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Interference-Tolerant Time-Difference-of-Arrival
Estimation for Modulated Signals

WILLIAM A. GARDNER, seNiorR MEMBER, IEEE, AND CHIH-KANG CHEN, STUDENT MEMBER, IEEE

Abstract—A new method for estimation of the difference in the times
of arrival of a wavefront at two separate sensors is introduced. This
new method, called SPECCORR, exploits the spectral correlation
property that essentially all modulated signals exhibit to obtain esti-
mates that are highly tolerant to severely corruptive noise and inter-
ference. This tolerance of the SPECCORR method is explained theo-
retically and demonstrated with simulations.

I. INTRODUCTION

HE difference in the times of arrival of a wavefront

at two separate sensors, such as a pair of radio anten-
nas, can be used to estimate the direction of arrival of the
wavefront. If the time-difference-of-arrival (TDOA) is
measured with a pair of antennas at two different locations
(e.g., at two different times from a moving platform), then
the distance to the source of the wavefront can also be
estimated. A standard approach to estimating TDOA is to
use as an estimate the lag value at which the cross-cor-
relation function for the signals from the two sensors
reaches its maximum value.

There are also a variety of what are called generalized
cross-correlation methods. These various methods have
been designed to reduce the effects of measurement noise
and interfering signals, both of which corrupt the mea-
surements of the signal of interest. Although these meth-
ods can be effective for noise that is uncorrelated from
one sensor to the other, and for isolated narrow-band in-
terference, they can fail when the measurements are se-
verely corrupted by interfering signals that are compara-
ble to (or greater than) the signal of interest in power
spectral density level and bandwidth. This includes one
(or more) broad-band interferers as well as multiple
closely spaced narrow-band interferers. The purpose of
this paper is to introduce an entirely new approach that is
highly tolerant to severe corruption by noise and interfer-
ence. This new approach is applicable as long as the sig-
nal of interest exhibits the property of cyclostationarity,
that is, as long as the lag product of the signal exhibits
spectral lines. Most modulated signals used in commu-

Manuscript received August 6, 1987; revised February 23, 1988. This
work was supported by the Naval Postgraduate School and by ESL, Inc.,
with matching support from the California State MICRO Program.

The authors are with the Signal and Image Processing Laboratory, De-
partment of Electrical Engineering and Computer Science, University of
California, Davis, Davis, CA 95616.

IEEE Log Number 8822387.

nications, radar, and telemetry do, in fact, exhibit cy-
clostationarity [1]. The improvements in performance ob-
tained with the new approach can be attributed to the
exploitation of the spectral self-coherence property that is
characteristic of signals that exhibit cyclostationarity.

II. BACKGROUND

A. TDOA Estimation

The standard cross-correlation approach to TDOA es-
timation is based on the facts that 1) the time-average cross
correlation

Ry (r) & (y(t + 7)2(1)) (1)
of the two signals from a single wavefront
y() =x(t —17,) and z(¢r) =x(z) (2)

received by a pair of sensors is equal to the translated
time-average autocorrelation

Ryz(T) = Rx(T - To)’

and 2) the autocorrelation

Ri(r) & (x(t + 7)x(1)) (3)

peaks (reaches its absolute maximum) at 7 = 0 for all
signals x (¢) (and only at 7 = O for nonperiodic signals)
[1]. Consequently, the cross correlation R, (7) peaks at
the TDOA 7,. This result is exact if { - ) represents an
infinitely long time average. When the averaging time is
finite as it is in practice, then the location of the peak is
only an estimate of the TDOA.

The cross-correlation approach to TDOA estimation can
also be justified by the fact that the value of 7 that maxi-
mizes Ry, (7) is equal to the value that minimizes the mean
squared error

([y(t + ) = 2(0]") = R,(0) + R,(0) — 2R(7)

(4)

for finite as well as infinitely long time averages.
One approach to optimizing the TDOA estimate is to
reinterpret the problem as that of system identification.
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That is, if we interpret z(¢) and y(¢) in (2) as the exci-
tation and response of a system consisting of a pure delay,
then the transfer function of this system is exp
(—i2w f7,). It is well known that the transfer function
model that best fits a system, in the sense that the time-
averaged squared error between the system output and
model output (when both are subjected to the same exci-
tation) is minimum, is given by the Wiener filter formula

(1]

Syz ( f )
S.(f)’
where S,,(f) and S, ( f) are the cross-spectral density and
spectral density obtained by Fourier transformation of

R, (7) and R (7). Thus, the TDOA estimate can be taken
“to be the value of 7 at which the model impulse response

H(f) = (5)

® S8.(f)
by = | B e (6)
peaks.l Use of (2) in (6) yields
h(T) = 6(7 - Ta)s (7)

which does indeed peak at the correct value. Of course,
when only finite-length records of y(¢) and z(¢) are avail-
able, the ideal spectral densities in (6) must be replaced
with estimates, in which case the value of 7 at which the
peak occurs is only an estimate of the TDOA.

The TDOA estimate provided by an estimated version
of (6) can be particularly useful when the signals y(#) and
z(t) are corrupted by noise and interference [2]. This is
especially so for narrow-band interference, because the
peaks in the denominator S,( f) deemphasize those parts
of the numerator that are corrupted most by such interfer-
ence [assumed to be common to both y(¢) and z(¢)]. In
contrast to this, the standard method, which is based on
seeking the peak of an estimated version of

Ry(7) = S_m S (f)e™™" df, (8)

does not provide such deemphasis.
Based on this type of reasoning, the whole class of
TDOA estimators of the general form

max g(7), (9a)

where

¢ = _sapwna on

in which W( f) is a weighting function intended to reduce

'This method is sometimes referred to as the ROTH method [3].
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the effects of measurement noise and interference, has
been proposed and studied in depth [3]-[5]. In most ap-
plications, it is required that both S,,( f) and W(f) be
obtained directly from the measurements y(¢) and z(?).
For example, the cross-periodogram (possibly smoothed)

Ser () 2 201 Z2(1), (10)
where
n(f) 2 |, ye a
25 2 |, e ar (1)

is typically used for the cross-spectral density estimate,
and for the case in which W( f) = 1/S,( f), the smoothed
periodogram

A 1 Sf+Af/2
Sl Har = 37 Vo asne S, (v) dv, (12)
where |
5,00 221z, (13)

is typically used.
An alternative to the method based on (5) can be ob-
tained by identifying the z-input / y-output system with the
model H( f) given by (5) and the y-input/z-output in-
verse system with model given by
Sy(f)
5,(f)’

and then forming the geometric mean of H( f) and the

reciprocal of H'( f),
1/2
, 1/2 _ Syz(f) Sy(f)
{H(f)[l/H (f)]} —|:S;kz(f) Sz(f):l

_ 59 [sy(f)]‘”
|8 ()] L8:(F)

H'(f) = (14)

(15)

where the fact that S,,(f) = S;“y( f) has been used. If
S,(f) = S;(f), which will usually be the case, then by
inverse Fourier transformation of (15), we obtain (9) with
W(f) = 1/|8,,(f)|, which yields

g() = | _ar (SN} ar,  (16)

in which arg { - } denotes the phase of the complex quan-
tity within the braces.’

2This method is sometimes referred to as the PHAT method [3].
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If $,(f) # S.(f) because of differing interferences or
measurement noises for y(¢) and z(z), then a reasonable
alternative to the weight W(f) = 1/S,(f) is the geo-
metric mean® [6]

w(f) = [S.(5)8(H)]" (17)

This yields the standard cross correlation of the whitened
versions of y(¢) and z(¢) obtained by filtering with trans-

fer functions of 1/~/S,(f) and 1/v/S,(f), respectively.

In the case where no weighting is used, W(f) = 1, (9)
reduces to the standard cross-correlation method (8).
Consequently, all methods for which W( f) # 1 are re-
ferred to as generalized cross-correlation methods.

Although the generalized cross-correlation methods are
intuitively attractive, all such methods have been found
to perform poorly when the measurements are severely
corrupted by interfering signals, that is, signals that are
comparable to (or greater than) the signal of interest in
power spectral density level and bandwidth. One ap-
proach to obtaining improved methods for source location
in severely corruptive environments is to increase the
number of sensors from two to obtain a sensor array with
enhanced directional reception capability (cf. [7]-[10]).

The purpose of this paper is to introduce an entirely
new type of cross-correlation method for two-sensor re-
ception that is inherently tolerant to both noise and inter-
ference and can, in principle, provide arbitrarily accurate
TDOA estimates when sufficiently long measurement rec-
ords are available. However, the method only applies to
signals of interest that exhibit cyclostationarity, which
most modulated signals do. Also, the attainable accuracy
is, in practice, limited by the coherence time of the cy-
clostationarity, such as the coherence time of regenerated
spectral lines from sine wave carriers and pulse trains,
which can be quite long at the transmitter but can be sub-
stantially shortened by the transmission channel, for ex-
‘ample, by time-varying Doppler effects.*

B. Cyclostationarity

A signal x(¢) is said to exhibit cyclostationarity if the
sinusoidally weighted time-average autocorrelation (de-
fined with a symmetric lag of +7/2 for mathematical
convenience)

R3( 1) (x(t + 7/2)x(t — 7/2)e™ ™) (18)

is not identically zero for some sine wave frequency « [1],
[11], [16]. The function R} (7) is called the cyclic auto-
correlatzon and the parameter « is called the cycle fre-
quency.’ It can be shown that the Fourier transform

3This method is sometimes referred to as the SCOT method [3].

“The effective coherence time can be increased by using spectral-line
tracking techniques such as phase-lock loops.

SAlthough (18) looks quite similar to the Woodward radar ambiguity
function, which can be applied to any signal over a finite interval, the aver-
age over all time in (18) will be zero unless the lag product of the signal
exhibits a spectral line with frequency a. (See the Appendix and [16] for
more discussion.)
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sin = |_Reme e ()

is the density of spectral correlation for the pair of fre-
quency components of x (¢) with frequencies f + /2 and
f— a/2. That s,

S2(f) = lim 7 (X6, £ + @/2)XE(, f — «/2),
(20)
where
t+T/2
X (z, f) & S:—T/z x(u)e 2 dy, (21)

and where { - ) denotes the average over all time ¢ [1],
[11], [16]. For « = 0, RZ(7) and S2( f) reduce to the
conventional autocorrelation (3) and spectral density of
time-averaged power.

If x () exhibits cyclostationarity, then y(¢) and z(¢) in
(2) exhibit joint cyclostationarity,

7) 4 (y(t + 7/2)z(t — 7/2)e~2m)
— RXQ(T _ To)e—imrro,

and, therefore, the density of spectral correlation

(22)

S5(0) 2 lim 2 ¥r(6 S + @/2)ZE(1, f ~ a/2))
(23)
= S:, RS (7)e 2™ dr
= S3(f)emesre/n (24)

is not identically zero. For « = 0, R}, (7) and S},( f)
reduce to the conventional cross-correlation and cross-
spectral density (which is the density of spectral correla-
tion for the pair of frequency components of y(¢) and z(t)
with frequency f).

It can be shown [1], [11], [16] that if y(¢) and z(¢) are

related by the convolution .

= |_re-wewan  9)
then

S5e(f) = H(f + «/2) S7(f). (26)

Therefore, if z(t) exhibits cyclostationarity with cycle
frequency «, then S7(f) # 0, and (26) yields

S5 (f — «/2)
S(f = /2)
for all f for which the denominator is nonzero. Observe
that for « = 0, (27) reduces to the Wiener filter formula

H(f) = (27)
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Fig. 1. Graphs of calculated spectre(l?)correlation magnitudes. (a) BPSK.
(b) QPSK. (c) SQPSK. (d) MSK.
5).

Essentially all modulated signals exhibit cyclostation-
arity. This includes analog amplitude, phase, and fre-
quency modulation, digital amplitude-, phase-, and fre-
quency-shift keying, analog and digital pulse-amplitude,
pulse-position, and pulse-width modulation, etc. The
spectral correlation characteristics of a wide variety of
modulation types are derived in [1], [12], [13], and [16].
As an example, the magnitude of the spectral correlation
function for four types of phase-shift keyed signals
(BPSK, QPSK, and SQPSK with full-duty-cycle rectan-
gular envelopes, and MSK which as a full-duty-cycle half-
cosine envelope) are graphed as the heights of surfaces
above the plane with coordinates f and «, in Fig. 1.

III. Tue SPECCORR METHOD

On the basis of the formula (27) and by analogy with
the TDOA estimation method based on (6) and (10)-(13),
the following new SPECCORR (SPECtral CORrelation
Ratio) method that exploits the spectral correlation prop-
erty of the signal of interest, which is assumed to exhibit
cyclostationarity with cycle frequency o, was recently
proposed in [16]:

max g,(7), (28a)

where
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= S51)
.(1) & = st gp 28b)
a0 & s (
and
A f+Af/2
S (Nay 2 a5 |, St (290)
S5,(f) 2 2 ¥ (f + /2 28/ ~ af2)  (290)
Al f+Af/2
S50 2 37|, S30) (300)
S5(/) 2 22 (F+ @/2)ZE(f ~ «/2). (300)

To see that this method can be expected to be immune to
noise and interference, we consider the corrupted mea-
surements

y(t) = x(t — 7,) + n(1) (31)
z(2) = x(¢) + m(2), (32)

where n(t) and m(t) each consist of noise and interfer-
ence that is assumed to be statistically independent of the
signal of interest x (¢). It can be shown that

S5(f) = SH(f)e™PmUTe/D 1+ S0 (f)  (33)

and

§2(f) = 82(f) + Sa(f) (34)

Regardless of the extent of spectral overlap of x(¢), n(t),
and m(t), we have

Sam(f) =0 Sa(f) =0 (35)

as long as n(t) and m(t) do not exhibit cyclostationarity
with the particular cycle frequency « [e.g., the baud rate
of a phase-shift keyed signal x (#)]. In contrast to this, the
conventional generalized cross-correlation method is
based on (28)-(30) with « = 0, and (35) does not hold
for « = O unless n(¢) and m(t) are statistically indepen-
dent of each other (which cannot be if n(¢) and m (¢) con-
tain interference due to the same interfering signal wave-
fronts impinging on both sensors). Thus, it is the noise
and interference immunity of spectral correlation mea-
surements that render the SPECCORR method immune to
such corruption. Of course, we have complete immunity
only for infinite averaging time 7. However, for finite but
sufficiently large 7, we do have substantial tolerance to
such corruption because then we have

| S (F)af] << [85(5),]
| Sar (o] <<

and

and

S5 (Fafl»
(36)

assuming that the smoothing product is large, TA f >> 1.
The effects of the parameters 7 and A f on the bias and
variance of spectral correlation estimates are described in
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detail in [14] and [16].

In practice, the denominator can be quite small (theo-
retically zero) at some values of f (even though n () and
m(t) may contain white noise). To avoid numerical prob-
lems, the denominator can be modified by replacement
with

o[s2(£),,1.

where

>
ols] £ {s’ o] = (37)
Sor 8] < s
for some appropriate threshold level s,,.

As shown in the next section, the integration time T
required to obtain a sufficient level of noise and interfer-
ence suppression can be quite long. Although segmenting
the data and averaging the TDOA estimates obtained from
each segment can help in accommodating long integration
times in conventional cross-correlation methods [17], this
technique is not likely to be useful for the SPECCORR
method because, as explained in [17], the effective inte-
gration time is much less than the actual integration time
when the signal of interest is severely corrupted (e.g.,
when SNR is low).

IV. SIMULATIONS

To demonstrate the tolerance to noise and interference
exhibited by the SPECCORR method, we consider a
BPSK signal of interest corrupted by interferences for four
different cases ranging from broad-band to narrow-band
and including multiple and single interferers. In all cases,
uncorrelated broad-band noises are also added to the two
received signals. The BPSK signal has carrier frequency
of f, = 0.25/T, and baud rate of a, = 0.0625/T,. It has
full-duty-cycle half-cosine envelope, which results in an
approximate bandwidth of B, = 0.1875/T,. The TDOA
for the signal of interest is 7, = 487,. The length of the
segment of data processed to obtain the TDOA estimates
is 2048 baud intervals. T is the time-sampling increment.

Case 1—Multiple AM Interferences: Five AM signals
are used as interferers with carrier frequencies of f, =
0.156/T,, f, = 0.203 /T, f; = 0.266 /T,, f, = 0.313/T,,
fs = 0.375/T;, and bandwidths of B, = 0.04/T,, B, =
0.05/T;, By = 0.045/T,, B, = 0.04/T,, Bs = 0.08/T,,
and corresponding TDOA’s of 7, = 287,, 7, = 68T, 7,
= 18T, 7, = 38T, 75 = 58T,. The signal-to-interference
ratio (SIR) of each AM signal is 0 dB and the SNR is 0
dB. Thus, the total SINR is —8 dB. The magnitude of the
measured spectral correlation function for this highly cor-
rupted signal is shown in Fig. 2(a), and that for the un-
corrupted signal is shown in Fig. 2(b). (Since S L) =
Sz (f)*, only the half plane corresponding to o0 < O is
shown.) These measurements were obtained using the fre-
quency-smoothed cyclic periodogram (30), except that
both time ¢ and frequency f were discretized with sam-
pling increments of 7, = T/N and F, = 1/T, where N =
32 768. The smoothing product is TAf = 1024.
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f (b)

Fig. 2. Graphs of measured (simulated) spectral correlation magnitudes.
(a) BPSK signal plus five AM interferers plus white noise. (b) BPSK
signal alone. (c) Five AM interferers plus noise alone.

The surface along « = 0 is the power spectral density
function, from which it is easily seen [by comparing Fig.
2(a) and (b)] that the signal of interest is completely
masked. However, for « # 0, we see that the signal of
interest is easily distinguished. Its features at « = —2 f,,
a=—-2f, + a, and o = —q, are clearly visible. Thus,
the phase information associated with any of these cycle
frequencies is easily extracted.

The function g, (7), specified by (28b) with TA f=
200, was computed and graphed for « = «, (with a
threshold s, for the denominator that was exceeded 95
percent of the time). The result is shown in Fig. 3(a).
There is an unmistakable peak at the correct value of
TDOA, 7, = 48T,. But a smaller spurious peak occurs at
7 = 35T;. To eliminate the ambiguity caused by the pres-
ence of spurious peaks, the processing time 7T could be
increased. Also, it can be helpful to band limit the inte-
grand, S;‘g’r(f)Af/Sg‘;(f)Af, in (28b) in order to reduce
measurement noise outside the band of the signal of in-
terest (when the location of this band is known) before
inverse Fourier transformation. Fig. 3(b) shows g, (7)
when the integrand is weighted by a raised-cosine window
centered at f, with width of 3«,, and indeed only one peak
(at the right value of TDOA) exists, but it occurs within
an oscillatory burst. In contrast to these promising results
for SPECCORR, we see from the graph for a = 0 [which
corresponds to the conventional generalized cross-corre-

v
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Fig. 3. (a) Graph of generalized cyclic cross-correlation function for
SPECCORR method (28)-(30) with a = baud rate for case 1. (b) Graph
of generalized cyclic cross-correlation function for SPECCORR method
(28)-(30) with o = baud rate for case 1, but with the integrand in (28b)
band limited. (c) Graph of generalized cross-correlation function for
conventional MMSE-system-identification method (28)-(30) with o = 0
for case 1.

lation method based on (6)] in Fig. 3(c) that the peak of
interest is only one of many peaks any one of which might
be taken as the TDOA estimate. Although the conven-
tional generalized cross-correlation method is somewhat

immune to narrow-band interference (see case 4), we see
that it fails in this case where multiple moderately narrow-
band interferences are present.

Case 2—Wide-Band Interference: The interfering sig-
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Fig. 4. (a) Graph of generalized cyclic cross-correlation function for
SPECCORR method (28)-(30) with « = baud rate for case 2. (b) Graph
of generalized cross-correlation function for conventional MMSE-sys-
tem-identification method (28)-(30) with o = O for case 2.
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nal for this case is a BPSK signal like the signal of interest
but with carrier frequency of f; = 0.21875 /T, baud rate
of oy = 0.10/T,, and TDOA of 7, = 587,. It also has
full-duty-cycle half-cosine envelope which yields a band-
width of B; = 0.3 /T,. Note that even though the inter-
ferer is the same type of signal as the signal of interest, it
does not exhibit spectral correlation at @ = «, which is
the cycle frequency being exploited by the SPECCORR
method. The SIR and SNR are both 0 dB and the total
SINR is —3 dB. The function g, (7) for & = ¢, is shown
in Fig. 4(a). It is clear that the dominant peak occurs at
the correct TDOA corresponding to the signal of interest.
The conventional generalized cross-correlation method is
particularly inferior when a wide-band interference, which
spectrally masks the signal of interest, is present. This is
a result of the facts that i) the phase of S, contains a linear
term with slope 7, which is the TDOA of the interferer,
over a wider band than the term with slope 7,, and ii) the
denominator S, instead of deemphasizing the interference
in §,,, might well deemphasize the signal of interest itself
[see (6)]. As a result, g,(7) shown in Fig. 4(b) displays
a strong peak at the TDOA 7 = 7, of the interferer and a
rather weak one at the desired TDOA 7 = 7,,.

When the bandwidth of the interferer is increased, the
performance of the SPECCORR method remains essen-
tially the same, but the performance of the conventional
method is degraded.

Case 3—Co-band Interference: The interference for
this case is an AM signal which has a TDOA 7, = 587,
and the same carrier frequency and bandwidth as that of
the BPSK signal of interest. Also, the SIR and SNR are
both 0 dB and the combined SINR is —3 dB. The func-
tions g,(7) for « = o, and o = 0 are shown in Fig. 5(a)
and (b), respectively. It is clear that the conventional gen-
eralized cross correlation fails to combat the interference,
and either of the two peaks shown in Fig. 5(b) might be
taken as the TDOA estimate. On the other hand, the
SPECCORR method yields a distinct peak at the correct
TDOA as shown in Fig. 5(a).

Case 4—Narrow-Band Interference: In this last case,
a BPSK signal with carrier frequency of f; = 0.2 /T, baud
rate of o; = 0.025 /T, bandwidth of B, = 0.075 /T, and
TDOA of 7, = 587, is employed as the interferer. Again,
SIR and SNR are both 0 dB to yield a total SINR of —3
dB. The functions g, (7) for @ = o, and & = 0 are shown
in Fig. 6(a) and (b). Since B, is small compared to B,
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Fig. 5. (a)Graph of generalized cyclic cross-correlation function for
SPECCORR method (28)-(30) with a = baud rate for case 3. (b) Graph
of generalized cross-correlation function for conventional MMSE-sys-

tem-identification method (28)-(30) with « = O for case 3.

the conventional generalized cross-correlation method
performs relatively well since it is able to notch out or
deemphasize the interference and to thereby render a
strong peak corresponding to the correct TDOA 7,.
Nevertheless, since the deemphasis leaves the phase of Sy,
intact, a small peak due to the interferer is still visible. In
contrast, no contribution from the interferer is visible for
the SPECCORR method. When the bandwidth of the in-
terferer is decreased, the performance of both methods
improves and the superiority of the SPECCORR method
eventually becomes negligible. O

In practice, with real rather than simulated signals, the
performance of the SPECCORR method will be limited
by the coherence time of the cyclostationarity which must
exceed the total integration time T (see the Appendix).
Since T = 32 7687, and o, = 0.0625 /T, then the co-
herence time must exceed 2048 /,. In other words, the
percent bandwidth A« /a, of the baud-rate sine wave in
the lag product [see (18)] must be smaller than 0.05 per-
cent, which is reasonable for applications in which time-

variant Doppler (or Doppler-tracking error) is not exces-
sive.

To conclude this discussion of the simulation results,
we see that in all four cases, the SPECCORR method con-
sistently outperforms the conventional generalized cross-
correlation method, and the TDOA-estimation function
8, (7) is essentially the same for all cases. This is a result
of the relatively large value used for the integration time
T. In fact, (27) and (33)-(35) reveal that as T grows with-
out bound, g, (7) will become a Dirac delta function cen-
tered at 7 = 7, for all four cases (assuming that the co-
herence time of the baud-rate sine wave in the lag product
is infinite and the absolute bandwidth of the signal is in-
finite).

V. CONCLUSIONS

A new method for TDOA estimation has recently been
introduced in [16]. This method, called SPECCORR, ex-
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Fig. 6. (a) Graph of generalized cyclic cross-correlation function for
SPECCORR method (28)-(30) with « = baud rate for case 4. (b) Graph
of generalized cross-correlation function for conventional MMSE-sys-
tem-identification method (28)-(30) with a = O for case 4.

ploits the spectral correlation property that essentially all
modulated signals exhibit to obtain estimates that are
highly tolerant to severely corruptive noise and interfer-
ence. In all cases considered in this paper, which include
wide-band, narrow-band, multiple, and singIe strong in-
terferers, it is shown that the SPECCORR method out-
performs the conventional method. Only for very narrow-
band interference do the two methods perform compara-
bly. However, the method does not apply to unmodulated
signals or, more generally, signals that do not exhibit cy-
clostationarity, unless differential Doppler shifts can be
exploited (as explained in the Appendix). The method also
is limited in performance by the coherence time of cy-
clostationarity. '

In work not reported here, the spectral-self-coherence-
exploiting approach has been’ generalized from two-sen-
sor receivers to sensor arrays for signals with narrow rel-
ative bandwidth [16]. A more extensive study of the over-
all potential and limitations of this new approach to signal
source location is currently’ under way. A competing

spectral-self-coherence exploiting algorithm for TDOA
estimation, - called SPECCOA (SPECtral COherence
Alignment), is described in [18], where it is shown to per-
form comparably to SPECCORR for BPSK signals, but
with integration time reduced by a factor of 8 (to 256 band
intervals).

APPENDIX
RELATIONSHIP TO THE AMBIGUITY FUNCTION METHOD

If x(t) does not exhibit cyclostationarity, but the ver-
sions of x (¢) that occur in the two sensor outputs y(¢) and
z(t) are Doppler shifted by different amounts due to dif-
ferent relative rates of motion between each sensor and
the source of x(¢), then the positive-frequency portions
(or complex envelopes) of the x(¢) components in y(t)
and z(¢) will be jointly locally cyclostationary [16] with
cycle frequency equal to the difference in Doppler shifts.
The same is true for each interference component in y(¢)
and z(¢). However, the cycle frequency will be different
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if the differential Doppler shift is different due to the lo-
cation of the source of interference (and, therefore, the
difference in relative rates of motion between the inter-
ference source and the two sensors) being different from
that of the signal. Consequently, the interference toler-
ance offered by the SPECCORR method can, in principle,
be exploited to some degree even for a stationary signal
if differences in differential Doppler shifts between signal
and interference are large enough. This is, in fact, an al-
ternative way of viewing the well-known approach of ex-
ploiting separation of signal and interferer in ambiguity
function measurements due to frequency-difference-of-ar-
rival (FDOA) in order to obtain tolerance to interference
for TDOA estimation [15].

However, the separability based on FDOA is not the-
oretically unlimited as it is for a cyclostationary signal
(with infinite coherence time of the cyclostationarity) be-
cause Doppler-shifted stationary signals can be only lo-
cally jointly cyclostationary. This is a result of the fact
that the Doppler effect does not shift all positive frequen-
cies by the same amount. The Doppler effect expands or
contracts the frequency scale so that frequency f becomes
frequency af for all f and some fixed (for time-invariant
Doppler) expansion/contraction factor a. Only for narrow
relative bandwidth | f — f,|/f, << 1 at a center fre-
quency f, can this be approximated by a shift in frequency

(by the amount » 4 (1 — a) f,). The actual shifts vary

from one end of the band of width B to the other end by
the amount (1 — a)B. Thus, the range of the differential
Doppler shift for a signal s(r) received by a pair of sen-
Sors is

B;. (A1)
The nominal differential Doppler shift is

Aag = Ias), — a,

oy = (as_v - asz)f;)s (A2)

and this can be considered to be the cycle frequency of
joint local cyclostationarity between the signal compo-
nents s (¢) [corresponding to x(¢) in (31) and (32)] in y ()
and z(t) only if

Aa, << B,, (A3)
which is equivalent to
|as_v -a,| < 1 (A4)

Thus, in order to obtain substantial separation between
the signal s (7 ) and the interference i (¢) [in n(t) and m(t)
in (31) and (32)] by exploiting local cyclostationarity, we
require (A4) to be satisfied for the signal, but not for the
interference, or if it is satisfied for the interference then
the difference | o; — «; | in the values of cycle frequencies
for the signal and interference must be large enough:

lo — ;| > (A, + Acy)/2. (AS)

Condition (A5) ensures that the distance along the o axis
between the signal and interference features in the cross
spectral correlation surface (see Fig. 2(a) which is dis-
cussed in Section IV), as well as in the ambiguity surface,
exceeds half the sum of their widths in the « direction so
that they are indeed distinct features.

As a matter of fact, even modulated signals that are
called cyclostationary are only locally cyclostationary be-
cause no carrier oscillator or bauding clock is free of phase
fluctuations. They all have finite coherence times. Thus,
we still require conditions (A3) and (A5) (with A« rein-
terpreted as the reciprocal of the coherence time) to sep-
arate signal from interference on the basis of the cyclos-
tationarity of modulated signals and interferers. But these
conditions are easily satisfied in many applications. This
is discussed further at the end of Section IV.
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