit, non-zero) additive finite-strength sine-wave com-
ponent with nonzero frequency. Thus, the FOT expectation
operator of interest for asymptotic properties of the estimator
is the infinite-time average. The performance of the estimator
can be expressed in terms of FOT bias and variance [37,
Chap. 15]

bias
{
m̂(T )
z (t)

}
'

〈
m̂(T )
z (t)

〉
t
− mz = 0 (53)

var
{
m̂(T )
z (t)

}
'

〈∣∣∣m̂(T )
z (t)− mz

∣∣∣2〉
t

(54)

where the two approximations become exact equalities in
the limit as T → ∞. Equation (53) shows that in the FOT
approach the estimator m̂(T )

z (t) is unbiased. Moreover, its rate
of convergence to zero is arbitrarily fast for every bounded
RM function (see [25, Theorem 3.2] and consequences).

Assuming summability of second- and fourth-order tempo-
ral cumulants of z(t), the estimator is mean-square consistent
in the FOT sense, that is,

lim
T→∞

〈∣∣∣m̂(T )
z (t)− mz

∣∣∣2〉
t

= lim
T→∞

[
var

{
m̂(T )
z (t)

}
+

∣∣∣bias {m̂(T )
z (t)

}∣∣∣2] = 0 (55)

In addition, under further temporal cumulant summability
assumptions, the function

t 7→
√
T
[
m̂(T )
z (t)− mz

]
(56)

has a normal FOT distribution as T →∞ [25].
A cyclic spectrum estimator is the time-smoothed cyclic

periodogram, which is the right-hand side of (48) with
finite T and 1f . The estimate is accurate (small FOT bias)
provided that 1f is sufficiently small, and it is reliable
(small variance) provided that the smoothing product T1f
is sufficiently large [37, Chap. 13]. Moreover, this estima-
tor is asymptotically equivalent to the frequency-smoothed
cyclic periodogram [42] which, for α = 0, reduces to
the frequency-smoothed periodogram for power-spectrum
estimation.

VI. EXAMPLES OF THE DICHOTOMY BETWEEN
PROPERTIES OF A STOCHASTIC PROCESS AND
THOSE OF ITS SAMPLE PATHS
In this section, three examples of the dichotomy between
properties of a stochastic process and those of its sample
paths are illustrated. Specifically, properties that are valid for
stochastic processes are shown to be not valid for their sample
paths. Such drawbacks of the stochastic-process based mod-
els constitute a strong motivation for the adoption of the FOT
approach.
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A. EXAMPLE 1 OF DICHOTOMY: EXPECTATION OF A PAM
TIME SERIES
Let us consider a pulse-amplitude modulated (PAM) stochas-
tic process

ξ (t) ,
+∞∑

n=−∞

ξ̃n q(t − nT0) (57)

where {̃ξn}n∈Z is a sequence of random variables with
equiprobable values in a finite alphabet and the pulse
q(t) ∈ L1(R).
Under the assumption

sup
t

+∞∑
n=−∞

E
{
|̃ξn|

}
|q(t − nT0)| <∞ (58)

the σ -linearity of the statistical expectation operator E{·}, val-
idates the interchange of the infinite summation and expecta-
tion operations, and the expected value of ξ (t) is given by

E {ξ (t)} =
+∞∑

n=−∞

E
{̃
ξn
}
q(t − nT0). (59)

Such an interchange of expectation operator and infinite sum-
mation is not allowed on the single sample paths (after having
replaced the ensemble mean by the infinite time average).
Thus, it is not allowed in the FOT approach.

Let us consider the PAM time series

x(t) =
+∞∑

n=−∞

x̃n q(t − nT0) (60)

with x̃n a discrete-time time series. Even if

sup
t

+∞∑
n=−∞

|̃xn q(t − nT0)| <∞ (61)

for the time series x(t) in general we have

〈x(t)〉t 6=
+∞∑

n=−∞

x̃n 〈q(t − nT0)〉t ≡ 0 (62)

E{α} {x(t)} 6=
+∞∑

n=−∞

x̃n E{α} {q(t − nT0)} ≡ 0 (63)

since q(t) ∈ L1(R). Such a result is in accordance with the
fact that the infinite-time average 〈·〉t and the almost-periodic
component extraction operator E{α}{·} are not σ -linear.
In [90, Sec. 2.4.1], it is shown that by properly executing

the almost-periodic component extraction operation, the FOT
expectation of x(t), which is its almost-periodic component,
can be shown to be given by

E{α} {x(t)} =
+∞∑

n=−∞

E{̃α} {̃xn} q(t − nT0) (64)

where E{̃α}{·} denotes the discrete-time almost-periodic com-
ponent extraction operator.

Comparison of the procedures used to obtain the expected
value (59) of a PAM process and its FOT counterpart (64)
shows the required difference in ways of executing the
expectation operator in the stochastic and FOT approaches.
In fact, even if a summability condition for the discrete-time
sequence is satisfied, the FOT expectation operation cannot
be freely interchangedwith the infinite-summation operation.
Thus, the result (59) valid for the stochastic process cannot
be immediately extended to its sample paths by replacing the
ensemble mean with the infinite time average. In contrast,
the result derived in the FOT approach is valid by default for
the unique time series at the hand of the experimenter. As an
example, the calculation of the infinite time average in the
left-hand side of (62) is reported in Appendix I.
Note that every digitally modulated signal, and in partic-

ular the PAM process (57), can be modeled as a stochas-
tic process whose sample space (before normalization) has
finite measure. Therefore, the existence of a finite-measure
sample space is not sufficient to avoid the above-mentioned
dichotomy between a stochastic process and its sample paths.
The fact that digitally modulated signals can be modeled

as stochastic processes with finite sample space follows from
the subsequent considerations. The sequences of symbols
belonging to a finite alphabet of size D can easily be mod-
eled as sample paths of a discrete-time stochastic process
whose sample space has finite measure and is isomorphic to
the interval [0, 1]. In fact, every finite or infinite sequence
can be seen as the expansion in base D of a number ω
taken in the unit interval that plays the role of the sample
space �. The probability measure is the Lebesgue measure.
Sequences corresponding to the rational numbers have zero
Lebesgue measure (they occur with probability zero). Typical
sequences correspond to Borel’s normal numbers, that is,
those satisfying the weak law of large numbers: Each letter
of the alphabet occurs in the sequence with relative frequency
1/D and typical sequences occur with probability one.
Therefore, every digitally modulated signal can be mod-

eled as a stochastic process whose sample space (before
normalization) has finite measure since its randomness is due
to the randomness of the modulating sequence. This is true
even if other parameters are modeled as random variables.

B. EXAMPLE 2 OF DICHOTOMY: LINEAR
TRANSFORMATION OF A GAUSSIAN SIGNAL
Let us consider the stochastic process

X (t) = G(t) cos(2π f0t + φ0) (65)

where G(t) is a zero-mean strict-sense stationary Gaussian
stochastic process and f0, and φ0 are deterministic param-
eters. The process X (t) is a periodically time-variant linear
transformation of a Gaussian process. Thus, it is in turn
Gaussian. Due to the periodic modulation, X (t) is strict-sense
cyclostationary with period of cyclostationarity T0 = 1/(2f0).
In particular, its variance is a periodic function of t with
period T0.
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Let

x(t) = g(t) cos(2π f0t + φ0) (66)

be a single realization of the stochastic process X (t), where
g(t) is a single realization of the stochastic process G(t).
Albeit the stochastic process X (t) is Gaussian, its realiza-

tions do not have an empirical (stationary) Gaussian distribu-
tion. In fact, the time series g(t) and c(t) , cos(2π f0t + φ0)
have stationary FOT densities

fg(ξ ) =
1

√
2πσg

e−ξ
2/2σ 2g (67)

and fc(ξ ) given in (42), respectively. Since the functions g(t)
and x(t) are independent in the FOT sense [72, Sec. 5], the
FOT density of the product waveform x(t) = g(t)c(t) is given
by the classical formula [2, Chap. 2, Problem 14]

fx(ξ ) =
∫
+∞

−∞

fc(s) fg(ξ/s)
1
|s|

ds (68)

which is a non-Gaussian density. It is the stationary FOT den-
sity of x(t) which is coincident with the (stationary) empirical
density.

In Fig. 8, results are reported for a band-limited zero-mean
Gaussian time series g(t) with bandwidth 1/(64Ts), where
Ts is the sampling period, which modulates a cosine with
f0 = 1/(16Ts) andφ0 = 0. The thin line represents theoretical
non-Gaussian density obtained by numerically evaluating the
integral in (68) as predicted by the FOT model; the dotted
line is the density estimated from the data by a kernel-based
estimator (with Gaussian kernel); [97, Sec. 2.1.8, pp. 64-65];
the dashed line represents a zero-mean Gaussian density with
variance equal to the sample variance estimated from x(t).
The data-record length is T = KT0 with K = 210.
In the above result, the stationary FOT model of

Section III-C is considered. A more appropriate statistical
description of the time series x(t) can be obtained by adopting
the almost-periodic FOTmodel of Section IV (which includes
periodic models as a special case).

In Fig. 9 the periodically time-variant distribution esti-
mated by the synchronized average

F̂ {α}x(t)(ξ ) =
1
K

K−1∑
k=0

u(ξ − x(t − kT0)) (69)

is reported for t = nTs, n = 0, 1, . . . , 15. Moreover, asterisks
represent the theoretical zero-mean Gaussian distribution

8(ξ ) , 1−
1
2
erfc

(
ξ
√
2σ

)
(70)

numerically evaluated in correspondence with the periodi-
cally time-variant variance estimated by the synchronized
average

σ̂ 2
x (t) =

1
K

K−1∑
n=0

x2(t−nT0). (71)

FIGURE 8. Non-Gaussian probability density function of a modulated
Gaussian time series as correctly predicted by the stationary FOT model
(thin line = theoretical value, dotted line = kernel-based estimate) versus
the zero-mean Gaussian density with variance measured from x(t)
(dashed line).

FIGURE 9. Periodically time variant Gaussian distribution of a modulated
Gaussian time series as correctly predicted by the periodic FOT model.
Smooth lines: Estimated cumulative distribution function for different
fixed values of t (see (69)). Asterisks: Gaussian cumulative distribution
evaluated with an estimated periodically time-variant variance
(see (70), (71)).

The estimated periodically time-variant distribution (69)
exactly fits the Gaussian distribution (70) with estimated
periodically time-variant variance (71). For t = 4Ts and t =
12Ts, cos(2π f0t) = 0 and one has the degenerate distribution
u(ξ ) obtained from (70) in the limit as σ → 0.
No one would call the stochastic process (65) non-

Gaussian. In particular, for every set of fixed values
t1, . . . , tn, the random variables X (t1), . . . ,X (tn) are jointly
Gaussian. However, the (stationary) empirical density of
X (t) approaches the non-Gaussian density (68) as the
data-record length approaches infinity. The reason for this
is that the appropriate stochastic stationary distribution
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for a cyclostationary process is the time average of the
stochastic cyclostationary distribution, which is a mixture
of non-identical Gaussians and is therefore non-Gaussian;
it is the limit of what the stationary empirical distribution
produces. The mismatch between the Gaussianity of the ran-
dom variables X (t) and the non-Gaussianity of the stationary
distribution can be overcome by modeling φ0 as a random
variable uniformly distributed in [0,T0). In such a case, the
process X (t) is non-Gaussian, strict-sense stationary, with
density given by (68), which is also the limit of the empirical
density. The price paid for assuming the stationary model is
that the stationary process is not cycloergodic. In fact, every
realization is a cyclostationary time series. In particular, the
Fourier coefficient (32) with γ = k/T0, k integer, and the
cyclic autocorrelation functions (46) with α = k/T0, k ∈
{0,±1}, are not identically zero for almost all realizations.
In summary, in the stochastic process framework, we have

the following. If the stochastic process (65) is modeled
as Gaussian cyclostationary (φ0 is modeled as a determin-
istic parameter), then its stationary empirical distribution
approaches a non-Gaussian distribution. If the stochastic pro-
cess (65) is modeled as a stationary process (φ0 is modeled
as a random variable uniformly distributed in [0,T0)), then it
is non-Gaussian, its stationary density is given by (68), but it
is not cycloergodic.

Such a discrepancy, is not present in the FOT approach.
The time series x(t) is cyclostationary. That is, its periodically
time variant distribution (30) does not degenerate into the
stationary distribution (4a)–(4c). If one decides to exploit
the stationary model, then x(t) in (66) is non-Gaussian and
the empirical distribution approaches the non-Gaussian dis-
tribution whose density is given by (68) with (67) and (42)
substituted in. If one decides to exploit the cyclostationary
model, then x(t) in (66) is Gaussian and the finite-time FOT
distribution (69) approaches the periodically time-variant dis-
tribution given by (70) with σ replaced by a periodically
time-variant standard deviation which is the square root of
the limit in (71) as K → ∞. The non-Gaussian density (68)
is the coefficient with zero frequency of the Fourier series
expansion of the Gaussian periodically time-variant density
function.

A linear periodically time-variant transformation of a
Gaussian stochastic process is in turn a Gaussian process,
but with realizations whose stationary empirical distribution
is non Gaussian. Such a dichotomy is not present in the
FOT framework. Both stationary and almost-cyclostationary
models give rise to probabilistic functions that are fitted by
their estimates obtained from the data.

C. EXAMPLE 3 OF DICHOTOMY: STATISTICAL
INDEPENDENCE
Let us consider the two stochastic processes

X1(t) , B(t) cos(2π t/T1 +21) (72)

X2(t) , B(t) cos(2π t/T2 +22) (73)

where B(t) is the binary PAM stochastic process

B(t) ,
+∞∑

n=−∞

Bn p(t−nT0 +20) (74)

for which {Bn}n∈Z is a sequence of independent and iden-
tically distributed binary random variables assuming val-
ues ±1, {2i} are random variables uniformly distributed in
[0,Ti), i = 0, 1, 2, and p(t) = rect(t/T0). All the random
variables are statistically independent.

It is well known that the random variables 2i make the
random processes X1(t) and X2(t) stationary but not cyclo-
ergodic [33]. That is, sample paths of X1(t) and X2(t) are
cyclostationary time series. In the following, it is shown that
the stationary model gives rise to a dichotomy between the
statistical dependence property of the stochastic processes
X1(t) and X2(t) and that of their sample paths.

The stochastic processes X1(t) and X2(t) are statistically
dependent by virtue of the common factor B(t). Specifically,
for every fixed t̄ , the two random variables X1(t̄) and X2(t̄)
are obtained as the product of the same random variable
B(t̄) with the two random variables cos(2π t̄/T1 + 21) and
cos(2π t̄/T2 +22), respectively. In general we have

E
{
X r11 (t̄) X r22 (t̄)

}
= E

{
Br1+r2 (t̄)

}
E
{
cosr1 (2π t̄/T1 +21)

}
·E
{
cosr2 (2π t̄/T2 +22)

}
(75)

6= E
{
X r11 (t̄)

}
E
{
X r22 (t̄)

}
∀ integer r1, r2. (76)

That is, the necessary and sufficient condition for indepen-
dence is not satisfied.

Let

x1(t) , b(t) cos(2π f1t + θ1) (77)

x2(t) , b(t) cos(2π f2t + θ2) (78)

be sample paths of X1(t) and X2(t), respectively, where b(t)
is a sample path of B(t) and θ1 and θ2 are realizations of 21
and 22. Almost every sample path b(t) is a pseudo-random
Bass function [4], [5], [72, Sec. 6.3]. Therefore, it can be
shown that x1(t) and x2(t) are FOT independent in the sense
that their joint FOT stationary distribution factors into the
product of the two marginals (see (18)), provided that the
periods Ti, i = 0, 1, 2, are incommensurate, that is,

Ti/Tj 6∈ Q i 6= j (79)

where Q is the set of rational numbers. In fact, in such a
case, it is shown in [24, Sec. V.B] that the necessary and suf-
ficient condition for FOT independence [24, Theorem 2.8],
[62, Theorem 2],

〈xr11 (t) xr22 (t)〉t = 〈x
r1
1 (t)〉t 〈x

r2
2 (t)〉t ∀ integer r1, r2, (80)

is satisfied.
This is an example of a dichotomy between the statistical

dependence property of the stationary stochastic processes
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X1(t) and X2(t) and the statistical independence of their sam-
ple paths x1(t) and x2(t) according to their time-invariant FOT
distributions.

However, if the AP FOT model is adopted, it can be shown
that the condition

E{α}
{
xr11 (t) xr22 (t)

}
= E{α}

{
xr11 (t)

}
E{α}

{
xr22 (t)

}
∀r1, r2 integer (81)

does not hold; that is, these time series are statistically depen-
dent by virtue of their common factor b(t) according to their
AP-FOT distributions.

VII. CONCLUDING REMARKS
The fraction-of-time (FOT) probability method for signal
analysis is an alternative to the classical probability method
that models signals as sample paths of an ensemble which,
together with a probability measure, is called a stochastic pro-
cess. In the FOT approach, the unique function of time at the
hand of the experimenter is not modeled as a representative
of an ensemble. All the familiar probabilistic functions and
parameters in this approach are constructed from this single
function of time by adopting the relative measure of subsets
of the real line (representing time) as a probability measure.

The relative measure is not σ -additive (additivity of count-
ably infinite numbers of terms). Moreover, when it is adopted
to construct the distribution function of the values assumed
over time by a persistent function of time, the corresponding
expectation operator, the infinite-time average, is not σ -linear
(linearity of an operator applied to a linear combination of
a countably infinite number of terms). These facts make the
relative measure less amenable to mathematical manipulation
involving infinite linear combinations than is the classical
probability measure. However, when we define a stochastic
process X (t, ω) as a function of two variables t ∈ R and
ω ∈ �, for which ω is the ensemble index, the results of
operations (e.g., calculations of values of time-distributions
or time-averages) made over the time line indexed by t
for some fixed ω (which represent empirical measurements)
exhibit, by definition, the same properties as those of the
FOT probabilistic functions and, therefore, do not have the
σ -additivity and σ -linearity properties of the corresponding
results of operationsmade overω. Hence, if only one function
of time is available at the hands of the experimenter, the
abstraction of introducing a hypothetical ensemble indexed
by ω creates an unnecessary dichotomy between theory and
measurements. Directly considering probabilistic functions
constructed over t avoids this dichotomy between the prop-
erties of the stochastic process and those of its individual
sample paths, as illustrated in the examples presented in
Section VI. This is the primary motivation for adopting the
FOT probability approach for signal analysis.

The deep difference between the relative measure and the
probability measure is a result of dictating that the measure
of the hypothetical infinite sample space � be finite, which
enables the introduction of Axiom VI of probability. These

assumed properties are at odds with the empirical quanti-
ties to be modeled. They artificially give to the probability
measure properties that are not shared with the relative mea-
sure, thereby rendering it more amenable to mathematical
manipulations involving infinite linear combinations. Fur-
thermore, although signals modulated with digital data have
sample spaces with finite measure prior to normalization,
as explained in connection with the PAM example in (57),
many other communications signals do not have sample space
with finite measure before normalization.

The conceptual usefulness of the FOT approach is evident
in statistical spectral analysis of time series. This is the point
of view of the book [37] by Gardner and the early work on
generalized harmonic analysis [106]. In most problems of
statistical spectral analysis, in fact, there is no need to model
the available time series as a representative of an ensemble
and, hence, there is no need to willfully incur a dichotomy
between theory and measurements.

In Information Theory, compression of individual
sequences has been shown to be a practicable and, in some
cases, a convenient approach [118]. The same is true of
channel coding. For example, the construction of block codes
and convolutional codes and the corresponding decoding
procedure can be made without involving any stochastic
concept. However, in contrast to the practice of source and
channel coding, in order to prove the channel coding theorem,
one must adopt the concept of typical sequences whose
probabilistic characterization is formulated in terms of the
classical stochastic process. This is so, even though all the
basic quantities used in Information Theory can be defined in
terms of FOT probability.

Even if typical sequences can be characterized without
introducing the stochastic process [60, Chap. 2], the proof of
the channel-coding theorem is based on the characterization
of typical sequences using the classical stochastic approach
and the concept of the ensemble of all possible codes for
a given channel [23, Chap. 8]. In addition, the channel is
modeled as random. No proof of the channel coding theorem
based on FOT probability is on the horizon.

A field where the FOT approach appears methodologically
more appropriate than the classical stochastic approach is
that of Monte Carlo simulations. They are FOT simulations,
not stochastic simulations [25, Sec. 4.4]. In fact, a computer
program for random number generation produces a unique
periodic sequence with a very long period. Calling such a
routine several times (with different seeds) is equivalent to
picking different time segments of the unique sequence. So,
the sample space is time indexed, not ensemble indexed.
(If the period is sufficiently long, the sequence can be con-
sidered aperiodic for practical purposes.)

The extension of the FOT approach to periodic phenom-
ena, that is, those which produce time series through the
interaction of periodic mechanisms and random phenomena,
is based on the nonobvious result that the almost-periodic
component extraction operator is a valid expectation oper-
ator. When it is applied to the indicator of the set of val-
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ues of t where a time series is below a threshold ξ , one
obtains, for every value of t , a valid distribution function
in ξ . The obtained function is almost-periodic in t by con-
struction. Therefore, it is suitable for an FOT probabilistic
characterization of cyclostationary, poly-cyclostationary, and
almost-cyclostationary time series. In particular, a complete
temporal probabilistic theory for these time series can be
constructed [35], [37], [43], including a theory of higher-
order moments and cumulants [44], [99].

The FOT approach for almost-cyclostationary signals
can be extended to the class of the generalized almost-
cyclostationary (GACS) signals [88, Chap. 2], [90, Chap. 12].
GACS signals have multivariate statistical functions almost
periodic with respect to time with (generalized) Fourier series
expansions for which not only the coefficients depend on
the lag parameters of the time-shifted versions of the time
series, but also the frequencies depend on the lag parameters.
For these signals, the almost-periodic component extraction
operator can be adopted as the expectation operator and a
complete FOT higher-order theory is developed in [57].

Other generalizations of the class of almost-cyclostationary
processes are the spectrally correlated (SC) processes
[88, Chap. 4], [90, Chap. 13] and the oscillatory almost-
cyclostationary (OACS) processes [89], [90, Chap. 14]. For
these classes of nonstationary stochastic processes, there
apparently do not exist FOT-probability counterparts despite
the relationships of these processes to almost cyclostationary
processes because the nonstationarity of these generalizations
is not almost periodic or otherwise of known functional
form [38]. However, time-warped almost-cyclostationary sig-
nals have been treated in [46] with an approach that mostly
avoids stochastic processes and ergodicity.

APPENDIX I. INFINITE TIME AVERAGE OF A PAM
TIME SERIES
In this Appendix, the infinite time average of a PAM time
series is calculated without resorting to the σ -linearity of the
infinite time average that would lead to the wrong result in
the right-hand side of (62).

Let us consider the PAM time series (60) and, for the
sake of simplicity, let as assume that the pulse q(t) has finite
duration and the sequence x̃n is bounded, that is |̃xn| 6 K ,
∀n ∈ Z.

The finite time average of the PAM time series is

m(T )
x ,

1
T

∫ T/2

−T/2

+∞∑
n=−∞

x̃n q(t − nT0) dt (A1a)

= m(T )
1 + m

(T )
2 (A1b)

where

m(T )
1 ,

1
T

∫ T/2

−T/2

N∑
n=−N

x̃n q(t − nT0) dt (A2)

and

m(T )
2 ,

1
T

∫ T/2

−T/2

∑
|n|>N

x̃n q(t − nT0) dt (A3)

with N denoting the integer such that T = 2NT0 + 2ε with
0 < ε < T0.
By making the variable change t ′ = t − nT0 and inter-

changing the order of the finite sum and the integral, we have

m(T )
1 =

(2N + 1)T0
2NT0 + 2ε

1
(2N + 1)T0

N∑
n=−N

x̃n

·

[∫ NT0−nT0+ε

−NT0−nT0−ε
q(t ′) dt ′ −

∫
+∞

−∞

q(t ′) dt ′

+

∫
+∞

−∞

q(t ′) dt ′
]

,
(2N + 1)T0
2NT0 + 2ε

[
1

2N + 1

N∑
n=−N

x̃n
1
T0

∫
+∞

−∞

q(t) dt

+ r (T )1

]
(A4)

with

|r (T )1 | =

∣∣∣∣ 1
(2N + 1)T0

N∑
n=−N

x̃n

[∫ NT0 − nT0 + ε

−NT0 − nT0 − ε
q(t) dt

−

∫
+∞

−∞
q(t) dt

]∣∣∣∣
6

1
(2N + 1)T0

N∑
n=−N

|̃xn|
∫
|t| > NT0 − nT0 + ε

|q(t)| dt

6
K

(2N + 1)T0

N∑
n=−N

∫
|t| > NT0 − nT0 + ε

|q(t)| dt (A5)

Since q(t) has finite support, only a finite number (not
depending on N ) of terms of the sum in the right-hand side of
(A5) is non zero. Consequently, in the limit as T →∞ (and,
hence N →∞), we have

lim
T→∞

r (T )1 = 0. (A6)

For the term m(T )
2 we have the bound∣∣∣m(T )

2

∣∣∣ 6 K
T

∫ T/2

−T/2

∑
|n|>N

|q(t − nT0)| dt. (A7)

All the time shifted pulses in the sum in (A7) are centered
at points nT0 outside the integration interval [−T/2,T2].
Thus, since q(t) has finite duration, only a finite num-
ber of terms (not depending on N ) give nonzero con-
tribution to the integral. Consequently, the integral is
bounded and

lim
T→∞

m(T )
2 = 0. (A8)
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From (A1b), and accounting for (A4), (A6), and (A8), it
results that

lim
T→∞

m(T )
x = 〈̃xn〉n

1
T0

∫
+∞

−∞

q(t) dt (A9)

where

〈̃xn〉n ,
1

(2N + 1)

N∑
n=−N

x̃n. (A10)

Finally note that (A9) can be proved even after relaxing the
assumption that q(t) has finite duration provided that it has a
rate of decay to zero sufficiently fast as |t| → ∞.
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