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A New Method of Channel Identiﬁcation
William A. Gardner

Abstract—A new method of channel identification is proposed.
The method exploits the spectral correlation properties of pulse-
and carrier-modulated signals to identify channels in the presence
of arbitrary noise and nearly arbitrary interference. Although a
pilot or training signal is required, no replica of the transmitted
pilot /training signal is needed at the receiver. The price paid for
this simplicity and the tolerance to extreme channel corruption
from noise or interference is that the method is slow. That is,
relatively long averaging times are needed for measurement of
the spectral correlation of the received signal.

I. INTRODUCTION

LONG standing problem in data transmission is that of
Aequalizing channel distortion which, in essence, requires
identifying the transfer function of the channel. The difficulty
of this problem stems from the fact that the input to the
unknown channel—the transmitted signal—is not available at
the channel output—the receiver—unless special provisions
are made for transmission of known training signals or pilot
signals. Many techniques for adaptive equalization have been
developed, especially for digital data. After an initial phase
of equalization has been performed, the problem of fine
tuning and tracking has many viable solutions. A particularly
successful example for digital data is the decision-directed
technique (cf. [1]). The purpose of this paper is to present a
new technique for start-up or periodic update or continuous
channel identification that is believed to be different from
all previously proposed methods and that can use analog as
well as digital modulation. The new technique can be based
on either 1) initial or periodic replacement of the message
signal with a random training signal, or 2) superposition of
a random pilot signal on top of the message signal; but the
technique is novel in that it does not require full knowledge
at the receiver of the particular training or pilot signal that
is transmitted. It requires only knowledge of the transmitted
pulse shape and transmission of the training or pilot data at
a substantially reduced rate, relative to the maximum rate
for the channel. (When the message signal is replaced with
the training signal, this can be reinterpreted as transmis-
sion of the zero symbol repeatedly between isolated random
data samples, or it can be reinterpreted as the transmission
of isolated pulses with random amplitudes; however, the
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nonoverlapping channel responses to these isolated pulses
cannot be superimposed and averaged to remove channel
noise and interference—and thereby iiden,tify.t_h;e gha_i;hel by
deconvolving this pulse response with the known transmitted
pulse—since their amplitudes fluctuate randomly with zero
mean from one pulse to the next.) Furtherniore,“:tll‘e new
method does not require pulse synchronization at the receiver.

Although the new technique has the disadva‘ntag'e.’ of re-
quiring a substantially longer time to accomplish channel
identification and, therefore, equalization, than thé;f fréquired
by the fastest known methods [1] (and this is unacceptable
in many applications), it can be useful when the speed of
identification is not crucial and/or there is severe noise or
interference present. .

The new method exploits the fact that spectral components
of PAM signals that are separated in frequency by the pulse
rate are completely correlated and the complex correlation
value depends on the magnitudes and phases of the spectral
components. The concept of spectral correlation is briefly
reviewed in Section II and the spectral correlation function for

PAM and PAM on AM signals is presented. In Section IIT, itis

shown how the channel transfer function 4magn‘i'tu‘dé and phase

can be determined from spectral correlation measurements on.

the received signal, and this is applied in Section IV to PAM
signals for baseband channel identification and to PAM on

AM signals for passband channel identification. In Section V,
a simple FFT-based method for measurement of spectral.

correlation is presented and some implementation issues are
discussed. The method is further illustrated for nonpulsed
signals in Section VI.

II. SPECTRAL CORRELATION

The spectral correlation characteristics of a random signal
s(t) can be determined as follows. We pass the signal s(t)
through two positive-frequency bandpass filters with center
frequencies f + a/2 and f — /2 and bandwidths both
equal to A to obtain the two bandpass signals s4(t) and
s_(t), respectively. We then downconve;i these signals to
baseband by multiplication with exp(—i2x[f + a/2]t) and
exp(—i2n[f — a/2]t), respectively. Finally, ‘Wwe crosscorrelate
these two baseband signals by multiplying the first by the
complex conjugate of the second and then time averaging the
product over an interval of length 7. :

For signals that persist indefinitely, we can’obtain an ide-
alized measure of the spectral correlation density for spectral
components at the two frequencies f + /2 and f — a/2 by
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making the midband gains of the two filters equal to 1 / VA
and taking the limit as the averaging time T approaches infinity
and then taking the limit as the bandwidth A approaches
zero. When the separation o between the two frequencies is
zero, this yields the spectral density of average power S, (f),
which by the Wiener—Khinchin relation is equal to the Fourier
transform of the idealized autocorrelation R (7) of the signal

s(1),

Ss(f) = /Rs('r)exp(—z'27rfr)d7'

Ro(r) = (s(t +7/2)s"(t — 7/2))

where (-) denotes the limit of the avethgeé over an interval
in ¢ of length T as T approaches infinity. For o # 0,
there is the following generalization of the Wiener—Khinchin
relation [2]:

= / RS (7)exp(—i2n fr)dr

R3 (1) = (s(t+ 7/2)s* (t — 7/2) exp(—i27at))

where SZ(f) is the spectral correlation density and R(7) is
called the cyclic autocorrelation. 1t can be seen that R%(7)
is nonzero for specific values of a and 7 only if the lag-
product waveform s(t+ 7/2)s*(t — 7/2) contains a finite-
strength additive sine-wave cbrfiponent (a spectral line) with
frequency . In this case, the signal s(t) is said to exhibit
cyclostationarity with cycle frequency o [2].

For example, all periodically pulsed signals (with bandwidth
exceeding half the pulse rate) exhibit cyclostationarity with o
equal to the pulse rate for a range of values of  [2]. It follows
from the generalization of the Wiener—Khinchin relation that
all pulsed signals exhibit nonzero spectral correlation density
for a range of spectral components separated in frequency
by a.

In contrast to this example, signals and noises n(t) that are
stationary do not exhibit cyclostationarity and, therefore, their
spectral correlation functions SZ(f) are identically zero for
all a # 0.

Let us consider three examples. The first example is the
real PAM signal

oo

D and(t—nTh —to)

n=—oo

s(t) =

where {a,} is a stationary random sequence of pulse-
modulating parameters (either analog or digital). It is shown in
[2] that the spectral correlation function for this PAM signal
is given by

Ss(f) = —Q(f+a/2)Q

So(f + a/2) exp(—i2maty) 1)

- a/2)

for o equal to all integer multiples of the pulse rate 1 /T,
and Sg(f) is zero otherwise. In this expression, Q(f) is the
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pulse transform

Q*(f) is its conjugate, and S, (f) is the power spectral density
of the stationary random sequence a,

q(t) exp(—i2n ft) dt

Sa(f)= D Ra(k)exp(—i2nkTof)
k=—o0
Ra(k) = <ak+nan>

where () here denotes infinite descrete-time average over .

If the data sequence {a, } is independent and identically dis-
tributed, then S, (f + /2) = (a?) for all f. As an example,
if s(t) has excess bandwidth 7100%, then

QU)#0  for
QUf)=0 for

If1 < (n+1)/2T0
If1> (n+1)/2T0

and, therefore,

S2(f)£0 for
SHf)=0 for

IfI < (n+1-[k])/2To
[fI > (n+1 - |k])/2T0

for o = k/Tp. Thus, the spectral correlation function is
nonzero only for |k| < (n+1).

The second example is the PAM on AM signal (e.g., ASK
or BPSK)

oo

Z anq(t — nTy — to) cos(2m fot + ¢o)

n=—oo

s(t) =

with independent identically distributed data {ay, }. If 2f, Ty #
integer, then the spectral correlation function is given by [2]

Se(f) = ﬁ@zm(f — fo+ /2)Q"(f + fo — a/2)

- exp(—i27[a — 2folto — 2¢y) 2
for a = 2fy + k/Tp for all integers k.

The third example is the stacked carrier AM signal

N

s(t)="Y a(t)

k=—-N

cos[2m(fo + k/2To)(t — to)]

where a(t) is a stationary process and 1/27T; is any desired
frequency increment. The spectral correlation function for this
signal is given by [2]

N—|k|
SSf)=7 X Sulf+i/MM)exp(—idmvte) ()
j=—(N~lkl)

where o = 2fy + k/Ty for —N < k < N.
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[II. DERIVATION OF THE CHANNEL IDENTIFICATION FORMULA

We consider the situation where the transmitted signal z(¢)
consists of a message signal m(t) on which a pilot signal p(¢)
is superimposed

z(t) = p(t) + m(¢).

(If a pilot training signal p(t) is used in place of the message
m(t) during start-up or periodic update identification, then we
just tet m(t) = 0.) The received signal r(¢) consists of the
distorted transmitted signal plus additive noise and possibly
interfering signals n(t)

r(t) = h(t) ® z(t) + n(t)

where h(t) is the impulse-response function for the channel
and ® denotes convolution.

Since the spectral components at frequencies f + a/2
passing through a real channel are scaled by the channel
transfer function H(f + «/2) at these two frequencies, then
the spectral correlation function at the channel output is given

by 2]
Sp(f) = H(f + o/2)H"(f - a/2)
[Sy(£) + S ()] + S(f)- Q)
As long as the message m(t) and noise and interference
n(t) do not exhibit spectral correlation at the same frequency

separation  as for the pilot/training signal p(t), then S% (f) =
S2(f) = 0 and this equation reduces to

Sy (f) = H(f + a/2)H"(f — a/2)S5 (),

which can be solved for H(f). That is, since for a real channel
[real A(t)] we have H(—v) = H*(v), then

_[$Z0)]"
o) = | 5] 6

It follows from (5) that the channel transfer function H(v)
can be identified at frequencies v for which the spectral
correlation function Sg"( f) of the transmitted pilot/training
signal evaluated at f = 0 is nonzero (assuming that S2¥(0) =
S2v(0) = 0). This requires knowledge of the statistical
parameter Sg”(O) of the transmitted pilot/training signal and
measurement of the corresponding statistical parameter S2¥(0)
of the received signal. ]

The result (5) should be contrasted with the conventional
result (which follows from (4) with o = 0)

_ [8:0) = Su()EFSm(D) ]
= [S=SEGED)

based on the power spectral densities of the transmitted
and received signals. From (6), only the magnitude of the
transfer function can be identified, and this requires that there
be no channel noise or interference or message or that the

corresponding power spectral densities Sy, (v) and S, () be-..

known. The alternative conventional result

— S"’P(V) - Srn(V) - Srm(l/)
)= Sp(v) Q)
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can be used to identify both the magnitude and phase of the
transfer function, provided only that the channel noise and
interference and message are orthogonal to the pilot/training
signal (S, (v) = S;n(v) = 0). However, measurement of the
cross-spectral density S,,(v) requires access to the pilot/
training signal at the receiver. This requirement is circum-
vented with (5).

IV. CHANNEL IDENTIFICATION USING PULSED SIGNALS
If the pilot signal p(t) is PAM, then it follows from (1) that

2
SZ"(O) = <;1—>Q2(1/) exp(—idmuty)
0

for v = k/2Ty. Therefore, (5) yields

[52(0)] /2
((a2)/T0)"*|Q(v)|

Thus, if the data rate 1/Tp for the pilot/training signal is
1/N times the (positive-frequency) channel bandwidth B, then
we can identify the channel magnitude and phase functions
for a baseband channel (to within the linear term 4wt
corresponding to the unknown pulse timing) at discrete fre-
quencies v = /2 separated by B/2N by measuring the
spectral correlation function S2(0) for the received signal
and normalizing its square root by the product of the pulse
transform and magnitude |Q(a/2)] (<a2>Tg)1/2. If the pilot
is superimposed on (rather than being a replacement for) the
message signal, and the data rate for the message is B, then the -
assumption S2(f) = 0 holds for v = kB/2N for all k except
integer multiples of N. Thus, we can identify the channel in this
case at all the discrete frequency points separated by B/2N
except those at both end points, v = 0 and v = B, and the
midpoint v = B/2. For N sufficiently large, these missing
points should present no problem.

For a passband channel, if the pilot signal is PAM on AM.
then it follows from (2) and (5) that

H(fo + k/2T0) exp(—i2n[kto /2To — ¢o])

[Szfo-i-k/To (O)]

" 2((a2)/T0) " Qk/2Ty) ®

H(v)exp(—i2nv) = . v==Fk/2T,.

1/2

Therefore, except for a linear phase term, the channel can
be identified at discrete frequencies centered about fy, which
can be taken to be the center frequency of the channel.

V. IMPLEMENTATION

The spectral correlation function used to identify the channel
can be computed by simply frequency-smoothing the conju-
gate product of shifted FFT’s of the real data

~

M
S2(0) = 375 3 Xa(f +m/T+a/2)
m=1

- Xp(f+m/T - a/2),
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where
K-1
Xr(f) 2> r(kT/K) exp(—i2nkfT/K).
k=0
(For o = 0, this reduces to the conventional frequency-

smoothed periodogram.) Thus, the measurement required for
channel identification is

M
$27(0) = MLT S Xr(v +m/T)Xr(v — m)T).

The amount M of smoothing determines the reliability of the
estimate. Since the spectral resolution width of the estimate is
M/T [2] and this need not be much smaller than the frequency
sampling increment from Section 1V, 1/2T;, = B/2N, then
we can use M/T = B/4N, which results in M = BT /4N for
baseband channel identification. The variance of the estimate
is inversely proportional to M [2]; thus, the data segment
length T must be much larger than 4N /B. For M = 30 and
N = 30, this requires about 7000 Nyquist-rate samples, which
represents 1 s for a voice channel. Of course, when strong
interference is present, more data will be needed in order for
that inference to adequately decorrelate in the measurement
82Y(0) (as reflected in the assumption in Section III that
Sa(f) = S3(f) = 0) [2]. For example, if the pilot p(t) is
superimposed on the message m(¢) and the amplitude levels
of p(t) and m(t) are the same, then the power spectral density
level of p(t) is a factor of N smaller than that of m(t). Since
the variance of the estimate is proportional to the square of the
power spectral density [2], then T must be a factor of N2 larger
than that needed when p(¢) is transmitted alone. Thus, whereas
1 s is needed for start-up before message transmission on a
voice channel, periodic updating during message transmission
would require an integration time of about 15 min! However, if
the amplitude level of the relatively sparse pulses of p(t) were

increased by a factor of v/N =~ 5.5 to bring the power spectral

density level of p(t) up to that of m(t), then the integration
time would be reduced to about 30 s. But this would increase
the required dynamic range of the system.

VI. CHANNEL IDENTIFICATION USING NONPULSED SIGNALS

The general approach to channel identification based on (5)
is not limited to pulsed signals such as the PAM and PAM on
AM signals considered in Section I'V. For example, it follows
from (3) and (5) that for a stacked carrier AM signal, we have

H(fo+ k/2T0) exp(—z’47r[f0 + k/2T0]to)
453f0+k/T0 (O)
N—[k]

> Sa(j/2To)

j=—(N k]

Thus, except for a linear phase term, either a baseband or
passband channel can be identified at frequencies v = fo +
k/2T for =N < k < N, given knowledge of only the power
spectral density S,(j/2Tp) of the amplitude a(t).

However, whereas the low-rate PAM (or PAM on AM)
pilot/training signal can be superimposed on a high-rate
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PAM message, this stacked carrier signal must be transmitted
alone since a superimposed message could not in general be
recovered. - :

VII. COMPARISON TO CHANNEL
IDENTIFICATION USING PERIODIC SIGNALS

Both methods presented in Sections IV and V identify
the channel at discrete frequencies across the passband. This
same result can be accomplished by transmitting periodic test
signals. For example, if the amplitude modulation is removed
from the pulses in the PAM signal, then it is simply a periodic
pulse train with spectral lines at the harmonics of the pulse
rate. Similarly, if the amplitude modulation is removed from
the sine-wave carriers in the stacked carrier AM signal, then
it is simply a sum of sine waves spread across the passband.

Although the periodic-test-signal method is simpler and
requires less averaging time, it does require the transmission
of spectral lines. In contrast, the new methods do not re-
quire transmission of spectral lines, but rather they regenerate
spectral lines at the receiver. That is, it can be seen from
the discussion in Section II that measurement of spectral
correlation inherently involves regeneration of spectral lines
by multiplying the received signal by a delayed version of
itself, and then measuring the magnitudes and phases of these
regenerated spectral lines.

VIII. CONCLUSION

A new approach to channel identification is proposed.
This approach is based on a novel concept and is therefore
theoretically unique. It applies to both baseband and pass-
band channels and can utilize either pulsed or nonpulsed
pilot/training signals, and the modulation of the pulsed signals
can be either analog or digital. The training signal can be
sent in place of a message signal during start-up or periodic
up-date, or—if pulsed—it can be continuously superimposed
on a pulsed message signal. None of these various methods
require pulse synchronization or storage of a known training
signal at the receiver. They require only knowledge of the
transmitted pulse shape for pulsed signals, or knowledge of the
power spectral density of a modulating signal at the transmitter
for a nonpulsed signal.

Although it is often said, in the literature on the application ™

of higher order statistics to system identification, that second-
order autostatistics contain no phase information, this is not
true for cyclostationary signals as demonstrated with the new
approach proposed in this paper.

Although many competing techniques based on the use of
training signals do not actually identify the channel—they just
equalize it directly—some methods for minimizing decision
errors for digital data (which is the ultimate goal) do indeed
require channel identification. The new approach proposed in
this paper can identify the channel even in the presence of
severe interference or low SNR.

The primary drawback of the new approach is that it is slow.
That is, long averaging times can be required to accomplish the
required decorrelation when the pilot signal is superimposed
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