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Abstract
The technique of FREquency-SHift (FRESH) fil-
tering exploits the spectral redundancy property of
cyclostationarity that is exhibited by many commu-
nications signals for applications such as co-channel
interference suppression, signal cancellation, and sig-
nal separation. In cases where prior knowledge of the
signal of interest is not available for the realization
of optimum FRESH filters and training signals are
not available for adaptation, blind adaptation is nec-
essary. This paper briefly reviews the theory of opti-
mum FRESH filtering, reviews two recently proposed
algorithms, and presents simulation results for blind-

adaptive linear FRESH filtering.

1 Introduction

The theory and applications of optimum FRE-
quency-SHift (FRESH) filtering have received some
attention recently in regard to the problem of sepa-
rating signals that overlap both in time and in fre-
quency. By exploiting the spectral redundancy prop-
erty of cyclostationarity inherent in most radio signals,
FRESH filtering provides a better solution to the prob-
lem of co-channel interference removal than does linear
time-invariant (LTI) filtering. In addition, the use of
FRESH filtering becomes especially attractive when
only single-antenna reception is available or when di-
rections of arrival of the signals involved are not suffi-
ciently different thereby prohibiting the use of spatial
filtering. Performance evaluation of optimum FRESH
filtering reveals that a substantial degree of signal sep-
arability is possible even with 100% temporally and
spectrally overlapping signals [1]. However, prior sta-
tistical knowledge of the signal of interest is required
for the realization of optimum FRESH filters. When
this knowledge is not available, training signals are
needed for adaptive implementations of FRESH filters.
However, in practice, training signals may not always
be available. Therefore, methods for blind adaptation
need to be sought.

In this paper, two algorithms proposed by the
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second author of this paper for blind-adaptive linear
FRESH filtering are presented. These two algorithms,
namely the Estimated-Crosscorrelation Least Squares
(ECLS) algorithm and the Constant-Modulus Least
Squares (CMLS) algorithm, are simulated using MAT-
LAB. The ECLS method is based on replacing the un-
known crosscorrelation between the received data and
the signal to be extracted with an estimate obtained
directly from the received data. This is possible due to
the signal-selectivity property of cyclostationary sig-
nals.. The CMLS method is based on the concept of
property restoral, specifically restoral of the constant-
modulus property of the signal to be extracted.

A review of optimum FRESH filtering is given
in Section 2. Formulation of the two blind-adaptive
FRESH filtering algorithms and their computer sim-
ulation results are presented in Sections 3 and 4, re-
spectively. Both simulated data and data recorded
from cellular radio transmitters in a laboratory were
used in the computer simulations.

2 Review of Optimum FRESH Filter-
ing

The basic concept of FRESH filtering is that of us-
ing spectral components in some bands to estimate,
enhance, or cancel those in other bands by exploiting
the spectral redundancy exhibited by cyclostationary
signals. Hence, in addition to the complex scaling op-
eration that LTI filters apply to individual spectral
components of the received signal, the implementa-
tion of FRESH filters involves frequency-shifting op-
erations, resulting in linear periodic (or polyperiodic)
time-variant filters. Specifically, it is well known that
while optimum filters for stationary signals are time-
invariant, those for cyclostationary signals with a sin-
gle period (or multiple incommensurate periods) are
periodically (or polyperiodically) time-variant. More
elaborate studies of the theory of optimum FRESH
filtering are available in [1]-[4].

Consider the received signal

r(t) = s(t) + (1), (1)

where s(t) is the cyclostationary signal of interest




(SOI) and i(t) consists of both signals not of inter-
est (SNOIs) and noise. The general expression for the
optimum linear-conjugate-linear (LCL) FRESH filter-
ing of a complex-valued received signal r(t) to produce
an estimate §(t) of s(t) is given by

5(t) = [_0:0 hi(t,7)r(7)dr
+/°° ho(t, 7)r* () dT, (2)

— 00

where h; (¢, 7) and hs(¢, ) are periodically or polyper-
iodically time-varying linear filters with Fourier series
representations

L-1
hi(t,7) = Z hy(t — T)exp(i2may,T) (3)
p=0
and
M-1

ho(t,7) = Z 9q(t — T)exp(i27P,T). (4)

q=0

The inclusion of the conjugate signal in (2) is essential
for optimum time-variant filtering if 7(¢) and s(t) are
analytic-signal or complex-envelope representations of
two real-valued signals [2]. The frequency-shift param-
eters ap and f; can be any of the cycle frequencies
and conjugate cycle frequencies of the SOI and SNOIs
and their linear combinations with integer coeflicients.
A cycle frequency 7 is one for which the frequency-
shifted version z(¢)e!2™"¢ is correlated with z(t+ ) for
some 7. A conjugate cycle frequency v is one for which
the frequency-shifted version z(t)e12™* is correlated
with z*(¢t + 7) for some 7. The values L and M corre-
spond to the number of linear paths and the number
of conjugate-linear paths in the filter, respectively, and
can, in principle, be infinite. The important problem
of selecting appropriate frequency-shift parameters is
addressed in [1] and [2]. Using (3) and (4) in (2), we
obtain

L-1
§(t) = D hp(t) @ [r(t)exp(i2mayt)]

M-1
+ 37 94(t) ® [ (Deap(i2npyt)],  (5)
q=0

which is equivalent to a multivariate (dimension L +
M) optimum LTT filtering problem in which the input
signals are frequency-shifted versions of r(t) and r*(¢).

For the purpose of analyzing the implementation of
optimum FRESH filters in discrete time, assume r(¢)
is a low pass signal with bandwidth less than unity,
and let the variable ¢ be the integer-valued time in-
dex corresponding to unity sampling increment. Then,
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for a finite-impulse-response (FIR) FRESH filter with
weight vector w, (5) can be expressed as

5(t) = wiy(t), (6)

where the elements of w correspond to the coefficients
of hy(t) and gq(t), and y(t) is defined as

Y(t) 2 [Pas(t —t1) - Pa (t = tm) - -
pOIL—1(t - tl) “Pap_q (t — tm)
P-polt —t1)" - popo(t —tm)* -

* T
p"ﬁM—-l(t - tl) o P=PBar—a (t - tm)*]

, (7)
where p,(t) 2 r(t)e'2™#t | the ¢y are appropriately cho-
sen delays (e.g. tx = k — m/2), and m is the length of
each of the LTI filters h,(t) and gq4(t).

The weight vector w that minimizes the average
squared error (over N time samples)

(13(t) - s()1?) (8)

N
is given by
w =Ry Ry,, (9)
where
Ryy = (v (1)) (10)
and

Ry, = (y(0)s"(0)), - (11)

(The notation (-), represents time averaging over N
samples, the * symbol represents estimates obtained
from finite-time averaging, and superscript H denotes
conjugate transposition.)

The least squares (LS) solution given in (9) in-
dicates that statistical knowledge of s(t) is required
for implementation of the optimum LS FRESH filter.
When this knowledge is not available and when train-
ing signals cannot be provided, blind-adaptive meth-
ods must be sought.

3 Blind-Adaptive FRESH Filtering

In this section, two approaches to performing blind-
adaptive linear LS FRESH filtering are presented.
These two methods are based on modifying the LS
FRESH approach outlined in the previous section such
that, in many cases, a good signal estimate can be ob-
tained using only information from the received signal

r(t).
3.1 The ECLS Method

For the Estimated-Crosscorrelation Least Squares
method, equation (9) is modified as

~ ~

w=Ry/R, (12)
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where R is an estimate of the crosscorrelation Rys de-
rived solely from the received signal =(t). Application
of this method requires that the modulation type of
the SOI be known. Observe, for example, that the el-
ement in Rys corresponding to the i** frequency shift
a; 1s given by

(Palt-t)s®) . (13)
Due to the éignal-selectivity property of cyclostation-

ary signals, we have (for large N)
(paslt—t0)5" () = (pault—tu)r" (1))~ (14)
if a; is a cycle frequency of s(t) but not #(¢) and
(p-pt—t)"s" () =
(p-pt=tuyr@)  (15)

if §; is a conjugate cycle frequency of s(t) but not i(¢).
For all other a; and B;, except those that correspond
to cycle frequencies of both s(t) and i(t), the left-hand-
sides of (14) and (15) approach 0 as N — oo.

For the special case of @; = 0, which is necessarily a
cycle frequency of both s(t) and i(t), the corresponding
m elements in ﬁys,

<po(t —tk)s*(t)>N, k=1,--,m  (16)

approach, as N — oo, the limit autocorrelation of s(t)
at 7 = —tg, Rs(—tx), because s(t) and i(t) are statisti-
cally independent. Therefore, an estimate of (16) can
be obtained using an estimate of R,(7), or its Fourier
transform S, (f), the power spectral density (PSD) of
s(t). An expression for S;(f) in terms of S¥(f), the
spectral correlation function for s(t), or S%. (f), the
conjugate spectral correlation function for s(t), can be
derived from the mathematical model of s(t) for some
signals (like AM, BPSK, PAM, digital QAM, and pos-
sibly others) [3]. Furthermore, the signal-selectivity
property results in

S (f) = 57(1) (17)

and ‘

S5e- (F) = 875 () (18)
if o; and f; are cycle frequencies of s(t) but not (¢).
Therefore, an estimate of S;(f), and hence (16), can
be obtained using estimates of the right-hand-side of
(17) or (18). The rest of R is determined according
o (14)-(15) and the discussion that follows (15). As a
result, all elements of ftys can be estimated solely from
the received waveform r(t), provided that all the non-
zero frequency shifts are cycle frequencies or conjugate
cycle frequencies of either only s(¢) or only i(t).
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For example, for a complex BPSK SOI with carrier
frequency fo, we have

So(f) = 1522 (F = fo). (19)

Using (18) in (19) with §; = 2f, the first m elements
of R (corresponding to o = 0) can be approximated
using R .

Ry(r) = FTHISHE(f = fo)l} (20)
and the rest of R can be estimated as discussed pre-
viously. Using the weight vector given by (12) in (6),
we have then obtained an estimate of s(¢) solely from
the received signal r(t).

3.2 The CMLS Method

An alternative to the ECLS method is the
Constant-Modulus Least Squares method (based on
the constant modulus algorithm originally proposed
for time-invariant filtering by Treichler and Agee [5])
obtained by replacing the training signal s(¢) in Rys
with the modulus-normalized version,

Lo 8(t)
of the estimate
5(t) =wiy(t), (22)
where o
w =Ry Ry;s. (23)

The sequence of equations (21),(23), and (22) are iter-
ated until the minimum mean-squared error (MMSE)

min (|s(t) - Aé(t)|2>N (24)
is approached. The correct scaling factor A needs to be
determined because the resulting signal estimate 5(t)
has unity modulus. The CMLS approach is applicable,
when the signal-to-interference-ratio (SIR) is greater
than unity, to FM, FSK, BPSK, QPSK, and digital
QAM signals with constant modulus.

4 Computer Simulations

Here, performances of the ECLS and CMLS al-
gorithms for co-channel interference removal are il-
lustrated by computer simulations. In the first ex-
ample, we have two 80% spectrally overlapping com-
plex BPSK signals with 100% excess-bandwidth, equal
baud-rates (fy, = f5, = 1/16), and equal average pow-
ers (SIR= 0dB). White Gaussian noise is added to ob-
tain a 20dB SNR, and the number of data points N is
4096. The SOI is centered at zero frequency and the
carrier offset, f,., of the interferer is determined from
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Figure 1: The ECLS method: PSDs of received data,
filter output, and SOI in log scale vs. normalized fre-
quency

NMSE(dB):
f-shifts ECLS;
fors fo, | SIR | (L);(CL) LS-FRESH
0,2fos;
1/16,1/16 | 3 | 0,2f,s,£fp, | —10.3; —12.5
0,2fos;
1/16,1/16 | 0 | 0,2f0s, %S, | —9.0; —=11.3
0s2.fos):|:fb1§
1/8,1/10 | 3 | 0,2f0s,%fb, | —11.2; —13.9
O)Qfosa:tfbl;
1/8,1/10 | 0

0,2f0s,£fo, | —9.7; —12.2

Table 1: Simulation parameters and NMSE perfor-
mance results of the ECLS method.

the specified percentage overlap. The ECLS method,
with filter length m = 20 and four frequency-shift
paths (a1 = 2fos, B1,2,3 = 2fos, £ fp,) in addition to
the zero-frequency-shift paths ag = 0 and By = 0, is
used to extract the SOI. The result is shown in Fig-
ure 1, where the normalized MSE (NMSE) obtained
using LS FRESH filtering with a perfect training sig-
nal is also shown for comparison. Table 1 shows simu-
lation parameters and NMSEs for this simulation and
several other cases, all with m = 20 and 80% over-
lapping signals. We see in these simulations that the
ECLS approach yields NMSEs that are within 2 to
3dB of those for the corresponding LS FRESH filters.

Table 2 shows bit-error-rates (BERs) and simu-
lation parameters_for example one and several other
cases (all with m = 20) in which the percentage over-
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fous N; f-shifts BER
fo, | overlap (L);(CL) r(t);ECLS
1/16; | 4096; 0,2 fos; 0.0941;
1/16 80% ‘0,2f06):tfbl 0
1/16; | 16384; 0,2 f0s; 0.0968;
1/16 | 99.9% 0,2fos, X fb, 0.0313
0,2fos;

1/16; | 65536; | 0,=%fs,,2f0s, 0.0906;
1/16 99.9% 2fos :tfb;;4fos 0.0215
01 2f03; :I:fbla
1/8; | 4096; | +fb,;0,%f,, 0.0646;
1/10 | 99.9% | 2fos,2fos % fo, 0.0118

Table 2: Simulation parameters and BER performance
results of the ECLS method.

lap of signal spectra is much higher. Constellation
diagrams of the received data and the ECLS filter
output are shown in Figures 2-5 for the four cases in
Table 2. In these cases of high percentage spectral
overlap of co-channel signals, the use of the ECLS al-
gorithm has enabled reduction in BERs as compared
to the case with no filtering (designated BER r(t) in
Table 2). Therefore, preceding a decision feedback
equalizer or a decision-directed equalizer by the ECLS
blind-adaptive FRESH filter could enable proper oper-
ation of these conventional methods in cases where the
signal of interest is severely corrupted by co-channel
interference.

In the second and third examples, the CMLS
approach is applied to cellular radio data digitally
recorded from commercially available transmitters in
alaboratory. In the first scenario, the digital data por-
tion (used for call control information) of the cellular
radio data is used. This portion consists of a CPFSK
signal which has constant modulus. The SOI and in-
terferer are two independent complex-valued data seg-
ments of the same modulation type and with the same
baud-rate f,. The SOI has carrier frequency equal to
zero and the interferer has a carrier offset, f,,, that
results in 80% overlap of the signal spectra. The SIR
is 3dB, SNR is 20dB, and N = 1024. The CMLS
method, with m = 20 and four frequency-shift paths
(a1,2,3,4 = £f5, £2fp) in addition to the ag = 0 path,
is used to extract the SOI. No conjugate-linear paths
were employed in this case because the signals involved
do not exhibit very strong conjugate spectral coher-
ence. Figure 6 shows the result together with the
NMSE obtained using LS FRESH filtering with a per-
fect training signal for comparison. Also shown are the
BERs of the received data and the filter output. The
use of the CMLS FRESH filter has reduced the BER
from 0.2088 to 0 in this scenario.
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Figure 5: The ECLS method on BPSK signal ~ Table 2

Figure 3: The ECLS method on BPSK signal — Table 2
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In the second scenario, the voice portion of the
cellular radio data is used. This portion consists of
an FM signal with a supervisory audio tone (SAT)
in the baseband. The SOI and interferer are two in-
dependent complex-valued data segments of the same
modulation type with SAT frequencies f;q:, = 6023Hz
and fsqt, = 5972Hz respectively. The interferer with
carrier offset f,; overlaps the SOI centered at zero
frequency by 80%. The SIR is 3dB, SNR is 20dB,
and N = 1024. The CMLS method is used with
m = 20 and eleven frequency-shift paths (ao,1,2,34 =
0, ifsatl ) ifsatg ) ﬁ0,1,2,3,4,5 = 0, :tfsatl ) 2f03y 2fos +
fsat,). Results are shown in Figures 7 and 8.

In both scenarios, the CMLS algorithm is able to
converge, within fifteen iterations, to within 2 to 3dB
of the LS NMSE. Improvements in the BER perfor-
mance as shown in Figure 6 and in the quality of the
time waveform as shown in Figure 8 are substantial.
With much lower SIRs, the algorithm may experience
the well-known capture problem which can prevent
the algorithm from converging to the global minimum
of MSE. With higher percentage spectral overlap, the
MSE performance degrades, and larger number of fil-
ter taps and longer data collect time are required for
extracting the SOI with the same level of performance,
resulting in lower convergence rates.

An advantage of the CMLS method is that it can
clean up channel distortion when it converges properly.
On the other hand, the ECLS method does not expe-
rience the convergence problem and can therefore mit-
igate much more severe interference than that which
the CMLS method can accommodate. Moreover, the
ECLS method is not restricted to constant-modulus
signals. To possibly gain the advantages of both meth-
ods, the CMLS algorithm can be used following the
ECLS algorithm.

5 Conclusion

In this paper, the usefulness of two relatively new
blind-adaptive linear FRESH filtering algorithms are
demonstrated via computer simulations. The set of
frequency-shift parameters used in the FRESH filters
can be determined using conventional cyclic spectral
analysis of the received data. The ECLS method re-
quires knowledge of the modulation type of the SOI
in order to obtain a mathematical model used for es-
timating the crosscorrelation and the CMLS method
is applicable only to constant-modulus signals. These
two methods provide means for mitigating severe co-
channel interference in commercial and military com-
munications, shipboard combat systems, navigational
environments etc., without prior detailed knowledge of
the SOI. In cases of moderate co-channel interference,
such as 80% overlap of equal-powered signals, perfect
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extraction of the SOI is possible. In cases of high per-
centage spectral overlap (99% or higher), these new
methods can be used to precede decision feedback or
decision-directed equalizers at the receiver for further
reduction in BER.

Linear FRESH filtering can be generalized to non-
linear FRESH filtering for signals exhibiting higher-
order cyclostationarity. Examples of such signals
are bandwidth-efficient digital communication signals
such as duobinary PAM, CPFSK, and filtered digi-
tal QAM, as well as some low-probability-of-intercept
signals. A special type of nonlinear FRESH filtering
called linear-plus-cubic (LPC) FRESH filtering is use-
ful for signals with fourth-order cyclostationarity. The
most recent development in LPC FRESH filtering is
given in [6] and [7].
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