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Measures of Tracking Performance for the LMS
Algorithm

MEHRDAD HAJIVANDI anp WILLIAM A. GARDNER, SENIOR MEMBER, IEEE

Abstract—Two measures of tracking performance for the LMS al-
gorithm are compared and contrasted. These are the conventional time-
average or temporal mean of the nonstationary mean-squared error
(MSE) in excess of the minimum attainable MSE, and the novel tem-
poral root-mean-squared value of the excess MSE, which takes into
account the temporal variance as well as the temporal mean of the non-
stationary MSE. These measures are evaluated for the LMS algorithm
applied to two time-variant system identification problems, one involv-
ing a random Markov system and the other a periodic system. Optimal
step-size parameters and minimum misadjustments are evaluated. It is
shown that the conventional time-average performance measure is ad-
equate only when the degree of nonstationarity is sufficiently low. For
higher degrees of nonstationarity, the time-average performance mea-
sure can be misleading in studies of the tracking behavior of the LMS
algorithm.

I. INTRODUCTION

THE LMS algorithm for adaptive adjustment of an N-
vector of filter weights W is given by

W(i+1)=W(i) + pe(i) X(i) (1)

where  is a step-size parameter,' X (i) is the filter input
vector, e(i) = d(i) — (f(i) is the error between the de-
sired quantity d4(i) and the filter output d(i) =
WT(i) X(i),and e(i) X (i) is half the negative gradient
of the squared error ¢2(i ) (with respect to the weight vec-
tor W(i)). :

Previous studies of the tracking performance of the
LMS algorithm (and related stochastic-gradient descent
algorithms) operating in nonstationary environments have
used the time-average of the nonstationary instantaneous
mean-squared error produced by the algorithm as the mea-
sure of performance [1]-[3]. Typical graphs of nonsta-
tionary instantaneous mean-squared error e(i) &
E{e’(i)} (where E{-} denotes probabilistic expecta-
tion) for the LMS algorithm are shown in Figs. 1 and 2.
That in Fig. 1 is for a randomly varying nonstationarity,
and that in Fig. 2 is for a periodically varying nonstation-
arity (these are described in Section III). It is clear from
these graphs that there can be substantial fluctuation in the
mean-squared error about its time-averaged value

zZ-1
(e(i)) & lim 'y e(i). (2)
Zow Z i=0
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'The step-size u differs from that in [1]-[3] by a factor of two.
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Fig. 1. Experimental mean-squared error (i ), as a function of data sam-
ple i, for an ensemble size of 300 from model 1, with DNS = 1/512,
SNR = 50, N = 25, u = 0.018.
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Fig. 2. Experimental mean-squared error € (i ), as a function of data sam-
ple i, for an ensemble size of 300 from model 2, with DNS = 1/512,
SNR = 50, N =25, u = 0.012.
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This suggests that use of only the time-averaged value for
tasks such as step-size optimization for the purpose of
predicting optimum-performance might be misleading.
Although some investigations of tracking performance
have worked directly with the instantaneous mean-squared
error (e.g., [5], [6]), the results obtained have under-
standably been more limited (e.g., restriction to only
bounds on performance) than when some type of time
average is used. See also [7]. Other studies have used sta-
tionary stochastic models for the nonstationarity (e.g., a
stochastic process model for the time-variant impulse-re-
sponse of an unknown system to be identified), and have
adopted the steady-state expected value (e.g., over the en-
semble of random systems) of the mean-squared error
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(e.g., between the outputs of the unknown system and the
model, where the expectation used to obtain this mean-
squared error is over the ensemble of inputs to the system
and its model) as a performance measure [8]. For an er-
godic stochastic process model of the nonstationarity, this
is equivalent to using the time average of the mean-
squared error. An overview of and bibliography on anal-
ysis of adaptation and tracking for system identification is
given in [9].

These observations suggest using the temporal root-
mean-squared value of the instantaneous excess mean-
squared error

ex(i) 2 e(i) — i) (3)

where €y(i ) is the minimum attainable value of e (i ), with
respect to the weight vector W (i) being adjusted by the
LMS algorithm. The temporal root-mean-squared excess
mean-squared error

€RMS & <€i(i)>l/2
= [fivs + Var((:,k)]l/2 (4)

where
L €ave = (f*(l)> (5)

takes into account the temporal variance var (e, ) about
the temporal mean eavg Of €,(i). The objective of this
paper is to compare the results of performance studies
based on the two alternative performance measures egyg
and EAVE-

The investigation focuses on the same type of time-
varying system identification problem considered in pre-
vious studies of the nonstationary learning characteristics
of the LMS algorithm [1]-[3], and considers the same
random Markov model for time-variation used in [1]-[3]
as well as a periodic model. It is shown that the discrep-
ancy between optimum step sizes obtained for minimiza-
tion of e,vg and egys can be large for a high degree of
nonstationarity, and this can lead to misinterpretations of
the behavior of the LMS algorithm. Similar results are
obtained for the minimum values of egys and e,yg. It is
concluded that e,yg, which is considerably more analyti-
cally tractable, is adequate only if the degree of nonsta-
tionarity is not too high. It can be misleading when the
degree of nonstationarity is indeed high, as considered in

(11, [6], [8].

II. FORMULAS FOR AVERAGE AND RMS MEAN-
SQUARED ERROR

For the system identification problem of interest, we
have

d(i) = W'(i)X(i) + n(i) (6)

where W(i) is the sequence of unknown time-variant
weight vectors corresponding to the unit-pulse response
of the unknown system, which is assumed to have mem-
ory length less than or equal to N, X(i) = [x (i), x(i —

1), x(i —2), ,x(i =N + 1)]7 is the N-vector of
samples of the system excitation x (i ), which has variance
0%, and n (i) is measurement noise, which has variance

ﬁ It is assumed that x (7 ) and (i) are independent sta-
tionary white Gaussian sequences. Two models for the
time-variations of the unknown-system weight vector
W (i) are considered. In model 1, the N elements of the
weight vector W(i) fluctuate independently of each other,
with steady state variance o2, according to first-order
Markov time-series

w,(i + 1) = rw, (i) + v,(i) (7)

where v, (i) are zero-mean i.i.d. sequences. In steady
state (i » o), (7) yields the convolution w,(i) =
r'® v,(i). Thus, as r = 1, w,(i ) becomes very smooth
(low degree of nonstationarity), but as » = 0, W, (i ) be-
comes very erratic (high degree of nonstationarity).

In model 2, the N elements fluctuate jointly according
to the periodicity

W(i) =q(i)W, (8)

where the constant vector W, is arbitrary, and the peri-

odic factor g (i) is given by the Fourier series
K
q(i) = /\20 ay cos (2mik/T) (9)

for arbitrary Fourier coefficients a, (to be specified in the
sequel). In general, as K — T, the bandwidth of ¢ (i)
approaches its maximum (high degree of nonstationarity),
but as K — 0, the bandwidth approaches zero (zero degree
of nonstationarity).

For the purpose of obtaining a closed form analytical
solution for the excess mean-squared error, it is assumed
that X(i) and d(i) are each zero-mean independent se-
quences. However, in view of the definition of X (i), we
can see that this is literally impossible. Nevertheless, this
significantly simplifying assumption, which is commonly
made in analyses of the LMS algorithm, produces theo-
retical results that typically agree quite closely with sim-
ulations when the step size is sufficiently small (cf. [1]).
This is corroborated in this paper.

The objective of this section is to present explicit for-
mulas for the average and RMS misadjustments of the
LMS algorithm. These misadjustments are defined by
Mave 2 €ave/ €min and Mpys 2 €rms/ €min» Where €y is
the average of ey(i), emin 2 (€o(i) ), and €y(i) is given
by [4]

(i) = o3(i) = PT(i) R'(i) P(i)  (10)

in which of,(i) is the time-variant variance of d(i ), R(i)
is the time-variant covariance matrix for X (i) (but is sim-
ply R(i) = oI for the particular system identification
problems considered here), and P(i) is the time-variant
crosscovariance vector for X (i) and d(i). The weight
vector that yields the minimum mean-squared error (i)
is given by [4]

Wo(i) = R™'(i) P(i). (11)
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Since the type of system identification problem consid-
ered here is the same as that studied in [1], the general
recursion for the excess mean-squared error (3) derived in
[1] applies here

e i + 1) = ve (i) + B(i). (12)
In this recursion
y =1~ 2po; + (N + 2)0} (13)
and 8(i) = By + B4(i), where
By = w’Noyoy (14)
Ba(i) = ox[AT(i) = 2(1 = pod) V()] A(i).  (15)
In (15)
V(i + 1) =(1 - pol)V(i) = A(i)  (16)
where
A(i) = Wy(i + 1) — Wy(i). (17)

As explained in [1], the component Gy in the driving term
B (i) in the recursion (12) is due to gradient noise, and

“the component (8, (i) is due to nonstationarity. By van-

ishes if there is no gradient noise and (3, (i) vanishes if
there is no nonstationarity, because then A (i) = 0.

The average value of the solution e, (i) to (12) is easily
obtained by simply equating the average values of both
sides of (12). This leads to

_ Bave , (18)

€AVE = .
-
The RMS value can be obtained using standard methods
for linear time-invariant recursions driven by random sta-
tionary time-series [4] or periodic time-series. The result
for model 1 is

bl [m]|

2 _
ERMS =

(19)

where Rﬂ(m) £ {B(i + m)B(i)) is the autocorrelation
of the driving sequence 3 (i) and

2 ’ .
S Se(£)|e” = | " df

—-1/2

gﬁ(f) é Z Iéﬁ(m)e_'izw"'f (20)

m= -

is the corresponding spectral density. The quantity [e/*™

— 4]~ " is the transfer function for the first-order recur-

sion (12).
The result for model 2 is the same as (19) and in this
case reduces to
T—-1

27k 20, 12

elleszkgolejz /\/T-'Y| |b/\1 (21)

where b, are the Fourier coefficients of the periodic com-
ponent 3, of the asymptotically periodic sequence B (i)

i=20 Bp(l )e—j21rik/T.

b, & (22)

It can be shown using (13)-(18) and ej(i ) = o,z, that for
model 1 we have the average misadjustment (cf. [1])

‘ HMNU,E/HM] (23)

Myyg = | —————
AVE L — uNoi/2 L —rs

2 A 22
where s £ 1 — poland p £ Nolol /o2l The parameter

o is the unknown-system output SNR. It also can be shown
using (13)-(20) and ey(i ) = 0771, with considerable tedious
calculation [10], that for model 1 we have the RMS mis-
adjustment

4p*(1 = r?)

(1= rs)(1 =%

S a —s)2+ 1 — s+ sr+ s’r + 2s?
1 —rs

1 +5
v(1 — r)z(l +rs)(1 +s/r)
(1= ~yr?)(1 = s/r)
v(1 = s5)(r* = 1)(1 = s°)s/r }
(1 =yrs)(1 +s)(L = rs)(1 = s/r) |
(24)

Similarly, it can be shown using (13)-(18) and ¢y(i ) =
o2 that for model 2, with W, = [1, 1, 1, - - -, 1]7, we
have the average misadjustment [10]

1 }{uNoi/z +

Mins = Mave + Ii

+

+

p1(0) }
uwol(K +2)T

(25)

Myvg = | /5=
AVE [S — uNal/2

where p £ ¢2N(K + 2)/20¢% and

n(k) & 2 f([f(i) = 25g(i)]e™/T(26)

in which
fGi) 2 q(i+1) = q(i)
1 T—1 A
— _2_ kz (ak + aT—k)(ej27rk/T _ 1)€j27rk1/T (27)
=0
and
1 .
: T-15 (ar + ar—k)(eﬂ"k/r - 1)
g(i) & k§0 o — gl 2mk/T e?m/T
(28)

where ar £ a,. The parameters 1 (k) in (26)-(28) are the
normalized Fourier coefficients of the periodic part of the
asymptotically periodic component 8, (i) due to nonsta-
tionarity in the driving term 3 (i) in the recursion (12) for
the excess MSE.

It can also be shown using (13)-(22) and ¢, = oﬁ that
for model 2 we have the RMS misadjustment [10]

4p%

Mims = Maye + ——TZ(K n 2)2

(29)
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where

1153

T-1
o2 L [n(k)[ [T =] (30)
III. COMPARISON OF AVERAGE AND RMS
PERFORMANCES

Formulas (23)-(25) and (29) have been used to evaluate
misadjustment performances M,yg and Myys for various
values of the parameters N (the number of weights), o (the
SNR), u (the step size), and DNS (the degree of nonsta-
tionarity). Since the only effect of o2 is to scale x, 02 was
set equal to unity. For model 1, a useful measure of DNS
is DNS = 1 — r. For model 2, we consider the particular
case wherea;, = 1, k=0, 1,2, - - -, K, in which case
a useful measure of DNS is DNS’ = K/T. (See relevant
comments in Section II and in [1] for justification of these
two definitions of degree of nonstationarity.)

Fig. 3 shows graphs of the step-size values, denoted by
pSve and u2ums, that minimize the misadjustments M,y
and Mgy, respectively, for model 1. These are shown as
functions of DNS. Similar results are shown in Fig. 4 for
model 2. It can be seen that for low DNS uSyg and B2
are comparable, but for high DNS plyve can be much
smaller than p.ng. However, both ;L?WE and ,L‘,;MS display
similar behavior that shows that as DNS increases, the
best step size also increases until DNS is so large that the
nonstationarity can no longer be tracked well, in which
case the best step size decreases with further increases in
DNS in order to reduce the effects of gradient noise and
better estimate the time-averaged nonstationary system.
Thus, the effects of tracking lag are considered dominant
to the left of the peak in the optimum-step-size curve,
whereas the effects of gradient noise are considered dom-
inant to the right. It can be seen that the peaks in the
ugm curves are always to the right of the corresponding
peaks in the FLOAVE curves. This reflects the fact that the
root-mean-squared MSE is more sensitive to nonstation-
arity than time-averaged MSE is. Also, the fact that
.“'(/)XVE goes to zero (in Fig. 3) or becomes undefined (in
Fig. 4) when DNS becomes sufficiently large is mislead-
ing. The more appropriate optimum step size pays. Which
does not ignore the temporal variance of the nonstationary
mean-squared error, gradually decreases as DNS in-
creases but never goes to zero or becomes undefined.

Fig. 5 shows M?WE and MgMS, which are the minimum
values (with respect to the step size u) of Myg and Mpys,
as functions of DNS for model 1. Similar results are
shown in Fig. 6 for model 2. It can be seen from these
graphs that the largest discrepancies (e.g., factors of 2 or
3) between M %VE and M ORMS occur for large values of DNS
where performance is poorest. For moderate to small val-
ues of DNS, the discrepancies are small to moderate.

In order to confirm these theoretical predictions of per-
formance, simulations were performed for several sets of
the parameter values DNS, SNR, and N, and the resultant
time-average and RMS misadjustments were measured for
various values of the step-size parameter u. In order to
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measure the mean-squared error, an ensemble of 300 ran-
dom sample paths of x(i) and n(i), both from unity-
variance white Gaussian noise generators, was averaged
over. In order to measure the time-averaged and RMS val-
ues of the excess mean-squared error €, (i ), the 3583 time-
samples from i = 512 to i = 4095 were used for aver-
aging (initial transients had died away by time i = 512).
For model 1, each of the N weight sequences in the un-
known system weight vector W(i) was an independent
sample path of a Gauss-Markov process. These N sample
paths were fixed throughout the ensemble of excitation
sequences x (i) and measurement noise sequences n (i),

A
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and similarly for model 2 except that for the periodic
weight sequences specified by (8), (9), the values a; = 1
(0<k=K)and W, =[1,1,1, -, 1]7 were used.
The results are shown in Figs. 7-10. It can be seen that
agreement between theory and simulation is quite good.
However, the discrepancies that do exist lend further sup-
port to the conclusion that the differences between the ac-
tual values of u%yg and pms are not significant for low-
to-moderate degree of nonstationarity. All of the perfor-
mance results presented in Figs. 3-10 are for the param-
eter values N = 25, SNR = 5, 50, and (in Figs. 7-10)
DNS = 1/512. Very similar results, which are not pre-
sented here, were obtained for the parameter values N =
5, SNR = 1, 10, and DNS = 1/256 [10].

IV. CoNcLUsION

In conclusion, the time-averaged MSE, which is con-
siderably more analytically tractable than the temporal
root-mean-squared MSE, is an adequate measure of track-
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ing performance of the LMS algorithm, provided that the
degree of nonstationarity is sufficiently low. However, for
high degrees of nonstationarity, the temporal root-mean-
squared MSE can be as much as two-to-three times larger
than the time-averaged MSE. Furthermore, the transition
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into the gradient-noise-dominated region of performance
(where nonstationarity is simply averaged rather than
tracked) is seen to occur much more slowly than the time-
averaged-mean-squared-error measure of performance
would suggest. This is a result of the fact that the time-
averaged measure of performance is less sensitive to non-
stationarity, because it ignores the temporal variance of
MSE. As a result, the behavior of the step-size optimized
LMS algorithm that is predicted by using the time-aver-
aged MSE (as in [1]-[3]) is misleading for high degrees
of nonstationarity. In particular, the optimum step size
based on the time-averaged MSE goes to zero (or be-
comes undefined) as the degree of nonstationarity in-
creases suggesting that the best performance will be ob-
tained by minimizing the effects of gradient noise and
forfeiting all tracking capability by identifying the time
average of the nonstationary system. On the other hand,
the behavior of the step-size optimized LMS algorithm
that is predicted by using the temporal root-mean-squared
MSE is quite different. The optimum step size decreases
only gradually as the degree of nonstationarity increases,
showing that the effects of tracking error should never be
completely ignored.

The inadequacy of the more tractable average misad-
justment as a measure of performance for the case of a
high degree of nonstationarity is analogous to the well-
known inadequacy of the more tractable mean error in the
weight-vector for the case of large step size. In both sit-
uations, ignoring the error variance can lead to erroneous
conclusions about the behavior of the LMS algorithm.
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