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Abstract

The Programmable Canonical Correlation Ana-
lyzer (PCCA) is modified to include recursion, feed-
back and training set constraints for improved blind
adaptive spatial filtering. The development pre-
sented here includes the establishment of appropriate
optimization criteria, optimal weight solutions (when
tractable), and efficient power method implementa-
tions for the new PCCA techniques. The resulting

family of adaptive spatial filters is shown to include
previously established beamforming techniques, as

well as several new processors. The performance of
these techniques is evaluated by monte carlo simula-
tion and characterized in terms of output SINR and
convergence behavior. In many cases the new PCCA
techniques outperform established techniques at the
expense of increased computational burden.

I Introduction

The Programmable Canonical Correlation Ana-
lyzer (PCCA) has recently been proposed as a gen-
eral signal processing structure for blind adaptive
spatial filtering [4, 10, 11]. The PCCA computes the
canonical correlation (3, 7] between a data-derived
training signal set and a spatial filter output in order
to permit extraction of signals exhibiting preselected
statistical properties. This is accomplished through
the joint adaptation of a pair of linear combiners op-
erating on the input data and training signal sets
respectively. In this paper, the PCCA structure is
modified to permit greater flexibility in the selec-
tion and control of the training signal set. In par-
ticular, two modifications are developed. The first
permits the user to incorporate the spatial filter out-

*This work supported by Rome Laboratories RL/IRAA.

put within the training set in a recursive or feed-
back mode. The second modification permits the
user to place linear constraints on the training set
weights in order to ensure exploitation of desired sig-
nal properties. With these modifications a number
of established blind adaptive spatial filtering algo-
rithms (e.g., LS-CMA [1] and Phase-SCORE [9]) are
now able to be presented within a general PCCA
framework.

- Prior to development of the modified PCCA a brief
review of the basic PCCA and related adaptive spa-
tial filtering techniques is presented. These tech-
niques are characterized in terms of their design op-
timization criteria, adaptation procedures, optimal
solutions (if tractable), and weight update imple-
mentations. To facilitate the comparison of these
techniques a common array model and notation con-
vention is introduced.

I.A Model and Notation Conventions

Given an array of M sensors the received data is
represented by the narrowband model

x(K) = as(k) + n(k), (1)

where a is the array steering vector, s(k) is the sig-
nal of interest, and n(k) is the undesired interference
and noise. The vectors x(k), a, and n(k) are com-
plex M x 1 vectors. The output of a linear combiner
applied to the received array data is given by

y(k) = wix(k), (2)

where w is an M Xx 1 vector of complex combiner
weights, and (-)¥ is the complex transposition oper-
ation. Similarly we denote a training signal by

r(k) = cPa(k), 3)
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where z(k) is an arbitrary function (or transforma-
tion) of the array data vector and/or beamformer
output given by

z(k) = J [x(-); y(-)] (¥)- (4)

In general, z(k) can be any complex P x 1 vector, and
f ['] is an arbitrary linear or nonlinear mapping, with
or without memory. Correlation matrices for pairs of
complex vector-valued sequences are denoted by

Ruv £ (u(k)vH (K)),
where (-) is the time averaging operation.
I.LB The PCCA

The PCCA processing structure is presented in
Figure 1. The PCCA seeks to minimize the mean
(time averaged) squared error (MSE) between linear
estimates of the common terms shared by the two
data sets x(k) and z(k). The optimization criterion
can be expressed as,

Jin, <|w”x(k) . CHz(k)|2>, (5)

subject to the constraints,

WARLW = I, (6)
C R,C = I, (7)

where I is the identity matrix. The optimal W and
C combiner weights are given by the dominant eigen-
vector solutions of the following eigensystem of equa-
tions:

[RoiRRRA|W
[RIIRERLIR,,]C = CA. (9)

These weights can be directly determined using a
closed form eigenequation solution or by the follow-
ing iterative alternating block power method !

C:. = RREW, (10)
W, = RIR.Cr, (11)

with an appropriate Gram-Schmidt Orthogonaliza-
tion [5, 12] applied at each iteration k. Observe that
Cf x(n) is the minimum MSE estimate of W§_;z(n)
and W} x(n) is the minimum MSE estimate of
C#z(n), Thus, we are using a bootstrapping method
to jointly optimize the signal estimate W# x(n) and
the training signal CHz(n).

1See Appendix A for a summary of power methods [5, 12].
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Figure 1: The PCCA processing structure.

I.C Property Exploiting Techniques

Many established adaptive spatial filtering tech-
niques are closely related to the PCCA. Of partic-
ular interest in this paper are techniques developed
for exploitation of either modulus or cyclostation-
arity properties. Three have been selected for per-
formance comparison with the PCCA and include
the LS-CMA, Cross-SCORE and Phase-SCORE al-
gorithms. A brief summary of these techniques fol-
lows.

The LS-CMA [1] seeks to minimize the constant
modulus (1-2) cost function

min (| ly(k)] - 61°),

where § is typically taken to be unity. A training
signal is generated by the complex limiting operation

)
) = W@

and the combiner weight is determined by the block
update
W= R;::er-

The Cross-SCORE technique [2] is designed to
maximize the cross-correlation coefficient of the ob-
served data and training signal,

|Ry-|? |WH Ror

max —Y—— = max
W,C

[RyyRrr]  W.C [WHRyxW] [c¥ Rxxc]
where the training signal is specified by

|2

r(k) £ clx(k — n)e I2mok,

From the well known maximization of generalized
Rayleigh quotients, the optimal w and ¢ weights are
shown to be the dominant eigenvectors of the follow-
ing generalized eigensystem:

[Rex ()R R (m)] W = ARiew
[R (MR R3 (m)] € = ARuxe,
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where R, (n) = (x(k)x#(k —n)et72™*) is the
cyclic autocorrelation matrix of the received data.
The dominant eigenvectors can be determined from
a closed form solution, or by the alternating power
method

e = RLRY (n)wi-1
= RRLwi 1
wi = RRE (n)ek
R i Rysck, (12)

where z(k) £ f [x(k)] = x(k — n)e—927k,

The Phase-SCORE [9] algorithm is an ad hoc tech-
nique with no predetermined optimization criterion?.
The desired weight vector w is the dominant eigen-
vector of the eigenequation

[R;;Rgx(n)] W = AW,

This weight vector can be iteratively computed using
the basic power method as follows,

Wiyt = [RGIRE, (n)] we.
II The RPCCA Processor

- x(k)

PCCA Transformation C
200 G 100

Figure 2: The modified PCCA structure.

The PCCA structure is now generalized to in-
clude recursion by incorporating two additional sig-
nal paths as indicated in Figure 2. The first PCCA
modification to be considered utilizes signal path 1
only and thereby permits the beamformer output
y(k) to be recursively incorporated within the train-
ing signal set. This structure is referred to as recur-
sive PCCA (RPCCA). Note that the RPCCA op-
erates on a ‘block update’ basis, i.e., beamformer
weight solutions are obtained for each new block of
data. Therefore, the delay in signal path 1 is taken

to be B 2 PCCA data block duration. In order to

2In Section II of this paper Phase-SCORE is shown to be
a special case of the Recursive PCCA processor.

distinguish between signals and weight vectors asso-
ciated with different PCCA processing blocks, the
subscript notation m and m — 1 is introduced to in-
dicate the current and previous processing blocks re-
spectively.

The training signal set for the RPCCA is given by

r(k) = Crz(k), (13)

where
z(k) = fxm(),Ym-10)](k), (14)
Ym-1() = Wi_Xm-1(-), (15)

and f[Xm(-),Ym-1(-)](k) is referred to as the
RPCCA transformation. The optimization criterion
is expressed as
. 2

W ([WiEx(k) = CLE (), ¥m1 O B)
subject to the constraints WAR,,W,, = I and
C,’,{R,,,Cm = I. The solution to this optimization
is given by the pair of dominant eigenvectors from
the following system of eigenequations:

[R;insz_legz] Wn = WnA,
R RERGRx:]|Cm = CmA.

The dominant eigenvectors can be computed by di-
rectly solving the eigenequations, or by applying
an appropriate power method. For the scalar case
2(k) € C %!, the alternating power method yields
the following iterative solution,

(16)
17)

emk = RREwn, i, (18)
Wmk = R;inxzcm,k, (19)

where the double subscript notation a; ; is used to
denote the jth iteration within the ith processing
block. If L multiple solutions are desired and the
RPCCA transformation consists of P signals, the
weights w,,, and ¢,,, can be extended to matrix form
as W,, € C M*L and C,, € C P*L. The RPCCA
transformation vector is then z(k) € C £*! and the
resulting training set r(k) consists of L signals. The
L most dominant eigenvector pairs of equations (16)
and (17) provide the L minimal solutions to the op-
timization criterion. These eigenvector pairs can be
computed directly through solution of the eigenequa-
tions or iteratively using the alternating block power
method as follows,

Cm,k
Whie =

RZ_SIR‘:IzW'M,k—I)
R RuzCrm i

with appropriate Gram-Schmidt Orthogonalization.

(20)
(21)
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II.LA Weight-Recursive PCCA

Two modifications to the RPCCA can be used to
improve performance in many applications. The first
seeks to maintain correlation between input and out-
put sequences by applying the previous weight vec-
tor W,,_y to the current input data for use in gen-
erating the output training sequence3. This differs
from RPCCA which processes the previous input
data x,,—1 to generate an output sequence Y, -—1.
This modification is referred to as weight-recursive
PCCA (WRPCCA) and is realized by the structure
shown in Figure 2, utilizing signal path 2 only with

W, = m—1. The WRPCCA transformation is
given by

z(k) = fxm(),Im-10)](k), (22)

Ym-1(k) = WE_ xm(k). (23)

Using this z(k), equations (16) through (21) remain
applicable for the WRPCCA. Note that this struc-
ture can exploit correlation between input and out-
put signals which might have been uncorrelated in
the RPCCA due to processing-block lags exceeding
the signal correlation time.

The second RPCCA modification takes advantage
of the iterative structure of the power method solu-
tion to permit an update of the training signal within
a single processing block. At each power method it-
eration k the previously fixed block weight w,,_1 is
replaced by the iterative weight Wy x—1. This re-
sults in an output signal §,,(k) that is recursively
updated within a single PCCA processing block, pre-
sumably yielding a superior training signal estimate
at each iteration. Alternatively, this approach can
be interpreted as repetitively performing a single it-
eration WRPCCA power method while reusing the
input data block. The notion of reapplying data in
this manner is referred to as data recycling, hence the
name WRPCCA/DR (weight-recursive PCCA with
Data Recycling). In this case the block eigenequa-
tion solutions are not applicable, and the alternating
power method solution must be modified as follows:

cmk = RREWm k1,
Wmk = R;szcm,k;
Fmi) = Wi xm(D),

z() = £xm(), Im()] (D).

3This notion was similarly proposed in [1] for application
in LS-CMA.

IL.B Cyclic-RPCCA

The RPCCA can be designed to exploit cyclosta-
tionarity by utilizing the RPCCA transformation

f [xm('),ym-l(-)] (k) = Ym_1(k)eti2rak,
The relevent RPCCA signals are given by,
Ymo1(k) = WH_ x(k)m-1
z(k) = Ym-1(k)et?rek
r(k) CHz(k)
CHy _i(k)etiZmek,

The required PCCA correlation and cross-correlation
matrices can be expressed as,

sz = R:xwm—la
qu = Wf,_lfoxwm—lv
R’fz = Wil;lt—lR':fv

where an implicit lag parameter equal to the duration
of one PCCA processing block is assumed for RZ, .
For the scalar case z(k) € C %! the resulting weight
update solutions are

_ (Wﬁ—lR'?oIc’)
Cmk = (WH_Iszxwm—l) Wim,k—1, (24)
Wik = RGREWm_1cmk. (25)

The Cyclic-WRPCCA is similarly implemented with
the exception that the cyclic autocorrelation matrix
RZ, is now computed using a lag parameter smaller
than the PCCA processing block delay. For a single
signal of interest, data recycling is incorporated to
yield the Cyclic-WRPCCA/DR update,

(wh o iReE)
(wrl:lz,k— 1 R«xwm,k— 1
Wmik = RGIRE Wik 1Cm k- (27)

Notice that equation (27) is simply a scaled version of
the previously discussed Phase-SCORE weight vec-
tor as determined by the basic power method. This is

Crmnk ) W k—1, (26)

an interesting result providing some insight into the

way in which the Phase-SCORE algorithm operates.
II.C CM-RPCCA

Exploitation of the constant modulus property
can also be readily incorporated within the RPCCA
framework. For a single signal of interest the neces-
sary PCCA transformation is the complex limiting
operation
w13 (k)

‘N =1eE smp
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where the form of (k) is determined by the desired
PCCA structure as follows,

1. CM-RPCCA: §(k) = WH_ Xpu_1(K),
2. CM-WRPCCA: y(k) = wH_ xpm(k),
3. CM-WRPCCA/DR: §(k) = Wi .xm(k).

For the CM-RPCCA and CM-WRPCCA techniques
the iterative weight solutions are given by, ‘

Rz_le'fzwm,k—l )
R;,:R'xzc'm,kr

with the first iteration initialized by wmx_1 =
Wm—1. The CM-WRPCCA/DR requires additional
explicit recalculation of z(k) at each iteration as fol-
lows,

(28)
(29)

Cm,k
Wk =

wrﬁ,j—lxm(k)

k) = —mimitmi) 30
z(k) Iwz,j—lxm(k)l ( )
Cm,j RREw,, 1, (31)
Wm,j = R;:%szcm,j . (32)

IIT The Feedback PCCA

A natural extension of the RPCCA technique is
to permit instantaneous feedback in place of the
block delay operation. In doing so, the usual PCCA
eigenequations no longer apply (in general) since the
training signal set requires the instantaneous value
of the beamformer weight W. However, in certain
applications the solution of the PCCA optimization
criterion (modified to exclude the orthogonality con-
straint) can still be obtained either in closed form
or in an iterative fashion. These new techniques are
referred to as Feedback PCCA (FBPCCA).

IIILA Cyclic-PCCA with Feedback

The PCCA feedback structure for exploitation of
cyclostationarity is characterized by the transforma-
tion

f[x(), y()] (k) = y(k — n)etI?mak,
For the scalar case z(k) € C %! the desired objective
function is given by

min <|w”x(k) — cwhx(k — n)e+j2"°'°|2> . (33)

Taking the gradient of (33) with respect to w and
setting the result equal to zero we obtain

Rt [eRE(m) + "Ry ()] w = (lef’ +1) w.
(39

Similarly, setting the derivative with respect to ¢
equal to zero yields

__ WIR (mw
= “WFRow
While a closed form solution for equations (34) and

(35) is not readily apparent, an alternating iterative
approach can be applied as follows ,

(35)

- Wi Ry (n)wi
WfR'x.xwk ’
Wkl = R';xl [Ck+1R§x(") + CZ+1R;f ("-)] Wi.

Note that this approach yields a weight vector w that
is the dominant mode of the eigenequation

Ryl [RE,(n) + 'REF ()] w=dw,  (36)
in which A = (|c|2 + 1) is the maximum eigen-
value. This implies that we are selecting the max-
imum value for |c| subject to the constraint of
(34). Note that without this constraint the quan-
tity |c| is maximized by the dominant eigenvector
of RIR2H (n)w = Aw. Had we selected the alter-
native convention z(k) = y(k — n)e 92"k (using
the opposite sign for a) the result would have been
equivalent to the Phase-SCORE weight vector.

III.LB CM-PCCA with Feedback

Instantaneous feedback can be similarly incorpo-
rated within the CM-RPCCA structure. For single
signal extraction the desired objective function is

2
rgvmcl < > . (37)

Taking the gradient of equation (37) with respect to
w and setting the result equal to zero we obtain

H
wix(k) - ¢* ——Iz Hzg:;

w = Re{c}R;]} <%(w”xx”w)“l/2xx”w> , (38)

where the time index k has been dropped for conve-
nience. Similarly, taking the derivative of equation
(87) with respect to c and setting the result equal to
zero we obtain

c= <(WHxwa)1/2>-

Recall that y = wH#x and that (wHxxHw)!/2 =
(yy*)Y/2 = |y|, therefore Re{c} = c and (38) can be
reexpressed as

(39)

w = cR_] <1I‘§’T> . (40)
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Letting z = y/|y| we obtain w = cR!Ry;. The
complete iterative CM-FBPCCA algorithm is then
given by

Y = wllr.{—lx’
ce = (lwkl),.
2k = —yiv
|yl
W = CkR;,%foz-

Note that one iteration of the CM-FBPCCA algo-
rithm is equivalent to the LS-CMA technique previ-
ously discussed, differing only by the real scale factor
Ck.

IV Constrained RPCCA

In many applications it may be desirable to con-
strain the PCCA training signal weight matrix C
to ensure that certain signal properties are included
in (or excluded from) the training set. In this sec-
tion, two approaches to this problem are considered.
The first technique places a linear constraint on the
training set composition using a type of Generalized
Sidelobe Canceller (GSC) [6, 8] structure. The sec-
ond approach is ad hoc in nature, and is designed to
work with the iterative-power method implementa-
tions of the RPCCA processor. '

F

x(k)

" [oeway]

PCCA
Transformation

Figure 3: Recursive PCCA with Linearly Con-
strained Training Set

IV.A Linearly Constrained PCCA

Linear constraints on the training set composi-
tion can be realized by incorporating a processor in
the form of a Generalized Sidelobe Canceller in the
RPCCA training signal path as shown in Figure 3.
Here the GSC will permit the PCCA to linearly con-
strain the composition of the training set r(k) with
regard to the transformed data z(k). For C € ¢ P*L
a set of @ linear constraints is specified by the con-
straint equation

DAC =F, (41)

where D = [d; d2---dg] is the P x Q ‘constraint
matrix’ and F is the Q x L matrix of constraint values
or weights. The training signal r(k) is comprised of
a ‘fixed’ and an ‘adaptive’ component given by

rs(k) = Cf (k) (42)

and

ro(k) = szn(k)’ (43)
respectively, where z, (k) = CHz(k). Here the fixed

weight C{ is a P x L matrix determined by the con-
straint matrix and constraint values to be

C;=D(D*D)”'F.

The ‘nulling weight’ C,, is a full-column-rank P x
(P — Q) matrix with columns spanning the left null
space of D. The adaptive weight component C, is
a (P — Q) x L matrix that is adapted by the PCCA
process. The overall effective weighting in the PCCA
training signal path is then given by

C=C; +C,C,,

with dimension P x L.
The minimization criterion for the linearly con-
strained recursive PCCA (LC-RPCCA) is given by

([wx® - (©;+ cuca"swf').

(44)
Taking the gradient of (44) with respect to W and
setting the result equal to zero we obtain

W =R_R,; (C; + C,C,). (45)

min
C

r~a

Similarly, taking the gradient of (44) with respect
to C, and again setting the result equal to zero we
obtain

C. = [CHR,.C.] ' [CHRE]W
- [CfRnCn]—l [CfR,,Cf] . (46)
The procedure for implementing the LC-RPCCA is

‘then summarized as follows:

1. Specify the constraint equation D¥C = F,

2. Select an arbitrary full-column-rank matrix C,
such that D¥C,, =0,

3. Compute the fixed portion of the train-
ing set weight vector according to C; =

D (D¥D)'F,

4. Initialize W with arbitrary orthogonal columns,

18.6
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5. Compute C, = [CHR,,C,] ' [CHRE]W -
[CHR..Ca] ™ [CHRCY],

6. Orthogonalize C, using a Gram-Schmidt Or-
thogonalization,

7. Compute W = R!R,, (C; + C.C,),

8. Orthogonalize W using a Gram-Schmidt Or-
thogonalization,

9. Iterate steps (5) through (8) until convergence.

IV.B Magnitude Constrained PCCA

One potential drawback in using the LC-RPCCA
technique is that the constraint conditions necessar-
ily constrain both the magnitude and phase of the
fixed portion of C. In certain applications the op-
timal phase relationship between multiple training
signals may not be known apriori, hence it would
be advantageous to permit the PCCA processor to
freely adapt the C weight phases while constrain-
ing the magnitudes. This can be accomplished with
a straightforward complex limiting operation per-
formed at each power method iteration. This new
technique is referred to as the magnitude constrained
RPCCA (MC-RPCCA) and is summarized as follows
for the L = 1 scalar case:

1. Specify the constraint matrix d € R P*! such
that the desired |c| = [d; dy---dp]”,

2. Select an arbitrary initial weight vector w,

3. Compute c; using one iteration of an uncon-
strained power method,

4. Apply the magnitude constraint to obtain ¢, =

H
[dl]-j-h @y - dp,gﬁ] ,

V Simulation Results

Simulation performance results for the RPCCA,
FBPCCA, and constrained PCCA are now pre-
sented. Three monte carlo experiments are con-
ducted using a 5 element linear array geometry with
1/2 wavelength interelement spacing. Background
noise is assumed to be Gaussian and spatially white.
For simplicity, the analysis is limited to the single-
signal extraction case with performance of the new
techniques compared to that of established beam-
forming approaches.

V.A Cyclostationarity Results

Performance of the new cyclostationarity ex-
ploiting RPCCA techniques is evaluated for two
signal environments.  Techniques considered in-
clude Cross-SCORE, Phase-SCORE (or equiv-
alently CycliccWRPCCA/DR), Cyclicc-WRPCCA,
and Cyclic-FBPCCA. The signal environments are
described in Table 1.

Table 1: Cyclic-PCCA Environment

Environment 1

Parameter | SOI | SNOI1 | SNOI2
type BPSK - -
SNR 20dB - -
AOA 10° - -
BW 0.25 - -

Environment 2

Parameter | SOI | SNOI1 | SNOI2

6.

. Complete the power method iteration for wy us-

ing the constrained ¢,

Iterate steps (3) through (5) until convergence.

Note that the constraint magnitudes d; need not be
specified for all elements of the ¢ weight. By omitting
the complex limiting operation of step (4) for selected
elements of ¢, those elements may then be allowed
to adapt freely - thereby remaining unconstrained.

type BPSK FM M
SNR 10dB 20dB 15dB
AOA 10° 50° 80°
BW 0.25 0.1 0.2
30 v —
max SINR
25;
g . S
@ 20
4
@ 7 e Cross-SCORE
st /7 - - - Phase-SCORE
/ -=+= Cyclic-WRPCCA
—— Cyclic-FBPCCA
10 5(.)0 10‘00 1560 20b0
bauds

Figure 4: Environment 1 Cyclic-PCCA SINR.
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max SINR 4

o
2
[+
4
) -
L Cross-SCORE
5t I./' - = - Phase-SCORE
; == Cyclic-WRPCCA
, —— Cyclic-FBPCCA
0 500 1000 1500 2000
bauds

Figure 5: Environment 2 Cyclic-PCCA SINR.

151
§ S Cross-SCORE
& I - — - Phase-SCORE
SR E -=-= Cydlic-WRPCCA
g2 10r: — Cyclic-FBPCCA
§ .
<]
2
g 5r
2

..... e
0 . . . . .
100 200 300 400 500

Collect Size in Bauds

Figure 6: Environment 1 Cyclic-PCCA Convergence.

7
st Cross-SCORE

8 - - - Phase-SCORE

&s -=-= Cyclic-WRPCCA

] —— Cyclic-FBPCCA

§ 4

St

2

‘

S

—1_____._..______________
0 \ \ \ \

500 1000 1500 2000

Collect Size in Bauds

Figure 7: Environment 2 Cyclic-PCCA Convergence.

Output SINR performance results are presented
in Figures 4 and 5 where the output SINR is eval-
uated as a function of the number of baud periods
processed (collect time). Each algorithm is evaluated
over 100 trials with the number of power method it-
erations fixed at five and a PCCA block size of 512
data points. Convergence performance is shown in
Figures 6 and 7 and is characterized in terms of the
number of power method iterations required to ob-
tain an output SINR within 1% of the final output
SINR. Results indicate the best overall performance
is obtained by the FBPCCA for both signal environ-
ments. The number of iterations required for con-
vergence appears comparable for all techniques.

V.B Constant Modulus Results

FS
R
\
+

'r’ ~~~~~~ CM-WRPCCA/DR
- - CM-WRPCCA
+ 32 point block
X 256 point block
O 2048 point block

Output SINR at Convergence
N
AN
¥
9
R
)
+

o

" A -

4 6 8 10
Number of Blocks Processed

2

Figure 8: Environment 3 CM-PCCA SINR.

§ 25 A [P Fu, ‘ . )".-‘ .....
Y ) 2Pkl
b3 P
2
4
8 R
w15 s
z | &
w10 ,%7 CM-WRPCCA/DR
5 g7 - - CM-WRPCCA
= s} + 32 point block
3 X 256 point block
O 2048 point block
0 2 4 6 8 10
Number of Blocks Processed .

Figure 9: Environment 4 CM-PCCA SINR.

Many of the CM techniques discussed yield equiv-
alent weight vectors (related by a real or complex
scale factor) hence, a fairly complete performance
characterization can be obtained by examining only
the CM-WRPCCA/DR. Two signal environments
are considered and are summarized in Table 2. The
first performance test examines output SINR as a
function of the number and size of PCCA data blocks

18.8
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25¢ \'\ -=--CM-PCCA Environment 3
v 20} kN —— CM-PCCA Environment 4
c
k]
s
215}

101

100 200 300 400
samoles

g

Figure 10: CM-PCCA Convergence.

processed. The number of power method iterations
is fixed at 20. Results are presented in Figures 8 and
9 for block sizes of 32, 256, and 2048 data points.
CM-WRPCCA (LS-CMA) results are obtained by
examining the CM-WRPCCA/DR performance af-
ter one power method iteration.

Table 2: CM-PCCA Environment

Environment 3
Parameter | SOI | SNOI1 | SNOI2

type FM - -
SNR 0dB - -
AOA 10° - -
BW 0.25 - -

. Environment 4
Parameter | SOI | SNOI1 | SNOI2

type FM | BPSK | BPSK
SNR 20dB | 10dB 15dB
AOA 10° 50° 80°
BW 0.25 0.1 0.2

Convergence behavior is characterized in terms of
the number of power method iterations required to
obtain output SINR performance within 1% of the
final output SINR. Results for this test are shown
in Figure 10 for PCCA block sizes ranging from
32 to 512 data points. Two key observations may
be noted from these results. First, there is a very
close relationship between ‘iterations’ in the CM-
WRPCCA/DR technique and ‘blocks processed’ in
the CM-WRPCCA approach. For example, if the
CM-WRPCCA/DR technique is shown to require 5
iterations for convergence, then CM-WRPCCA will
require 5 consecutive data blocks for convergence. It
appears that the processors do not differentiate be-
tween ‘new data’ - such as that encountered in the
block update of CM-WRPCCA - or ‘recycled data’

as applied iteratively in CM-WRPCCA/DR. A sec-
ond observation is that upon convergence of both
techniques, the CM-WRPCCA actually outperforms
CM-WRPCCA/DR by a small margin (typically less
than 1dB). '

V.C Constrained PCCA Results
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Figure 11: Constrained PCCA Scenario 1
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Figure 12: Constrained PCCA Scenario 2
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Figure 13: Constrained PCCA Scenario 3
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Figure 14: Constrained PCCA Scenario 4

Four criteria have been selected for quantifying
constrained PCCA performance: 1) Percentage of
Correct Captures, 2) Mean Output SINR, 3) Out-
put SINR Standard Deviation, and 4) Iterations for
Convergence. Two constrained PCCA techniques
are considered in this evaluation - the linearly con-
strained WRPCCA/DR and the magnitude con-
strained WRPCCA/DR. Performance for these tech-
niques is compared with the unconstrained Cyclic-
WRPCCA/DR and CM-WRPCCA/DR approaches
previously discussed. ‘

The simulated signal environment is described in
Table 3. Due to the use of rectangular pulse shaping
in both BPSK formats, all three signals exhibit the
constant modulus property.

Table 3: Consfra.ined PCCA Signal Parameters.

| signal | modulation | AOA'| SNR | BW | carrier |

1 BPSK 10° | 20dB | 0.25 0.0
2 BPSK 50° | 15dB | 0.1 0.0
3 FM 80° | 10dB | 0.1 0.0

The training set is comprised of three training sig-
nals as follows,

W — 2)e -
Wi el — 5)ot3sts-5)/10
WH | Xm(k)
WH 1 Xm(R)]

z (k) = (47)

where each row of z;(k) represents a unique train-
ing signal and [ is the power method iteration index.
Signals 1 and 2 exploit cyclostationarity while signal
3 exploits the constant modulus property.

Four constraint scenarios are considered and sum-
marized in Table 4. The first two constraints place
unity weighting on one of the cyclostationary train-
ing signals while allowing the others to freely adapt.

Table 4: Constraint Matrices for Constrained PCCA.

[ scenario | D | F | Target |
1 [1 0 0] ] | BPSK1
2 [0 1 0] (1] BPSK 2
100]" T
3 [001] [1 3] |BPSK1
o1 0]" T
4 [001] [1 3] | BPSK2

Note that a value of zero in the D matrix implies
a particular entry is to be unconstrained (not con-
strained to a value of zero). Constraint scenarios 3
and 4 utilize two constraints each - combining the
cyclostationarity and modulus training signals. The
modulus property is weighted slightly more than cy-
clostationarity, with a 3:1 weight ratio for their re-
spective training signals.

The results of the constrained PCCA evaluation
are presented in Figures 11-14 for the four constraint
scenarios. All scenarios are evaluated over 100 monte
carlo trials in which each technique operates on a
single 4096 point data block using up to 120 power
method iterations. A summary of quantitative re-
sults is provided in Tables 5 and 6.

In general, the constrained PCCA processors out-
perform the unconstrained processors, but at the
expense of increased power method iterations re-
quired. The unconstrained CM-WRPCCA/DR per-
forms poorly in all scenarios. The performance
improvement for the constrained techniques is evi-
denced in the higher output SINRs obtained - up to
2.2dB higher in some scenarios. In most cases the
MC-WRPCCA/DR performance is superior to that
of LC-WRPCCA/DR. Note that the relatively poor
‘correct capture’ performance observed in scenario
2 appears to be due to the lack of a constraint on
the constant modulus weight which tends to grow
very large. This results in the modulus property be-
ing weighted much more strongly than the cyclosta-
tionarity property is, causing the processor to switch
capture from signal 2 to signal 1 - the strongest con-
stant modulus signal in the environment. Finally, the
variance of the output SINR appears comparable for
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both the constrained and unconstrained approaches.

Table 5: Constrained PCCA Performance I.

% correct mean output
captures SINR (dB)
[ scenario || LC | MC LC | MC | cyclic
T || 59 | 100 || 23.798 | 23.28 | 21.53
2 || 36 | 81 || 17.76 | 18.35 | 17.43
3 || 100 | 100 || 21.21 | 21.81 | 21.26
4 || 62 | 100 || 17.37 | 18.16 | 17.44

Table 6: Constrained PCCA Performance II.

o output iterations for
SINR (dB) || convergence
[ scenario ]| LC | MC [ cyclic || LC | MC | cyclic
1 [[125]255] 1.58 [ 13 ] 30 3
2 [[ 374 | 333 | 1.37 || 60 | 100 3
3 [[2.05 [142] 1.8 || 6 5 3
4 [[237]126] 146 ]| 14 | 11 3

VI Conclusions

In this paper the Programmable Canonical Cor-
relation Analyzer (PCCA) has been modified to
include recursion, feedback and training-set con-
straints. Development has included the estab-
lishment of appropriate optimization criteria, op-
timal weight solutions (when tractable), and effi-
cient power method implementations. The result-
ing family of adaptive spatial filters has been shown
to include previously established beamforming tech-
niques, as well as several new processors. The per-
formance of these techniques has been evaluated via
monte carlo simulation and characterized in terms
of output SINR and convergence behavior. In most
cases, the new PCCA techniques are able to outper-
form established techniques, but at the expense of
increased computational burden associated with the
higher number of iterations required for convergence.

Appendix A - Power Methods
Basic Power Method

Given the eigenequation Aw = Aw the dominant
(or maximum) eigenvector can be iteratively esti-
mated by the basic power method

Wii1 = TkAWg,

where « is a normalization constant typically chosen
to be the inverse of the first element of the W, vector.
The basic power method converges to a solution that
is a scalar multiple of the dominant eigenvector of A.

Block Power Method [12]

The block power method extends the basic power
method to include estimation of multiple eignevec-
tors as follows,

i. Initialize Wy = [W1 Wy - W] such that the W;
are orthonormal,

ii. Wip =AWy,

iii. Apply Gram-Schmidt Orthogonalization to
Wk_|.1.

iv. Iterate steps (ii) and (iii).

Alternating Power Method [12]

A modified version of the power method can be
applied in cases where two weight vectors are to be
jointly determined. For the single-signal case, the
system of eigenequations is represented by,

[AngH]w =
[Dg” Ab] c = A

Aw

where w and c are the desired weight vectors, A
is M x M, D is scalar, and b and g are M x 1
vectors. The dominant eigenvectors for this system
are estimated by the recursion

ck = v [Dg?]we-1
wi = [Px[Ab]ck,

where v, and B; are the appropriate normalization
coeflicients.

Alternating Block Power Method

The block power method and alternating power
method can be combined to yield an alternating
block power method for jointly determining multiple
eigenvectors. The system of eigenequations is given
by

[ABDG?]W WA
[DG¥AB|C = CA,

where A and D are M x M and L x L matrices,
respectively, and B and G are M x L matrices. Rep-
resenting the weight matrices by

C=[c1 C2"'CL]
W=[w1 w2...wL],

the technique is as follows:
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ii.

ii.

Initialize W, = [W; Wa - -+ W] such that the W;
are orthonormal,

Compute Ciq1 = [DGH] Wy,

Apply the Gram-Schmidt Orthogonalization
Procedure to Ck“ to obtain Ck+1.

Compute‘VAV,H_l = [ABH] ék+l,

iv.

v. Apply the Gram-Schmidt Orthogonalization
Procedure to Wy, ,

vi. Iterate steps (ii) through (v).
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