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Identification of Systems with Cyclostationary Input and
Correlated Input/Output Measurement Noise

WILLIAM A. GARDNER

Abstract— Conventional statistical methods of system identification,
such as Wiener’s modeling method, can perform poorly when in-
put/output measurements are severely corrupted, especially if the cor-
ruption is correlated from input to output. A new approach that is
applicable when the uncorrupted system-input is cyclostationary can,
in principle, provide ideal system identification regardless of measure-
ment corruption, provided that the corruption is not also cyclostationary
with all the same cycle frequencies. This new method of corruption-
tolerant system identification is introduced in this note. An application
to interference-tolerant TDOA estimation is described and illustrated
with simulations.

I. INTRODUCTION

A common approach to identifying the transfer function for a linear
time-invariant model of some physical.input-output system is based on
Wiener’s optimum filtering theory for stationary random time series.
However, this approach can perform poorly when the measurements of
the system output and, especially, input are corrupted with noises or in-
terferences, particularly if the input and output corruption are correlated
with each other. The purpose of this note is to present a new alternative
to Wiener’s approach that is applicable when the system input exhibits
cyclostationarity. This alternative approach can, in principle, eliminate
performance degradation due to input/output corruption.

The problem of correlated input/output corruption typically arises
when the input and output of the physical system to be identified are not
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directly accessible or are not fully under the control of the experimenter.
For instance, the physical system might be a remote wave-propagating
medium which is subject to excitation from waves other than that which
the experimenter transmits or is otherwise able to measure. Also, if the
sensors for measuring the input and output of the system are exposed to
excitation from some common interfering source, then the input-output
corruption will be correlated. This is illustrated at the end of this note
with an application of system identification methods to the problem of
interference-tolerant time-difference-of-arrival estimation.

The system identification method introduced in this note can be ex-
plained within the framework of stationary and cyclostationary stochastic
processes (cf. [1]-[3]) or within the nonstochastic framework of per-
sistent time series that exhibit stationarity and cyclostationarity prop-
erties (cf. [4] and [5]). For example, the original theory of optimum
extrapolation, interpolation, and smoothing of time series introduced by
Wiener [6] was developed within the nonstochastic framework of persis-
tent time series that exhibit stationarity, whereas more recent accounts of
this theory are presented within the framework of stationary stochastic
processes (cf. [3]). In order to minimize unnecessary abstractions, the
system identification method introduced here is explained in terms of
nonstochastic time series. The primary assumption required is that the
cross correlation'

T/2

(p(Hg* (@) £ Tlimoo;:/ p(Hg*(ndt ey
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exist for all time series p(¢) and g(¢) obtained from time shifts and/or
frequency shifts of the unknown system input z(#), input-measurement
noise n(t), output w(f), and output-measurement noise m(#). For exam-
ple, for p(¢f) = w(¢) and a time shift of 7 and a frequency-shift of «
applied to the time series z(#), we have g(f) = z(t — 7)exp (+i2wat)
and

(p(Hg* (1) = w()z(t — 1) exp (=i2mat)) & Ry (15 @).  (2)

If R, (7; 0) #0, then w(¢) and z(¢) are said to exhibit joint stationar-
ity. If R, .(7; &) #0 for some « # 0, then w(¢) and z(¢) are said to
exhibit joint cyclostationary [1]-[5] with cycle frequency o because the
lag-product waveform w(#)z(¢ — 7) contains a finite additive sine-wave
component with frequency o and with complex strength given by the
Fourier coefficient (2).

A simple example of a time series that exhibits cyclostationarity is
z(#) = a(t) cos (wt), where a(t) is a sample path of a zero-mean ergodic
stationary stochastic process. Although z(#) does not contain finite ad-
ditive sine-wave components, its lag product waveforms z(#)z(f — 7) do
for each value of 7 for which (a(#)a(t — 7)) # 0 (see Section III). (Other
examples are given in [1]-[5].)

Inherent in the assumption that the correlations (1) involving the output
w(t) exist is the requirement that the system be stable. Moreover, it will
be assumed that the system is linear and time invariant. However, the
method can work well for small departures from linearity and slow time
variations.

A basic assumption of the system identification method introduced in
this note is that the system input exhibit cyclostationarity (R, (7; ) # 0)
with a known cycle frequency «. In practice, o needs to be known only
to within a tolerance A« that does not exceed the reciprocal of the
integration time 7 used to measure the correlations used by the method:
A« < 1/T. Moreover, if the system input exhibits cyclostationarity, but
the cycle frequency « is unknown, it can be measured by detecting the
spectral line (at «) in the spectrum of a lag-product waveform obtained
from the noise-corrupted input x(¢) = z(¢) + n(¢) [51, [7].

Another assumption is that the Fourier transform (cross spectrum),

Se(f; ) & / Rz (7; a)exp(—i2nf7)d7, 3)

— 00
of the cross correlation R,,(7; o) exist and be nonzero throughout the
band of frequencies f € [f1 — a, f» — «], where [fi, f2] is the band

! The theory presented in this note could just as well be based on one-sided time
averages obtained from (2) by replacing the averaging interval [— 772, 7/2] with [0, T].
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over which the transfer function, Hx(f), of the unknown system is to
be identified. Examination of the extensive variety of examples of types
of time series that exhibit cyclostationarity in [5] reveals that this as-
sumption is not exceedingly restrictive. For example, a necessary and |
often sufficient condition is that the autospectrum of z(#) be nonzero at
the two frequencies f'and f —« for all f € [f1, f>]. A specific example
is given in Section III.

The final assumption is that the input- and output-measurement noises
have zero average value, are independent of the system input, and do not
exhibit cyclostationarity with the same cycle frequency « as that of the
input.

Since the system identification method introduced in this note is a vari-
ation on Wiener’s classical method of dividing the measured input/output
cross spectrum by the input autospectrum, we begin with a brief review
of Wiener’s method and its drawbacks.

II. Wiener’s SysteM MoDEL

Let 24(¢) and H «(f) be the unknown impulse-response function and
transfer function for a linear and time-invariant system

H.(f) =/ ha(t) exp (—i2nft)dt. )

—00

Let z(¢) be the input to this system and let w(#) be the corresponding
output. These are related by the convolution

W(t)=/ hy(t —u)z(u)du. (5)

—00

The actual measurements of this input and output are given by

x(t) = z(t) + n@@)

() =w(®) +m(1), ON

where n(f) and m(t) represent additive measurement corruption. In terms
of these measurements we have, from (5) and (6),

(@) = / h(t — wlx(u) — n(u) du + m(1). @)

—0o0

To understand Wiener’s method for identifying the system impulse-
response function or transfer function, we envision a system model with
transfer function H(f), and we consider using the measured corrupted
input x(¢) as the input to this model to obtain the model output

() :/ h(t —u)x(u)du. (8)

—0o0

We then solve for the particular model H(f) that minimizes the time-
averaged squared error between the actual system’s measured output y(¥)
and the model’s output y(¢). The solution is given by Wiener’s model

(6]

Syx(f)
Sxx(f)’

where S,,(f) is the cross spectrum of y(¢) and x(¢), and S, (f) is the
autospectrum of x(f):

H(f) =

9

Syx(f)ESyx(f;0)=/ R, (1; 0)exp(—i2wfr)dr. (10)

— 00

To apply this result (9), we would use the input/output measurements
x(¢) and y(?) to estimate the spectra in (9), and then form a ratio of “
these spectral estimates as indicated in (9).

It follows from (7) that

Sy () = Hx(NISx(f) = Sux (N + Smx (), (11)
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and it follows from (6) that
Sx(f) =8:() + 8. (/)
Snx(f) = Sa(f)
Smx(f) = Smn (),

assuming that z(¢) and n(#), and also z(¢) and m(t), are orthogonal, i.e.,
R:n(7) =R;m(7) =0. Thus, (9), (11), and (12) yield

(12)

SO ], Sw)
S.N+8.N | " 5. +8.0)

We can see that the model H(f) coincides with the actual system
H.(f) only if the input corruption n(#) is absent: S, (f)= 0. When
it is present, the degradation in modeling performance is even greater if
the input/output corruption is correlated: S,,, (f) % 0.

(13)

H() =H«(f) [1

II. Tue SPECCORR MEeTHOD
Using the definition

Ryx(1; a) 2 (y()x(t — 1) exp (—i2mwar))

and the model (6)-(7), together with the assumptions stated in Section
I, we obtain

Ryx('f; o) = / hy(u) exp (—i2rau)[Ry (1 — u; o)

—00
_Rnx(T —u; Ol)] du +Rmx<?; 0‘)9 (14)
where
R (75 @) =Run(7; @) + R (75 )
Rpyx(7; @) = Rpn (7} @) + Ry (75 ). (15)

Given that z(¢ — 7)exp(+i2wat) is orthogonal to n(f) and m(t)
(Rpz(7; @) = Rz (7; &) =0) and that neither n(¢) nor mi(¢) exhibits
cyclostationarity with cycle frequency o (Ru, (7; o) = Ry, (75 o) = 0),
as assumed in Section I, we have R, (7; a) = R, (7; a) = 0. Conse-
quently, (14) reduces to

oo
R, (7; ) =/ hy(u)exp (—i2mou)R, (1 — u; a)du. (16)
—00
Fourier transforming both sides of (16) yields
Syx(f;va) :H*(f +0‘)Sxx(f; a), (17)
which can be solved for the unknown transfer function:
Syc(f —a; @)
H =X €Lfi, fal. 18
D= ey SV (18)

Since S,,(f; ) =0, then S, (f; @) = S,;(f; «) and the denominator
in (18) is therefore nonzero (as assumed in Section I).

We see from (18) that, like Wiener’s modeling method (9), we need
only measure two spectra and form their ratio. However, unlike Wiener’s
method, we can, in principle, perfectly identify the unknown system
provided only that the input exhibits appropriate cyclostationarity with
some cycle frequency « and the input/output measurement noise does
not exhibit cyclostationarity with the same cycle frequency «.

This method of system identification is called the SPECCORR (SPEC-
tral CORrelation Ratio) method since the cross spectra in the ratio (18)
are actually spectral correlation functions (cf. [3]-[5]). It is noted that
with o = 0, the SPECCORR method (18) reduces to Wiener’s method
9.

Example: We consider the time series

z(t) = a(t) cos (wt) = %a(t) exp (iwt) + %a(t) exp (—iwt), (19)
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where a(7) exhibits stationarity but not cyclostationarity. Then we have

R (7; o) = (z(6)z(t — 7) exp (—i27aut))
= %(a(t)a(t — 7){exp (—iwT) exp (I[2w — 2wa]t)

+ exp (iwt) exp (—i[2w + 27a]t)
+ [exp (iw7) + exp (—iwT)] exp (—i2wat)})
%R,,,,(T) exp (FiwT), a=to/n
= { ’ (20)
ZR,,,,(T) cos (w7), a=0.

The last equality follows from the fact that a(f)a(t — 7) contains
no finite additive sine-wave components and, therefore, (a(Da(t —
7)exp (—iyt)) =0 for all y # 0. Fourier transforming both sides of (20)
yields

30/ £w/2m),
Szz(f; o) = {

1Seal/ +0/2m) + 180a(f —0/2m), @ =0.

o= to/r

@n
For instance, if

So, |lfl —w/2m| <B

Szz(f; O)Eszz(f): { .
0, otherwise,
then

So, o= tw/r

|f Fo/27| < B,

0, otherwise.

S (f —a; a) = {

Hence, if the passband of H . (f) is covered by the support of S, (f), as
required in Wiener’s method (9), then it is also covered by the support
of S;.(f — a; &), as required in the SPECCORR method (18).

IV. ArrprLicaTiON TO INTERFERENCE-TOLERANT TDOA EstiMATION

We consider the signals x(f) and y() received by a pair of sensors,
such as radio antennas, on which plane waves are impinging from sev-
eral directions. We let z(¢) be the component of x () due to a particular
plane wave of interest, and we let w(¢) be the component of y(f) cor-
responding to this same plane wave. We then define n(r) £ x(¢) — z(f)
and m(¢) £ y(f) — w(¢) to be measurement corruption due to the other
plane waves and sensor noise.

Since the only difference between the signals z(¢) and w(#) due to a
single plane wave is their difference in times of arrival at the two sensors,
we have the relationship w(¢) ='z(¢ — #;). Consequently, we have the
model (5), (6) of corrupted input/output measurements of an unknown
pure delay system with impulse response function A, (f) = 6(¢ — #,) and
transfer function H.(f) = exp (—i2nft).

If the plane wave of interest exhibits cyclostationarity, as it typically
would if it were a radio, radar, or telemetry signal [1], [3], [5], then we
can apply the SPECCORR method of system identification to estimate the
unknown TDOA (Time Difference of Arrival). From such an estimate,
the direction of arrival of the wavefront can be estimated.

Both Wiener’s optimum modeling method (9) and the SPECCORR
method (18) have been applied to this TDOA estimation problem and
extensive simulations have been carried out. The resuits show that the
effects of correlated input/output measurement corruption (interfering
plane waves in this case) that are quite problematic for Wiener’s method
can be essentially eliminated with the SPECCORR method [3], [8]. One
such simulation is reported here.

To demonstrate the tolerance to noise and interference exhibited by the
SPECCORR method, we consider a BPSK (Binary Phase-Shift Keyed)
signal of interest corrupted by multiple interference. Uncorrelated broad-
band noises are also added to the two received signals. The BPSK signal
has carrier frequency of fo = 0.25/T and baud rate of ap = 0.0625/T .
It has full-duty-cycle half-cosine envelope, which results in an approxi-
mate bandwidth of By = 0.1875/T;. The TDOA for the signal of interest
is 7o = 48T. The length of the segment of data processed to obtain the
TDOA estimates is 2048 keying intervals. 7 is the sampling time in-
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Fig. 1. (a) Graph of the measured spectrum of the corrupted signal x(¢) = z(¢) +n(1).

(b) Graph of the measured spectrum of the uncorrupted signal z(7).

<4
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Fig. 2. (a) Graph of the measured cross-spectrum magnitude |S¢, (f )| for the corrupted
signal x(1) = z(t) + n(t). (b) Graph of the measured cross-spectrum magnitude
|S= (f)| for the uncorrupted signal z(f).

crement. Five amptitude-modulated (AM) sine-wave signals are used as
interferers. The carrier frequencies are f; = 0.156/T, f» = 0.203/T;,
f3 = 0.266/T,, fa = 0313/T,, fs = 0.375/T,. The bandwidths
are B, = 0.04/T,, B, = 0.05/T,, B; = 0.045/T;, B, = 0.04/T,
Bs = 0.08/T,. The TDOA’s are 7, = 287, 7, = 68T, 73 = 78T,
7, = 38T, 75 = 58T . The SIR (Signal-to-Interference Ratio) of each
AM Signal is 0 dB and the SNR is 0 dB. Thus, the total SINR is —8
dB. The spectra for this highly corrupted signal x(#) and the uncorrupted
signal z(#) are shown in Fig. 1. Although the interfereing AM signals all
exhibit cyclostationarity, none of them shares the same cycle frequencies
with the BPSK signal. This is illustrated in Fig. 2, which shows a graph
of the magnitude of the symmetrized cross spectrum

S5 () & Sxx(f — /25 o),
which is the Fourier transform of the symmetrized cross correlation
R2.(1) & (x(t +7/2)exp (—imalt +71/2])

[t — 7/2)exp (imalt — 7/2D1%). (23)

The cross spectra in the SPECCORR formula (18) were estimated us-
ing the conventional method of frequency smoothing cross periodograms
obtained from FFT’s of the two data records for x(f) and y(t). 32 768

(22)
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Fig. 3. (a) Graph of the impulse-response estimate obtained with the SPECCORR
method. (b) Graph of the impulse-response estimate obtained with Wiener’s method.

time samples were used for each of the two records, and the number of
frequency bins added together in the smoothing operation was 200. This
large amount of statistical averaging is required because the corruption
is 8 dB stronger than the signal of interest.

The ratio of cross-spectrum estimates was processed by an inverse
FFT to obtain the final estimate of the impulse response function Ay (7).
However, before forming the ratio to be inverse transformed, the de-
nominator values were truncated so that no excessively small values in
the denominator would cause numerical instability. The truncation level
was chosen to be that level which was exceeded by 95% of the values.
The results for the SPECCORR method (o = o) and Wiener’s method
(o = 0) are shown in Fig. 3. It can be seen that the desired single peak
at the TDOA of 48T, is clearly visible for the SPECCORR method, but
is severely masked by the interference for Wiener’s method.

V. ConcLusioN

The new SPECCORR method of system identification introduced in
this note is quite straightforward: when the uncorrupted input to an un-
known system exhibits correlation with frequency shifted versions of
itself, by virtue of its cyclostationarity, frequency shifting operations can
be used to decorrelate noncyclostationary input/output corruption while
maintaining correlation between the shifted input and the system’s output
to the unshifted input. By this means we are able, in principle, to per-
fectly identify an unknown system using severely corrupted input/output
measurements.

An application to the problem of TDOA estimation demonstrates the
effectiveness of the SPECCORR method for system identification with
severely corrupted input/output measurements.
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