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Abstract —Two alternative philosophical frameworks for the two prob-
lems of estimating the time-invariant or time-variant autocorrelation
function and its Fourier transform for stationary and cyclostationary
time-series are briefly compared. One is based on the stochastic process
model, and the other is based on the nonstochastic time-series model. It
is then explained that results on estimator bias and variance for these
two problems couched within the stochastic process framework have
analogs within the nonstochastic framework. The bias and variance
results for cyclostationary time-series that are available within these two
frameworks are then briefly summarized.

Index Terms—Estimation philosophies, nonstochastic estimation,
time-series analysis, ergodicity, cyclostationarity, cycloergodicity.

I. INTRODUCTION

The study of the reliability of estimates (e.g., estimates of the
autocorrelation function or its Fourier transform) obtained from
single time-series can be approached from two philosophically
different points of view. The orthodox point of view that comes
from the conventional probabilistic theory of statistical infer-
ence is that the time-series we use to obtain our estimate in
practice is but one sample path from an infinite ensemble of
possible sample paths from a hypothetical stationary (or cyclo-
stationary) stochastic process—a mathematical creation—and
the estimation method (which uses a single time-series-segment
of specified length) is reliable if and only if we would get
approximately the same value for our estimate (with probability
one) regardless of which sample path from the hypothetical
stochastic process we were to use. The alternative point of view
is that there exists one and only one time-series—the one we in
fact use to obtain our estimate—and our estimation method is
reliable if and only if we would get approximately the same
value for our estimate, regardless of which time-segment of
specified length from the hypothetically infinitely long time-
series (also a mathematical creation) we were to use.

The orthodox point of view becomes amenable to mathemati-
cal analysis once a particular probabilistic model of the hypo-
thetical stochastic process is adopted. Similarly, the alternative
point of view becomes amenable to mathematical analysis once
a particular fraction-of-time probabilistic model of the single
hypothetically infinitely long time-series is adopted. These two
philosophical approaches are duals when the stochastic process
models are ergodic (or cycloergodic) and in a certain sense are
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mathematically isomorphic [1], [2], [3, Chapter 8], [4, Chapters 1,
10], [5], [6]. It thus should not be surprising that the develop-
ment of reliability theory (e.g., the study of bias, variance,
confidence intervals, etc.) for both parametric and nonparamet-
ric estimation can proceed within either of the two mathemati-
cal frameworks, and can for the most part be translated from
one framework to the other (as explained in [4, Chapter 5]). But
this does not occur much in practice. It is common for investiga-
tors to choose one philosophical viewpoint to the exclusion of
the other.

A case in point is the recent paper [7], which adopts the
orthodox stochastic process framework and presents results on
estimation of the autocorrelation function and its Fourier trans-
form for cyclostationary processes® that have analogs within the
alternative framework. The purpose of this note is to clarify the
relationship between the results (within the stochastic process
framework) on reliability of estimates presented in [7] and the
results (within the alternative framework) presented in [3], [4],
[8]. In Section 11, the results from [3], [4], [8], obtained within the
nonstochastic framework, are briefly summarized. In Section III,
the results from [3] and [7], obtained within the stochastic
process framework, are briefly summarized, and then the rela-
tionship between the results in [3] and [7] and the results in [3],
[4], and [8] is explained.

II. NonsTocHASTIC EsTIMATION 2

A time-series x(¢) defined for —oo< ¢ <o is said to be of
second order if the limit (using x* to denote the complex
conjugate of x)

Re(7) 2 lim

T >

1 .
—/t+T/2x(u +1/2)x*(u—71/2)e 2T gy,
T/)i-1,2

€)

which is called the cyclic autocorrelation function, exists for all
real 7 and «, is not zero for some 7 and «, and is continuous in
7 at a =7 = 0 (and, therefore, for all « and 7).

If R3(r) is not identically zero for only a =0, then x(¢) is
said to be purely stationary. If R%(r) is not identically zero for
only a = nT, for some integers n including n + 0, then x(7) is
said to be purely cyclostationary with period T,.If R¢(1)+ 0 for
some values of a that are not all integer multiples of one
nonzero value, then x(¢) is said to be almost cyclostationary
with multiple incommensurate periods.

'The term cyclostationary is used here instead of the term periodi-
cally correlated, which is used in [7], because the former predates the
latter (cf. [9] and references therein), is in more common use in engi-
neering, and is more versatile (since it admits the modifiers wide sense,
nth order, and strict sense).

The material in this section is taken from [4] and [8].
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Let us consider the normalized complex envelope
t+V /2

—_— x(u

ARC

corresponding to the spectral component of x(¢) with center
frequency f and bandwidth on the order of 1/ V. If the limit

X, (t,f) = e~ du (2
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of the correlation of the normalized complex envelopes at
frequencies f+a /2 and f—a /2 exists, and if the Fourier
transform

F{R(D} = [ Re(r)e/rdr
exists, then we have

S2(f)=F{Rx(7)}. 4

That is, the spectral correlation density function $(f) and the
cyclic autocorrelation function RZ(7) are a Fourier transform
pair. As a special case, when ¢ =0, R$(r) is the conventional
autocorrelation function and S?(f) is the conventional power
spectral density function, and (4) is known as the Wiener rela-
tion. Consequently, for a # 0, (4) is called the cyclic Wiener
relation.

In practice the integration times 7', U,V must be finite. As a
result, the finite-time cyclic autocorrelation function and spec-
tral correlation density function must be considered to be esti-
mates of the corresponding limits. These estimates, unlike their
limits, fluctuate in the time parameter ¢. The difference be-
tween the time-averaged (over —o < t <) value (the temporal
mean) and the limit of each estimate is called the temporal bias
of the estimate, and the difference between the time-averaged
squared deviation of each estimate about its temporal mean is
called the temporal variance.

The temporal bjas is completely characterized by the set of all
nonzero limits R%(7) or, equivalently, S%(f). However, the
temporal variance depends on the fourth-order cyclic moments
of x(t) as well as these second-order cyclic moments. However,
if x(¢) has Gaussian fraction-of-time distributions (cf. [4]), then
the temporal variance like the temporal bias is completely
characterized by the set of R“(T) or the set of S °‘( ).

In [4] and [8], the general class of estimators

St )2 [~ [ kg(tuw)x(t —w)x*(t = v) dudv, (5)
where
a — utv —i2wf(v—u),iTat+u+v)
k#(t,u,v)=m T,U—u e e (6)

for some kernel m(-, ), is considered. For example, for a =0,
this reduces to a general class of estimators for the power
spectral density function that includes as special cases all of the
commonly known estimators (e.g., continuous-time counterparts
of the methods of Bartlett—Welch, Blackman—Tukey, Wiener—
Daniell, etc.). Each particular estimation method is specified by
a particular kernel m(-, ). A wide variety of specific examples,
including time-averaged and frequency-smoothed cyclic peri-
odograms (the cyclic periodogram is the integrand in (3)) as well
as the Fourier transform of the lag-windowed cyclic correlo-
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gram, are studied in [4] and [8]. For this general class of
estimators of the spectral correlation density function S"‘( ),
explicit formulas for the temporal bias and, for the Gaussmn
model, the temporal variance are derived and studied at length.
The formulas are completely specified in terms of S"‘( f) and the
double Fourier transform of m(-, -). It is shown that, for ArAf
> 1 and Af small enough for a window of width Af to resolve
S2(+), the variance is inversely proportional to AzAf. Here At
and 1/Af are measures of the widths of m(-,-) in its first and
second variables, respectively. For example, using (2) and (3),
without the limits, as an estimate $(¢, f) results in At =U and
Af=1/V.

The dependence of the bias and variance of S”‘(t flon S B(g)
for values of B that differ from « by more (or less) than
+1/2A¢ is identified as cycle leakage (or inadequate cycle
resolution) analogous to the spectral leakage and inadequate
spectral resolution corresponding to the dependence on ff(g)
for values of g differing from f by more (or less) than + Af /2.
This leads to an explanation of how cycle leakage, cycle resolu-
tion, spectral leakage, spectral resolution, and reliability (vari-
ance) can be traded off by selection of the estimator parameters
At and Af and the design of window functions which make up
m(-, -).

All of the preceding is carried out in [4] not only for the auto
spectral correlation density function of complex-valued time-
series, but also for the cross spectral correlation density function
obtained by replacing the conjugated factors x* and X5 in (1),
(3), and (5) with y* and Y, respectively, for some time-series
y(t) other than x(z).

III. StocHasTIC ESTIMATION

A zero-mean stochastic process x(¢) defined for —0< ¢ <o is
said to be of second order if the expected value

R.(t,7) 2 E{x(t+71/2)x*(t—7/2)} @)

exists for all + and 7 and is not identically zero. To avoid
anomalous behavior, consideration is usually restricted to sec-
ond-order processes for which R, (¢,7) is continuous.

If R (¢,7) is periodic in ¢ with period, say T,, then x(¢) is
said to be cyclostationary in the wide sense (or to be periodically
correlated). In this case, the Fourier coefficients

1 .
Ri(r) 2 — [T R (1,r)e 7 at ®)
TO =T,/2

for « =n /T, are called the probabilistic cyclic autocorrelation
functions. Observe that if the time-series in Section II are
sample paths of a stochastic process, then when the limit (1)
exists (e.g., in the mean-square sense), we have

R¥(7) = E(R3(r)) ©)
(e.g., in the mean-square sense). By analogy with (4), the Fourier
transform

S:(f) 2 F{RY(7)}, (10)

when it exists, can be considered to be a probabilistic spectral
correlation density function.

If R, (¢,7) is almost periodic in ¢, then (8) must be general-
ized to

1 1,2 .
a A 1 —i2mTat
Ri(r) % lim T[_T/sz(t,T)e dt, (11)

but (9) still holds.
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When the Fourier series associated with the periodic or
almost periodic function R, (-,7) converges (in some sense),
then we can make the association

R.(t,7) = L Ri(7)e™, (12)

where « ranges over all values for which (8) or (11) is nonzero.
As an aside, it is pointed out that the analogous quantity in the
nonstochastic framework is, from (1),

R(t,7)= LRY(n)"™.

The preceding material (for real x(¢)) is taken from [3], where
it is also pointed out that for any finite-mean-square measure-
ment function z(¢), such as

z()=x(t+7/2)x*(t —7/2), (13)
for which the estimate
1 )
m(T) 2 — [T (w)e e du (14)
T/i—T,2
exists in the mean-square sense, the variance is given by
1 vr/2pt4T/2, (UTD
var {m(T)} =— Kz( ,u—u)
{mz(1) Tz'ft—T/Z];—T/Z 2
ce im0 gy dy, (15)

where
K, (t',7")=R,(t',7)—m (t'+ 7' /2)m*(t'—7'/2) (16)

is the covariance and m,(t')= E{z(¢))} is the mean of the
process z(t) (cf. [3, (12.193)]. Since 7 Z(T) is simply the estimate
R%*(7) obtained from (1) with finite T, then the variance of this
estimate converges to zero as T —  if and only if (15), with (13)
substituted in, converges to zero. This is so, regardless of whether
x(t) is cyclostationary, almost cyclostationary, or more generally
nonstationary but exhibiting cyclostationarity (in which case
R,(t,7) contains additive periodic components in addition to
other nonstationary fluctuations in ¢). In addition to these
relatively straightforward results on mean-square cycloergodic-
ity, analogous but more technical results on cycloergodicity with
probability one are given in [6] (for discrete-time stochastic
processes).

The Fourier transform of the lag-windowed cyclic correlogram
is considered in [7] as an estimate of the probabilistic spectral
correlation density function S¢(f), and for a real Gaussian
cyclostationary process it is shown that the variance of this
estimate converges to zero O([AtAf]™ 1) as AtAf —o and the
bias converges to zero as Af — 0, where At is the length of the
data segment used to obtain the cyclic correlogram and Af is
the reciprocal of the width of the lag-window. It is also shown
that if Af=1/A¢t (no lag windowing), then the variance does
not converge to zero as Az —oco. Since the formulas for bias and
(for a Gaussian process) variance derived for nonstochastic
estimation in [4] and [8] are precisely the same for stochastic
estimation when the process exhibits mean-square cycloergodic-
ity of the autocorrelation [3, Section 12.7)%, then these results in

3A zero-mean Gaussian process exhibits mean-square cycloergodicity
of the autocorrelation if and only if (15), with z(¢) specified by (13),
converges to zero for all «. This is guaranteed by the satisfaction of the
hypothesis used in [7] to show that the variance of the estimate S¢(f)
converges to zero (although this hypothesis is only sufficient, not neces-
sary).
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[7] are analogs of the results obtained in [4] and [8]. The results
in [4] and [8] apply to a more general class of estimators (which
is described in Section IT and includes the estimator in [7] as one
special case among numerous special cases treated) and a more
general class of time-series (which includes almost cyclostation-
ary as well as cyclostationary).

Since the applicability of bias and variance analyses for non-
stochastic time-series, such as those in [4] and [8], which are
summarized here in Section II, to stochastic processes, such as
in [7], as summarized in this section, requires cycloergodicity (or
ergodicity for stationary processes), this note is concluded with a
philosophical comment on cycloergodicity.

It can be argued that in all those situations for which a
cycloergodic (or ergodic) stochastic process model is appropri-
ate, the single-time-series point-of-view is also appropriate (cf.
[4, Chapters 1, 10]); and in those situations where a nonergodic
model is essential, the question of perfectly reliable (probabilis-
tic variance converging to zero as averaging time approaches
infinity) estimation is ill-posed. Furthermore, without the pres-
ence of at least local cyclostationarity and local cycloergodicity
(or local stationarity and local ergodicity), or some other form of
underlying cyclostationarity (or stationarity), such as asymptotic,
in the stochastic process model, there is no sense in even
studying reliability of estimates obtained from single time-series.
Thus, the question of whether or not estimates with probabilistic
variances that converge to zero exist (cf. [7]) is really a question
of whether or not one has proposed an appropriate stochastic
process model, that is, a model with appropriate cyclostationar-
ity and cycloergodicity (or stationarity and ergodicity) proper-
ties. Nevertheless, this question of the appropriateness of a
stochastic process model can be relevant in the nonstochastic
framework because it is not in general obvious (although in
many specific cases it is obvious) whether or not a proposed
fraction-of-time probabilistic model (e.g., a set of finite-order
fraction-of-time probability distributions) can indeed be ob-
tained from some time-series. If the model is self consistent and
has the cycloergodic (or ergodic) property, then there does
indeed exist a time-series with that model, namely, a sample
path of the stochastic process with the same model, (e.g., the
same finite-order distributions).
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