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Robust Feature Detection for Signal Interception
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Abstract— The problem of detecting the presence of direct
sequence spread-spectrum signals in noise is considered, and the
detector consisting of a filter followed by a delay-and-multiply
device is optimized with respect to the filter bandwidth and
the delay to maximize robustness to errors in assumed values
of pulse rate and carrier frequency. Output SNR is used for
performance optimization, and the results are corroborated by
evaluating receiver operating characteristics.

I. INTRODUCTION

HE PURPOSE of this paper is to present the results

of a study of the robustness of the quadratic detector
consisting of a filter followed by a delay-and-multiply device
that multiplies the filtered signal by a delayed and conjugated
replica of itself. This delay-and-multiply (DM) detector is
commonly used to regenerate a spectral line at a frequency
equal to the pulse rate of a PCM signal for purposes of
detection of the signal’s presence [1]-[5], [10] or synchro-
nization to the signal’s pulse timing phase [6]—[9]. Optimizing
the DM detector with respect to the filter bandwidth and
the delay requires knowledge of the pulse rate and carrier
frequency. When the pulse rate or carrier frequency assumed
for optimization is in error, the bandwidth and/or delay that
maximizes detection performance for the erroneous pulse rate
or carrier frequency is suboptimum for the actual pulse rate and
carrier frequency. This suggests maximizing the robustness of
the detector, as measured by the degree of tolerance to error
in pulse rate and carrier frequency.

In this paper, both output SNR and receiver operating char-
acteristics (ROC’s) are used as measures of performance for
studying the robustness of the DM detector for baseband PCM
signals, modeled as real PAM, and passband PCM signals
(digital QAM, BPSK, QPSK), modeled as complex PAM, in
white Gaussian noise (WGN). Since the primary application
motivating this work is detection of spread-spectrum signals
in noise, only low-SNR conditions are considered. Further-
more, low-SNR conditions give rise to some simplifications in
the theory.

To put the DM detector in perspective, it is pointed out that
the weak-signal likelihood-ratio detector for PAM in WGN
is a matched filter followed by a magnitude squarer [1].
This detector also maximizes the output SNR (as defined in
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Section II) for the regenerated spectral line at the pulse-rate
frequency [8]. This detector is the special case of the DM
detector for which the prefilter is the matched filter and the
delay is zero. This detector, however, is shown to be not as
robust to errors in pulse rate and carrier frequency as that
which is optimized for robustness.

In [10] the problem of detecting the presence of a distor-
tionless perfectly down-converted BPSK signal (viz., a real
PAM signal whose pulse transform is real) by using a DM
device is studied. An output SNR is evaluated there and used
to determine several optimum prefilter-and-delay structures,
as well as to determine optimum bandwidths for rectangular
prefilters for a small set of delays. The effect of an error
in the knowledge of the pulse rate on the performance of
these detectors is found in terms of output SNR and some
approximate formulas for the probabilities of detection and
false alarm are derived.

This paper' generalizes on the work in [10] by 1) jointly
optimizing the delay and rectangular prefilter bandwidth pa-
rameters with respect to two distinct optimality criteria that are
aimed at maximizing robustness to error in signal parameter
values; 2) considering the general bandpass (or complex base-
band) case as well as the real baseband case; 3) considering
the effect of errors in the knowledge of the demodulated
carrier offset (or carrier frequency); and 4) performing simu-
lations to estimate the detection and false-alarm probabilities
corresponding to the various detectors. The relationship be-
tween detection by spectral line generation and the theory of
cyclostationary time-series is also clarified.

In [3]-[5] the related problem of designing the signal (i.e.,
designing the pulse shape and the distribution of the symbol
sequence) to reduce detectability by reducing the strength
of the spectral line that can be generated at the pulse-rate
frequency is addressed.

In Section II, the signal models are defined, and the output
SNR for a regenerated spectral line is defined and expressed
explicitly in terms of the parameters of the signal, noise, and
detector. This SNR is maximized in the Appendix for both the
real PAM and complex PAM models. In Section III, the SNR
is used to study the optimization of the filter bandwidth and
the delay, and to evaluate the effects of errors in the values of
pulse rate and carrier frequency used in the optimization. In
Section IV the conclusions regarding detection performance
are corroborated using ROC’s obtained from simulations.

The work reported in this paper was conducted prior to the appearance
of [10] in the literature, which occurred almost simultaneously with the
submission of this paper for review for publication.
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II. OutpuT SNR FORMULAS

A. Signal Models
The model for a real baseband PAM signal is

o0

Z anp(t — nTy — 0) (1)

n=-—oo

s(t) =

where p(t) is the pulse, {a,} is a zero-mean, independent,
and identically distributed symbol sequence, and 1/Tp and 6
are the pulse rate and phase, respectively. For spread-spectrum
signals, this model for {a,} is admittedly only approximate.
For example, for a binary direct-sequence spread-spectrum
signal, {a,} is actually the modulo-two sum of the high-rate
spreading code sequence and the low-rate message symbol se-
quence. Also, for spread-spectrum signals, unlike bandwidth-
efficient PCM, p(t) has large excess bandwidth (bandwidth
in excess of the minimum bandwidth for zero intersymbol
interference) and can be usefully approximated as a rectangu-
[t| < To/2

lar pulse
L
p(t) = {0, It > To/2.

In this case, the complex counterpart of model (1) applies to
the complex envelope of both digital QAM and PSK signals
(for which the phase-keying envelope is rectangular). For this
passband signal model, p(t) and {a, } are both complex-valued
in order to accommodate any carrier offset, say fo, and lack
of Hermitian symmetry of the baseband pulse transform, as
well as to accommodate the in-phase and quadrature symbol
sequences. For example, for the real digital QAM signal

s(t) = > cng(t — nTo — 0) cos(27 fot — )

n

@

+ Y smq(t —mTy — 8)sin(2nfot — ) (3)

m

we have the complex envelope (1) with

an = (cn + isn)ei(%"T"f"_‘P) “)

and
p(t) = q(t)et?mfot (5)

It should be clarified that the model for s(¢) can be complex-
valued even when the carrier frequency fy is known (which
implies that perfect downconversion is possible) because,
for instance, the channels’s impulse response can force the
spectrum to be asymmetrical about the carrier frequency,
which results in a complex-valued baseband pulse in the
complex-envelope model.

The complex envelope of the input to the detector consists
of the signal (1) plus complex WGN

z(t) = s(t) + n(t), | (6)

The cutput of the detector is given by
n(t) = n(t) + ins(t) . @

y(t) = w(t)w"(t — d) ®)
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where w(t) is the filtered input
z(t) ® h(t) )

and h(t) is the impulse response of the filter preceding the
delay-and-multiply device. From (6)—(9), we see that the
output

w(t) =

y(t) = [s(t) ® h(t)][s(t — d) ® h(t - d)]"
+ [5(t) @ h(t)][n(t — d) @ h(t = d)]"
+ [n(t) @ h(1)][s(t — d) © h(t — d)]"
+[n(t) @ h(®)][n(t - d) @ h(t — )] (10)

consists of signal-only, noise-only, and signal-cross-noise
terms. For the case of a weak signal, we can ignore the cross
terms in defining the output SNR; that is, we can compute the
output signal strength from the signal-only term and the output
noise strength (approximately) from the noise-only term.

B. Output SNR

Since the sequence {a,} has zero mean value, then s(t)
does not contain any spectral lines. However, the output signal-
only term will in general contain spectral lines at the puise rate
and its harmonics k/Tp,k = £1,+2,---. The output signal
strength is defined to be the time-averaged power of one of
these regenerated spectral lines

Py 2 |([s(t) ® h(1)][s(t — D2ty 2 (11

where (-) denotes average over all time ¢, and « = k/Tp.

The output-noise strength is defined to be the time-averaged
power in a very narrow band of width B,, centered at
frequency «, due to the noise-only term

d) ® h(t -

a+B/2
mé/ Sunl(f) df

a—B/2
= By Sm(a)

where m(t) is the noise-only term ‘
2 [n(t) ® h(t)][n(t — d) ® h(t — d)]*

and S,,,(f) is its spectral density of the time-averaged power.
The output SNR is then given by

A P, s

SNR = —

P,

n

m(t) (12)

(13)

For the real signal and noise model (1) (with {a,}, p(t), and
n(t) real), it is shown in the Appendix that

ot et
SNR = T—(‘); /_OOH(f+a/2)H*(f—a/2)

X P(f +a/2)P*(f — a/2)e?™ 14 4f

+ 2B, /—00 cos?2nfA)|H(f + a/2)H*(f — a/2)|

X Su(f +/2)Sa(f —a/2)df . (14)
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For the complex signal and noise model (1) (with {a,}, p(t),
and n(t) = n.(t) + in,(t) complex), it is also shown in the
Appendix that

ol

SNR = =&
7§

/_oo H(f+ a/2)H*(f — a/2)
X P(f+a/2)P*(f — a/2)e* 7 qf

s4Bo [ |H(G + /2R (] - af2)]
X Sp (f + /280, (f — /2)df . (15)

In (14) and (15) o2 is the temporal variance of the zero-mean
sequence {an}:

K

1 2
2 . 2
7= dm gy 2

It is further shown in the Appendix that the SNR (14) for the
real signal is maximum with respect to H(f) if a solution to
H(f+o/2)H*(f — a/2)

P*(f +a/2)P(f — a/2)e?m/d

022 fd)Sn(f + a/D)5n(f —ajz) 1O
zxists; for d = 0, the solution is
_ ()

This is recognized as the matched filter for the pulse p(t) in
noise with power spectral density S, (f). This optimum DM
detector—the matched-filter squarer (MFS)—is identical to
the optimum (maximum SNR for regenerated spectral line)
among all quadratic detectors—not just those of the filter-
and-delay-and-multiply form [8], [9].

Similarly, it is shown in the Appendix that the SNR (15)
for the complex signal is maximum with respect to H(f) if
a solution to

H(f+ a/2)H*(f — a/2) x
P*(f +a/2)P(f — a/2)e=7ns
Sn(f +/2)Sn, (f — /2)

18)

exists and again, for d = 0, we obtain the matched filter
solution

_ P
50 ()

Before proceeding, the relationship between the DM detec-
tor and the more general class of cyclic feature detectors that
exploit the spectral correlation property that is characteristic
of cyclostationary signals, as described in [1], is clarified. If
we try to detect the presence of a regenerated spectral line at
frequency « in the output of the DM detector by measuring the

H(f) (19)
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Fig. 1. Robustness to error in Tp for peak-optimal and width-optimal

bandwidth B and delay d in the delay-and-multiply (DM) detector, and for
the matched-filter-squarer (MFS) detector, for real PAM.

strength (Fourier coefficient) of the sine-wave component with
frequency o in the output, then the detection statistic becomes

Z = .

%/0 [z(t) ® h(t)][z(t — d) @ h(t — d)]* e~ 2™ gt

(20)

This statistic can be re-expressed as

7 =

/ Sﬁ(f)TWa(f)e”"d“—a/”df‘ @1)
where S3(f)r is an estimate of the spectral correlation
function or cyclic spectrum of z(¢) obtained by Fourier
transforming the estimate of the cyclic autocorrelation of z(t)

T
R =g [ atrr/e -t @)

and where W*(f) is given by
W) =H(f +o/DH (f-a/2) (3

which plays the role of a spectral smoothing window in (21).

When d = 0 and H(f) is the matched filter (17) or (19),
then (21) is identical to the optimum feature detector described
in [1].

ITI. ROBUSTNESS EVALUATION AND OPTIMIZATION

The usual approach to optimizing a detector, such as the
DM detector, is to ignore possible errors in parameters such as
the pulse rate and to simply maximize a performance measure
such as SNR for some nominal parameter value. Following
this approach first, we adopt an idealized filter with rectangular
passband and one-sided bandwidth B, and we maximize the
SNR (14) or (15) with respect to both the delay d and the
bandwidth B. The resultant peak-optimal detector exhibits
the SNR versus pulse-rate error performance shown in Fig. 1
(cf. [10], Figs. 5 and 6] for the real PAM model and in Fig. 4
for the complex PAM model. The peak-optimal values of
bandwidth and the resultant peak SNR versus delay are shown
in Fig. 2 for real PAM and in Fig. 5 for complex PAM.

As an alternative to the preceding approach, to obtain a
detector that is more robust to errors in the assumed value
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Fig. 2. Peak-optimal bandwidth B and peak SNR for the DM detector versus
delay d for real PAM. The vertical axis is in decibels for peak SNR and is
dimensionless for BTy.
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Fig. 3. Width-optimal bandwidth B and pulse-rate tolerance ATy for the
DM detector versus delay d for real PAM. ATy is the —3dB-width of the
peak-SNR versus pulse-rate-error curve (see, for example, Fig. 1).

of pulse rate, we maximize the —3-dB width of the SNR
versus pulse-rate error performance curve with respect to the
delay d and bandwidth B. The resultant width-optimal detector
exhibits the SNR versus pulse-rate error performance shown
in Fig. 1 for real PAM and in Fig. 4 for complex PAM.
The width-optimal values of bandwidth B and the resultant
tolerance (—3-dB width of SNR versus pulse-rate curve) to
pulse-rate error versus delay d are shown in Fig. 3 for real
PAM and in Fig. 6 for complex PAM.

The results in Figs. 1-6 were obtained for a signal and noise
model with the following parameters:

o =1
Sp(f)=1 or Sp.(f)=1
fo=1/4T;
To = 16T, 24

where T, is the sampling increment for a discrete-time im-
plementation, and f, is the carrier-frequency offset in the
downconverted complex PAM model. The spectral line fre-
quency o used was the pulse rate 1/7p. (Note: The jagged
appearance of the curves in Figs. 2,3, and 6 is a result of the
fact that the optimization search was over discretized versions
of the parameters d, B, Tet).
For real PAM, it can be seen from Fig. 2 that

d = 0.45T,
B =1.445/T,
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Fig. 4. Robustness to error in Tp for the DM detector with peak-optimal
and width-optimal bandwidth B and delay d, and for the MFS detector, for
complex PAM.
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Fig. 5. Peak-optimal bandwidth B and peak SNR for the DM detector versus
delay d for complex PAM.
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Fig. 6. Width-optimal bandwidth B and pulse-rate tolerance ATy for the
DM detector versus delay d for complex PAM.

are the jointly peak-optimal detector parameters and, from
Fig. 1, these parameter values result in an SNR that is only
0.6 dB below that of the optimum (MES) detector, which
is used as a reference (0-dB SNR). From Fig. 3, it can be
seen that

d = 0.557T,
B =1.452/T,

are the joint width-optimal detector parameters for real PAM,
and from Fig. 1 it follows that the width-optimal detector, by
comparison with the peak-optimal, provides up to 2 dB more
SNR for pulse rates 1/7} that are lower than the expected
rate 1/Test[log(Test/To) < 0], but also results in up to 2 dB
less SNR for some pulse rates that are higher than expected.
Although the peak value of width-optimal SNR is 1.7 dB
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below that of the optimum MFS detector, both the peak-
optimal and width-optimal detectors are far superior to the
MFS for some pulse rates that are higher than expected,
whereas they are comparable to the MFES for pulse rates that
are lower than expected.

A practical compromise between the peak-optimal and
width-optimal parameter values is d = T/2 and B = 1.515.

For complex PAM, the results are a little more interesting. It
follows from Fig. 5 that the peak-optimal parameter values are

d=0
B =0.85/T)

and we can see from Fig. 4 that this results in an SNR that
is 1.55 dB lower than that provided by the optimum MFS
detector. From Fig. 4, it follows that

d = 0.52T,
B =1.40/Tp

are the width-optimal parameter values, and Fig. 4 shows
that the width-optimal detector provides up to 10 dB more
SNR than the peak-optimal detector for pulse rates that are
lower than expected and even more than 10-dB improvement
for higher pulse rates. However, this results in 2.65-dB loss
relative to the peak-optimal and 4.2-dB loss relative to the
optimal MFS detector when there is no error in the expected
pulse rate. On the other hand, the MFS detector can perform
quite poorly compared with the width-optimal detector when
the actual pulse rate is higher than expected.

The robustness optimization for complex signals was done
for the case of a real-valued pulse and a perfect match between
the filter’s center frequency and the signal’s center frequency.
In this case, the pulse-rate line appears in the real portion
of the delay-and-multiply product. The complex statistic is
nevertheless used because it provides a best case complex-
signal robustness evaluation: for any other case, a specific
complex pulse (channel impulse response) or carrier mismatch
must be chosen.

In addition, Fig. 7 shows the robustness of the three de-
tectors to errors in the assumed value of carrier offset for
complex PAM signals. The data in this figure were generated
by evaluating the SNR’s for the case of a mismatch between
the center frequency of the filter and -the center frequency
of the signal’s power spectrum (the center of P(f) does not
match the center of H(f)). Although the peak-optimal and
MES detectors exhibit similar degradations due to this type of
error, the width-optimal detector is substantially more tolerant.

In summary, by accepting a few decibel loss in SNR
for the best case of no error in the assumed pulse rate or
carrier frequency for complex PAM, we can obtain substan-
tial improvements in tolerance to both of these errors when
they are relatively large by using the width-optimal parame-
ters values.

IV. SIMULATIONS

To corroborate the results and conclusions drawn in
Section III on the basis of SNR, we show here a sampling of
ROC'’s obtained for a BPSK signal with parameter values as
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Fig. 7. Robustness to carrier offset error for the DM detector with
peak-optimal and width-optimal bandwidth B and delay d, and for the
MES detector, for complex PAM.

specified in (24). Thus in the case of real signals, a baseband
binary PAM signal with Ty = 167 is simulated, and in the
case of complex signals, the same real signal is simulated
and then modulated by a complex exponential with fre-
quency 1/4Ts.

For each ROC curve, 500 independent statistics for each
hypothesis are computed. Each statistic is computed in the
following way. The signal is generated (on the signal-present
hypothesis only) and added to WGN that is simulated using an
IMSL library routine. These data are filtered by the appropriate
H(f) and then multiplied by delayed versions of themselves.
The ideal rectangular filter is implemented in the frequency
domain by simply zeroing the appropriate bins in the FFT
of the signal. The delay and the bandwidth of the filter are
assumed to be specified in terms of the estimated value of the
pulse rate and are therefore determined by 7..;. An FFT is
applied and the bin corresponding to 1/Ty, the true pulse rate,
is selected. The magnitude of this bin is the detection statistic.
The value of the spectral density height for the noise changes
from case to case (but remains constant for all the ROC’s in
a single figure).

Figs. 8 and 9 show ROC’s for the MFS and peak-optimal
detectors for real signals with Tys/Tp = 0.5 (—3 dB) and
1.6 (1.9 dB), respectively. These ROC’s show that the per-
formance difference between the two detectors is correctly
predicted by the separation between the SNR curves in Fig. 1.
Figs. 10 and 11 show ROC’s for the case of complex signals,
using the same two values of T,s;/7Tp as in the previous two
figures. These figures validate the performance ordering given
by the SNR curves in Fig. 4.

Figs. 12 and 13 show ROC'’s for all three complex-signal
optimal detectors for the case of a carrier-offset error. That is,
there is a mismatch between the signal’s carrier offset and the
center frequency of the pre-filter H(f). In Fig. 12, this offset
is 1% of the pulse rate 1/Tp and in Fig. 13, it is 2% of 1/T;.
These ROC’s corroborate the SNR curves in Fig. 7.

V. CONCLUSIONS

For real PAM signals, both the peak-optimal and width-
optimal DM detectors offer enhanced tolerance, relative to

‘the MFS detector, to error in the assumed value of the pulse

rate of a signal to be detected when the actual value exceeds
the assumed rate by more than 1 dB. However, for complex
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Fig. 8. Receiver operating characteristics (ROC’s) for a real signal:

101log(Test /To) = —3 dB.
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Fig. 9. ROC'’s for a real signal: 101log(Test/To) = 1.9 dB.
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Fig. 10. ROC’s for a complex signal: 101log(Test/T0) = —3 dB.
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Fig. 11.  ROC’s for a complex signal: 101log(Test/T0) = 1.9 dB.

PAM signals, the peak-optimal detector performs quite poorly,
whereas the width-optimal (or optimally robust) detector again
provides enhanced tolerance to actual pulse rates that exceed
the assumed rate by more than 1 dB. For actual pulse rates

1

0.8 J
0.6 4
Pp
0.4 b
0.2 Peak-Optimy — i
Width-Optimal =—
0 1 1 1 —
0 0.2 0.4 0.6 0.8 1
Prpy

Fig. 12. ROC’s for a
(TOfoffset.) = -8 dB.

complex signal: carrier offset error of 10log

0.2 MFS — 4
Peak-Optimal —
Width-Optimal s

0 L 1 | 1

0 0.2 0.4 0.6 0.8 1
Pry

Fig. 13. ROC’s for a complex signal: carrier offset error of 10log
(TOfoﬁset) = -5 dB.

that are lower than the assumed rate, the width-optimal de-
tector—compared with the MFS detector—can provide up to
2 dB higher SNR for real PAM but can be nearly 2 dB worse
for complex PAM, and is as much as 4 dB worse when the
pulse-rate error is between —1 and +1 dB for complex PAM.
However, to offset this, the width-optimal detector performs
well for carrier-offset errors (normalized by the pulse rate)
as large as —1 dB, whereas the MES detector fails for errors
exceeding —5 dB.

In conclusion, by comparison with the optimum MFS de-
tector, the optimally robust DM detector offers enhanced
tolerance to errors in assumed values of pulse rate and carrier
offset. However, if the objective is to design a detector that
performs as well as possible for all possible carrier frequencies
and pulse rates, then the prefilter/delay/multiply followed by
a spectral-line detector is not necessarily the most appropriate
quadratic device. The cyclic spectrum analyzer (also called the
spectral correlation analyzer) [1], [9] provides more flexibil-
ity for search-type detection and, with linear postprocessing
(weighted integration over frequency), can implement the
optimum quadratic detectors for all possible carrier frequencies
and pulse rates. Moreover, it can implement the optimum
quadratic detector for any cyclostationary signal—not just the
PSK signals considered in this paper—simply by choosing the
appropriate linear postprocessing.

APPENDIX
SNR OPTIMIZATION

In this Appendix the performance measure SNR (13) is
derived and maximized for a PAM signal in white Gaussian
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noise. Recall that the SNR 1is given by

i)

P,

_ [ls) @ h)ls(t — d) @ h(t — )] e~ met) |?

Sm(c) e
(AD)

SNR =

where S, () is the PSD of the output of the DM with noise
only at the input. The calculation of (A1) is split into numerator
and denominator calculations.

Numerator Calculation

The signal model for s(t) is given by (1). Let b(t) denote
the output of the DM with s(¢) at the input

b(t) = [5(t) & h(®)ls(t — d) & h(t — )] (A2)
= Y > anang(t—nTo—6) (A3)
X g (t—mTo— 0 d). (A4)

In (A3), g(¢) is the filtered pulse
9(t) = p(t) ® h(t). (Ad4)

The value of (b(t)e~*2™?) is sought. Starting with

—i2woat 1
(b(Be™) = dim T

K To/2 .
x Y / b(t + kTy)e™2re(+kTo) gy
k=—k Y ~To/2

(AS)

and using (A3) yields the following relation:
<b(t)e—i27rat> —

1 K To/2
lm —————
K—oco (ZK + l)To Py /T0/2
X Zanamg (t+ kTo — nTp — 6)
X g*(t+ kTo — mTy — 6 — d)e2m(t+kTo) gy (A6)

A change of summation indices for n and m and subsequent
simplification yields

<b(f)€_i2ﬂat> —

o 1
Koo (2K + 1)To

. To/2 K '
x / § : § : a’k_n/az_m/e—ﬁﬂakTo
n’,m’

—To/2 k=—K

X gt —n'Ty — 0)g*(t — m'Ty — 0 — d)e "2 dt . (A7)
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Since the symbol sequence {a,, } is independent and identically
distributed, then
K

1 * —i2rakTy __
;glf,noo(zK + 1Ty ZK Qk—n' Gk —m'€ =

- ol
0,

m' =n' a—p/To (A8)

0therw1se
where p = 0,1, 42, - --. Therefore
<b(t)e—i27rat> —
o2 To/2
== gt —nTy— 6
To —To/zzn: )

x g*(t —nTy — 0 — d)e™"?™* dt, (A9)

for o = p/T,. Expressing g(t) in terms of its Fourier transform
G(f) and using the identity

e}

Z e—iQTr(fl—fz)nTo

n=—oo

= Tio Z 8(f1 — f2 —nTo)

n=-—oo

(A10)

in (A9) yields

(b(t)e~2met) = Z 72

n=-—oo

% / G(f+n/T0 )G*(f)ei27rfde—i27m6/T0 df

- "To/2
“J

—To/2

for ¢ = p/Tp. The second integral in (All) vanishes for
n/To # a = p/Tp so that

e g)m(e-5)

oo

e—i2mt(a—n/To) 4 (A1)

<b(t)e—i27rat> —

X H(f+5 VB (f =5 )e?™ df e (A12)

where o = p/Ty, and P(f) and H(f) are the Fourier
transforms of p(t) and k(t), respectively. Note that for even
G(f) = P(f)H(f), (A12) reduces to

(b(t)e™i2mat) =

o2 [

n) PUrs)r-3)a0 )

x H* ( f- % ) cos(2r fd) df e=2™ . (A13)
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Denominator Calculation

The noise is bandlimited and Gaussian, either lowpass (in
the case of real signals) or bandpass (in the case of complex
signals) and has a constant spectral height in its passband.
In either case it is assumed that the noise n(t) has the
representation

n(t) = ne(t) cos(2m fot) — ns(t) sin(27 fet) . (A14)

In the case of real signals, f. = 0 and n(t) = n.(t), whereas
in the case of complex signals f. can be taken to be the center
frequency of the signal of interest. In either case, if we assume
that the spectrum of the noise is symmetric about f., then the
crosscorrelation between n.(t) and ny(t) is zero.

The input to the DM receiver is the complex envelope

ne(t) = ne(t) + ing(t) (A15)

and the corresponding output is m(t). To find the PSD of m(t),
the autocorrelation is computed and then Fourier transformed.
With u(t) = n.-(t) ® h(t), the autocorrelation function for
m(t) is
Rn(r) =
(u(t +7/2)u*(t +7/2 = du*(t — 7/2)u(t — 7/2 - d)) .
; (A16)

An application of Isserlis’ formula [9] to (A16) yields

R, (1) =
|Ru(@)” + |Ru(7)* + Ruur (7 + d)RYye (7 — d).

(A17)
It is straightforward to show that
W (T) = // h(A)h(y
X [Rn (T—/\+’7)+Rns(7—/\+’)’)]d/\dfy
(A18)
and that
Ruue (7) = // B(O)A(y
X [Rn (T = A+7) = Rn, (T = A+ 7)]dNdy.
(A19)

The spectral density S,,(«) for a # 0 is given by the Fourier
transform of the last two terms in (A17). The special cases of
real and complex signals are treated separately.

Real Signal: Here ng(t) = 0, which implies that R, (7) =
0. Thus the integrals in (A18) and (A19) are identical. The
spectral density therefore becomes

o a |2
2 )H (f Ty )‘ ~

Sm(a) = 2/oo cosz(ZWfd)‘H* (f -

—0o0
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Complex Signal: Here R, (1) = R, (7), which implies
that (A19) vanishes. The spectral density therefore becomes

sy = (s (3

xsm(f+—2—)snc(f—-‘;i)df. (A21)

(A20)

Combining (Al), (A12), and (A20) yields the SNR (14) for
real signals. Combining (Al), (Al12), and (A21) yields the
SNR (15) for complex signals.

The Ratio

To obtain the optimum SNR in (15), the numerator, which
is the squared magnitude of (A12), is written as

’ / izt (f+ )P*(f 5)
NCRERESENTEEY

0D

xH(f—l— )H(f

2

2)a

and the Schwarz inequality is applied. This leads to the
sufficient optimal-filter design equation

H(f+ ) (1-5)
P(f+5)P(f =%
Sn.(f+5)5n(f = %)

for complex signals. The maximum SNR for real signals
(14) can be obtained similarly. This results in the sufficient
optimal-filter design equation

(o (- 3)
P (f+5)P(f— 5 )e /e
cos2(2nfd)Sy (f + € )Su(f — %)

for real signals. Equations (A22) and (A23) are only suffi-
cient, not necessary, because the Schwartz inequality yields a
maximum only when a solution to (A22) or (A23) exists. For
example, for d = 0, solutions exists, but for d # 0, solutions
do not necessarily exist. However, if G(f) = P(f)H(f)
turns out to be even, then using (Al3) in place of (Al2)
results in the replacement of e~*2"f¢ in (A22) and (A23)
with cos(27fd). In this case, solutions do exist for some
d # 0, eg,d = rM/2a for odd integers r, since then
cos (2m fd) = 2cos(w(f + a/2)d) cos(n(f — a/2)d).
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