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On the Spectral Coherence of Nonstationary
Processes

William A. Gardner, Fellow, IEEE

Abstract—In this paper, it is shown that for a single sample path of
a nonstationary process, reliable (i.e., low-variance) measurements of
the degree of coherence between two spectral bands with substantial
separation must be much smaller than 1/2 unless the nonstationarity
is of a special type. That is, the nonstationarity must be either of a
known form (prior to measurement) or of a periodic nature, which is
known as cyclostationarity. This brings into question the utility of
spectral coherence measurements on single sample paths of generally
nonstationary processes.

I. INTRODUCTION

IT is well known that a wide-sense stationary process does not
exhibit spectral coherence. That is, the spectral representa-
tion of the process (its integrated Fourier transform) has uncor-
related increments. Or, in other words, if such a process is
passed through two bandpass filters with nonoverlapping pass-
bands, and the two filtered processes are frequency shifted to a
common band, they will be uncorrelated. Furthermore, if a pro-
cess has no spectral coherence, then it must be wide-sense sta-
tionary (cf. [1, sec. 3.6], [2, secs. 4.11 and 11.2]). This sug-
gests that spectral coherence might be of some use in detecting
and characterizing nonstationary processes and this has been
proposed by some investigators (cf. [3]-[5]). However, if such
characterizations are to. be useful in practice, then the spectral
coherence properties of nonstationary processes must be relia-
bly measurable. This presents no particular problem in the rare
application where an ensemble of sample paths of a nonstation-
ary process is available for making ensemble-average measure-
ments. However, in the much more common situation where
only a single sample path of a nonstationary process is available
and time-average measurements must be used, there are severe
restrictions on the utility of spectral coherence measurements
on nonstationary processes.

In particular, to be useful, a measurement of coherence must
be reliable. That is, it must exhibit a sufficiently low level of
variability from one sample path to another (i.e., small variance
over the ensemble or, equivalently, a high probability of being
approximately the same for each and every ensemble member
or sample path). But it is shown in this paper that if such a
measurement of spectral coherence is reliable, then the degree
of coherence must be much smaller than 1 /2 unless the nonsta-
tionarity is of a special type. That is, the reliably measured de-
gree of spectral coherence must be very small unless the
nonstationarity is either of a known form (prior to measure-
ment) or is of a periodic nature, which is known as cyclosta-
tionarity.
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As a result of this restriction, spectral coherence measure-
ments cannot provide useful statistics for detection and char-
acterization of general nonstationarity.

II. SPECTRAL CORRELATION

We consider a second-order nonstationary process X(t) with
autocorrelation function

Re(t,7) = E{X(t + r/2)X*(t - 1/2)} (1)

where E{ -} denotes expectation and ( -)* denotes complex
conjugation. We assume that X(¢) is sufficiently well behaved
that the crosscorrelation function for the two bandpass-filtered
and then frequency-shifted processes'

Y(r) = H ho(w)X(t — u) du} o —i2T(fra/2y
Z(1) = [S h_(v)X(t — v) dv} o TiZm(f-a/2) 2)

can be obtained as follows:

Ryz(1,0) = E{¥(1)Z*(r)}

Il

E[S S Ry ()R (0)X(t — u)X*(t — v)

. e_i27r<f+a/2)'€ +i2w(f—a/2)t du dl}} (3)
+
= S Sh+(u)hf(v)Rx <t -2 ) = v - “>
- du dve—ilmx! (4)

and similarly for Ryy (¢, 0) and R, (¢, 0). The filters of interest
here are of the bandpass type and therefore have transfer func-
tions

H,(v) = S hy (t)e ™ dr (5)
satisfying
H,(v) =0, (6a)

for some bandwidth A and center frequencies f + «/2. For
example, for ideal bandpass filters, we have

v = (f+a/2)| > /2

Hi(v)=1, |v=(f+a/2)|<a/2. (6b)

'Unspecified limits of integration are understood to include the entire
support of the integrand, which can be taken to be the entire real line
(—o, ).
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Consequently, Ry, (7, 0) is a measure of the correlation be-
tween the components of X(¢) whose spectral content (before
being shifted to a common spectral band) resides in the two
bands of width A centered at the two frequencies f + « /2. We
shall call Ry, (¢, 0) the spectral correlation.

When only a single sample path of the process X (t) is avail-
able, the spectral correlation Ry, (¢, 0) can only be estimated
and this can be done by replacing the expectation operation in
(3) with a finite time-average operation

5

. 1 ("
Ryz (2, 0) = T S—r/z Y(t + u)Z*(t + u) du. (7)

This estimate of spectral correlation can be related to esti-
mates of instantaneous autocorrelations and instantaneous spec-
tral densities for nonstationary processes, which have been
considered in the literature (cf. [6] and [7, ch. 8] and references
therein). Specifically, it is shown in [7, ch. 13] that the spectral
correlation estimate (7) is approximately equal to the cyclic
spectrum measurement

1/24
ssne | Reme (8)
—1/24
where R$ (7) is the cyclic autocorrelation measurement
1 (772
Ry(r) & }S , X+ 7/2)X%(t = 7/2)e ™ dr (9)
-7/2

assuming that TA >> 1 (cf. [9, ch. 12] and [7, ch. 11]). Fur-
thermore, when @ > A and Z << T, then the measurement (8)
is approximately equal to the Fourier coefficient

7/2
=3, Scenea o

T J-7

of the estimated instantaneous spectrum (cf. [7, ch. 8] and [9,
ch. 12])
1/24

Seep e | (1)

Ry (t, 7)e ™7 gr
—1/24

(with spectral resolution A), where Rx (t, 7) is the estimated

instantaneous autocorrelation

1 (%2

Ry(t, 7) & 7 S y X(t+u+7/2)X(t +u — 7/2) du.
-z/2

(12)

Therefore, the problem of reliable measurement of spectral cor-
relation is intimately related to the problem of reliable mea-

surement of the instantaneous autocorrelation and instantaneous
~ spectrum.

ITI. CYCLOSTATIONARITY

We begin by observing that the average of the spectral cor-
relation Ry, (¢, 0) over all time ¢ will be nonzero only if the
quantity

(Ry (1, 7)e ~1m0)

I

R (7)

I

1 (772
lim — S Ry (1, Ti2mar gy
ri.n:o T J-7/2 x(t, 7)e

(13)
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is not identically zero. This follows from the fact that
(Ryz(1,0)) =’§ §h+(u)hf(v) Ry
(/[ .u + v v — u)
>
e _'2"“'>du dv (14)

where it has been assumed that Ry (¢, 7) is well enough behaved
to allow interchange of the order of the averaging operation and
the two integrals.

The process X (t) is said to exhibit cyclostationarity with cycle
frequency a when the quantity (13) is not identically zero for
some o # 0 (cf. [9, sec. 12.1]). Thus, we see that no well-
behaved process can exhibit a nonzero time-averaged value of
spectral correlation unless it exhibits cyclostationarity. Further-
more, by interchanging the expectation and time-average op-
erations, we see that the expected estimate of spectral correlation
converges to zero

lim E{Ry;(r,0)} = (Ryz(1,0)) = 0

T— o

(15)

if X(1) does not exhibit cyclostationarity with cycle frequency
. Thus, there is an intimate relationship between spectral cor-
relation measurements and cyclostationarity.

In order to obtain a reliable estimate of the spectral correla-
tion (3) and (4) for all pairs of spectral bands, using only a
single sample path of the process as in (7), it is required that
we be able to obtain a reliable estimate of the autocorrelation
function (1) using only a single sample path as in (12). It has
been proven in [6] that this is possible only if

1) the process is cyclostationary or almost cyclostationary
(at least locally) in the sense that the dependence of Ry (t,
7) on ¢ is periodic or almost periodic (sums of periodic
functions with incommensurate periods) for all 7, or

2) the process is locally stationary in the sense that Ry (1, 1)
fluctuates very slowly in ¢ for all 7 (there exists a T such
that for all 7 Ry (¢, 7) is nearly invariant in ¢ throughout
all intervals of length less than T, and the width of Ry (¢,
7) in 7 is much smaller than T for all t), or

3) the process has a form of nonstationarity that is known a
priori (Rx (¢, 7) is composed of functions of ¢ alone, all
of which are known a priori and functions of 7 alone);

e.g.,

Ry(t, 7) = k§I 3 (1)0,(7) (16)

for some known functions ¢, (t) (cf. [6]).

The connection between cyclostationarity and spectral cor-
relation is a strong one and is studied in great detail in [7]-[9],
where numerous examples of specific models that exhibit cy-
clostationarity are studied. Also, the required ergodic proper-
ties for case 1) are developed in [9, sec. 12.7] and [10]. When
X (1) exhibits the appropriate ergodic property (called a cycloer-
godic property), then all that is typically required for Ry, (1,0)
to be a reliable estimate of Ry, (¢, 0) is that the product of av-
eraging time T and spectral resolution bandwidth A be suffi-
ciently large:

A - VRyy (1, 0) Ry (1, 0) an

'Ryz(t» O)'




426 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 39, NO. 2, FEBRUARY 1991

In obtaining this particular condition, it has been assumed that
the bandwidth parameter A from (6) is small enough to accu-
rately resolve the spectral coherence properties of the process
[7, ch. 15], [11].

The situation in which the form of nonstationarity is not pe-
riodic (or almost periodic) but is known prior to measurement
is a relatively rare occurrence in practice. Moreover, when the
form of nonstationarity is known in advance, there is no longer
a need to detect or characterize the nonstationarity. Therefore,
we focus our attention on the one remaining case of interest:
locally stationary processes.

IV. LOoCAL STATIONARITY

A process can be locally stationary [12] only if an appropriate
measure of the bandwidth B, of the nonstationarity (fluctuations
of Ry (¢, 7) in ¢ for all 7) is much smaller than the bandwidth
B, of the fluctuations of Ry (¢, 7) in 7 for all r; that is, B, must
be much smaller than the width in f of the instantaneous spec-
trum

Se(t, f) = SRX(t, 7)e T dr. (18)

The extreme limit of a locally stationary process corresponds to
an idealized autocorrelation that is a time-dependent Dirac delta
6(t, 7) corresponding to nonstationary white noise.

There are primarily two ways that nonstationary white noise
can be generated. One is by applying a time-variant time-scale
transformation b(t) to stationary white noise N(¢);, to obtain
X(t) = N[b(2)], and the other is by applying a time-variant
amplitude-scale transformation a(r) to stationary white noise
. N(t) to obtain X(¢) = a(r)N(t). The autocorrelation that re-
sults from the first type of nonstationary white noise is

Ry (1, 7) = Ry[b(t + 7/2) — b(t — 7/2)]
=58[b(r+7/2) = b(t — 7/2)].  (19)

Since b(t) must be an invertible function, then the only value
of 7 for which the argument of §[ - ] is zero is 7 = 0; and in the
limit at 7 — 0, we obtain

}i_x}})% [6(c + 7/2) = b(1 — 1/2)] = ‘”’(’).
Therefore, we have
_ . |ab(1) = 1 ,
Ryt 7) = 5{ dt } |db(r)/d| om0

where the second equality results from a basic property of the
Dirac delta.
The autocorrelation for the other type of white noise is

Ry(t, 1) = a(t + 7/2)a(t — 7/2)Ry (1)

=a(t +7/2)a(t — 7/2)6(7). (21)
Since 6(7) # 0 only for 7 = 0, then we obtain
Ry (t, 1) = a*(¢)8(7). (22)

Consequently, both types of nonstationary white noise have the
same form of autocorrelation (22) (by identifying a®(¢) with
|db(t)/dt|™").

Since B, = oo for the idealized model (22), then B, << B,,
as desired, regardless of how large B, is (as long as it is finite).

For the model. (22), B, is simply the bandwidth of a?(¢). Al- ‘

though a(¢) in the model X(¢) = a(t)N(t) is considered to be
nonstochastic, in the sense that every ensemble member of X(¢)
contains the same factor a (), there is no reason that we cannot
let a(z) be a sample path of some stochastic process. This is,
in fact, done in the next section.

A more practical model for a locally stationary process can
be obtained by replacing 6 () in (22) with a well behaved au-
tocorrelation function Ry, (7) that is very narrow in width. That
is, the bandwidth B, of the corresponding spectrum

S0 = | Ru(re = ar 23)

must be much broader than the bandwidth B, of a®(¢). A phys-
ical situation that could give rise to this type of model is a ther-
mal noise source with a time-varying resistance. Since the
spectral intensity is proportional to the resistance, but the band-
width is independent of the resistance, then, with the time-vari-
ant resistance proportional to a’(r), we have the model
Ry (t, 7) = @*(t)Ry (7).

V. EVALUATION OF SPECTRAL COHERENCE
Using the idealized model (22) for a locally stationary pro-
cess, we see that the expression (4) for the spectral correIanon
reduces to the downconverted convolution

Ryz (1, 0) = S g(u)a®(t — u) du e™'*™ (24)

where

g(u) = hi(u)h(u). (25)

The transfer function G(») corresponding to this convolution
is (from (6a))

‘v - a| > A
(26)

Thus, only spectral components of @*(¢) in the band of width
2A centered at « contribute to the spectral correlation
Ry (2, 0).

If a®(¢) contains a finite-strength additive sine-wave com-
ponent with frequency «, then the spectral correlation (24) can
be substantial. However, this corresponds to the case of a pro-
cess that exhibits cyclostationarity with cycle frequency o. It
appears that the only type of locally stationary processes that
does not exhibit cyclostationarity but that does exhibit substan-
tial spectral correlation is that which is locally cyclostationary
in the sense that a*(¢) is highly oscillatory with a center fre-
quency near «.

To quantify this observation, we can study how close the
spectral coherence (spectral correlation coefficient)

B ’Ryz(fv 0)|
"~ Ry (1, 0)Ry (1, 0)

G(w) = | Ho(o + WH (W) du = 0,

(27)

can be to its maximum possible value of unity. It follows from
(22) and the counterparts of (4) for Ry, (¢, 0) and R,,(¢, 0) that

Rv(5,0) = | £ (wa(t - u)

Ry (1, 0) = S g-(v)a*(t — v) dv (28)
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where the corresponding transfer functions are (from (6a))

G.(v) = SHI(V+H)Hz(u)d,u=O, IV’ > A, (29)

However, we have the difficulty that this spectral coherence (27)
varies with time ¢ in a way that depends on the particular non-
stationarity. '

One approach to obtaining a unique numerical measure of
spectral coherence is to use the time-average root-mean-square
values of the autocorrelation and crosscorrelation, e. g,

212 o T/2 5 1/2
(|Ryz(1,0)]7) " = b‘l’iig_r/z |Ryz(2,0)] dt}

to obtain
(|Rez(t, 0)]')""

(R, O) (R (1. 0) ')

This requires that the nonsfationarity be persistent (that the pro-
cess neither blow up nor die out as t = o; i.e., as ¢t — oo,
neither Ry (¢, 7) = O nor Ry (¢, 7) = o is allowed). It follows
from (24) that

< IRYZ(t: 0)’2>

73 (30)

'T)=

= S Sg(u)g*(v) (&(t —u)a*(t — v)) dudv (31)

assuming that a®(t) is well behaved so that the order of the
integrals and the time-average operation can be interchanged.
Also, it follows from (28) that

(|Rer (1, 0)[")

= | e et (@6 - et - o)) duao
(32)

and similarly for (| Rz, (¢, 0)|?).

Let us consider the case where a(t) has a multivariate Gauss-
ian fraction-of-time distribution [7] (e.g., a(¢) is a sample path
of an ergodic stationary Gaussian process [9]) with time-aver-
age spectrum S, (v). Then (31) reduces to (see [9, ch. 10, exc.
37D

(|Rrz(t, 0)|")

- [{[Tsera] s

+2 | s - v)&(v),dv} G| du. (33)

The same formula applies to (|Ryy(z, 0)|®) and
(|Rzz (1, 0)|*) except that G must be replaced with G, and
G_, respectively. .

We consider two cases, one where a(t) is highly oscillatory
(locally cyclostationary X(¢)) and one where a(t) has equal
spectral content throughout some band centered at zero fre-
quency, and is therefore nonoscillatory

Case 1: Oscillatory Nonstationarity: Substituting the spec-

trum
So, - /2| <¢/2
Sa(v) = {oo s

(34)
otherwise
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into (33) and its counterpart for (32), assuming that A > ¢, and
using (6), (26), (29), and (30), yields the result

2 1/2
< >

1
3
. 2 € 1/e\*]'?
—_ - — + —_— —_
[2 33 6 <A> }
independent of fand «. Thus, we have a relatively high degree
of spectral coherence in this case, regardless of the amount of
spectral separation « — A (i.e., the separation between the two
bands whose correlation is measured is « — A). For compari-
son, (27) yields p = 1/2 for a(¢) = cos (war) in which case
X (1) is cyclostationary. Also, if Sy (f) = 0 for | f| > a/2,
and a(r) = cos (wat), thenp = 1 forall A < /2 [7], [9].
Case 2: Nonoscillatory Nonstationarity: Substituting the

spectrum
S £l
Sa(v) = { ’

0, otherwise

1
—’E ase > 0 (35)

< B
|V] 0 (36)

into (33) and its counterpart for (32), and using (6), (26), (29),
and (30), yields
1
Al 8
B, 2B,

5, 28 AN |
BO 2BO
for0 = o + A < 2B,, independent of f. In order to obtain a

pair of spectral bands with substantial separation, we require o
>> A and, consequently, A << B,. In this case, we obtain

—~[A 1 -2 ]1/2«1
* =13, 2B, '

Thus, the degree of spectral coherence is very small. The only
way to obtain a substantial value of p is to completely forfeit
spectral separation by choosing A = By and o = B,. Then
Ryz(t, 0) is the correlation of the entire positive-frequency
spectral band (0 < f < B,) with the corresponding negative-
frequency band. This yields the largest possible value of 5 for
this case 2

A< By, (37)

(38)

2
— = (.33.

P = A1

As another example, if the two spectral bands of width A are
separated by a minimal nonzero amount, say A, then o = 2A
and we require A < 2B, /3 in order for these spectral bands to
remain within the support band [ —B,, B,]. In this case, (37)
reduces to

1
— = 0.23.

= A19

Thus, any substantial spectral separation will result in a rela-
tively small degree of coherence (much smaller than 1 /4).

VI. SIMULATIONS

To corroborate the theoretical predictions in the previous sec-
tions, computer simulations were conducted to evaluate an em-
pirical spectral correlation coefficient corresponding to the
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probabilistic spectral correlation coefficient (27). In order to ob-
tain a computationally efficient simulation, the empirical spec-
tral correlation (7) was implemented using an FFT algorithm.
That is, the filtering and downconversion (2) was implemented
using an FFT and then the fact that time-averaging products of
short FFT’s, as in (7), is approximately equivalent to frequency
smoothing the product of long FFT’s was used [7]. Thus, the
spectral correlation measurement approximating (7) (for fixed
t) that was implemented is given by

M/2—-1

1 ~
— F, + /2
Moy XU+ mF + 2/2)

CXF(f+ mF, — a/2)

Riz (1, 0) = §3(f),, 2

(39)

where M (an even integer) is the number of frequency bins aver-
aged in the frequency-smoothing operation, F; = 1/NT, is the
discrete frequency increment, and X( f) is the FET

N-1 ,
X(f) = 2 X(kT)e " (40)
=0
where T, is the time-sampling increment. Similarly,
Ry (1,0) = SY(f + a/2),,. (41)

The spectral correlation coefficient computed is given by
|8%(),]
B(f)y == = (42)
VS (f + @/2),8%(f - a/2),,

and is the empirical counterpart of the probabilistic correlation
coefficient (27). '

The spectral resolution bandwidth of this measurement is
A = MF, and the product of averaging time 7 = NT, and spec-
tral resolution bandwidth A is given by

TA = (NT,) (MF,) = M. (43)
For a reliable measurement, it is required that
M>1/p>1 (44)

which follows from (17) and (27). From this point forward,
only 7T, = 1 is considered.
Attention is focused on processes of the form _
X(r) = a()N(t) (45)
where N(t) is white Gaussian noise with bandwidth B, (pos-
sibly low-pass filtered) and a(¢) is a deterministic function
(possibly a fixed sample path of some stochastic process). Spe-
cifically, the following cases are considered:

case 1: a(t)isa constant (X(¢) is stationary);

case 2: a(t) is a sample path of nonfiltered white Gaussian
noise (X(t) is nonstationary and nonlocally sta-
tionary );

case 3: a(t) is a sample path of low-pass filtered white
Gaussian noise with bandwidth B, = 1/16 =
(1/8)B, (X(t) is locally stationary and the non-
stationarity is nonoscillatory );

case 4: a(t) is a sample path of bandpass filtered white
Gaussian noise with bandwidth e = 1/1024 and
center frequency f, = 1/16 (X(¢) is locally sta-
tionary and the nonstationarity is oscillatory; i.e.,
X(t) is locally cyclostationary );

case 5: a(t)is asine wave with frequency f, = 1/16 (X (1)
is cyclostationary and p = 1/2);

case 6: a(t) is a sine wave with frequency f; = 1/16, and
N(t) is band limited to a bandwidth of B* = 1/32
(X (¢) is cyclostationary and p = 1).

In all but case 6, N(¢) is unfiltered white noise (B, = 1/2).
For cases 5 and 6 (with a(t) = cos (27 fyt + ¢,)), the ideal-
ized measurement (8), with T — oo and then A — 0, is equal
to [7, ch. 12], [9, ch. 12]

lim lim S$(f)
A—0 T—
iSV(f=f) +iSv(f+ ), a=0
= { iSv(f)e*™, a = +2f (46)
0, a # 0, £2f;.

Therefore, the only appropriate value of « # 0is a = 2f; (or
o = —2fy), and for low-pass N(t) where Sy ( f) peaks at f =
0 (case 6), the most appropriate value of fis f = 0, whereas for
white N(¢) (case 5) the value of fis irrelevant.

For each of the six cases, the spectral correlation coefficient
0% ( f)a is computed for certain values of «, f, and M. For each
set of values of these parameters, p% ( f),, is computed for 100
sample paths of N(¢) (and one fixed choice of a(t)), and the
ensemble mean and variance of p% ( f),, are computed. For cases
4-6, the only appropriate value of @ is « = 2f, = 1/8, and the
value f = 0 is appropriate in all three of these cases. For cases
1 and 2, the value of « is irrelevant, so @ = 1/8 and f = 0 are
again used. However, for case 3, the values of « and f could
possibly be relevant, so the representative pairs (a, f) = (1/64,
0), (1/64, 1/64), (1/32,0), (1/32, 1/32), (1/16, 0) are
considered. The value of A is not significant since N (¢) is white
in all but case 6. Nevertheless, to insure that the two spectral
bands whose correlation is measured are always nonoverlap-
ping, the value of A = 1/64 is chosen for all cases.

The results of the simulations are recorded in Table I. It is
clear from these results that in cases 1-3, where there is no
cyclostationarity or local cyclostationarity, p% ( f)s always con-
verges to insignificant values ( <<1) as M is increased in an
attempt to increase reliability. For case 4, where there is local
cyclostationarity, the same is true, but the convergence is
slower. For example, for M = 16, the mean value of 5% ( f) is
significant (=1/2) and there is some reliability (variance <
(1/2) mean?®). For cases 5 and 6, where there is cyclostation-
arity, px ( f) converges to significant values with substantial re-
liability.

VII. SUMMARY AND CONCLUSION

After defining spectral correlation and relating it to the in-
stantaneous spectrum of a nonstationary process in Section II,
it is shown in Section III that the time-averaged value of spec-
tral correlation is zero for all nonstationary processes except
those that exhibit cyclostationarity. This is equivalent to saying
that the expected value of the empirical spectral correlation con-
verges to zero as the averaging time used to measure the cor-
relation grows without bound, unless the process exhibits
cyclostationarity. It is also concluded from mathematical dem-
onstrations reported in [6] that the only situations in which
spectral correlation can be reliably measured from a single sam-
ple path are those in which the process exhibits cyclostation-
arity (at least locally), or is locally stationary, or the form of
nonstationarity is known in advance of measurement, a case of
no relevance for techniques designed to detect and characterize
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TABLE I
MEANSs AND VARIANCES OF §% ( f) FOR ENSEMBLE SizE oF 100 (SPECTRAL RESOLUTION BANDWIDTH IS

= 1/64 AND AVERAGING TIMEISN = M/A = 64M)

Case (o, f) M=4 M =16 M = 64 M = 256 M = 1024
Case 1 (1/8,0)

mean 0.599 0.290 0.155 0.065 0.025

variance ) 0.234 0.143 0.069 0.032 0.014
Case 2 (1/8,0) ‘

mean 0.531 0.286 0.155 0.080 0.044

variance 0.268 0.139 0.075 0.042 0.022
Case 3a (1/64,0)

mean 0.597 0.321 0.177 0.086 0.044

variance 0.232 0.149 0.103 0.046 0.024
Case 3b (1/64,1/64)

mean 0.412 0.269 0.130 0.068 0.033

variance 0.177 0.123 0.067 0.036 0.017
Case 3¢ (1/32,0)

mean 0.636 0.301 0.170 0.087 0.053

variance 0.244 0.163 0.090 0.043 0.027
Case 3d (1/32,1/32)

mean 0.423 0.252 0.125 0.063 0.037

variance 0.179 0.138 0.066 0.346 0.018
Case 3e (1/16,0)

mean 0.589 0.321 0.165 0.082 0.043

variance 0.261 0.162 0.077 0.043 0.024
Case 4 (1/8,0)

mean 0.677 0.482 0.264 0.113 0.060

variance 0.214 0.186 0.122 0.061 0.029
Case 5 (1/8,0)

mean 0.645 0.520 0.490 0.493 0.494

variance 0.249 0.159 0.107 0.058 0.027
Case 6 (1/8,0)

mean 0.788 0.932 0.984 0.997 0.999

variance - 0.130 0.053 0.016 0.003 0.001

nonstationarity. Knowing that reliable spectral correlation mea- ACKNOWLEDGMENT

surement is indeed possible and useful for processes that exhibit
cyclostationarity [7], this leaves only the case of locally sta-
tionary processes for further investigation. After characterizing
the class of locally stationary processes in Section IV, it is an-
alytically verified in Section V that the spectral correlation coef-
ficient must be much smaller than unity unless the locally
stationary process also exhibits local cyclostationarity. Finally,
in Section VI, these theoretical predictions are corroborated with
simulations. It is shown that for stationary processes, locally
stationary processes, and nonstationary processes that are nei-
ther locally stationary nor locally cyclostationary, measure-
ments of empirical spectral correlation are insignificant: the
spectral correlation coefficient is either much smaller than unity
or highly unreliable (or both). And, it is shown that for pro-
cesses that exhibit cyclostationarity or local cyclostationarity,
reliable measurement of substantial spectral correlation is in-
deed possible.

It is concluded that spectral correlation measurements on sin-
gle time series are of highly questionable value for detection
and characterization of nonstationarity, except in the special
cases of cyclostationarity. More generally, it can be concluded
that spectral coherence properties of generally nonstationary
processes, those that do not exhibit cyclostationarity or local
cyclostationarity, are properties of ensembles only; they are not
properties of single time series. Consequently, they cannot in
any way be reliably exploited for statistical signal processing
tasks involving only single-sample-path processing.

The author expresses his gratitude to Dr. C. K. Chen for as-
sisting with the calculations in Section V and performing the
simulation study described in Section VI.
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