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One-Bit Spectral-Correlation Algorithms
W. A. Gardner and R. S. Roberts

Abstract—A technique that greatly simplifies the computational com-
plexity of digital cyclic spectral analysis algorithms is presented. The
technique, which is based on Bussgang’s theorem, replaces complex
multiplications in spectral correlation operations with simple sign-
change and data-multiplexing operations. Moreover, the technique is
applicable to both time- and frequency-averaging algorithms. A sim-
ulation study that compares the computed results obtained using the
new technique with results from standard time- and frequency-aver-
aging algorithms shows that the new technique is very promising, par-
ticularly for frequency-averaging algorithms.

I. INTRODUCTION

Most modulated signals encountered in communications and te-
lemetry systems exhibit cyclostationarity. A fundamental tool in
the study and exploitation of cyclostationarity is the cyclic spec-
trum analyzer; that is, an instrument that computes the cyclic spec-
trum from signal measurements and graphs this function (its mag-
nitude and/or phase) as the height of a surface above the bifrequency
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plane [1]-[2]. Since the cyclic spectrum is also a spectral correla-
tion function, this instrument can also be called a spectral-corre-
lation analyzer. The action of correlating all pairs of narrow-band
spectral components throughout a relatively broad band is compu-
tationally intensive. Several approaches are available to perform
the processing more quickly than is done by the most straight-for-
ward methods. One approach is to exploit the structural properties
of cyclic spectral analysis algorithms through partitioning and par-
allelizing the computations. This approach is considered in [3]-[7].
A second approach, which is considered in this correspondence, is
to exploit the properties of the correlation operation that underlies
cyclic spectral analysis.

Let us begin by describing the two basic methods of digital
cyclic-spectral analysis: the time- and frequency-averaging meth-
ods [1]. For the sake of generality, we consider cyclic cross-spec-
tral analysis of two complex-valued discrete-time signals x (n) and
y(n) with unity time increment. For the time-averaging method,
we have the cyclic spectrum estimate
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where (- ),, denotes average over time ¢ and At is the averaging
time, and where the time-variant finite-time discrete Fourier trans-
form Xr(n, f) is given by
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where a (k) is a data-tapering window, and similarly for Y, (n, ).
Xr(n, f) can be interpreted as the down-converted output of a nar-
row-band-pass filter with bandwidth Af = 1/T. The total amount
of data used to compute a time-averaged estimate is Az = N, and
the amount of data used to compute the spectral components is T
= N'. The frequency resolution of this algorithm is Af = 1/T =
1/N'. For a statistically reliable estimate, it is necessary that AtAf
=N/N'" &M > 1]1].
For a frequency-averaged estimate, we have
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where (- ),; denotes average over the frequency index m; and Af
is the frequency-averaging bandwidth in units of m, and where the
spectral components are given by
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and similarly for Y,,(n, f). The total amount of data used in this
estimate is equal to the amount of data used to compute the spectral
components Ar = N. The frequency resolution is some multiple of
that of the transform: Af = M/N £ 1/N'. Again, for a statistically
reliable measurement, it is required that AtAf = M >> 1.

It can be seen that both methods compute the correlations (over
time n or frequency f) of spectral components. Also, it can be
shown [1] that the resolution of both these estimates in the cycle
frequency parameter o is A« = 1/At. Thus, to cover the entire
band of «, which ranges from —1 to +1 (for unity time increment),
we must compute the cyclic spectrum for 2 /Aa = 2At many values
of a. Also, since the resolution in the frequency parameter fis Af,
then in order to cover the entire band of f, which ranges from —1/2
to +1/2, and includes At frequency samples, we must compute
each cyclic spectrum (for each value of o) Ar/Af times. Thus, we

must compute 2 (Af)?/Af £ K individual values of the cyclic spec-
trum, that is, K = 2(At)2/Af individual correlations to cover the
entire bifrequency plane. Useful values of Af can range from 10~
to 1073, Useful values of At range from 10? to 10® (with the largest
values being required for low-SNR applications, such as spread-
spectrum signals with SNR as low as —20 dB). Thus, K typically
lies between 10° and 10'°. Clearly, the computational intensity of
cyclic spectral analysis can be greatly improved by improving the
efficiency of the correlation computations. .

It has long been recognized that correlation computations in-
volving real signals can be significantly simplified by clipping the
amplitudes of one of the signals being correlated to the values +1,
that is, by retaining only the signs of the amplitudes. With one of
the signals clipped to +1, the multiplications in the correlation
computation become sign-change operations. This approach has
been used to advantage in several correlator structures (e.g., [8]).
The advantages of such an approach are well known: less hard-
ware, faster processing due to fewer logic delays, reduced storage
requirements, and less data transfer between modules of imple-
menting architectures.

The theoretical foundation for clipping one of the signals in a
correlation computation is given by Bussgang’s theorem [9]. In es-
sence, Bussgang’s theorem states that the cross correlation R, (7)
between two signals u (f) and v (f) has the same functional form in
7 as the cross correlation R, (7) between u(f) and v’ (f), where
v’ (t) is derived from v (f) by a nonlinear memoryless transforma-
tion—provided that u (¢) and v (7) are stationary Gaussian processes.
The two cross correlations differ by only a constant scaling factor.
[Although the signals of primary interest in communications and
telemetry are not Gaussian or stationary, the components X7(n, f)
derived from them by band-pass filtering can be stationary and ap-
proximately Gaussian, and it is these components that we wish to
correlate.] A particularly appropriate nonlinear memoryless trans-
formation is the complex sign detector

1
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As just explained, this transformation can significantly reduce the
computational complexity of a correlation operation. Thus, in the
next section we use Bussgang’s theorem to obtain approximations
to the correlation operations used in the two cyclic spectral analysis
algorithms (1) and (3). Then, in the final section, we present the
results of simulations to illustrate the effects of the computational
simplifications on the computed cyclic spectrum.

II. ONE-BIT SPECTRAL CORRELATION ALGORITHMS (OBSCA'’s)

Consider two jointly stationary zero-mean complex Gaussian
processes v (n) and u (n). Let v’ (n) be obtained from v (n) by any
nonlinear memoryless transform &[] so that v’ (n) = ®[v (n)]. In
general, we have the identity
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Equation (7) is obtained by application of a version of Bussgang’s
theorem for complex-valued processes [9]. These results hold if the
expectation operation E {-} is replaced by a time-averaging oper-
ation (- ) provided that the stationary joint fraction-of-time distri-
bution of u(n) and v (n) (which is defined in [1]) is Gaussian even
if u(n) and v (n) exhibit cyclostationarity (that is, they need not be
purely stationary—see [1]).

It is desirable to use clipped data when computing R, (0) in the
scale factor a,, in (10). To this end, we temporarily replace u(n)
with 2’ (n) in (6)-(8) and solve for R,.(0) to get

Ru’ v (0)

R,0) = 2~ 0

R, (0). 1
Since (7) is valid only for Gaussian processes u(n) and v (n), and
since the temporary replacement v’ (n) for u(n) is not Gaussian,
then (10) is only an approximation. That this is a useful approxi-
mation is demonstrated with simulations in Section III. Substitut-

ing this approximation for R, (0) into (8) gives

Rv’ v (0)
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Now both the scale factor R, ,(0)/R, , (0) and the correlation
R,,(0) can be computed using the same clipped data. The scale

factor can be further simplified by observing that

R, (0) = v’ () v/ (W*) = (wl2(m) + v/’(m)y.  (13)

Since v, (n) and v] (n) can take on values of only —_H/«/i, then
R, ,(0) = 1. Hence, the approximation (12) becomes

Ruu (O) = Rv’ v (0) Ruu’(0)~ (14)

By rotating the output of the complex sign detector by 7 /4 ra-
dians, further simplification in the correlation computation can be
obtained [9]. Since the rotated output of the sign detector has one
of four possible values, i.e., 1/\/5 times (1, 0), (0, 1), (—1, 0),
or (0, —1), complex multiplications in the correlation computation
are replaced by sign detection and multiplexing operations. Note
that R, (0) is unaffected by the rotation
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= Rv’ v (O) Ruu'(0)~ (16)

In summary, by using this technique, complex multiplication in
correlation computations is reduced to a multiplexing operation on
the real and imaginary components of the input sequences.

To apply the preceding development to the computation of time-
averaged estimates of the cyclic cross spectrum, let u (n) and v(n)
be the complex-demodulate sequences X;(n, fy + o /2) and Yr(n,
fo — ap/2). For sufficiently large 7, these will each be approxi-
mately stationary and Gaussian. However, they will not, in gen-
eral, be independent and might not be approximately jointly
Gaussian. Nevertheless, (14)-(16) suggest that the time-averaged
cyclic cross spectrum (1) can be approximated by (ignoring con-
stant scale factors)

53,0 o = LD x4 a2
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where the scaling factor is
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To obtain a similar approximation for the frequency-averaged
estimates of the cross-cyclic spectrum, we observe that for suffi-
ciently large At and small Af, the spectral components u(m) 2
Xr(n, fo + m/At + ag/2) and v(m) & Yr(n, fy + m/At — ay/2)
(in which m is a frequency index) that are correlated in (3) are each
approximately statistically stationary in m throughout the averag-
ing band of width Af. They are also each approximately Gaussian
(although they might not be approximately jointly Gaussian).
Again, (14)-(16), with u(n) and v (n) there replaced by u (m) and
v (m) here, suggest that the frequency-averaged cyclic cross spec-
trum (3) can be approximated by
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where the scaling factor is
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Referring to (17) and (19), it is noted that the same sequences
u(n) = Yr(n, fo — ag/2) oru(n) = Yp(n, fo + m/At — a/2)
for each of these methods is used to compute all point estimates
with coordinates fj and « satisfying f; — /2 = constant. The
locus of these estimates is a diagonal line in the bifrequency plane.
It can be seen from (18) and (20) that the scaling factors in (17)
and (19) are the same along each such diagonal. Since only 1/Af
such diagonals are needed to cover the plane (since the resolution
in fis Af, then we can increment f; by the amount Af), then only
1/Af scale factors need to be computed for the entire plane.

The computationally simplified algorithms (17)-(18) and (19)-
(20) are called one-bit spectral correlation algorithms (OBSCA’s).
The OBSCA technique has several advantages when applied to the
very-large-scale-integration implementation of cyclic spectrum
analyzers. Foremost is the hardware simplification gained by re-
placing complex multipliers used in the spectral correlation oper-
ation with OBSCA arithmetic units. The hardware simplification is
especially apparent in architectures designed to compute the fre-
quency-averaged cyclic cross periodogram. Since the OBSCA
technique requires only the sign bit from the real and imaginary
parts of spectral data, data storage and movement requirements are
greatly reduced. Reduced data storage, coupled with reduced arith-
metic-logic-unit (ALU) complexity and two-bit-wide data buses,
allow for signal processors with large on-chip data caches. As a
result of having large amounts of data on chip, the efficiency of the
ALU increases along with the speed of the spectral correlation
computation.

II. SIMULATION STUDY

To assess the performance of the OBSCA’s, a series of simula-
tions were performed. In these simulations, the input signal con-
sists of either 8192 or 65 536 time samples of a single binary phase-
shift-keyed (BPSK) signal in white Gaussian noise with 0dB SNR
in the band of the signal. The center frequency of the signal is
0.3125, and the keying rate is 0.0625. Simulations were performed
to estimate the cyclic spectrum along the lines o = 0.0625 and «
= 0.625. These positions correspond to the keying-rate feature and
carrier feature of the BPSK signal [1]. The frequency resolution of
all estimates is Af = 1/32 and the time-frequency resolution prod-
uct is either AtAf = 256 or AtAf = 2048. Figs. 1-4 show plots of
magnitude versus frequency on linear scales for particular values
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Fig. 1. (a) Broken curve: time-averaged estimate along o = 0.0625 with
At Af = 256; peak value = 0.50. Continuous curve: OBSCA time-averaged
estimate along o = 0.0625 with AtAf = 256; peak value = 0.30; and (b)
broken curve: time-averaged estimate along o = 0.0625 with ArAf = 2048;
peak value = 0.63. Continuous curve: OBSCA time-averaged estimate
along o = 0.0625 with ArAf = 2048; peak value = 0.73.
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Fig. 2. (a) Broken curve: time-averaged estimate along o = 0.625 with
At Af = 256; peak value = 1.53. Continuous curve: OBSCA time-averaged
estimate along oo = 0.625 with AtAf = 256; peak value = 0.53; and (b)
broken curve: time-averaged estimate along o = 0.625 with Az Af = 2048;
peak value = 1.67. Continuous curve: OBSCA time-averaged estimate
along o = 0.625 with ArAf = 2048; peak value = 1.15.

of cycle frequency. Some figures exhibit extended regions of zero
amplitude (cf. Figs. 2 and 4). These regions are beyond the region
of support of the cyclic spectrum. All figures are scaled so that the
peak value is unity. The figure caption indicates the peak value of
the data set before scaling.

The broken curve in Fig. 1(a) is the time-averaged estimate with
At Af = 256 for o = 0.0625, which is the keying rate. The contin-
uous curve in Fig. 1(a) is the same estimate using the OBSCA tech-
nique. Fig. 1(b) is the same, except AtAf = 2048. (In all figures,
the broken curves are either standard time- or frequency-averaged
estimates and the continuous curves are either time- or frequency-
averaged estimates using the OBSCA.) Fig. 2(a) and (b) shows
time-averaged estimates for o = 0.625, which is the doubled car-

1, JANUARY 1993

(2)
1 - 4
0.5 .
o : W
0.5 0 0.5
(b)

Fig. 3. (a) Broken curve: frequency-averaged estimate along o = 0.0625
with AtAf = 256; peak value = 0.65. Continuous curve: OBSCA fre-
quency-averaged estimate along o = 0.0625 with Az Af = 256; peak value
= 0.52 (every 16th point of the estimate is plotted); and (b) broken curve:
frequency-averaged estimate along o = 0.0625 with ArAf = 2048; peak
value = 0.75. Continuous curve: OBSCA frequency-averaged estimate
along o = 0.0625 with ArAf = 2048; peak value = 1.50 (every 128th
point of the estimate is plotted).
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Fig. 4. (a) Broken curve: frequency-averaged estimate along o = 0.625
with ArAf = 256; peak value = 1.76. Continuous curve: OBSCA fre-
quency-averaged estimate along o = 0.625 with AtAf = 256; peak value
= 1.07 (every 16th point of the estimate is plotted); and (b) broken curve:
frequency-averaged estimate along o = 0.625 with ArAf = 2048; peak
value = 1.89. Continuous curve: OBSCA frequency-averaged estimate
along o = 0.625 with At Af = 2048; peak value = 3.77 (every 128th point
of the estimate is plotted).

rier frequency. Fig. 3(a) and (b) shows frequency-averaged esti-
mates for « = 0.0625, and Fig. 4(a) and (b) shows frequency-
averaged estimates for 0.625. For clarity in the graphics, Figs. 1-
4 plot every 16th point of the 8192 frequency points or every 128th
point of the 65 536 frequency points.

It can be seen from Figs. 1 and 2 that the time-averaged esti-
mates produced by the OBSCA are as good as those produced by
the corresponding conventional algorithm for the purpose of detec-
tion of the presence of a feature. However, for accurate measure-
ment of the shape of a feature, the OBSCA might have some draw-
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backs since its measurements do not exactly match those of the
conventional algorithm, which is known to produce consistent es-
timates. On the other hand, it can be seen from Figs. 3 and 4 that
the frequency-averaged estimates produced by the OBSCA very
closely match those produced by the corresponding conventional
algorithm. This is so for 8192 time samples and, for 65 536 time
samples, there is no discernible difference: one measurement curve
lies exactly on top of the other. This is an especially positive result
since the OBSCA is particularly attractive from an implementation
standpoint for the frequency-averaged estimates.

IV. CoNCLUSIONS

A one-bit (the sign-bit) multiplier is introduced into the corre-
lation operation in each of the two basic algorithms for cyclic spec-
tral analysis (or spectral correlation analysis). For the algorithm
that produces frequency-averaged estimates, this results in sub-
stantial hardware simplifications while producing very accurate es-
timates of the cyclic spectrum. For the algorithm that produces
time-averaged estimates, the hardware simplifications -are more
moderate and some accuracy in the estimates is sacrificed. In con-
clusion, the one-bit spectral-correlation algorithm for producing
frequency-averaged estimates shows great promise for the realiza-
tion of practical spectral-correlation analyzers.
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