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Abstract

This paper is divided into two parts. In the first
part, the results of a search of the literature for re-
cent papers dealing with the theory and application
of cyclostationarity are presented and discussed. In
the second part, the recently developed theory of
higher-order cyclostationarity is briefly reviewed and
an application of this theory is described in detail.
The application is that of detecting and determining
the modulation type of each of an unknown number
of spectrally and temporally overlapping random cy-
clostationary signals present in a given set of data.

I Introduction

The importance of using the property of cyclosta- =
tionarity, which is exhibited by virtually all commu- "

nication signals, in the design and analysis of commu-
nications and signal-processing systems has recently
been explicitly recognized by both academicians and
practicing engineers. This recognition is reflected
in an increased number of published journal papers,
the addition of an IEEE Transactions on Signal Pro-
cessing EDICS number, the appearance of cyclosta-
tionary signal processing as a suggested topic in the
calls for papers of prominent professional conferences
(e.g., ICASSP), and an increasing amount of associ-
ated commercial and military product development.
As a result of this recognition of the topic, the first
Workshop on Cyclostationary Signals, organized and
chaired by Professor William A. Gardner of the Uni-
versity of California at Davis, was held in August
of 1992. This first workshop was deemed a success
by its participants and resulted in the first edited
volume of theoretical and applied research articles
devoted exclusively to cyclostationarity [1].

The second Workshop on Cyclostationary Signals
was held in August of 1994. This second workshop
was organized by Professor Stephan V. Schell of The

Pennsylvania State University with some help from
the author. The goals of the second workshop were
similar to those of the first: (i) to provide a forum
for researchers to discuss their work with other qual-
ified workers, (ii) to promote a sense of community
among researchers, workers, and sponsors, and (iii)
to provide a means for rapid dissemination of recent
results and developments in the field. The events of
the two-day workshop appear to have met the first
two goals, and this proceedings is designed to meet
the third goal. The contributions of this paper to-
ward meeting the third goal are described next.

In Section II, recent additions to the literature on
cyclostationary signals are reviewed and the major
topics and trends are identified. In Section III, the
theory of higher-order cyclostationarity is briefly re-
viewed, and in Sections IV-VI, this theory is applied
to a specific problem in the area of signal detection
and modulation recognition. Finally, in Section VII,
conclusions are drawn and the paper is summarized.

II Recent Literature

The results of a search of the open literature
for papers dealing with cyclostationary signals and
cyclostationarity-exploiting signal-processing algo-
rithms are presented in this section. The time pe-
riod searched over is January 1992 to June 1994,
although not all journals can keep up with their
stated publication schedules. Thus, only sources that
were actually available by July 1994 were included in
the search. The following major international jour-
nals were searched for articles on cyclostationarity:
EURASIP’s Signal Processing, IEEE Transactions
on Communications, Signal Processing, and Infor-
mation Theory, IEEE Signal Processing Letters, and
the IEEE Signal Processing Magazine. In addition,
several major international conference proceedings
were searched: the Proceedings of the International
Conference on Acoustics, Speech, and Signal Process-
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ing, 1993, the Proceedings of the 27th Asilomar Con-
ference on Signals, Systems, and Computers, 1993,
and the Proceedings of the 28th Annual Conference
on Information Sciences & Systems, 1994. Papers
from other conference proceedings were included as
well, but the searches of these proceedings were not
as thorough. The University of California library
database Melvyl was also used to confirm that the
journal search was sufficiently thorough.

The complete set of citations from the search make
up the reference list for this paper. The result of
sorting the papers by topic is summarized in Table
1. As can be seen from the table, there are eight ma-

Paper Journal | Conference | Total
Topic Papers Papers
Channel
Equalization 5 8 13
Time-Delay
Estimation 5 0 5
Direction
Finding 5 -2 7
Spatial
Filtering 2 5 7
Detection/
Interception 4 0 4
Signal
Separation 1 3 4
Hardware/
Measurement 4 2 6
HOCS 7 8 15
Totals 33 28 61

Table 1: Topics and numbers of papers cited in the
reference list of this paper. HOCS stands for higher-
order cyclostationarity.

jor topics on which papers have been recently pub-
lished. Two of these topics, higher-order cyclosta-
tionarity and blind channel identification and equal-
ization, have received a large amount of attention
compared to previous years. The proceedings that
you are reading contains contributions from several
researchers to the study of the latter topic, but there
were no submissions for regular papers on the former
topic. For this reason, the second part of this pa-
per presents some recent work on the application of
higher-order cyclostationarity to the problem of de-
tection, sorting, and modulation recognition of mul-
tiple spectrally and temporally overlapping signals,
which will be referred to as cochannel signals hence-
forth. Before describing this research, descriptions

of the eight major research topics in Table 1 and
some highlights of the associated published work are
presented.

The first topic is blind-channel identification and
equalization (BCIE) [1]-[14]. In simplest terms, the
problem here is to undo the effects of a (usually lin-
ear time-invariant) channel on a transmitted digital
communication signal without requiring a training
sequence. The major deleterious effect of a linear
time-invariant channel on such signals is to produce
intersymbol interference. Thus, the main job of the
BCIE algorithm is to remove intersymbol interfer-
ence. This job can be done, conceptually speaking,
by estimating the channel impulse response and ap-
plying its inverse to the received data. However, in
practice this straightforward approach is rarely taken
because of the substantial noise amplification that re-
sults from the amplification of weak spectral compo-
nents of the signal. Thus, a trade-off must be made
between the amount of noise amplification and the
amount of signal equalization that is done by the
equalizer. The identification of the magnitude re-
sponse of the channel can be accomplished by using
the second-order statistics of a stationary model of
the output of the channel together with some knowl-
edge of the second-order statistics of a stationary
model of the input, but since the channels in question
are usually nonminimum phase, the phase response
of the channel cannot be estimated using these mod-
els. In the past, it was thought that this difficulty
could only be surmounted by the use of higher-order
statistics, which—even for stationary models of the
input and output signals—can identify the magni-
tude and phase responses of a nonminimum-phase
channel. Recently, however, following a suggestion
of W. A. Gardner’s, it has been demonstrated that
nonminimum-phase channels can be identified using
second-order statistics if the inherent cyclostationar-
ity of the output signal is not ignored. For digital
communication signals, this typically requires sam-
pling the baseband signal at a rate larger than the
symbol rate. Various algorithms for accomplishing
the BCIE task have been introduced, and further
work and algorithm development is reported in the
cited references.

The second topic is time-delay estimation, which is
sometimes called time-difference-of-arrival (TDOA)
estimation [15]-[19]. The problem here is to estimate
the relative delay between a signal’s wavefronts that
arrive at two physically separated sensors. TDOA
estimates can be used, for example, to determine the
location of the emitter of the signal. Traditional ap-
proaches to TDOA estimation have focussed on the
cross-correlation function between the outputs of the
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two sensors. In the absence of interfering signals
and noise, the magnitude of this cross-correlation
is maximum at the TDOA. However, in the pres-
ence of interference, there are multiple peaks in the
cross-correlation function. In addition, these peaks
can have oscillatory envelopes and, therefore, can in-
terfere with each other in a complicated manner if
they are not spaced sufficiently far from each other.
To mitigate the effects of noise and interference, a
class of TDOA estimators, in which the sensor out-
puts are filtered before the cross-correlation is esti-
mated (the generalized cross-correlation algorithms),
was developed. Such filtering can result in greatly
enhanced performance if the interferers do not sub-
stantially spectrally overlap the signal of interest.
A class of estimators (originally introduced by W.
A. Gardner) which exploit cyclostationarity circum-
vent the interference problem because they are signal
selective. For example, by using the cyclic cross-
correlation instead of the cross correlation, only the
desired signals (those exhibiting the chosen cycle fre-
quency) contribute to the measurement (asymptoti-
cally). Another interesting fact is that TDOAs can
be estimated by using only cyclic autocorrelations
(and no cross correlations—cyclic or otherwise), al-
though there is an inherent ambiguity in the resulting
TDOA estimate [17].

The third topic is array processing for direction-
finding, which is sometimes called direction-of-arrival
estimation or bearing estimation [20]-[26]. Given an
array of sensors upon which a number of signals is
impinging, the problem is to determine the directions
from which the signals arrive. A slightly more gen-
eral version of this problem that is of considerable
interest in practice is to determine the direction of
arrival for only a specific subset of the received sig-
nals. This subset can be those signals, for example,
that exhibit cyclostationarity at a specific cycle fre-
quency. As originally proposed by W. A. Gardner,
the directions of arrival of the signals in the sub-
set can be estimated without substantial degradation
due to the presence of the other signals because of
the signal selectivity of the statistics of cyclostation-
ary signals. This approach allows the estimation of
the directions of arrival for more signals than sensors
by applying the algorithm sequentially for desired
values of the cycle-frequency parameter. New algo-
rithms are studied in [22, 23, 24, 26], and important
performance analyses are provided in [20, 21].

The fourth topic is array processing for waveform
estimation, which is sometimes referred to as beam-
forming [27]-[30]. The problem here is to determine
the weights to apply to the output of each of an array
of sensors such that the sum of weighted outputs con-

tains only the signal of interest and no contributions
from the interferers. There is considerable interest
in determining these weights by processing only the

received data, that is, in determining the weights

with little or no prior information about the signal
environment, or even about the physical character-
istics of the sensors. As originally proposed by W.
A. Gardner, by recognizing that the signal of inter-
est has a unique cycle frequency with respect to the
interferers, the array weights can be determined by—
in a suitably general sense—maximizing the amount
of cyclostationarity at that cycle frequency that is
exhibited by the sum of weighted outputs. There
are various techniques for accomplishing this max-
imization, some of which are studied in the cited
references, and among them is an interesting new
technique called programmable canonical correlation
analysis (PCCA) [32]. While this technique can be
used to blindly adapt array weights by exploiting cy-
clostationarity, it is considerably more general in the
sense that it can exploit many other properties of
the signal and interferers as well or instead. Some
of the signal properties that PCCA can exploit in
order to form a beam in the direction of the signal
of interest and nulls in the directions of the inter-
ferers include cyclostationarity, bandwidth, temporal
structure such as periodic gating, location of spectral
support, and constancy of the modulus.

The fifth topic is weak-signal detection, which is
called interception when the signal(s) to be detected
is intended for a receiver other than the one to be
used [18], [33]-[35]. The problem here is to detect
the presence of a signal that is heavily corrupted
by noise and, possibly, interference. One way to
conceptualize the approaches taken in the cited ref-
erences is in terms of sine-wave generation. Be-
cause the signal of interest is assumed to be cyclosta-
tionary (e.g, a direct-sequence spread-spectrum sig-
nal), additive sine-wave components can be gener-
ated by nonlinearly transforming the received data.
If enough data is available, the presence of these gen-
erated sine waves can be detected, which results in
detection of the signal itself. Since accurate esti-
mates of the amplitudes and phases of the generated
sine waves are not required here, such detection can
be accomplished for relatively low signal-to-noise ra-
tios (SNRs) with less data than that required for
parameter-estimation applications.

The sixth topic is single-sensor signal separation
(36]-[39]. The problem here is to process a single
data record that contains multiple signals in order to
extract from it a desired signal. This desired signal
can be completely temporally and spectrally over-
lapped by interferers. This problem is difficult be-
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cause linear time-invariant filtering cannot be used to
separate such signals. Therefore, any method of sep-
arating the signals must be nonlinear or time-variant
or both. A special kind of linear, time-variant fil-
tering, called linear polyperiodic time-variant filter-
ing, is especially appropriate for filtering cyclosta-
tionary signals. Because such filtering is equivalent
to independently filtering a set of frequency-shifted
versions of the input and then summing, it is also
called frequency-shift (FRESH) filtering. According
to W. A. Gardner’s and W. A. Brown’s original dis-
covery, the frequency-shift operators enable the filter
to exploit the spectral redundancy that is inherent
in cyclostationary signals and to thereby separate co-
channel signals. Linear polyperiodically time-variant
filtering has been generalized to nonlinear polyperi-
odically time-variant filtering; that is, linear FRESH
filtering has been generalized to nonlinear FRESH
filtering. This latter kind of filtering can be use-
ful when the signals in question have little or no
second-order cyclostationarity to exploit. Both kinds
of FRESH filtering are studied in the cited references.

The seventh topic is implementation methods for
“cyclostationarity-exploiting algorithms and measure-
ment of cyclostationarity [40]-[45]. The first problem
that falls into the seventh category is to determine
efficient architectures for the realization of spec-
tral correlation analyzers and other, more special-
purpose, cyclostationarity-exploiting signal proces-
sors. A nice contribution is [41], which contains a
thorough complexity analysis of digital implementa-
tions of spectral correlation analyzers. The second
problem is to mathematically characterize the prop-
erties of standard estimators, such as estimators of
the spectral correlation function and cyclic autocor-
relation [44]. '

Finally, the eighth topic is higher-order cyclosta-
tionarity (HOCS), which is a broader category than
the previous categories [46]—[58]. Higher-order cyclo-
stationarity is the study of the higher-order statis-
tics of cyclostationary signals and their applications.
These statistics can be moments or cumulants or
other kinds of statistics, but emphasis is on cumu-
lants. The eighth topic has two distinct subtopics,
theory and application, and has largely been stud-
ied by two research groups. Each group has a dis-
tinct mathematical framework in which it carries out
its studies. The first group is headed by the au-
thor and Professor William A. Gardner of the Uni-
versity of California at Davis and Statistical Signal
Processing, Incorporated, and the second is headed
by Professor Georgios B. Giannakis of the University
of Virginia at Charlottesville. The former group uses
the fraction-of-time probabilistic framework (tempo-

ral averaging), whereas the latter group uses the
stochastic probabilistic framework (ensemble averag-
ing). In addition, the former group derived the cum-
ulant as the solution to a key problem in the appli-
cation of higher-order cyclostationarity [46], whereas
the latter group adopted the cumulant becatise of the
potential utility of some of its well-known properties.

There are several papers on cyclostationarity that
do not fall into any of the eight categories de-
scribed above [59]-[62]. The first two report on a
study of linear time-invariant filter implementation,
the third discusses autoregressive periodically time-
varying time-series models, and the fourth discusses
the identification of nonlinear systems (see also [49]).

IIT Cyclostationarity

The theory of higher-order cyclostationarity is the
theory of the strengths of the amplitudes, frequen-
cies, and phases of the finite-strength additive sine-
wave components that exist in the outputs of cer-
tain nonlinear transformations of time-series that do
not themselves contain such sine-wave components,
and the measurement thereof. In fact, a signal (or
time-series) is said to exhibit nth-order cyclostation-
arity if there exists an nth-order homogeneous poly-
nomial transformation of the signal that contains at
least one finite-strength additive sine-wave compo-
nent with nonzero frequency. This existence require-
ment is equivalent to a requirement on the moment of
the signal obtained by using fraction-of-time proba-
bility: the moment must contain at least one additive
sine-wave component. Alternatively, a stochastic
process is said to exhibit higher-order cyclostationar-
ity if some higher-order moment of the process (ob-
tained by using a stochastic expectation over a hy-
pothetical ensemble of time-series) contains periodic
or polyperiodic components. If the stochastic pro-
cess 1s cycloergodic for the order of interest and the
moments of this order are periodic or polyperiodic
(i.e., the process is cyclostationary or polycyclosta-
tionary), then the moments and cumulants obtained
by stochastic expectation are equal (with probabil-
ity one) to those obtained using the fraction-of-time
expectation. Since there are relatively few situations
of interest for which an ensemble of data records is
actually available, it is often more appropriate to
work with fraction-of-time probability rather than
stochastic probability. In any case, the words signal,
moment, caumulant, and expectation are used hence-
forth without regard to whether they arise from the
fraction-of-time probabilistic framework or from the
stochastic-process framework. Keeping this in mind,
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let us turn to a description of the fundamental pa-
rameters of the theory of higher-order cyclostation-
arity. *

The nth-order temporal moment function is the ex-
pected value of a product of n delayed and possibly
conjugated versions of the signal. If the signal is
polycyclostationary (abbreviated henceforth to cy-
clostationary), this moment is polyperiodic for some
value of n. Some types of signals have time-invariant
second-order moments, but polyperiodic moments
for orders greater than two. These kinds of signals
are second-order stationary, but are higher-order cy-
clostationary. Other types of signals have polyperio-
dic second-order moments and, therefore, they must
also have polyperiodic moments for some or all or-
ders greater than two, because the polyperiodic com-
ponents of the lower-order delay products multiply
each other in the higher-order delay product. For
these signals, the question arises as to how much of
the polyperiodic higher-order moment is due to such
multiplications, and how much is not. That is, what
is new in the higher-order moment? i.e., how much
is purely nth-order polyperiodicity? The answer to
this question turns out to be the nth-order temporal
cumulant function, which is defined in terms of the
logarithm of the characteristic function of the set of
n delayed versions of the signal [46, 47]. Thus, cum-
ulants, which are known for their tolerance to Gaus-
sian contamination, their linearity with respect to
statistically independent signals and variables, and
their ability to convey information about the phase
(absolute time reference) of their inputs, also exhibit
the property we call purity.

By purity we mean that the nth-order temporal:

cumulant function, which is polyperiodically time-
variant, is equivalent to the pure nth-order polype-
riodic component of the nth-order moment [46], and
which is a nonlinear function of temporal momert.
functions of order 1 through n. The purity prop-
erty exists for cumulants regardless of whether the
signal is stationary (of any order) or cyclostation-
ary (of any order), or whether the fraction-of-time
or stochastic probabilistic frameworks are used. It
happens to be most obvious in the case of cyclosta-
tionary signals and the fraction-of-time framework,
which is the most natural choice for studying sine-
wave generation.

Since both the temporal moments and cumulants
of a cyclostationary signal are polyperiodic functions
of time, they can be represented as Fourier series.
For the moment functions, the Fourier coefficients
are called cyclic temporal moment functions, and the
Fourier frequencies are called impure cycle frequen-
cies, or just cycle frequencies. For the cumulant func-
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tions, the Fourier coefficients are called cyclic tempo-
ral cumulant functions, or just cyclic cumulants, and

the Fourier frequencies are called pure cycle frequen- -

cies, or just cycle frequencies. What is important
to understand about the cyclic cumulants is that if
a pure nth-order cycle frequency is unique to a sig-
nal of interest in a data set that also contains sig-
nals of no interest, then the corresponding nth-order
cyclic cumulant estimated from the data asymptoti-
cally approaches the cyclic cumulant of the signal of
interest. The same is not true (in general) for cyclic
moments: they do not exhibit the property of purity
or, equivalently, they are not signal selective.

The frequency-domain parameters of higher-order
cyclostationarity are defined as limiting versions (as
the frequency resolution width approaches zero) of
moments and cumulants of the complex envelopes of
narrowband components of the signal. These spec-
tral moments and cumulants can be expressed in
terms of multidimensional Fourier transforms of the
cyclic moments and cumulants, respectively [46, 47].
The spectral cumulant has support only on certain
(n — 1)-dimensional hyperplanes contained in its n-
dimensional domain of definition. Each of these hy-
perplanes is associated with a distinct value of the
cycle-frequency parameter. The values of the spec-
tral cumulant on each hyperplane is characterized by
the nth-order cyclic polyspectrum for the correspond-
ing cycle frequency.

The relationships between the probabilistic pa-
rameters of cyclostationary signals are illustrated in
Figure 1. In the case of n = 2, if there are no
finite-strength additive sine-waves in the signal it-
self, then the temporal moments are equal to the
temporal cumulants, which are characterized by the
cyclic autocorrelation functions, and the spectral mo-
ments are equal to the spectral cumulants, which are
characterized by the spectral correlation functions.
If there are sine-wave components in the signal, then
the temporal cumulant differs from the temporal mo-
ment in the same way that the mean-square value of
a random variable differs from its variance. In gen-
eral, the inner diamond of Figure 1 represents the
relationships between the Fourier coefficients of the
temporal moments and cumulants and their trans-
forms, whereas the outer diamond represents the re-
lationships between the temporal and spectral mo-
ments and cumulants themselves. In the case of a
strict-sense stationary signal, the inner and outer di-
amonds represent the same quantities; thus only one
diamond is necessary to represent the parameters.

In subsequent sections, an application of the the-
ory is discussed. This application is based on the
signal-selectivity property of cyclic cumulants. To
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Figure 1: The parameters of higher-order cyclosta-
tionarity. The quantities at the vertices of the outer
diamond are defined in the text. The acronyms at
the vertices of the inner diamond represent (clock-
wise from top): reduced-dimension cyclic temporal
moment function, reduced-dimension cyclic tempo-
ral cumulant function, cyclic polyspectrum, reduced-
dimension spectral moment function.

reiterate, this property states that if the data is the
sum of a number of statistically independent signals
that possess unique cycle frequencies, then the cyclic
cumulants for each signal can be obtained (asymp-
totically) from the cyclic cumulants of the data.

IV  General Signal Search

The problem considered here is simply stated: Deter-
mine the number of cyclostationary signals present,
if any, in a given data record, and determine their
modulation types. The signals can be completely
temporally and spectrally overlapping and can have
low SNR.

If the signals in the data are spectrally disjoint, or
only partially spectrally overlapping, then energy de-
tection followed by linear time-invariant filtering can
be used to achieve some degree of separation. Thus,
this case is of less interest than the case of cochannel
signals because the theory. of higher-order cyclosta-
tionarity is not needed. Nevertheless, the method
to be described can be used to handle the simpler
problem of detecting and classifying non-cochannel

signals as well as the more difficult problem of co-
channel signals.

V  Algorithms

Because of limitations on available space, the math-
ematical descriptions of the algorithms are not given
here. Instead, they are described qualitatively. Some
important details are left out, but enough are given
to allow the reader to understand the approach, and
to evaluate the potential of the methods for applica-
tion to actual problems in the field.

The basic idea behind the proposed solution to
the general signal search problem is that of cyclic
cumulant estimation. The proposed solution can be
divided into the following steps:

1. Estimate the pure cycle frequencies and cyclic

cumulants of the given data for orders 1 through
N,

2. Group these estimates according to harmonic re-
lations among the cycle frequency estimates,

3. Define features consisting of each group’s cycle
frequencies and cyclic cumulants,

4. Compare the measured features to stored fea-
tures for the set of signals of interest to perform
detection and classification.

The first of these steps is accomplished by the gen-
eral search algorithm, the second and third by the
grouping algorithm, and the fourth by the classifica-
tion algorithm. These algorithms are described next.

V.A The General Search Algorithm

The general search algorithm (GSA) can be thought
of as a blind cyclic cumulant estimator. It is blind
in the sense that estimation of an nth-order cyclic
cumulant requires knowledge of all lower-order cycle
frequencies, and the GSA estimates these required
lower-order cycle frequencies from the data. It starts
with a processing order of one, and progresses up to
the desired order N. Its input parameters include the
sets of delays to use in forming the delay products,
the sets of optional conjugations to apply to each of
the delay products, the maximum order of process-
ing N to use, and the number A of cycle frequency
estimates to output for each order, set of conjuga-
tions, and delay set. The latter parameter defines an
effective threshold for cycle frequency estimation.
The GSA is based on the algebraic relationship
between the nth-order moment and the cumulants
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of orders 1 to n. This relationship, first derived
by Shiryaev and Leonov (see Chapter 2 in [1]), ex-
presses the nth-order moment as the nth-order cum-
ulant plus a nonlinear function of the cumulants of
orders 1 to n — 1. This relationship is used to devise
a recursive cumulant estimator, which is the GSA.
The output of the GSA consists of a sequence of
lists of ordered pairs (C’ , &), where C is the magni-
tude of the cyclic cumulant estimate and & is the cor-
responding cycle frequency estimate. This sequence
of lists is indexed by three things: the order of pro-
cessing n, the number of conjugations m, and the
delay vector 7 = [r - - 7,,]. Ideally, this sequence of
lists contains only cycle frequencies of signals that
are present in the data. Because the estimation of
these cycle frequencies and their strengths is blind,
and because of the presence of noise and interfer-
ing signals, the estimates are not exact. Thus, the
sequence of lists contains some entries with & that
are not close to actual cycle frequencies of signals in
the data. The A parameter effectively controls the
number of true and false cycle frequency estimates.

V.B The Grouping Algorithm

The output of the GSA, as described in the previous
section, consists of a sequence of lists of cycle fre-
quency estimates for all the signals in the data, plus
some false cycle frequencies. However, the associa-
tion of each cycle frequency estimate to a particular
signal remains to be done, and this is the job of the
grouping algorithm (GA). In order to associate ele-
ments of the sequence of lists with each other and,
eventually, with a signal in the data, some general
relationships between cycle frequencies obtained by
processing a given signal using various orders and
numbers of conjugations must be known. At the time
of this writing, the grouping algorithm has been com-
pleted only for the class of signals whose complex en-
velopes can be represented as complex-valued pulse-
amplitude-modulated signals. This class of signals
shall be referred to as digital quadrature-amplitude
modulation, or digital QAM. Digital QAM signals
include all amplitude-shift-keyed (ASK) and phase-
shift-keyed (PSK) signals, some partial-response sig-
nals like duobinary and modified duobinary signals,
and those digital signals commonly referred to as
QAM signals. The latter signals are those amplitude-
and phase-shift-keyed signals for which the symbols
In the symbol constellation do not all lie on a single
circle (PSK) or on a single radial line (ASK).

By deriving and examining the cyclic cumulants of
this relatively broad class of communication signals
([46, 47]), relationships between the cycle frequen-

cies and the two modulation parameters, carrier fre-
quency f. and symbol rate T; !, can be determined
for arbitrary n and m. These relationships are given

Bits per Symbol

n| m 2 | 4 | 8 [ >
2 102 | £+£28 0 0 [
9 1 L L . £

Ty Ty Ty Ty
4104 | £ +4f [ EL4f. [ 0
4 2 L L L £

Ty Ty Ty Ty
6 106 | £+6f 0 0 [
6 | L5 | E+4f. | £ xA4f. 0 ]
6 3 L L x &

T(] T[) Tn TO
8 108 | m£8f [ E+8f [ £ +8f | 0
8 126 | Exdaf. [ Ex4f.| 0 0
8 4 x . £ L

T[] Tn Tﬂ TQ
10 [ 0,10 | A £10f. 0 0 0
10) 19 | m+8f | £+8f. | £ £8f. | 0
10 | 37 | £ £4f. | £ £4f. [ B
0] 5 7, I A

Table 2: Potential cycle frequencies for the analytic
signals corresponding to some PSK signals. There
are no cycle frequencies for the values of m that are
not shown in the table. The + sign is associated with
the first value of m, and the > sign means a power
of two greater than eight.

by

n=2m = a=zk/T,
n#E2m = a=Mm-2mf.+k/Ty, (1)

and are used to associate elements in the sequence of
lists with each other. The cycle frequencies for n =
2m are called lower cycle frequencies, whereas those
for n # 2m are called upper cycle frequencies. The
following is a qualitative description of the grouping
algorithm:

1. Input the GSA output sequence (indexed by
n,m, and 7) of lists: (C,&)n m 1.

2. Identify and cluster the n = 2m subsequence of
lists.

3. Group resulting clusters according to fundamen-
tal frequency.

4. Identify and cluster the n # 2m subsequence of
lists.
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5. Associate upper clusters with lower clusters to
form distinct groups.

6. For each group, form a feature by outputting the
peak value of C for each cluster in the group.

The term cluster in the above description means to
use an unsupervised learning algorithm to partition
the list elements into subsets. This clustering re-
sults in a set of clusters, or subsets, each of which
can contain multiple elements (multiple ordered pairs
(C’ ,&)), but for which the & values are, in some sense,
close to each other. The important parameters of a
cluster are its mean (average over the &) and its peak
(maximum over the C).

The output of the GA is a set of numbers; which
are the peak values of the cyclic-cumulant estimates,
corresponding to each of the potential cycle frequen-
cies listed in (1). For example, using Table 2 and
knowledge of the cyclic cumulant functions for BPSK
signals [46, 47], it can be shown that the cyclic cum-
ulants for all the upper and lower cycle frequencies
are nonzero for some 7 for this signal type. Further-
more, the value of 7 for which each nth-order cyclic
cumulant is maximum can be found analytically. An
ideal feature for detection and classification can be
defined as the set of the maxima of all the upper
and lower cyclic cumulants for cycle frequencies as-
sociated with a given signal. These maxima can be
arranged in a matrix for which the row corresponds
to the harmonic number (k in (1)) and the columns
correspond to the distinct ordered pairs (n,m) (see
Figure 2). The value of the matrix element is the
maximum value (over all values of 7) of the cyclic
cumulant with cycle frequency (n — 2m)f. + k/To.
The ideal feature for BPSK is shown in Figure 3 for

k=2 2f.+2/Tp 0f. £ 2/Tp
k=1 2f. £1/Tp 0f. +1/Tp
k‘:0 2fc Ofc

(n,m)=(2,0) (n,m)=(2,1)

Figure 2: Definition of a feature matrix for detection
and classification. An element of the feature matrix
corresponds to the maximum of the magnitude of the
cyclic cumulant for cycle frequency a = (n—2m)f. +
k/Ty, where k is uniquely specified by the row and
the values of n and m are uniquely specified by the
column.

orders n = 2p for p = 1,2,3, and 4. For each order
n, each of the n+1 possible values of m are included.
Thus, the matrix has

2+1)+@+1)+6+1)+(8+1) =24

" columns. The maximum value of % is set equal to

5 for this ideal feature. Note that this feature rep-
resentation suppresses the values of the symbol rate
and carrier frequency: every rectangular-pulse BPSK
signal has the same feature regardless the particular
values of Ty and f.. The ideal feature for QPSK is
shown in Figure 4 (cf. column four in Table 2). No-
tice that there are four dark cells in the ideal feature
matrix for BPSK, and that these same cells are dark
in the ideal feature matrix for QPSK. These cells are
set equal to zero purposely because they correspond
to cycle frequencies of zero. Cyclic cumulants for cy-
cle frequencies of zero always contain contributions
from all signals present in the data. These cyclic
cumulants can be signal selective only when there is
a single signal in the data, which is not the prob-
lem of interest here. Thus, zero cycle frequencies are
never included in a feature.

The ideal feature for any digital QAM signal for
which the symbols in the baseband PAM represen-
tation are independent and identically distributed
can be computed analytically from existing formu-
las. The grouping algorithm outputs estimates of
these ideal features.

2| 4 | 6 8
Figure 3: The ideal feature matrix for a BPSK signal
with rectangular keying envelope.

V.C The Classification Algorithm

Once the GSA and GA have done their work, each of
the resulting features can be classified by comparing
them to stored features that were computed (or mea-
sured) for a set of signals of interest. Development of
the classification algorithm (CA) is ongoing, but the
general idea is to compute the distance (using an ap-
propriate metric) between the measured feature and
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Figure 4: The ideal feature matrix for a QPSK signal
with rectangular keying envelope.

the stored features, and then to declare the modula-
tion type of the signal to be that of the stored feature
that is closest to the measured feature. A significant
difficulty to overcome is that the ideal (stored) fea-
tures depend on the signal power, which is unknown.
Nevertheless, a normalization procedure that allows
proper computation of the distance between the mea-
sured and ideal features has been developed. Exper-
iments are underway to measure the performance of
the classification algorithm.

VI Simulation Results

In this section, some typical results from the
GSA/GA combination are presented. The first set of
measurements are for PSK signals with rectangular
keying envelopes. Using the parameters in Table 3,
feature matrices were measured for simulated BPSK,
QPSK, 8PSK, and offset QPSK (OQPSK) signals.
The results are shown in Figures 5-8. By compar-
ing with the entries in Table 2 and the ideal features
for BPSK and QPSK shown in Figures 3 and 4, it
is evident that the first three of these measured fea-
tures are correct. Also, it is interesting to note that
the ideal feature for OQPSK cannot (at present) be
determined theoretically because its baseband PAM
representation does not have independent symbols.
Nevertheless, the portion of the ideal feature for
n = 2 can be computed, and this matches with mea-
surement. Thus, the GSA/GA combination can be
used to quantify a signal’s higher-order cyclostation-
arity in cases for which no mathematical results exist.
Note that the four features are all distinct, indicat-
ing that these measured features do have potential

Collect 16,384 samples
SNR 0
00000000
. 00000002
Delays 00000004
00000007
00000009
000000012
Orders 2-8, even
Conjugations all
To 23 samples
fe 0.004
A 15

Table 3: Parameters for the first set of measured
feature matrices.

for classification. Note also that whereas the first
three columns of the QPSK and 8PSK features are
identical, the remainder of these two features are dis-
tinct. This observation provides one motivation for
using higher-order cyclostationarity for the purpose
of signal classification: the need to classification of
signals with similar or identical second-order cyclo-
stationarity. To understand another motivation, let
us turn to the next set of simulations.

The focus of the next set of results is on
bandwidth-efficient signals such as duobinary sig-
nals. Feature matrices were measured using the pa-

Collect 16,384 samples
SNR %
00000002
Delays 00000004
00000008
000000016
Orders 2-8, even
Conjugations all
Ty 16 samples
fe 0.0
A 12

Table 4: Parameters for the second set of measured
feature matrices. '

rameters listed in Table 4 for simulated duobinary
(0% excess bandwidth [EBW]), 25% EBW BPSK,
50% EBW BPSK, and 100% EBW BPSK signals.
The results are shown in Figures 9-12. ‘As is pre-
dicted by theory, the number of harmonics of the
symbol rate that correspond to cycle frequencies for
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which the cyclic cumulant is not identically zero in-
creases with increasing order n. Thus, even sig-
nals with no second-order cyclostationarity (such as
duobinary signals) can yield feature matrices with
substantial content provided that the maximum or-
der of processing is large enough. Note also that the
feature matrices could be used to estimate the excess
bandwidth of the signal by comparing to ideal feature
matrices for signals with various EBWs. That is, by
including sufficiently many ideal feature matrices in
the catalog of signals of interest, the signal can be
classified not only as a BPSK signal, but as a BPSK
signal with a specific amount of excess bandwidth.

A point that is worth repeating is that the power of
the methods presented here is that the features can
be measured for each signal even in the case in which
the signal is completely spectrally and temporally
overlapped by one or more interfering signals. This
is illustrated with a final simulation example.

For the final example, two independent BPSK sig-
nals with equal power are added together. One of
these signals has symbol interval length of 23 sam-
ples and a carrier offset of 0.004, whereas the other
has symbol interval length of 15 samples and a carrier
offset of -0.005. Thus, these two signals are almost
completely spectrally overlapping. The feature ma-
trices for each of these signals were measured using
the simulation parameters in Table 3. The results
are shown in Figures 13 and 14, where the symbol-
interval-length and carrier-frequency estimates for
the former feature are 23 and 0.004, respectively, and
those for the latter are 15 and -0.005. A substantial
number of harmonics are missing from both features,
which is understandable because the total number of
cycle frequency estimates output by the GSA was
not increased relative to the first set of simulations
(A is the same for both simulations).

VII Cbnclusions

In this paper, the literature on cyclostationary sig-
nal processing that was published during the past
two years is briefly reviewed. The literature review
reveals that substantial work has been published on
eight topics,” and the nature of the work on these
eight topics is briefly described. The reference list
contains the sixty-two citations found in the litera-
ture search. To fill a perceived gap in this proceed-
ings, the remainder of the paper describes an appli-
cation of the theory of higher-order cyclostationar-
ity. First, the fundamental parameters of the theory
of higher-order cyclostationarity are described. Fol-
lowing this, the theory is applied to the problem of

o e
2| « | 6 | 8

Figure 5: Measured feature matrix for a BPSK signal

with rectangular keying envelope.

enumerating and classifying the modulation type of
each of an unknown number of random signals that
are present in a given data set.
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Figure 6: Measured feature matrix for a QPSK signal
with rectangular keying envelope.
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Figure 7: Measured feature matrix for an 8PSK sig-

nal with rectangular keying envelope.
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Figure 8: Measured feature matrix for an OQPSK
signal with rectangular keying envelope.
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Figure 9: Measured feature matrix for a duobinary

signal. The gray cells with large harmonic numbers
are false cycle-frequency detections.
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Figure 10: Measured feature matrix for a 25% excess- Figure 12: Measured feafture matrix for a 100%
bandwidth BPSK signal. excess-bandwidth BPSK signal.

0
2« | 6 | 8 |
Figure 11: Measured feature matrix for a 50% excess-

bandwidth BPSK signal. The gray cells with large
harmonic numbers (for n = 2) are false cycle-

frequency detections. BPSK signals.

Figure 13: Measured feature matrix for the first of
the groups output by the GA. The carrier offset and
symbol rate were correctly estimated as 0.004 and
23. The input to the GSA consisted of two equipower
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Figure 14: Measured feature matrix for the second of
the groups output by the GA. The input to the GSA
consisted of two equipower BPSK signals. The car-

rier offset and symbol rate were correctly estimated
as -0.005 and 15.
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