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Ergodic theory is a forbiddingly technical branch of mathemat-
ics. Luckily, for the purpose of this discussion, we will need 
virtually none of the technicalities. We will call an observable 

ergodic if its time average equals its expectation value, that is, if it 
satisfies Birkhoff ’s equation
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Here, f is determined by the system’s state ω. On the left-hand  
side, the state in turn depends on time t. On the right-hand side, 
a timeless P(ω) assigns weights to ω. If equation (1) holds we can 
avoid integrating over time (up to the divergent averaging time,  
T, on the left), and instead integrate over the space of all states, 
Ω (on the right). In our case P(ω) is given as the distribution  
of a stochastic process. In systems with transient behaviour, that 
may require defining P(ω) as the t → ∞ limit of a time dependent 
density function P(ω; t).

Famously, ergodicity is assumed in equilibrium statistical mecha-
nics, which successfully describes the thermodynamic behaviour of 
gases. However, in a wider context, many observables don’t satisfy 
equation (1). And it turns out a surprising reframing of economic 
theory follows directly from asking the core ergodicity question: is 
the time average of an observable equal to its expectation value?

At a crucial place in the foundations of economics, it is assumed 
that the answer is always yes — a pernicious error. To make eco-
nomic decisions, I often want to know how fast my personal fortune 
grows under different scenarios. This requires determining what 
happens over time in some model of wealth. But by wrongly assum-
ing ergodicity, wealth is often replaced with its expectation value 
before growth is computed. Because wealth is not ergodic, nonsensi-
cal predictions arise. After all, the expectation value effectively aver-
ages over an ensemble of copies of myself that cannot be accessed.

This key error is patched up with psychological arguments 
about human behaviour. The consequences are numerous, but over 
the centuries their root cause has become invisible in the grow-
ing formalism. Observed behaviour deviates starkly from model 
predictions. Paired with a firm belief in its models, this has led 
to a narrative of human irrationality in large parts of economics. 

Scientifically, this deserves some reflection: the models were exon-
erated by declaring the object of study irrational.

I stumbled on this error about a decade ago, and with my col-
laborators at the London Mathematical Laboratory and the Santa 
Fe Institute I have identified a number of long-standing puzzles or 
paradoxes in economics that derive from it. If we pay close attention 
to the ergodicity problem, natural solutions emerge. We therefore 
have reason to be optimistic about the future of economic theory.

This Perspective is structured as follows. I will first sketch the 
conceptual basis of mainstream economic theory: discounted 
expected utility. I will then develop our conceptually different 
approach, based on addressing the ergodicity problem, and estab-
lish its relationship with the mainstream model by pointing out a 
mapping. Finally, I will report on a recent laboratory experiment 
that pits the two approaches against one another: where do their 
predictions differ? And which model fares better empirically?

A simple gamble
In economics, a gamble is a random variable, ∆x, representing pos-
sible changes in wealth, x. In the discrete case, that’s a set of pairs of 
possible wealth changes and corresponding probabilities {(∆xi, pi)}.

For example, a gamble can model the following situation: toss a 
coin, and for heads you win 50% of your current wealth, for tails you 
lose 40%. Mathematically, we can represent this as (Fig. 1a):

Δx ¼
ΔxH ¼ þ0:5x; pH ¼ 1

2

ΔxT ¼ �0:4x; pT ¼ 1
2

(
ð2Þ

The word ‘gamble’ conjures up images of smoke-filled casinos and 
roulette wheels. But here the term refers to a universal concept in 
economics: formally, any decision we make is modelled as a gamble, 
be it choosing the kindergarten for your child or deciding on matters  
of taxation. We never quite know the consequences in advance, and 
economically this is often expressed as a random wealth change.

The original treatment. The development of probability theory 
was motivated by gambling problems, with early formal attempts 
in Cardano’s wonderful (and unpublishably sinful) sixteenth- 
century book De ludo aleae1. The actual starting point is the 
famous exchange of letters between Fermat and Pascal in 16542.  
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Their correspondence established the expectation value as a key 
object in the theory of randomness.

Pascal and Fermat were not looking for gambling advice; they 
were solving a moral problem: namely how to assess people’s hopes 
and expectations in a fair way. Nonetheless, a few years later, the 
following rule of thumb had become a well-established behavioural 
model: given the choice between two gambles, we pick the greater 
expected wealth change, 〈∆x〉. This model predicts that people 
would generally accept the gamble in equation (2), in which case 
〈∆x〉 = +0.05x (Fig. 1b), whereas the alternative (not accepting) 
would yield 〈∆x〉 = $0.

St. Petersburg paradox. But is this model realistic? Would you 
accept the gamble and risk losing at the toss of a coin 40% of your 
house, car and life savings?

A similar objection was raised in 1713 by Nicolas Bernoulli3. 
He proposed a hypothetical gamble whose expectation value was 
divergent: ∆x was power-law distributed with a non-existent first 
moment. But this terminology hadn’t been developed yet, and N. 
Bernoulli said laconically we would find something “curious” if we 
tried to compute the expectation value 〈∆x〉.

What people eventually deemed indeed curious was the following: 
if we had to pay a fee, F, to play this gamble, what should it be? The 
expected wealth model tells us that we would pay any finite fee, but 
that went against intuition. Even though ∆x had a heavy right tail, the 
probabilities of very large gains were still vanishing, and no one was 
willing (hypothetically) to pay much for a negligible chance to win a 
large amount. The failure of the expected wealth model to describe 
actual human behaviour is known as the St. Petersburg paradox, and 
is treated in many textbooks on economics and probability theory. It is 
one of the puzzles that go away when we switch to the new formalism4.

Utility theory. By 1713, it was clear that there’s more than expected 
wealth changes to financial decisions under uncertainty, and in 
1738 Daniel Bernoulli updated the prevailing theory5: when people 
decide whether to take part in a gamble, they don’t consider the 
expected changes in wealth, x, but the expected changes in the use-
fulness of wealth, u(x).

Specifically, D. Bernoulli surmised that the usefulness, or utility, 
of an extra dollar is roughly inversely proportional to how many 
dollars one already has. This leads to the differential equation du = 
1/x dx with solution u(x) = ln x (calculus had just been invented). 
But he mentioned that the square-root function would also work. 
In general, a monotonically increasing u(x) reflects a preference for 
more wealth over less, and concave u(x) reflects a dislike for risk. 
Thus, the utility function encodes the psychology of a particular 
individual. We might write ubrave(x) = x and uscared(x) = ln x.

D. Bernoulli’s model became known as ‘expected utility theory’. 
It produces different preferences than the expected wealth model if 
the utility function is nonlinear, as shown in Fig. 1c.

Intriguingly, D. Bernoulli’s paper contains an error (see ref. 4) 
that continues to haunt the formalism today: in one place his com-
putations actually only work for linear u(x), which would defeat the 
purpose of introducing u(x) in the first place. But we will not take 
D. Bernoulli literally and instead interpret his writings as Laplace6 
and von Neumann and Morgenstern7 did: each person i has an idio-
syncratic utility function ui(x) and intuitively computes 〈∆ui(x)〉. 
If that’s positive we accept the gamble, if it’s negative we reject it 
(assuming rejection results in no wealth change).

In the coin-toss example described by equation (2), the expected 
change in D. Bernoulli’s logarithmic utility is 〈∆ln x〉 ≈ −0.05. A 
person whose psychology is well described by uscared therefore won’t 
accept the gamble.

Discounting. Utility theory considers a static probability space, 
without an explicit treatment of time. For instance, D. Bernoulli and 
his followers did not discuss the rate of change of utilities but only 
magnitudes of changes.

Time is dealt with quite separately, namely through a process 
referred to as discounting. Originally, discounting assigned a pres-
ent value to payments to be received in the future. It is often justified 
with a no-arbitrage argument: a payment received sooner, at a time 
t, is worth more than the same payment received later, at t + ∆t, if it 
can be profitably invested for the duration ∆t.

With references to interest in the Bible (for example, Deuteronomy 
23:19), the practice of temporal discounting is thus much older than 
the notion of utility. Today the two concepts coexist but without 
much clarity regarding their respective domains: based on the no-
arbitrage argument one would discount cash, but since 1937 it has 
been common to discount utility instead — not even utility of cash 
but of consumption of cash or even more general resources8.

The no-arbitrage argument ties discounting to available invest-
ment options. But in an ambitious attempt at generality, discounting 
nowadays is often phrased in terms of another subjective function, 
d(∆t): some of us are impatient and discount strongly with a fast-
decaying d(∆t); others are more patient. The functional form of 
d(∆t), supposedly, is another part of our psychology — it can be 
hyperbolic or exponential or whatever else fits the data9.

A modern treatment asking the ergodicity question
Let’s step back, and take a completely fresh look at the problem.

First, we consider financial decisions without uncertainty, which 
is very similar to the original idea of discounting. In the second step, 
we generalize by introducing noise. Placing considerations of time 
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Fig. 1 | A gamble is a random variable. a, events (here H and T) are associated with probabilities pH and pT, and with dollar wealth changes ΔxH and ΔxT.  
b, The oldest formal evaluation of a gamble computes the expected wealth change 〈∆x〉. c, expected utility theory evaluates gambles by the expected 
change in a (nonlinear) utility function of wealth, 〈∆u〉, here u(x) = ln x shown for the coin-toss example. Note that all the concepts are formally atemporal. 
Only magnitudes and probabilities enter into the analysis.
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and ergodicity centre stage, we will arrive at a clear interpretation 
both of discounting and of utility theory, without appealing to sub-
jective psychology or indeed other forms of personalization.

Financial decisions without uncertainty. A gamble without  
uncertainty is just a payment. A trivial model would be: we accept 
positive payments and reject negative ones. But what if we have  
to choose between two payments, or payment streams, at different 
times?

In this case, one consideration must be some form of a growth 
rate. For instance, I may choose between a job that offers $12,000 
per year, and another that offers $2,000 per month. Let’s say the jobs 
are identical in all other respects: I would then choose the one that 
pays $2,000 per month — not because $2,000 is the greater payment 
(it isn’t), but because the payments correspond to a higher (additive) 
growth rate of my wealth. I would maximize

ga ¼
Δx
Δt

ð3Þ

Alternatively, I may have a choice between two savings accounts. 
One pays 4% per year, the other 1% per month — again, it’s the 
growth rate I would optimize: in this case the exponential growth rate

ge ¼
Δ ln x
Δt

ð4Þ

Since ∆t divides a difference in a generally nonlinear function 
of wealth, time now enters with a clear meaning but in potentially 
quite complicated ways — linearly (called hyperbolic in economics) 
as in equation (3) or exponentially as in equation (4).

Additive earnings and multiplicative returns on investments are 
the two most common processes that change our wealth, but we 
could think of other growth processes whose growth rates would 
have different functional forms. For example, the growth rate for the 
sigmoidal growth curves, in biology, of body mass versus time, has 
a different functional form10. For an arbitrary growth process x(t), 
the general growth rate is

g ¼ Δv xð Þ
Δt

ð5Þ

where v(x) is a monotonically increasing function chosen such that 
g does not change in time. Additive and multiplicative growth corre-
spond to va(x) = x and ve(x) = ln x. Generalizing, v(x) is the inverse 
of the process x(t) at unit rate, denoted

v xð Þ ¼ x �1ð Þ
1 xð Þ ð6Þ

For financial processes, fitting more general functions often 
results in an interpolation between linear and logarithmic, maybe 
in a square-root function, or a similar small tweak.

Ergodic observables. Real-life financial decisions usually come 
with a degree of uncertainty. We let the model reflect this by intro-
ducing noise. But how?

To perturb the process in a consistent way, we remind ourselves 
that what’s constant about the process in the absence of noise is the 
growth rate. If we perturb that with a constant-amplitude noise, the 
scale of the perturbation will be time independent in v-space, and 
in that sense adapted to the dynamics. That’s easily done by writ-
ing equation (5) in differential form, replacing the function g by  
its (constant) value, γ, say, rearranging and adding the noise (here 
represented by a Wiener term dW with amplitude σ)

dv ¼ γdt þ σdW ð7Þ

The process itself is found by integrating equation (7) and solv-
ing for x. For our two key examples, this produces Brownian motion 
(with va = x) and geometric Brownian motion (with ve = ln x).

The growth rates for these processes are no longer constant 
because they are noisy. But the lack of constancy is due to nothing 
other than the noise. Using the nomenclature introduced in equa-
tion (1), the relevant growth rates are ergodic observables of their 
respective processes. By design, their (time or ensemble) averages 
tell us what tends to happen over time.

This is not the case for wealth itself, and it exposes the expected 
wealth model as physically naive. The expected wealth change 
simply does not reflect what happens over time (unless the wealth 
dynamic is additive; Fig. 2). The initial correction — expected utility 
theory — overlooked the physical problem and jumped to psycho-
logical arguments, which are hard to constrain and often circular.

Growth rate optimization is now sometimes called ‘ergodicity 
economics’. This doesn’t mean that ergodicity is assumed — quite the 
opposite: it refers to doing economics by asking explicitly whether 
something is ergodic, which is often not the case. As we have seen, 
ergodicity economics is a perspective that arises from constructing 
ergodic observables for non-ergodic (growth) processes.

Mapping. Both expected utility theory and ergodicity economics  
introduce nonlinear transformations of wealth, and the equa-
tions that appear in the two frameworks can be very similar. More  
precisely, the mapping is this: the appropriate growth rate for a  
given process is formally identical to the rate of change of a specific 
utility function

g ¼ Δv xð Þ
Δt

¼ Δu xð Þ
Δt

ð8Þ

The time average of this growth rate is identical to the rate  
of change of the specific expected utility function — because of 
ergodicity.

Despite the mapping, conceptually the two approaches couldn’t 
be more different, and ergodicity economics stays closer to  
physical reality.

Expected utility theory is a loose end of the mapping because the 
only constraints on the utility function it provides are loose refer-
ences to psychology. While some view this as a way to ensure gener-
ality, my second criticism is more severe and I’m unable to resolve it: 
in maximizing the expectation value — an ensemble average over all 
possible outcomes of the gamble — expected utility theory implic-
itly assumes that individuals can interact with copies of themselves, 
effectively in parallel universes (the other members of the ensem-
ble). An expectation value of a non-ergodic observable physically 
corresponds to pooling and sharing among many entities. That may 
reflect what happens in a specially designed large collective, but it 
doesn’t reflect the situation of an individual decision-maker.

Expected utility theory computes what happens to a loosely spec-
ified model of my psychology averaged across a multiverse. But I do 
not live spread out across a multiverse, let alone harvest the average 
psychological consequences of the actions of my multiverse clones.

Ergodicity economics, in contrast, computes what will happen to 
my physical wealth as time goes by, without appeal to an intangible 
psychology or a multiverse. We all live through time and suffer the 
physical consequences (and psychological consequences, for that 
matter) of the actions of our younger selves.

With ergodicity economics, the psychological insight that  
some people are systematically more cautious than others attains 
a physical interpretation. Perhaps people aren’t so different, but 
their circumstances are. Someone maximizing growth in an addi-
tive process would appear to be brave: va = ubrave, whereas the same 
person doing the same thing but for a multiplicative process would 
appear to be scared: ve = uscared. Note also the scale dependence of 
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these statements: the same ∆x (in dollars) corresponds to large loga-
rithmic wealth changes for a poor person and to small logarithmic 
changes for a rich person — the latter are linearizable, and the rich 
person looks brave.

It also makes historical sense: in the early days of probability the-
ory there was a firm belief that things should be expressed in terms 
of expectation values. For that to make any sense in the context of 
individuals making financial decisions, an ergodic observable had 
to be created. Expected utility theory — unknowingly, because 
ergodicity hadn’t been invented — did just that. But because of the 
lack of conceptual clarity, the entire field of economics drifted in a 
direction that places too much emphasis on psychology.

A discriminating experiment
This mapping is fascinating: careful thinking leads to almost iden-
tical mathematical expressions, whether we use the tools of 1738 
or those of today. This is in spite of there being completely dif-
ferent concepts and languages. Does the difference between con-
cepts enable an experiment that has discriminating power between 
expected utility theory and ergodicity economics?

I was sceptical about this possibility, but a group of neuroscien-
tists from Copenhagen, led by Oliver Hulme, appears to have made 
very promising progress in this regard.

They followed very closely the discussion put forward in ref. 4, 
where we had worked out in detail the correspondences between 
linear utility and additive dynamics; and between logarithmic util-
ity and multiplicative dynamics. These correspondences provide the 
basis for the experiment: what if the dynamics of wealth could be 
controlled? With two artificial environments — one additive, the 
other one multiplicative — do people adjust their behaviour to be 
growth optimal in each?

A positive result — people changing behaviour in response  
to the dynamics — would corroborate ergodicity economics and  
falsify expected utility theory (insofar as experiments falsify  
models). If people don’t change behaviour, one would conclude that 
dynamic effects (at least in this experiment) are not important, and 
personality differences may dominate.

The experiment is described in detail in ref. 11. Here I will only 
outline the setup. In the additive environment people were given 
a starting wealth of about $150 and then each made 312 choices 

between additive gambles, with fixed dollar amounts at stake, for 
example between tossing a coin for winning $40 or losing $30; and 
tossing a coin for winning $30 or losing $20. In contrast, in the 
multiplicative environment, the same people were also given about 
$150, and then made 312 choices between multiplicative gambles, 
with fixed proportions of wealth at stake, for example between  
tossing a coin for a 100% gain in wealth or a 70% loss; and tossing a 
coin for a 30% gain or a 20% loss.

The choices of the participants were consequential: a single deci-
sion could lead to winning or losing several hundred real dollars.

The choices observed in the two environments were used to fit a 
utility function of the form

u x; ηð Þ ¼ x1�η � 1
1� η

ð9Þ

The parameter η interpolates between linear, η = 0, and loga-
rithmic, η = 1, functions, and it controls the concavity of u(x; η) — 
larger values correspond to stronger concavity.

The Copenhagen group fed the observations into a Bayesian 
hierarchical model12, the output of which is a posterior distribution 
for η. Roughly, for each person in each environment this tells us how 
likely it is that the subject was optimizing expected changes in equa-
tion (9) with different values for η, a result shown in Fig. 3.

Expected utility theory predicts that people are insensitive to 
changes in the dynamics. People may have wildly different utility  
functions, which would be reflected in wildly different best-fit  
values of η, but the dynamic setting should make no difference. 
Utility functions are supposedly psychological or even neuro logical 
properties. They indicate personality types — risk seekers and 
scaredy cats.

Ergodicity economics predicts something quite different. First, 
it predicts that the dynamic setting significantly changes the best-
fit ‘utility function’, which is really the ergodicity mapping in the 
relevant ergodic growth rate. The effective utility function will be 
different for one and the same individual under additive dynamics 
and under multiplicative dynamics.

The direction of the change should go towards greater ‘risk  
aversion’ for multiplicative dynamics — the ergodicity mapping is 
more concave there. The magnitude of the change in η should be 
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about 1. And finally, if we take seriously the absolute null models 
of additive and multiplicative dynamics, the distributions should  
be centred near 0 for the additive setting and near 1 for the multi-
plicative setting.

Given the limitations of the experiment — for instance, people 
only had a one-hour training phase to get used to a given environ-
ment — these predictions don’t look so bad. Of course, the 11,232 
individual choices summarized in Fig. 3 may be happenstance, or 
the experiment may be flawed in a way we don’t yet understand. So 
we might put it this way: the strong focus on psychology and lack 
of consideration for dynamics, prevalent in expected utility theory, 
corresponds to the belief that the difference between the red and 
blue curves is spurious.

This may be a good place to acknowledge further heroes of the 
story. That the geometric mean exp〈ln x〉 is less than the arithmetic 
mean 〈x〉 was known to Euclid (Elements, Book V, Proposition 25), 
and it is a special case of Jensen’s inequality13 of 1906. Its connection 
to gambling and investment problems was noted by Whitworth14 in 
1870, is implied by Itô’s work15 of 1944, and is well known among 
gamblers as Kelly’s criterion16 of 1956. Our modest contribution is to 
frame these observations as a question of ergodicity, which we have 
found to be a fruitful perspective. It enforces physical realism by 
precluding interactions among members of a statistical ensemble, it 
enables us to consider dynamics other than additive and multiplica-
tive (corresponding to linear and logarithmic utility functions), and 
it naturally leads to treatments of problems whose solutions are less 
readily visible in previous framings of the issue.

Outlook
The present situation is both dispiriting and uplifting. It is dispir-
iting because economics is firmly stuck in the wrong conceptual 
space. Because the core mistake is 350 years old, the corresponding 
mindset is now firmly institutionalized.

However, it is also uplifting and scientifically exciting because 
of the many opportunities that have just opened up. The situation 
is similar to pre-standard model particle physics (except, with a  
copy of ref. 17 in the back pocket): each behavioural pattern that 
follows from growth rate maximization has its own narrative  
and vocabulary. Take discounting as an example: thousands of  
studies investigate subjective perceptions of the value of a dollar in 
the future. When expressed mathematically, the heart of this nar-
rative becomes a story about growth rates. One has to relabel and 
rearrange some terms in the relevant equation, but eventually the 
ergodic growth rate is recovered as the fundamental concept that 
explains the phenomenon18. The same is true for expected utility 
theory19.

Similarly, we’ve learned a lot about market stability and have 
found a natural resolution of the equity premium puzzle20 or — 
as Ken Arrow used to call it — the volatility puzzle. Growth rate 
optimization predicts a relationship between how fast something 
grows and how volatile it is. This relationship holds not only for the 
stock market indexes we have checked but even for bitcoin. It can 
be used for fraud detection: the relationship doesn’t hold for Bernie 
Madoff ’s fraudulent fund, for example. It also suggests a protocol 
for setting central-bank interest rates21.

Perhaps the most significant change lies in the nature of the 
model human that arises from our conceptual reframing. Homo 
economicus has been criticized, perhaps most succinctly for being 
short-termist. Given that time is so poorly represented in main-
stream economics, this should come as no surprise. Our Homo eco-
nomicus, or Homo ergodicus? — the new guy — is really rather nice. 
He cares about others, understands that cooperation leads to better 
results, and is patient and kind22. Nor do we have to assume huge 
individual differences in psychology or skill to explain the huge 
observed differences in wealth: a trivial null model — though one 
that doesn’t blindly assume ergodicity — predicts the robust features 
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individuals are the same, but an overall pattern is clearly seen. Data reproduced from ref. 11.
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of the wealth distribution23–25. A well-known measure of inequality26 
turned out to be the time-integrated difference between ensemble 
and time-average growth rates in geometric Brownian motion27.

The model I have presented here — optimizing time-average 
growth rates — is a null model, and it has all the shortcomings that 
null models have. The improvement is clear when we compare ours 
to the prevailing null model of optimizing expected time-integrated 
discounted utility. Rather than adding correcting components to 
that conceptually flawed null model, we remove the conceptual flaw. 
The use of a null model of any kind, in my view, is a form of caution: 
of this complex system I only know a few simple aspects with the 
degree of certainty that makes it promising to incorporate them in a 
formal model. Adding further details would require careful checks 
against overfitting.

We have reason to hope for a future economic science that  
is more parsimonious, conceptually clearer and less subjective. It 
will resemble reality more closely and be better aligned with our 
moral intuitions.
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