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Abstract. The problem of defining an appropriate measure of the degree of nonstationarity for stochastic processes that
exhibit cyclostationarity is addressed. After discussing several candidate measures of degree of nonstationarity, one particularly
promising measure is adopted. By decomposing this measure, several component measures are arrived at. Bounds on these
measures are derived and their utility in applications involving signal detection and estimation is established. Examples are
presented to illustrate the calculation of degrees of nonstationarity for several types of cyclostationary signals.

Zusammenfassung. Die vorliegende Verdffentlichung behandelt die Definierung der entsprechende MafBgabe von Nichtstation-
aritatsgrad des stochastischen ProzeBen mit zyklisch-stationére Eigenschaften. Nach einer Uberlegung iiber die verschiedenen
MaBgaben bei Nichtstationdrititsgrad wurde eine besonders versprechende MaBgabe angenommen. Es wird gezeigt, da88 die
einige wesentliche MaBgaben mit Hilfe der Dekomposition erreicht werden konnen. Zusitzlich wurden die Grenzen dieser
MaBgabe hergeleitet und ihre Wirksamkeit wurde in Anwendungen enthaltend die Signaldetektion und Schétzung festgesetzt.
Als Anwendungsbeispiel wird die Berechnung der Nichtstationéritdtsgrad fir einige der kennzeichender zyklisch-stationére
Signale dargestellt.

Résumé. Le probléme de la définition d’'une mesure appropriée du degré de nonstationnarité des processus stochastiques i
produisant une cyclostationnarité est présenté. Aprés avoir discuté les différentes mesures étudiées, une mesure particulierement
prometteuse est adoptée. En décomposant cette mesure on a obtenu plusieures composantes. Le domaine de ces mesures est

dérivé et I'utilité de leur application dans la détection et I’estimation des signaux est définie. Quelques exemples sont présentés

pour illustrer le calcul des degrés de la nonstationnarité de plusieurs types de signaux cyclostationnaires.
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1. Introduction

The purpose of this paper is to present an
approach to defining and analyzing the degree of
nonstationarity for a particular class of nonstation-
ary stochastic processes. The class of interest con-
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sists of periodic or multiply-periodic (almost
periodic [2]) wide-sense nonstationary processes,
that is, processes exhibiting periodic or multiply-
periodic nonstationarity of the autocorrelation.
This type of nonstationarity is commonly referred
to as wide-sense cyclostationarity.

The problem of defining an appropriate measure
of degree of cyclostationarity (DCS) was first
posed in [9] in connection with application to
linear minimum mean-squared error waveform
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estimation. As explained in [9], there is need for
a measure of DCS that is both convenient to evalu-
ate and useful in terms of applications.

Our subsequent work has shown that there is no
unique definition of DCS that is most appropriate
for all applications. For example, the most
appropriate definition for application to the detec-
tion of cyclostationary signals in noise is not
necessarily the same as the most appropriate
definition for application to the estimation of
cyclostationary signals in noise. (This is explained
in Section 4.)

The concept of the distance to the nearest
stationary process is, at first glance, an attractive
way to define DCS, but it is not clear if the technical
problems associated with this approach can be
overcome. For example, an appropriate metric is
the square root of the time-averaged mean-squared
error. But evaluation of this metric requires a joint
probabilistic model, viz., a crosscorrelation func-
tion, for all processes in the metric space. How
can such joint properties be a part of the definition
of a universal metric space, e.g., a metric space
containing all jointly wide-sense cyclostationary
processes? Also, it is not clear whether the closest
stationary process to a particular cyclostationary
process even exists.

An alternative is to simply use the distance
between the particular cyclostationary process of
interest and a stationarized (by phase randomiza-
tion [3]) version of it. But this distance turns out
to depend on nothing more than the stationarized
(time-averaged) autocorrelation of the cyclo-
stationary process and the probability distribution
of the stationarizing random phase, which depends
on the cyclostationarity of the autocorrelation in
only a trivial way (i.e., it depends on only the
period(s)).

We have found a more workable approach to
be that based on the concept of the distance
between the nonstationary (instantaneous)
autocorrelation and the closest stationary
autocorrelation or, equivalently, the distance
between the nonstationary (instantaneous) spec-
trum and the closest stationary spectrum. In fact,

Signal Processing

the closest stationary autocorrelation (or spec-
trum) turns out to be identical to the autocorrela-
tion (or spectrum) of the stationarized version of
the cyclostationary process (i.e., that obtained by
phase randomization).

In this paper, we pursue this approach to
defining DCS, and we show how this leads to
several distinct component-measures of DCS that
are useful in applications to signal detection and
estimation.

2. Background and definition of DCS

For a wide-sense nonstationary stochastic pro-
cess X (t), the instantaneous probabilistic auto-
correlation is defined to be the expected value of
the symmetrized lag product,

Ry (t, )2 E{X(t+1/2)X*(t—1/2)} (1)

(where X* denotes the complex conjugate of X),
and the instantaneous probabilistic spectrum is
defined to be the Fourier transform, in the lag
parameter, of the instantaneous probabilistic
autocorrelation,

(e o)

Sx(t,f) éj Ry (t, 7)e 2" dr. (2)

—00

For a wide-sense stationary stochastic process,
Rx (1, 7) and, therefore, Sx (¢, f) are independent
of the time-location parameter ¢,

Rx(t, 7) = Rx(7), (3)
Sx (8, f)=Sx(f). (4)

Furthermore, in this case Sx (¢, f) = Sx(f) has the
special interpretation of being a spectral density
function. That is, it can be shown [7] that

Sx(f) = lim E{%lfr(t,f)lz}, 5)
where
t+T/2
Xr<t,f>=f X (u) e du. (6)
t—T/2

Thus, since | X, (¢, f)| represents the strength of
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spectral components of X () in a band of approxi-
mate width 1/T, centered at frequency f, then
Sx(f) is the spectral density of mean square, or,
of expected power, and is typically called the
power spectral density function.

For a generally nonstationary process X(t),
Sx(t,f) does not have any similar interpretation
as some type of spectral density function. However,
if the nonstationarity is due only to periodic or
multiply-periodic time variation, then Sx(t,f)
does have a special interpretation. To see this, we
expand the multiply-periodic (almost periodic)
function Sx (-, f) in a Fourier series

Sx(t,£) =% S%(f) ™™, (7

with Fourier coefficients
S%(f) 2 (Sx (8, f) e 2"

z/2

= lim —j Sx(t, f)e ™™ dt, (8)
zo0Z J_z)

where «, which is called the cycle frequency

parameter, ranges over all values for which

S%(f)#0. It can be shown that the Fourier

coefficient function S%(f) is given by [7]

S%(f) = lim <E{% (4 f+a/2)

X)Z”F(t,f—a/Z)}>- )

Thus, S%(f) is the spectral density of correlation
between spectral components located at frequen-
cies f+a/2 and f—a/2, and is called the spectral
correlation density function. It follows from (1),
(2) and (8) that S%(f) can also be characterized
as the Fourier transform of the Fourier-coefficient
function R%(7) in the Fourier series expansion of
the instantaneous autocorrelation

Rx(t,7)=Y Rx(7)e™ ™, (10)
where
R%(7) 2 (Rx (1, 7) e 2™, (11)

That is,

S?E(f)'=J

—00

[ee)

R%(7) e ™ dr. (12)

The average value of the instantaneous spectrum
is simply the power spectral density function when
the process is stationary:

Sx(f) = (Sx (1, 1) =Sx(1,f)=Sx(f). (13)

Similarly, the average value of the instantaneous
autocorrelation is simply the conventional
autocorrelation when the process is stationary,

R%(7) £ (Rx (1, 7))=Rx(1,7) = Rx(7), (14)

and we have, as a special case of (12), correspond-
ing to a =0,

oo}

Sx(f)=I Rx(7) e dr, (15)

which, together with (5), is known as the Wiener-
Khinchin relation. By analogy, (12), together with
(9), is called the cyclic Wiener-Khinchin relation
[7]. Because of the analogy between (15) (and (5))
and (12) (and (9)), R%(7) is called the cyclic
autocorrelation and S%(f) is called the cyclic spec-
tral density [7]. Any process for which R%(7)#0
for some « # 0 is said to exhibit cyclostationarity.

As a measure of the DCS of a process X (¢) that
exhibits cyclostationarity, we take the normalized
minimum time-averaged lag-integrated squared
difference between the cyclostationary autocorre-
lation Rx(t,7) and the closest stationary
autocorrelation R(7):

minJ (le(t, T)—R(’T)|2> dr
pCsa R T . (16)
J |(Rx(t, 7'))|2 dr

It can be shown that the closest stationary
autocorrelation is simply the time-averaged cyclo-
stationary autocorrelation

R(7)=(Rx(t, 7)) £ R%(7). (17)
Furthermore, this is also identical to the autocorre-
lation of the stationarized version of X (t) obtained

by phase randomization [3].
Vol. 22, No. 3, March 1991
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By using Parseval’s relation (see Section 3) it
can be seen that the DCS (16) is identical to the
following DCS defined in terms of the instan-
taneous spectrum:

rsn(i;;j (I8x(6.1)=S(HP) df

DCS 4 = , (18)
J [(Sx (&, ) df

and the closest stationary spectrum is simply the
Fourier transform of the closest stationary auto-
correlation (17):

S(f)=(Sx(t,£))=S%(f). (19)

For all processes, DCS=0. For a stationary pro-
cess, it follows from (13) or (14) that DCS=0.
Also, for a nonstationary process, it can be seen
that if the nonstationarity is only transient so that
the process is asymptotically stationary (Sx (¢, f) =
S%(f) as t—o0) then DCS =0. But if the process
exhibits cyclostationarity then DCS> 0.

The objective of this paper is to introduce
various decompositions of DCS that can be
directly related to the performances of signal pro-
cessors (detectors and estimators) that optimally
exploit cyclostationarity. However, before pro-
ceeding, it is explained that all of the foregoing
definitions, as well as the results presented in the
following sections, can be given nonprobabilistic
interpretations involving only time averages rather
than expected values.

Specifically, for a time-series x(¢), such as one
sample path of a stochastic process X (t), the non-
probabilistic counterpart of (9) (and, therefore,

(5)) is
82002 tim (% (0 f+a /20750 -/,

(20)

where Xr stands for the short-time Fourier trans-
form of x(t) analogous to (6) and, similarly, the
nonprobabilistic counterpart of (11) (with (1) sub-
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stituted in) is
A 1 .
Ri(r)& <? x(t+7/2)x*(t—1/2) e_‘z"“‘>.

(21)

And, it can be shown that (20) and (21) are a
Fourier transform pair [5]

o0

S(f) =j R2(7) e 2" dr, (22)

analogous to (12). Relation (22) is called the cyclic
Wiener relation [5]. In terms of definitions (20)
and (21), we can, by analogy with (7) and (10),

define the nonprobabilistic instantaneous
spectrum '
S.(1, /) 2T S2(f) e, (23)

and the nonprobabilistic instantaneous autocorre-
lation

R.(1,7) 2% Ri(r) e, (24)
which are a Fourier transform pair analogous to

(2). It follows from (20)-(24) that the nonprob-
abilistic counterpart of the DCS (18), (19) is simply

j (8. (1, /P = (S (e, £ NPT df

—o0

DCS2 —
f_ (8.6, SO df

(25)

and in a similar manner we obtain the non-
probabilistic counterpart of (16).

3. Decompositions of DCS

It follows directly from the Fourier transform
and Fourier series properties applied to (2) and
(7) that we have the following Parseval’s relations
[5,10]:

(Sx (L, HPY =L ISX(NI, (26)
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(Rx(t, NP =T |R% (D), 27)
r 1Sx (6, )P df = r Ry (PP dr,  (28)

J IS% (NI df=£ |R%(7)[ dr. (29)

We also have the definitions
(Sx (8, 1)) =S%(f), (30)
(Rx (1, 7)) = R(7). (31)

Substituting (26)-(31) into the definition (18), (19)
of DCS yields the alternative expressions

s [Cissoorar
" DCS =272 (32)
J ISP =

5 | RS ar
=T : (33)
| IR&o ar

These alternative expressions suggest the cycle-
frequency-decomposed measure of DCS

S%(HI df
DCSM &7 e
IS%(NIPaf

ee]
IR () d7
==, (34)

) IR(,)((T)I2 dr

o

which in turn can be expressed in terms of the
following frequency-decomposed and time-
decomposed measures:

a A |S§(f)’2

DCS S S ta/Saf—ar2y ¥
o |RX(DP

DCS? & O (36)

Thes: two latter measures are both magnitude-

squared correlation coefficients. That is,

DCS; =|psf (37)
and
DCS7 = Ip,'i‘lz, (38)
where
R
a A uv
P~ m: (39)
R
P lim 40
pI T-co RPTPTRQTQT ( )
and where
Ryy £ (E{U) V¥(1)}), (41)
with
U(HE2X(t+7/2) e ™
A +i (42)
V()= X(t—7/2) e
and
PT(t) é X'T(tyf-l_ a/z)a
(43)

QT(t)éXT(taf_a/z)-
It follows from (32) and (34) that DCS can be

composed as follows:

DCS= Y DCS®, (44)

a#0

and it follows from (34)-(36) that DCS® can be
composed as follows:

J DCS?2 dr
DCS* =—o—— (45)

[t ar

r DCS7S%(f+a/2)SX(f—a/2) df
DCS* ==

and

IEGRY

(46)
In the next section DCS and its components
DCS®, DCS? and DCS; are upper- and lower-
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bounded and then related to the performances of
signal processors that optimally exploit cyclo-
stationarity.

4. DCS and performance

We begin with some general bounds on DCS
and its components. It is clear from (34)-(36) and
(44) that

DCS=max DCS*=0, (47)
and that

DCSf=0 (48)
and

DCS%=0. (49)

Thus DCS and all its components are nonnegative.
Furthermore, all the components of DCS are
upper-bounded by unity, which can be seen as
follows.

Using the inequality [7, 5]

IS%(FIP<Sk(f+a/2)Sk(f—a/2) (50)

and the Cauchy-Schwarz inequality, it follows
from (34) that

DCS* <1. (51)
In addition, if X(¢) has bandwidth B, i.e., if

S%(f)=0, |f|=B, (52)
then using (50) in (34) results in

DCS* <1—|al/2B, (53)

where |a|<2B. Also, because of (50), we have
DCSE<1. (54)
Similarly, it can be shown that
DCSe<1. | (55)

Inequalities (54) (or (50)) and (55) are direct
results of the fact that DCSy and DCS? are both
magnitude-squared correlation coefficients.

Signal Processing

DCS itself can also be upper bounded when
X (t) is bandlimited. That is, if X (¢) is real and
has only L positive cycle frequencies (and, there-
fore, L negative cycle frequencies), then it follows
from (44) and (51) that '

DCS<2L. (56)

In addition, if X (¢) exhibits cyclostationarity with
only one period T;,, and X (¢) is bandlimited as in
(52), then L<2BT,. Also, in this case, it follows
from (44) and (53) that

L
DCS< Y (1-]|k|/2BT,) -1

k=—L
=2L—L(L+1)/2BT,, (57)

and this upper bound never goes below L—1.

In the remainder of this section, we relate DCS
and its components to the performances of signal
detectors and estimators that optimally exploit
cyclostationarity.

Beginning with the most elementary relation, we
consider the problem of estimating U(z) in (42)
using a linear transformation, U (t)=hV(t), of
V(t) in (42). It can be shown that the normalized
minimum (with respect to h) value of the time-
averaged mean-squared error

ex=(B{LU(1)- U] (58)
is given by
min{eZ}
=1-DCS?. (59)

U

Thus, estimation is possible if and only if X (t)
exhibits cyclostationarity with cycle frequency «,
and the accuracy of the estimation is determined
directly by DCS;. This type of estimation plays a
fundamental role in blind-adaptive spatial filtering
of signals that exhibit cyclostationarity [1, 7].

Let us now consider the problem of estimating
the process X(t) throughout a spectral band of
width B centered at frequency f,+ a/2—call this
bandlimited part of X(¢) X+(t)—us~ing a linearly
filtered version, )2'+(t) =h(t)®X_(t) (where ®
denotes convolution), of X (¢), which is the por-
tion of X(¢) in the spectral band of width B
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centered at f,—«a/2, but shifted in frequency to .

the band of width B centered at f,+ «/2. It follows
from the optimum filtering formulas in [7] or [5]
that the time-averaged minimum (with respect to
h(-)) value of the mean-squared error

ef =(B{[X. (1) - X. (O]} (60)
is given by
fy+B/2
min{ef} = J Sx(f+a/2)[1-DCS¢]df.
v—B/2
(61)

Thus, estimation is possible if and only if X (#)
exhibits cyclostationarity with cycle frequency «,
and the accuracy of estimation is determined
directly by DCSy . This type of estimation, which
exploits the inherent frequency diversity of cyclo-
stationary processes (a result of the correlation
among spectral components in disjoint bands), can
be useful for mitigating the effects of frequency-
selective fading (e.g., due to multipath propaga-
tion) and/or cochannel interference [5, 7, 8].

A different type of problem from the two preced-
ing estimation problems involves the detection of
the presence of a signal X (z) buried in noise. A
useful performance measure for weak random-
signal detection is a type of detector-output SNR
called deflection and defined by

g4 |mean{ Y(¢)|yes} —mean{ Y(t)|no}?

var{ Y(¢)|no} ’
(62)

where Y(t) is the output of the detector and |yes
and |no indicate conditioning on the presence and
absence of the signal at the input to the detector.

It can be shown that, with respect to all quadratic
detectors of the form

T/2 1/2

Y(t):j J' k(u, v) W(t+u)
-T/2 J-T/2

x W(t+v) du do, (63)

where the kernel k( -, -) determines the particular

detector, and W(#) is either signal plus noise,
X(t)+ N(t), or just noise, N(t), the maximum

attainable value of deflection is given by [5-7]

max{d} ==Y J ISX(OIP df, (64)

2N}
where T stands for the collect time of the detector,
and N, is the spectral density of the Gaussian noise
(i-e., SN(f) = Np).

On the other hand, if the cyclostationarity of the
signal is ignored (by using a random phase to
stationarize the signal model [3,7]), then the
maximum attainable deflection is only

max{d® =

T Joo 'So 24
Nz ) ISP af (65)

It follows from (64); (65) and (34) that the gain
in deflection that is‘attainable by exploiting cyclo-
stationarity is given by

max{d}

— Y _pes+i.
max(@® - PCS (66)

It can be shown that the optimum quadratic
detector that exploits cyclostationarity generates
maximum-SNR spectral lines at all the cycle
frequencies a of the signal X (¢), and then adds
the noisy Fourier coefficients of the spectral lines
together to obtain the detector output Y(¢) [4,7].
It also can be shown that the rnaximum SNR of
each of the regenerated spectral lines is given by
[4,7]

SNR” =

T
S *d
5 NOJ |S5(I df (67)
When normalized by the output SNR for the detec-
tor that ignores cyclostationarity, we obtain the
performance ratio -

SNR*

m-: DCS*. (68)

Thus, optimum detection performance is directly
determined by DCS®. This type of detection is
particularly useful for detecting weak modulated
signals, such as direct-sequence spread-spectrum
signals, buried in noise [6].

Vol. 22, No. 3, March 1991
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5. Examples

To illustrate the calculation of the various
measures of degree of cyclostationarity, and to
exemplify the functional forms and numerical
values of these measures, we present two examples
based on signal models frequently used in com-
munications, telemetry and radar systems.

EXAMPLE 1. Asanexample of arandom process
that exhibits cyclostationarity, we consider the
amplitude-modulated sine wave

X (1) = A(t) cos(wot —0), (69)

where A(t) is a real stationary process. Using
Euler’s formula,

cos(wot — ) =3 e (@' 17w =0
we obtain
X(t+71/2)X*(t—17/2)
" Z1A(t+1/2)A(t—7/2)
X [e2@0" 7120 4 gTi2%0! 120  giwoT 4 @797,
Therefore, we have
(E{X (t+7/2)X*(t—7/2)}e72™")
KB{A(t+7/2)A(1—7/2)}) ™,
a=twy/m,
= HE{A(t+7/2)A(t —7/2)}) cos(w,T),

a=0,

0, otherwise,
because

(E{A(t+7/2)A(t—71/2)} €™ =0
for all B # 0 since A(t) is stationary. Thus,
iRA(7) ™, a=Fwy/m,

R%(7)={3Ra(7) cos (wo7), a=0, (70)
0, otherwise.

Hence, R%(7) is not identically zero for only two
nonzero values of «, as shown in Fig. 1. The

Signal Processing

e

0/

T

Fig. 1. Graph of function |[R%(7)| as the height of a surface
above the plane with coordinates 7 and « for an amplitude
modulated sine wave. :

example shown in Fig. 1 corresponds to an
amplitude process A(t) with a triangular auto-
correlation.

It follows from definition (36) and the result
(70) that DCS7 for this amplitude modulated pro-
cess is given by

DCS?’ =%lp?’|2’ a = iwo/’ﬂ', (71)
where
R4(7)
02 <. (72)
P77 RA0)

Thus, DCS2<1/4 and DCSZ=1/4 for 7=0.
By Fourier transforming (70), we obtain

Sx(f)

#Sa(f) ™2, a=twy/m,
= ‘_ItSA(f"' wo/2) +%SA(f— wo/2m), a= 0, )
0, otherwise.

(73)

Thus, only spectral components that are separated
by |a|=wo/m are correlated. This can be easily
understood by expressing the time-series (69) as

X(t) =%A(t) eimot e—iﬂ +%A(t) e—iwor eie‘

Thus, each spectral component in A(t) is shifted
from its original frequency, say f, to f+ w,/2w and
f— wo/2m. The separation between the frequencies
of these pairs of identical (except for a constant
phase difference of 26) spectral components is
wo/ . Hence, all such components are completely
correlated (as long as Sx(f) = 0 for | f|= wo/2m so
that no positively shifted components overlap with
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—0
5
O/
f
Fig. 2. Graph of function |S%(f)| for an amplitude-modulated

sine wave.

any negatively shifted components). A graph of
|S%(f)|interpreted as the height of a surface above
the plane with coordinates f and « is shown in
Fig. 2.

It follows from definition (35) and the result
(73) that DCSY for this amplitude modulated pro-
cess is given by

DCS

_ |SA()P

[Sa(f+ @o/ )+ Sa(f)ILSA(f) + Sa(f — wo/ )]
(74)
for a = wy/m. If Su(f) =0 for | f| = we/27 (which
is often the case in practice), then DCS; =1 for

all |f| < wo/ 2.
Also, using definition (34) and the result (70),

we find that

1 (e o)
n J-w |RA(7')|2 dr

=

1
DCS* =—= é_l’
J ‘RA(’T) COS((L)OT)|2 dr

a=ztwy/m, (75)
and, using (44), that DCS=1.

EXAMPLE 2. As another example, we consider
the real-valued amplitude-modulated pulse train

X(t)= g AnT)p(t—nT), (76)

where A(t) is a stationary process and p(t) is a
non-random finite-energy pulse,

Jw pA(t) dt < co.

—00

By using the formal characterization

X<t>='[A(t> > a(t—nr>}®p<t>

n=-—oo

m=—co

=[A(t)% § e“"’"'”}®p(t),

= WO ®p(0),

where

i2mmt/ T
e"/,

W()=A() ¥

m=—0

we can show that
1
R§(T)=FR‘&/(T)®r,‘?(T), (77)
where

ry(7) & on pt+7/2)p(t—71/2) e 2T dy,
(78)

By an argument similar to that used in Example
1, we can show that

RG(1)=Ra(r) ¥ e ™7/7

m=—0o0

=Ru(7)T § 8(r—nT), a=gq/T

n=-—0o0

for all integers q. Therefore, (77) yields

Re(r) - [T, L RaAT)r(r=n), a=q/T

0, otherwise

(79)

for all integers g. Thus, R%(7) is not identically

zero for only values of a that are integer multiples

of 1/ T, as shown in Fig. 3. The example shown in

Fig. 3 corresponds to a white amplitude sequence
A(nT) and a rectangular pulse p(t) of width T.

When the sequence A(nT) is white, then (79)

reduces to

2

R;<r>=%r;m, a=gq/T. (80)
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Fig. 3. Graph of the function |R§‘((fr)| as the height of a surface
above the plane with coordinates 7 and « for an amplitude
modulated pulse train.

It follows from (36) and (80) that DCS? for this

pulse-amplitude-modulated process is given by

2

. (81)

rp(7)
rp(7)
For example, for a rectangular pulse p(¢) of width
T, we obtain

DCS? =

2

sin wa (T —|7|) =T

DCS? = (82)

maT

0, |7|>T.

For @ =1/ T, DCS? peaks at || = T/2 and the peak
value is (1/m)% For a =2/ T, DCS? peaks at || =
T/4 and |7|=3T/4 and the peak value is (1/2%)".
Also, using (34) and the result (80) for a rec-
tangular pulse of width T, we obtain for a =1/T

Jm [Sin w(1—|r|/ T)j|2
N
DCS* === = ==

Jm [1-|/TPdr "

(83)

By Fourier transforming (79), we obtain

-

3 PUf+a/)PH(f~a/2)
X3 S,(f—a/2-n/T),

a=q/T, (84)
0, otherwise,

Sx(f) =1

where

e

P(f)=J p()e ™7 de. (85)

—00

Thus, only spectral components that are separated

Signal Processing

e

0
!

Fig. 4. Graph of the function |S%(f)| for an amplitude-modu-
lated pulse train.

by integer multiples of 1/ T are correlated. This
can be easily understood by expressing the process
(76) as

X(1)= WO @ p(1),

where

ei2‘n-mt/ T'

W) =A(1) X .
Thus, each spectral component in A(t) is shifted
by all integer multiples m of 1/T. As long as
SA(f)=0 for |f|>1/2T) and a flat pulse p(t)
[p(¢)=0 for |t|> T/2] is shown in Fig. 4.
components are perfectly correlated. That s, |pf| =
1 and, therefore, DCS; = 1. A graph of the spectral
correlation surface |S%(f)| for a flat spectrum
So(f) (Sa(f)=constant for |f|<1/2T and
SA(f)=0 for |f|>1/2T) and a flat pulse p(¢)
[p(t)=0 for |t|> T/2] is shown in Fig. 4. ‘

The functions R%(7) and S%(f) are calculated
in [5, 7] for other examples including sine waves
that are phase- or frequency-modulated by station-
ary processes as well as by amplitude-modulated
periodic pulse trains, and also periodic pulse trains
that are pulse-width- or pulse-position-modulated.
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