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Abstract

In this paper, we use blind adaptive spatial filter-
ing to extract spectrally overlapping FM cellular ra-
dio signals. The technique presented here uses a pro-
grammable transformation to derive a training signal
from the received data. Simulation results show that
a variety of transformations are capable of produc-
ing high-quality signal estimates. A transformation
producing a structure similar to the Cross-SCORE
algorithm may be useful for exploiting the cyclosta-
tionarity introduced by the supervisory audio tone
present in the baseband of the analog FM signal.
The issue of convergence behavior is also discussed.

I Introduction

As the demand for cellular communication services
continues to grow, system resources must be used
more efficiently. Current efforts to increase the num-
ber of users primarily focus on digital techniques
(e.g., CDMA). Another approach to increasing the
number of users in a mobile radio environment is to
employ spatial processing. This would allow sepa-
ration of spectrally overlapping signals through the
use of space-division multiplexing. Such an approach
is presented in [1], where the SCORE algorithm [2]
adapts a sensor array by exploiting spectral correla-
tion in PSK signals.

In order to expand the capacity of the U.S. Ad-
vanced Mobile Phone System (AMPS) by means of
spatial processing, the absence of a training signal,
as well as an unknown (and changing) direction of
arrival (DOA), implies the need for a blind adaptive
spatial filter. The technique presented here, Pro-
grammable Canonical Correlation Analysis (PCCA),
is a flexible and robust algorithm for blindly adapt-
ing antenna arrays. Knowledge of array calibration
data and signal DOA is not required. A training sig-
nal is generated locally from the received data using
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a programmable reference-path transformation. An
appropriate transformation is chosen based on the
signal environment. A wide variety of transforma-
tions are potentially useful [3, 4, 5], only a few of
which are presented here.

Section II describes the AMPS signal format and
the assumed environment model. The PCCA algo-
rithm and some of its variants are discussed in Sec-
tion III. Simulation results using actual AMPS data
collects are presented in Section IV.

IT Signal Environment

In the AMPS system, voice is transmitted by
frequency modulating an RF carrier in the 800-
900 MHz. band. Transmission and reception occur in
different frequency bands. Neighboring cells operate
in different frequency bands so as to avoid interfer-
ence between cells.

The FM voice signal baseband contains an audio
signal that has been bandlimited to 3000 Hz. and fil-
tered with a pre-emphasis filter. The baseband also
contains a supervisory audio tone (SAT) at approx-
imately 6 kHz. This composite signal is frequency
modulated with a deviation of 12 kHz. to produce a
signal bandwidth of roughly 30 kHz.

The signals used in the computer simulations de-
scribed here are all collected off-the-air, sampled,
down-converted, and filtered in order to form their
complex envelope representations. The signals are
combined with white Gaussian noise, simulating an
environment containing spectrally overlapping but
frequency-offset signals.

We assume a two-dimensional array geometry
throughout this paper and that a narrowband sig-
nal model is appropriate. The sensor array output
can be written as

z(t) = A(0)s(t) + n(t),

where the vector s(t) contains L uncorrelated AMPS
signals, A(6) is the M x L array response matrix,
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is the signal DOA vector, and n(t) is an M x 1 vector
of spatially white noise.

IIT PCCA

Canonical correlation analysis (CCA) was devel-
oped by Hotelling [6] in the 1930’s as a way of relat-
ing two sets of random variables. Here we describe
this technique and how it can be applied to antenna
arrays.

III.A CCA

Suppose we have two random vectors, x(t) and
y(t), whose empirical correlation matrix is defined
as

R, £ (z(ty" ().

Let us define two random variables u;(t) = af «(t)
and vy (t) = b y(t). We want to choose a; and b; so
that the magnitude of the correlation between u; ()
and vy(t) is maximized. These are the first pair
of canonical variables. We then define the second
pair of canonical variables as the linear combinations
us(t) = afla(t) and va(t) = b y(t) that are maxi-
mally correlated with each other and constrained to
be uncorrelated with the first pair of canonical vari-
ables. Similarly, the kth pair of canonical variables
are the linear combinations that are maximally corre-
lated among all variables uncorrelated with the pre-
vious k — 1 pairs. The correlation between the kth
pair of canonical variables is called the kth canoni-

cal correlation. We now have two vectors, u(t) and .

v(t), that consist of ordered pairs of variables that
are maximally correlated with each other but uncor-
related with all other elements of the vectors.

The coefficient vectors ay and by are given by the
following eigenequations (cf. [7]):

-1 -1 —
Rxx nyRyy Ryxak = /\k aj,

-1 -1 —
R;R, R7\R, by = Aby,

where A is the kth-largest eigenvalue and is equal to
the squared magnitude of the correlation coefficient
of ur(t) and vi(¢). The canonical variates have the
properties

E{uwi} = E{vivj} =1

E{uvi} = pi
E{uvj} = E{uiuj} = E{vivj} =0, i#j,
where p; is the correlation coefficient of w;(¢) and
vi(t). Note that the vectors a and by are unique

unless two or more pairs of canonical variables have
the same correlation magnitude, i.e., if |A\¢| = |A g1

III.B CCA Applied to Sensor Arrays

The theory of canonical correlation is applied to
adaptive antenna arrays in [5, 4, 3]. Here we re-
view this approach. Let z(t) be the output of an
N-element antenna array and y(t) be the output of
a user-programmable transformation of z(¢). In gen-
eral, the transformation is chosen to decorrelate com-
ponents belonging to signals of no interest (SONI’s)
in x(t) and y(t) while maintaining a high distinct
correlation between signal of interest (SOI) compo-
nents. CCA is then applied to x(t) and y(t) to pro-
duce the eigenequations

R R, R;!R, W, = W,A

R;IR, R;!R, W, = W,A.

The eigenvectors are used as spatial filter weights to
produce canonical variates denoted by 3(¢) and d(t):

i) = wHa(t)
d(t) = W, y(t)

A block diagram of the PCCA algorithm is shown in
Figure 1.

If the reference-path transformation is able to
decorrelate the SONI’s while retaining sufficient cor-
relation between SOI components in x(t) and y(t),
the first canonical variable, $1(¢), can be a high-
quality estimate of the SOI. Note that the training
signal di(t) need not be a high-quality estimate; it
only needs to be sufficiently correlated with §;(t). In
fact, each of the elements of 3(¢) can be a signal esti-
mate. It is shown in [4] that if the elements of s(t) are
uncorrelated and the resulting canonical correlation
magnitudes are distinct, then the PCCA signal esti-
mates are comparable in quality to those produced
by the minimum mean square error beamformer.
Thus, in some environments, where the reference-
path transformation is chosen judiciously, multiple
signals can be extracted by using each signal’s cor-
responding eigenvector as a set of array weights.

ITI.C Transformations

As mentioned, the reference-path transformation
should be chosen so that the correlations between sig-
nal components in data vectors z(t) and y(t) have
different magnitudes. Possible transformations in-
clude:

e y(t) is a frequency-shifted (by a) and delayed
(by 7) version of x(t) or @*(t), which is equiv-
alent to the Cross-SCORE algorithm. This can
be generalized to multiple values of o and 7 in
order to improve convergence behavior.
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Figure 1: Block diagram of PCCA.

¢ y(t) is the output of a bandpass or bandstop fil-
ter, allowing separation of signals with possibly
overlapping spectra, but with different regions
of support.

o y(t) is a delayed version of z(t), allowing sepa-
ration of signals with differing coherence times
(or bandwidths). It is shown in [4] that a delay
transformation can also be used to mitigate the
effects of multipath.

e y(t) is the output of a time-gating operation,
where either the SOI or SONI has a duty cycle
of less than 100%.

e y(t) is the output of a modulus restoration filter
for cases where the SOI has a constant envelope.

III.D PCCA Variants

Phase-PCCA. For some applications, we would
like to separate signals based on differences in their
correlation phases instead of, or in addition to, their
magnitudes. A modification of PCCA called Phase-
PCCA (or ¢-PCCA) has this capability. Although
¢-PCCA is not known to be the solution to an opti-
mization problem, it has been very effective in com-
puter simulations.

¢-PCCA is similar in form to Phase-SCORE (8].
The algorithm structure is the same as that shown in
Figure 1, except that the weight vectors are solutions
to a different eigenequation:

R;i ny W, = W, A.

Reduced-Rank PCCA. Solving the PCCA and
¢-PCCA eigenequations involves inverting correla-
tion matrices. Ideally, these matrices are not sin-
gular. Matrices estimated from finite data collects,
however, may be poorly conditioned for small collect
times. Thus, perturbations in the small eigenvalues
of R_, produce large errors in R_!. The effects of

this problem can be reduced by replacing R;; with
its pseudoinverse

R} = 2 Z eze, ,

where L is the rank of R__,
and e; is its [th eigenvector.

In [9], Biedka replaces the matrix inverses
with pseudoinverses in the SCORE eigenequa-
tions to obtain what he calls Subspace-Constrained
SCORE. Similarly, substituting pseudoinverses into
the PCCA equation produces Reduced-Rank PCCA

(RR-PCCA) and is described by the eigenequations

A; is its {th eigenvalue,

+ R Rt
RL R, R R, W,=W.A

+ +
R{ R, R R W,=W,A.

A similar substitution produces a reduced-rank ver-
sion of p-PCCA. Simulation results in Section IV
demonstrate improved convergence behavior for this
technique over plain PCCA.

IV  Simulation Results

Here we present results obtained with PCCA and
its relatives using environments generated from live
AMPS data described in Section II. The environ-
ments contain spectrally overlapping but frequency-
offset signals, which is a modification of the existing
AMPS system. In each experiment, correlation ma-
trices are created from the available data. The out-
put signal-to-interference and noise ratios (SINR’s)
of resulting SOI estimates are averaged to produce a
mean SINR, for each collect time.

IV.A CMA

An environment containing four AMPS signals is
received by a five-element linear array with half-
wavelength spacing and is described in Table 1. A
temporal least-squares CMA algorithm [10] is used
as the reference-path transformation. It adapts an
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In-band SNR (dB)
Signal f. (kHz) AOA Env.1 Env. 2

In-band SNR (dB)
Signal f. (kHz) AOA Env.1 Env. 2

- SOI 0 10 18 18
SONI1 -10 -20 13 11
SONI2 5 30 12 10
SONI3 15 45 15 12

Table 1: Simulation parameters for sparse AMPS
environments.
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Figure 2: Average output SINR for AMPS cellu-
lar radio signals using CMA and bandpass filter
reference-path transformations. Error bars indicate
one standard deviation in each direction over 10 tri-
als.

eight-tap FIR filter enforcing a constant modulus
cost function. Since the SOI is the strongest signal
in the environment, the CMA captures it and sup-
presses the SONI’s. Although the CMA distorts the
SOI in the reference path, its output is still useful
as a training signal. Figure 2 plots the output SINR
versus collect time for both environments. PCCA is
able to extract a high-quality SOI estimate.

Also plotted in Figure 2 are SINR results for ex-
periments using a 10 kHz. bandpass filter as the
reference-path transformation. The results are very
similar to those obtained with the CMA. Although
the bandpass filter allows the user to specify which
signal he wants to extract, CMA is useful for appli-
cations where the exact carrier frequency of the SOI
is unknown.

IV.B Bandpass Filter

A denser signal environment is described in Table 2
and received by an eight-element linear array. The

SOI 0 10 18 18
SONI 1 -15 © -65 12 10
SONI 2 -10 30 15 12
SONI 3 -5 -40 13 11
SONI 4 5 -20 12 10
SONI 5 10 70 13 11
SONI 6 15 45 15 12

Table 2: Simulation parameters for dense AMPS en-
vironments.
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Figure 3: Spectra of individual AMPS signals in
dense environment. Bandpass filter transformation
is also shown. Noise spectrum is not shown.

individual signal spectra are plotted in Figure 3. We
see that most of a signal’s energy is concentrated near
its carrier. "Cherefore we can use a narrow (5 kHz.)
bandpass transformation to isolate the SOI. The av-
erage output SINR is plotted in Figure 4. Given
enough adaptation time, PCCA produces a high-
SINR SOI estimate.

Because of a fade rate of roughly 100 Hz., We
would like to be able to produce high-quality signal
estimates in much less than 10 msec. In the next sec-
tion, we modify this experiment in order to improve
PCCA convergence behavior.

IV.C RR-PCCA

As mentioned in Section III, if either R, or R.
has small eigenvalues, PCCA performance can ﬁ
poor for small collect times. Table 3 displays the
autocorrelation matrix eigenvalues of the dense envi-
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Figure 4: Average output SINR for AMPS SOI using
5 kHz. bandpass filter transformation. Ten trials are
run at each collect time. 71 samples = 1 msec.

Env. 1 Env. 2
Ry l R, R I R,y
232.46 | 191.53 | 225.97 | 191.71
111.48 | 5.08 58.27 3.18
92.14 3.32 57.86 2.07
74.71 2.35 43.47 1.26
57.51 0.79 34.11 0.52
49.61 0.67 29.81 0.38
15.77 0.22 9.76 0.17
0.43 0.06 0.43 0.06

Table 3: Eigenvalues of signal path and reference
path correlation matrices for the dense AMPS envi-
ronments.

ronments used in the previous example. We see that
R has only one large eigenvalue, whereas R, has
broadly distributed eigenvalues. Thus we can expect
an improvement in performance by using RR-PCCA.

The results of using RR-PCCA on the weaker of
the dense AMPS environment are plotted in Fig-
ures 5 through 7. The ranks of Rf, and R}, range
from one to eight. Collect times T range from 64 to
2048 samples. Results for the stronger environment
are similar to those plotted except that, for small
values of T' and R,""x rank, SINR results are slightly
poorer.

In Figure 5, the collect time is fixed at 64 samples.
We see that, for such short collects, the peak perfor-
manceisat Ly =3or4and Ly =1. L, = 1 produces
the best results for all collect times and values of L.
This is consistent with the fact that R, has only

Output SINR (dB)

Figure 5: Average output SINR plotted versus rank
of R} , T = 64 samples. Rank of R;'y is the pa-
rameter. The best performance is given by L, = 1;
L, = 8 gives the poorest. Ten trials are run for each

combination of rank values.

Output SINR (dB)

N
©
T

17 i i ; ; ; ;
2 4 5
Rank of Rxx

Figure 6: Average output SINR plotted versus rank
of RY,, T = 256 samples. The curves merge com-

pletely as collect time increases.
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Rank of Ryy = 1

Output SINR (dB)
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Figure 7: Average output SINR plotted versus col-
lect time. Rank of R} _ is the parameter, ranging
from two to eight. Rank of R} = 1. Ten trials are
run for each combination of rank and collect time.
71 samples = 1 msec.

one large eigenvalue. By choosing Ly = 1 and L,
= 4, RR-PCCA yields an SINR improvement over
plain PCCA of almost 6 dB.

As collect time is increased, the value of L, has
less of an effect on performance, but L, must be
increased to produce the maximum SINR. Thus we
see that the optimal rank of R*‘y is unambiguous
and independent of collect time, whereas the opti-
mal rank of R}, is a function of collect time. The
performance trade-off between L, and collect time is
presented concisely in Figure 7, where Ly is fixed at
one and average output SINR is plotted versus col-
lect time. Each curve represents a different value of
L. For small collect times, even significantly under-
estimated values of L; can produce good results. A
value of L, = 6 is optimal for all but the smallest col-
lect time. This is also consistent with the eigenvalue
data in Table 3.

IV.D Phase-PCCA
Consider the analytic signal u(t) with carrier fre-
quency fo:

u(t) = s(t)e!(2rfot+bo),
Its empirical autocorrelation function is given by

Ru(7) = (u(t + m)u(t)”)

Il

<s(t + T)ei[27rfo(t+7')+80]s(t)*e—i(waot+0o)>

R,(T)eiz”f°r.

Il

Output SINR

weaker env.,

18-« SZ N . ................... weaker env., D=2 i

weaker env., D=3

10 i ; i
64 128 256 512 1024 2048
Number of data samples

Figure 8: Average output SINR for AMPS cellular
radio SOI in weaker of two dense interference envi-
ronments. ¢-PCCA was used with a reference-path
delay of A =1, 2, and 3 samples. Ten trials are run.
71 samples = 1 msec.

The correlation between u(t) and a delayed version
of itself is thus

Ry(7)
R4(0)
= ps(r)e

pu(T)

i2‘n’foT

Thus for small delays, the phase of a signal’s correla-
tion coefficient is proportional to its carrier frequency
in radians multiplied by the delay. By placing a small
delay in the reference path of p-PCCA, correlations
between components in the two paths will have dif-
ferent phases for each signal. This allows p-PCCA to
separate signals based on differences in their carrier
frequencies.

Phase-PCCA with a pure delay is applied to the
dense AMPS environments described in Table 2.
Output SINR results for the weaker of the two en-
vironments are plotted in Figure 8 for delays of one,
two, and three samples. (Performance in the other
environment is virtually identical.) Delays of A = 2
and 3 produce roughly 1 dB of improvement in SINR,
over A = 1, probably because of increased separa-
tion of correlation coefficients, as measured by the
¢-PCCA eigenvalues.

This approach to extracting AMPS signals has the
advantage of being able to extract multiple SOIs si-
multaneously. It’s convergence behavior is similar
to that of plain PCCA with a bandpass transforma-
tion. A reduced-rank version of ¢-PCCA may im-
prove performance, but this approach has not yet
been tested.
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V Conclusions

In this paper, we have demonstrated the effective-
ness of applying blind adaptive spatial filtering to
cellular radio environments. Here we have focused
on a method for expanding system capacity by us-
ing spectrally overlapping but frequency-offset ana-
log voice signals and spatially separating the signals
at the base station. The PCCA family of algorithms
is ideally suited to this application. PCCA can sep-
arate signals based on differences in their regions of
spectral support, carrier frequencies, or other char-
acteristics.

In cases where AMPS signals are completely spec-
trally coincident, other approaches may be employed.
For example, the presence of the SAT in the signal
baseband introduces cyclostationarity. Because each
signal’s SAT has a unique phase, p-PCCA may be
able to separate the signals since their cyclic corre-
lation coefficients will all have different phases. Al-
though the resulting cyclic feature is weak, PCCA
(unlike SCORE) can exploit features at multiple cy-
cle frequencies, possibly improving convergence be-
havior. Rank-reduced methods may also be helpful
in this regard. This approach is currently being ex-
plored.
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