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Signal Interception: A Unifying Theoretical
Framework for Feature Detection

WILLIAM A. GARDNER, SENIOR MEMBER, IEEE

Abstract—The unifying framework of the spectral correlation theory
of cyclostationary signals is used to present a broad treatment of weak
random signal detection for interception purposes. The relationships
among a variety of previously proposed ad hoc detectors, optimum
detectors, and newly proposed detectors are established. The spectral-
correlation-plane approach to the interception problem is put forth as
especially promising for detection, classification, and estimation in
particularly difficult environments involving unknown and changing
noise levels and interference activity. A fundamental drawback of the
popular radiometric methods in such environments is explained.

I. INTRODUCTION

INTERCEPTION of communications is attempted for a
variety of reasons including reconnaissance, surveillance,
and other intelligence gathering activities, as well as position
fixing, identification, and communications jamming. For
example, an aircraft might attempt to intercept the communi-
cations between a submarine or ship and a satellite, or a
satellite might attempt to intercept ground-to-ground commun-
ications. Typically, the interceptor has knowledge of no more
than the communicator’s frequency band, modulation format,
and modulation characteristics such as bandwidth and hop rate
or chip rate. In the past, it was commonly held that the most
appropriate approaches to the detection task for signal inter-
ception must be based on radiometry, that is, measurement of
received energy in selected time and frequency intervals (cf.
[1]-[5]). However, it is commonly recognized that such
radiometric methods can be highly susceptible to unknown and
changing noise levels and interference activity. There have
been many proposals for methods of countering such compli-
cations, including various approaches to adjusting or adapting
threshold levels, and adaptive filtering, cancelling, and direc-
tional nulling of interfering signals. But these problems remain
as the most serious impediment to signal detection and other
signal interception tasks (cf. [4]-[6]).

The radiometric approach to detection is based on the use of
stationary random processes as models for the signals to be
intercepted. However, it is shown in this paper that for the
purposes of signal interception, the signal of interest is more
appropriately modeled as a cyclostationary random process,
that is, a random process whose probabilistic or statistical
parameters vary periodically with time [7]. The message
contained in the modulated signal is unknown, and is usually
modeled as a stationary random process (discrete time or
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continuous time). This stationarity coupled with the periodic-

- ity of sine wave carriers, pulse trains, repeating spreading

codes, etc., results in a cyclostationary model for the signal.
However, these cyclostationary signals typically do not exhibit
spectral lines because the spectral lines of the unmodulated
carriers and/or pulse trains are spread out over relatively
broad bands by the stationary random modulation.

The purpose of this paper is to use the unifying framework
of the spectral correlation theory of cyclostationary signals to
present a broad treatment of weak random signal detection that
clearly reveals the relationships among the variety of detectors
that have been proposed, or are in the development stage, or
are in use, and to present several arguments with supporting
results that favor cyclic-feature detection over energy detec-
tion for accommodating the problems associated with un-
known and changing noise levels and interference activity.
Cyclic features result from the characteristic property of
cyclostationarity called regenerative periodicity, which
means that spectral lines can be regenerated from the signal
with the use of appropriate nonlinear transformations [8].

Before proceeding to the technical part of this paper, let us
consider the signal interception problem and the strengths and
weaknesses of radiometry and cyclic-feature detection in a
little more detail.

A. Drawbacks of Radiometry

The communication bands below 3 GHz have grown
increasingly dense with both military and commercial com-
munication systems in the last decade. This creates an
especially severe environment for distinguishing signals of
interest from background noise and interfering signals. In
airborne reconnaisance systems, for instance, where the
collection area can contain hundreds of emitters, this is
particularly problematic. In addition, there is a clear trend
towards increased use of systems employing sophisticated
signal formats such as direct-sequence and frequency-hopped
spread-spectrum modulation, both to aid communication in
this environment and to protect the communication system
against interception. In these applications, it is unlikely that
conventional radiometry will be able to perform required
signal detection or subsequent analysis tasks. The complex
collection environment is likely to overwhelm the signals of
interest, since they can be buried beneath much stronger
groupings of interfering signals. In addition, the modulation
format of the signal of interest can make it indistinguishable
from the noise background. This can occur, for example, if the
signal is direct-sequence spread-spectrum modulated with no
easily identifiable spectral features to distinguish it from other
signals. In code-division and frequency-hop multiple access
systems, the signals of interest even interfere with each other.
The presence of several identically distributed spectrally
superimposed signals will confuse most energy detection
schemes, preventing the interceptor from determining any
more than knowledge that signals are present in the environ-
ment. Furthermore, radiometry suffers from inherent limita-
tions that prevent if from being used for some signal analysis
applications. In particular, energy detection schemes are
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inherently unable to measure or exploit timing or phasing
properties (carrier phase, chip, or baud timing) of the signals
of interest or interferences because these energy detectors
usually cannot exploit the cyclostationary, or periodically
time-variant, signal characteristics. In practice, collection
systems overcome this restriction by such means as 1)
analyzing successions of short-collect power spectra to exploit
gross signal timing, such as time-of-arrival or slow hop rate of
signals of interest, 2) using multisensor techniques to exploit
spatial distribution of the energy of signals of interest and
interferences [9], or 3) completely abandoning energy detec-
tion techniques for schemes that exploit the modulation
characteristics of the signal of interest and/or interferences,
such as baud, chip, or hop rate! [10]. These latter schemes,
often referred to as cyclic-feature detection techniques, have
many advantages over radiometry, including the ability to
perform signal timing measurement, discriminate against
signals not of interest using sufficiently long collects, and
reduce sensitivity to unknown and changing background noise
level and interference activity. These techniques can be
thought of as ad hoc realizations of a generalization of energy
detection and power spectral analysis, referred to here as
spectral correlation detection or cyclic spectral analysis [8].

B. Advantages of Cyclic-Feature Detection

There are three important advantages of cyclic spectral
analysis over energy detection techniques, the first of which is
its discriminatory capability. Signal features are discretely
distributed in cycle frequency in the cyclic spectrum, even if
the signal has continuous distribution in the power spectrum.
Thus, signals with overlapping features in the power spectrum
can have nonoverlapping features in the cyclic spectrum.
Background noise, for instance, has no features at nonzero
cycle frequencies; analyzing the cyclic spectrum at a nonzero
cycle frequency where a signal-of-interest feature is expected
to appear will reveal that feature without any component due
to the background noise (except measurement noise which can
be substantial, but which decreases with increasing collect). A
theoretical analysis of the signals of interest and interferences
‘can reveal regions of the cyclic spectrum where signal-of-
interest features will appear, but interference features will not.
TV signals, for instance, have primary features at cycle
frequencies that are multiples of the TV-signal horizontal line-
scan rate (15.75 kHz in the USA, 15.625 kHz in Europe and
the USSR); if the signal-of-interest has features at other cycle
frequencies, then analysis of the cyclic spectrum at those cycle
frequencies will reveal those features without any component
due to the interference (again, except measurement noise).
The JAGUAR V signal [11], for example, has cyclic spectral
features at the 100 Hz hop rate, and also at the 19.2 kHz FSK
baud rate; analysis of the cyclic spectrum at multiplies of 100
Hz or 19.2 kHz in cycle frequency will reveal JAGUAR V
features even in the presence of significant TV interference.
Signals can also be separated by Doppler shift in the cyclic
spectrum, a capability that is not available with the power
spectrum.

To illustrate this discriminatory capability of cyclic spectral
analysis, the measured cyclic spectrum magnitude is graphed
in Fig. 1(a) as the height of a surface above a plane with
coordinates of frequency f and cycle frequency «. This cyclic
spectrum was computed using the frequency-smoothed cyclic

! Pioneering work on ad hoc cyclic-feature detectors carried out in the mid-
to-late 1970’s is reported in the unpublished document [10]. Much work on
evaluating the utility of specific ad hoc cyclic-feature detectors (chip-rate and
hop-rate detectors, and carrier doublers and quadruplers) has been done since
that time, most of which has not been published, although a few papers have
been presented at the MILCOM conferences. A general approach to optimal
detection of digitally modulated signals based on the maximum-likelihood
criterion, which leads to multicycle feature detectors, as defined in the present
paper, is reported in [21].
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Fig. 1. Measured spectral correlation magnitudes for corrupted and uncor-
rupted BPSK with half-cosine envelope. (a) BPSK in white noise with five
AM interferences. (b) Uncorrupted BPSK. (c) White noise and AM
interferences only.
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and where T = NT, is the segment length and Af = (M +
1)/NT, is the frequency-smoothing window width. The
parameters used are N = 32 768 and M = 1024. The data
x(nT;) consist of a BPSK signal of interest with a half-cosine
envelope and a bandwidth of BW = 0.1875/T, five
interfering AM signals with bandwidths ranging from BW =
0.04/T,to BW = 0.08/T, and white noise. The SNR is 0 dB
and the SIR for each interference is 0 dB. Thus, the total SINR
is —8 dB. In Fig. 1(b), the measured cyclic spectrum
magnitude for the BPSK signal alone is shown and in Fig. 1(c)




GARDNER: A UNIFYING THEORETICAL FRAMEWORK FOR FEATURE DETECTION

the measurement for the interference and noise alone is shown.
The o = 0 part of these graphs represents the measured power
spectral density. It can be seen by comparing Fig. 1(a)-(c)
that the BPSK signal is completely masked in the power
spectral density measurement (o« = 0) but is clearly revealed
in the cyclic spectral density measurement (¢ # 0). These
results would be even more striking with FM interference
because the o # 0 features for commonly occurring FM
interference (e.g., push-to-talk FM) are very small compared
to the o # O features shown here for AM.

The second advantage of cyclic spectral analysis is that the
cyclic spectrum is a much richer domain for signal analysis
than the conventional power spectrum. In addition to the signal
separation provided by the cyclic spectrum magnitude, sine-
wave-carrier and pulse-train frequency and phase parameters
can also be measured from the cyclic spectrum magnitude and
phase [12], [13]. This allows cyclic spectral analysis to be
used as a much more complete tool for signal analysis,
compared to the power spectrum; it also opens the door to new
ways to separate signals on the basis of timing and phasing as
well as cycle frequency. In some applications, such as radio
communication networks where many identically distributed
signals of interest can be superimposed even in the cyclic
spectrum, this capability might prove to be crucial.

The third advantage of cyclic spectral analysis lies in the
theory underlying the techniques. The cyclic spectrum, which
is composed of spectral correlation functions, provides a much
more complete mechanism for modeling communication
signals than the power spectrum; the mathematics needed to
perform this modeling, however, are not significantly more
complex [7]-[8], [141-[16]. It is shown in this paper that both
conventional spectrum analyzers and feature detection tech-
niques can be theoretically studied and analyzed in terms of the
cyclic spectrum. It is also shown that, in addition to ad hoc
feature detection and nonparametric approaches (power spec-
tral analysis and cyclic spectral analysis) to detecting and
analyzing signals, optimal parametric approaches that can be
implemented in terms of cyclic spectral analysis can also be
devised. :

The focus in this paper is on interpreting the various
detector structures within the unifying conceptual framework
of spectral correlation. A sequel to this paper will employ this
unification to carry out performance analysis that supports the
claim that cyclic-feature detection has the potential for
outperforming radiometry for interception in problematic
noise and interference environments. But even without such
analyses, graphs such as those in Fig. 1 strongly suggest that
this claim can be supported. One example is briefly considered
at the end of this paper to demonstrate the superiority of
cyclic-feature detectors.

II. SPECTRAL CORRELATION

For the purposes of signal interception, the signal of interest
is most appropriately modeled as a cyclostationary random
process, whose probabilistic or statistical parameters vary
periodically with time, reflecting the characteristic property of
regenerative periodicity. If there is more than one source of
periodicity and the periods are not all commensurate, then the
process is called almost cyclostationary since its parameters
are almost periodic functions of time (that is, sums of periodic
functions with incommensurate periods). For example, the
autocorrelation function

R(t+7/2, t—1/)=E{x(t+1/Qx(t—1/2)} (1)

for the signal x(¢), by virtue of the (almost) cyclostationarity
of x(¢), will be a (almost) periodic function of the variable z,
and will therefore admit the Fourier series representation

Ru(t+1/2, t—1/2)=7] Re(r)ei?r @
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where the sum is over integer multiples of fundamental
frequencies (reciprocals of periods), such as carrier fre-
quency, baud rate, chip rate, hop rate, and their sums and
differences. The Fourier coefficients R %(7), which depend on
the lag parameter 7, are given by the formula

1 pz2
o = lim — — —i2rat
Re(7) ;I—I»ToloZS-Z/z R(t+7/2, t—1/2)e-i2mat g, (3)

(If there is only one period, say 7, then Z can be chosen equal
to 7, and the limit in (3) can be omitted.) If x(¢) is a
cycloergodic process [7], [17] (which it always will be if an
appropriate model is used), then after substitution of (1) into
(3), the expectation operator can be omitted to obtain

1 rzn2 )
R(r)= lim — S-m X(t+7/2x(t—1/2)e- 2t g1, (4)

(When (4) is used in place of (3), the limit Z — oo cannot be
omitted when there is only one period.) The function R¢(7) is
called the cyclic autocorrelation function. For o = 0, it
reduces to the conventional autocorrelation function Rg(r).
Whereas Rg(r) can be seen from (4) to be the dc component of
the lag-product waveform x(¢t + 7/2)x(¢t — 7/2) for each
value of 7, R 2(7) can be seen to be the ac component
corresponding to sine-wave frequency .
The Fourier transform

s:N=|" Re@e-rar 5)
is called the cyclic spectral density function. For o = 0 it
reduces to the conventional power spectral density function,
that is, the spectral density of time-averaged power. However,
for a # 0, it can be shown that .S () is the density of spectral
correlation, that is, the density of correlation between spectral
components at the frequencies f + «/2 and f — /2.
Specifically, it is shown in [7], [8], [14], [15] that

o
S0=lm lin 77

Z/2
S Xr(t, f+al2)
-Z/2

XA, f-a/2) dt (6)

where X7(z, f) is the complex envelope of the narrowband
spectral component with center frequency f and bandwidth on
the order of 1/7,

t+1/2 :

Xrt, =" xwe-e au, @

=172
Thus, S%(f) is also called the spectral correlation function,
and it follows from the preceding discussion that spectral
correlation is a characteristic property of cyclostationarity of
the autocorrelation.

The most common approach to modeling signals for
interception studies (cf. [4], [5]) is to ignore cyclostationarity
by either 1) introducing a random phase variable 6 uniformly
distributed over one period of the cyclostationarity (or a sum
of such phases, one for each period of an almost cyclosta-
tionary process) so that x(¢ + ) becomes stationary [7],
[18]—that is, only the & = O term in (2) is then nonzero—or 2)
using the time-average approach based on (4), and simply
ignoring the o # 0 averages. This approach is appropriate if
there is no desire to exploit cyclostationarity, and it leads to
the popular conclusion that the radiometer is essentially the
optimum detector (cf. [7].) Therefore, the adoption in this
paper of the cyclostationary model marks the point of
departure of this work from many previous studies of signal
interception. Nevertheless, since the stationary model is a
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special case of the cyclostationary model, the results derived
in this paper include the more conventional results as special

cases.
Example: Consider the noise-free AM signal x(¢) = s(¢),
®

s(t)=a(t) cos Qnf.t+ do)

where a(¢) is a stationary process. It is easily shown using (4)
that

1

5 RY(7) cos @nfe7), a=0
Ri(1)= ) )]
n R(n)e*?®0, a==x2f,

and R%(7) = O for all other values of «. Or using (1), we
obtain

Ry(t+17/2, t—7/2)=% Rg(T) [cos Rnf.7)
+cos (dnf.t+2¢0)], (10)

from which (9) follows using (3). Fourier transformation of
(9) yields

[So(f—f)+So(Uf+Sf)], =0

ENg

Sa(f)= an

SUetio, a=x2f..

NI

Thus, the only spectral components that are correlated are
those whose frequencies are separated by |a| = 2f,. This is
easy to see intuitively since multiplication of a(¢) by cos 27f.?
+¢,) as in (8) shifts each spectral component in a(¢) up and
down by the amount f,. Thus, the spectral components at f* +
f.and f — f.in s(¢) are one and the same as the spectral
component at f in @(¢). So they are obviously correlated.
Explicit formulas for the spectral correlation function have
recently been calculated for the majority of types of modulated
signals used in modern communication systems in [7], [8],
[15], [16]. A variety of analog and digital methods for
measurement of spectral correlation have been described in

[8], [12].
III. DETECTION BY SPECTRAL-LINE REGENERATION

Perhaps the most straightforward interpretation of most
cyclic-feature detectors is that they use a nonlinearity to
regenerate a spectral line from the noisy modulated signal, and
then use a bandpass filter, DFT, or other methods of spectral
analysis to detect the presence of the regenerated spectral line
which is masked by continuous spectral components due to
noise, interference, and the signal of interest itself. Since the
signal-to-noise ratio (SNR) is often very low in an interception
environment, the lowest order nonlinearity is usually chosen
since an SNR of less than 0 dB becomes increasingly lower as
the order of the nonlinearity used is increased. Thus, most
feature detectors use quadratic nonlinearities. (An exception is
carrier regeneration for balanced QAM signals, such as
QPSK, since these require higher order nonlinearities for
spectral-line regeneration [19].) Hence, most feature detectors
are quadratic time-invariant systems which can always be
represented by

o =
yul= |7 kalw, x(-wx(t-v) dudv (12)
- oo — oo

where o represents the frequency of the spectral line to be
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regenerated from x(¢). For example, the delay-and-multiply
chip-rate-feature detector (cf. [10], [20]) can be expressed as

Ya(O)={h(t) ® x(O[h(1—15) ® x(1-70)1} ® 2(¥)
(13)

where % (2) is the impulse-response function of a prefilter, 7, is
the delay (typically chosen to be half the chip interval), and
g(?) is the impulse response of a postfilter (e.g., a bandpass
filter with center frequency «). Equation (13), in which &
denotes convolution, can be put into the form of (12) with
kernel

ko (u, v)= r h(u—w)h(v—w—1,)g(w) dw. (14)

Similarly, for the filter-squarer carrier-feature detector, we
have

Yo()=[h(?) ® x()]* ® g(1) 15)

which is simply (13) with 7, = 0. Thus, (15) can be put into
the form of (12) with kernel

k@, v)= r h(u—w)h(u—w)g(w) dw.

16)

Also, for the dual-channel correlation detector, we have

Yo(£)={h1() ® x(O)[ha(2) @ x(N)]} ® g(r) (A7)

where A;(¢) and h,(¢) are the impulse-response functions of
bandpass filters with center frequencies f; and f5, and g(#) is
the impulse-response function of a bandpass filter with center
frequency a = |f; — f2|. Equation (17) can be put into the
form of (12) with kernel

ke, =" m@=wh-wew dw.  (18)

The approach in the past has been to choose the particular
detector structure, such as (13), (15), or (17), and then to
optimize its parameters, such as the delay 7, and prefilter
bandwidths. An alternative approach that puts these ad hoc
detectors into better perspective is to analytically solve for the
kernel k,(u, v) in the general representation (12) that
regenerates the strongest possible spectral line at some
appropriate frequency o for a specific signal type. This same
objective applies not only to the design of feature detectors for
interception but also to the design of synchronizers that
operate on the basis of using a phase-lock loop to lock on to the
phase of a regenerated carrier or clock signal.

It has recently been shown [8], [13] that the particular
kernel that maximizes the SNR of the regenerated spectral line
for a cyclostationary signal s(¢) in additive stationary Gaussian
noise and interference n(¢), x(t) = s(¢) + n(z), is specified
by

" Kuh e df v,

ko, v)= |ul, [v| < 172 19)

0, otherwise
where T is the collect time of the detector, and

[ Se(f—a/2)*
K, (fs V)= Sormcorr_
S KT

In the derivation of (19)-(20), it is assumed that T is large

]B(f—v—a), a#0. (20)
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enough that a spectral window of width 1/7 will resolve
S%(f) and Sﬂ(f) (i.e., 1/T must be smaller than the widths of
all peaks and valleys in these spectral functions). Thus, the
optimum spectral line regenerator is completely specified by
the spectral correlation function for the signal and the power
spectral density for the noise plus interference. Furthermore,
the maximized value of SNR is given by

T |S=(f)|?
SNR® ——g
™2 ) S0+ a/2)S0(f~al2)

where SNR is defined to be the ratio of the power in the
regenerated spectral line to the power in the band of width 1/7T
centered at frequency «, due to the output noise plus
interference. )

As an example, we consider white noise n(¢) for which
S%f) = N,. In this case, (19)-(20) yield

az0 (21

df,

1 .
ka(u, U) =1\7 [R;‘(u - v)e _I"a(“""-‘)]*,

o

lul, |v| < 772,

(22)
which, upon substitution into (12), yields

mn:}% STTR?’(T)*R;‘T(L 7 drert  (23)
where ’
R () & Y”HM X(u+1/2)
*T T di—(r-1er2
- x(u—r7/2)e=1u . (24)

The quantity R;}'T(t, 7) is called the time-variant cyclic
correlogram. For a = 0, it reduces to the conventional time-
variant correlogram [8], [22]. If T exceeds an appropriate
measure of the width of the cyclic autocorrelation function
R2(7), then Parseval’s relation for Fourier transforms can be
applied to (23) to obtain the close approximation

1 (e .
pu()= 5 | SIUYSE 0 e, om0 29)

where

s; (. n=|" Ry ne-rrar g
Substitution of (24) into (26) and application of the convolu-
tion theorem for Fourier transforms yields

1

S;‘T(t, f)=—XT(t, f+oz/2)X;(t, f—a/2) 27
where X7(¢, f) is defined by (7). The function S (t f)is
called the time-variant cyclic periodogram. For a =0, it
reduces to the conventional time-variant perlodogram [81,
[22]. For the more general case of nonwhite n(¢) (e.g.,
narrow-band interference plus noise), (25) generalizes to the
approximation

ool [
Y=} | SO(f+a/2)80(f—a/2)
. Sa (t f) dfeiz-mt (28)

This approximation is close if T is large enough that a spectral
window of width 1/T will resolve S°(f).
In conclusion, if the noise is white, "then the maximum SNR
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spectral-line regeneration detector measures the cyclic period-
ogram of the received data x(¢) and correlates it (over f) with
the ideal cyclic spectral density (spectral correlation) function
for the signal to be detected s(¢), as specified by (25). On the
other hand, if there is strong narrow-band interference as well
as white noise, then the measurement Xr(¢, f) is first notched
by division by S% f) to obtain

> XT( t’ f)
Xr(t, L — 29
(1, f) S0 29
Then the cyclic periodogram is formed
S°‘ (t f) 2 XT(t f+a/2)X*(t f—a/2), (30)

and it is correlated with the ideal cyclic spectral density
function for the signal

va=|"_s:*Se,. ¢, e @)
[As a check on (31), it is easily verified that substitution of
(29) into (30) and the result into (31) yields (28).] For weak
signals, SY(f) < SY(f), we have S%(f) = S%f), and S%N)
can be measured from the received data.

For specific signal types, the general form of the optimum
detector can often be reduced to more familiar forms. For
example, it is shown in [13] that for PSK type signals (31)
reduces to a narrow-band rejection filter for narrow-band
interference removal, followed by a matched filter (with
impulse-response function equal to the time-reversed carrier
burst for one keying interval), followed by a squarer and a
bandpass filter.2 This reveals that the optimum prefilter for the
filter-squarer detector is a matched filter, and that although the
optimum delay for the delay-and-multiply detector with no
prefilter is half the chip interval, the optimum prefilter is a
matched filter, and when this is used the optimum delay is
zero. The degradation in SNR due to use of the suboptimum ad
hoc detectors instead of the optimum detector has been
evaluated and will be reported in a sequel to this paper.

IV. DETECTION BY CYCLIC SPECTRAL ANALYSIS

Although such familiar forms as a matched filter squarer are
intuitively appealing, they are not necessarily as flexible as the
general form (31). For example, if the particular signal type of
interest is not known sufficiently well to obtain a good
approx1mat10n to the spectral correlation function S 4(S) used
in (31) as a weighting function before integration over f, then
it can be replaced with a simple window such as a rectangle,
whose width Af is chosen to be as large as possible without
exceeding the widths of features expected to be present in
S%(f), and whose center f is a variable parameter. The
resultant detection statistic is

Falt, f)—— Sfjf Se At v) dv. (32)

Af
This frequency-smoothed cyclic periodogram is a standard
estimate of the ideal weighted cyclic spectral density function
S2(f). In fact, it can be shown [8], [12] that

f+Af/2 ‘S".a(ll) 33
lim (2, f)—Er L a2 SO(y+a/2)S°(V—a/2) D 69
and therefore,
S2(f)
lim lim y,(% f)= 34

S f+a/2)S%(f-ar2)

Af—0 T—oo

2 The same result is arrived at using a different approach in [21].
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Moreover, it can be shown that the variance of y (¢, f) is
inversely proportional to 7Af [8], [12]. Furthermore, if 7 ()
exhibits no cyclostationarity with cycle frequency o (or no
spectral correlation with frequency separation «), then S2(f)
= 0 and therefore,

Sa(f) = S2(). (35)

In conclusion, if y,(¢, /) were measured and graphed as a
time-variant surface above the (f, «) plane, then the presence
of recognizable spectral correlation features could be used to
detect signals of interest and also to classify them according to
modulation type.

It should be clarified that although the optimum detector
(31) specifies removal of strong narrow-band interferences as
the first stage of processing as in (29), this is not as crucial as
it is for radiometric detection methods (assuming long collect
T') because even though a number of narrow-band interferers
may be spread across the band of the signal of interest, they
will not necessarily give rise to a spectral correlation feature
that overlaps the features from the signal of interest (although
they do contribute to measurement noise and can require long
collects for adequate suppression). In fact, it is unlikely that

they would because this would require that the interference

exhibit cyclostationarity at the same cycle frequencies as those
in the signal of interest. The cyclic spectral analysis adaptation
of the optimum detector, without preprocessing for interfer-
ence removal as in (29) and (32), is given by

; 1 S f+Af/2
Yo, ) AF

where SffT(t, JS) is given by (7) and (27). A variety of methods
for making this measurement and close approximations to it
are described in [8] and [12]. The unique spectral correlation
surfaces for a wide variety of modulation types are calculated
and graphed in [7], [8], [15], [16]. As one illustrative
example, the magnitude surfaces for BPSK, QPSK, SQPSK,
and MSK? are shown in Fig. 2. Observe that although the
power spectral densities are identical for BPSK, QPSK, and
SQPSK, their spectral correlation surfaces for o # 0 are
highly distinct. For example, for BPSK, there are features at «
= kf,and a = *+2f, + kf,, for all integers k where f, is the
keying rate and f is the carrier frequency. For QPSK, there
are features only at « = Kkf, for all integers k. For SQPSK and
MSK, there are features at « = kf, for only even integers k,
and at o = +2f. + kf, for only odd integers k. For MSK, the
features at o« = =+2f. + f, are especially large compared to all
features in BPSK, QPSK, and SQPSK. An example of a
measured magnitude surface based on (36) for a BPSK signal
in multiple AM interference and noise is shown in Fig. 1.

e (1, v) dv (36)

S=Af72

V. AMBIGUITY PLANE AND WIGNER-VILLE TIME-FREQUENCY
PLANE METHODS OF DETECTION

Having revealed the central role played by spectral correla-
tion and cyclic spectral analysis in the spectral-line regenera-
tion approach to detection, let us now turn to the task of
interpreting the ambiguity plane approach and the Wigner—
Ville time-frequency plane approach in terms of optimum
cyclic-feature detection. Like the three conventional feature
detectors (13), (15), and (17) considered in Section III, these
two approaches are also ad hoc. They have not been derived
from any objective design criterion. Nevertheless, we shall see
that, when properly modified, they can be made equivalent to
the optimum spectral-line-regeneration detector.

The ambiguity-plane approach to interception is to simply
measure the symmetric ambiguity function

ormm) 2 | xiut 1/ (u—1/2)e™ du (37)

* This MSK signal is an SQPSK signal with raised cosine carrier envelope.
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Fig. 2. Theoretical spectral correlation magnitudes for PSK signals with

keying interval T, and with full duty cycle rectangle envelopes and for MSK
with half-cosine envelope. (a) BPSK. (b) QPSK. (c) SQPSK. (d) MSK.

for some sliding segment of x(u), say

S x@t+w, lu| < T/2
x(u) { 0, otherwise, (38)
and then search for recognizable features in the ambiguity
magnitude surface above the (7, ) plane as time # progresses.
To relate this to the optimum detector in Section III, we
observe that with (38) substituted into (37), we obtain by
comparison to (24)

1
et pxt(T’ V)sz_Tv(ta T)- (39)

T
Thus, if the ambiguity function is correlated (over 7) with the
ideal cyclic autocorrelation function for the signal of interest
5(t), as in (23), then we obtain the optimum detection statistic
for a signal in white noise (down converted from frequency o
to zero frequency by multiplication with e~/2™). Furthermore,
since (26) and (39) reveal that the ambiguity function and the
cyclic periodogram are a Fourier transform pair, then there is
a close link between methods based on the ambiguity surface
and those based on the unsmoothed cyclic periodogram
surface. It should be clarified, however, that the ambiguity
function (37) is not the familiar radar ambiguity function
unless x,(u) is replaced with its complex envelope +,(«), and
the product x,(u + 7/2)x(u — 7/2) is replaced with v,(u +
7/2)y*(u — 7/2) [23]. But, the ambiguity function for x,(u)
cannot be recovered from the ambiguity function for v,(u).
The cross ambiguity based on v, (u + 7/2)y,(u — 7/2) is
needed as well. Thus, useful information that is present in the
spectral correlation plane can be lost in the ambiguity plane if
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the complex envelope 7, is used in place of the real signal x,.
This is easy to see intuitively since the complex envelope
discards all negative frequency components in the real signal,
and therefore all spectral correlation between positive- and
negative-frequency components is discarded. This is discussed
in more detail in [7], [8], [14].

The Wigner-Ville time-frequency plane approach to inter-
ception is to simply measure the Wigner-Ville time-frequency
function [24]

E, (u, f) & S XU+ 7/ xu—1/2)e - dr, (40)
for some sliding segment of x(u), say (38), and then to search
for recognizable features in the magnitude surface above the
(u, f) plane as time ¢ progresses. To relate this to the
ambiguity plane approach and to the optimum detector in
Section III, we observe that the Wigner-Ville distribution and
the ambiguity function are a double-Fourier transform pair

our =" " B, peonn quar. )
Consequently, (26) and (39) reveal that

1 i .
B N=|"_ 52 perrida. @)

Thus, the cyclic-periodogram and the Wigner-Ville distribu-
tion are a Fourier transform pair, and there is therefore a close
link between methods based on the Wigner-Ville surface and
those based on the unsmoothed cyclic periodogram. In order to
render the Wigner-Ville time-frequency approach equivalent
to the optimum detector in Section III, the Fourier transform
of E, (-, f) evaluated at o would have to be correlated with
S¢(f) as in (25) (and the result upconverted from zero
frequency to frequency o).

It is emphasized that the smoothing operation used in the
spectral correlation plane (or cyclic-spectral analysis) method
derived in Section IV from the optimum detector is important
since the variance of the measured spectral correlation
function is inversely proportional to the product of the collect
time 7" and the smoothing window width A /. (In fact, the SNR
performance of the cyclic-spectral analysis detector (36) is
proportional to T'Af provided that Af is not too large.) Thus,
methods based directly on the Wigner-Ville distribution
without smoothing in f would not be expected to perform
comparably. Furthermore, the characteristic of the Wigner—
Ville distribution, of adding contributions from @// values of e"
as revealed by (42), is a probable source of poor performance
for two reasons: 1), the signal of interest makes its primary
contributions to the detection surface at only values of o equal
to its cycle frequencies, and 2), even the contributions at the
cycle frequencies of the signal should not in general be added
directly without proper phase compensation. This is explained
in the next section.

VI. LIKELIHOOD-RATIO DETECTION

To gain further insight into the potential and the limitations
of the optimum spectral-line regeneration detector and its
cyclic-spectral analysis adaptation, we shall uncover the
relationship between the spectral-line regeneration detector
and the likelihood-ratio detector. Specifically, it is well known
that a monotonic function of the likelihood ratio, for a weak
zero mean signal s(¢) in additive white Gaussian noise on the
time interval [t — 7/2, ¢ + T/ 2], is closely approximated by
the quadratic form [25], [26]

t) 1 ST/Z ST/z
7 _NgT -2 -T/zRS(t—u’ t=v)

s x(t—u)x(t—v) du dv (43)
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where R;(u, v) is the signal autocorrelation function

Rs(u, v)=E{s@)s(v)}. 44)
Substitution of the representation (2) into (43) yields [7]
1 7
y0=3 = |" ReorRz,nar @)

where R,TT(t, 7) is given by (24). Comparison of (45) to (23)
reveals that this weak signal likelihood-ratio detector is simply
the sum over all cycle frequencies of the complex envelopes of
the maximum SNR spectral-line detection statistics,

Y(@)=3] ya(t)e—i2met (46)

where y,(¢) is given by (23). Thus, this multicycle detector
generates all possible spectral lines at their maximum power
level and then adds their complex envelopes together. Applica-
tion of Parseval’s relation to (45) [assuming that 7" exceeds an
appropriate measure of the width of R ()] yields the
alternative formula

1 - a
y(=3% N2 S_m S$UN*S: (1, f) df. “7)

Thus, this optimum multicycle detector measures the cyclic
periodograms of the received corrupted signal x(z) for all
cycle frequencies o contained in the signal to be detected s(¢),
correlates these (over f) with stored replicas of the ideal cyclic
spectral densities of s(#), and then adds up these correlations.
If the signal were modeled as stationary, then only the o = 0
term would remain and this would yield

1 o
yo== " sunse . n 48)
o
which is the optimum radiometer (cf. [7]). If the only thing
known about the signal s(¢) is its passband, say [f, — B/2, f,
+ B/2], then (48) would be approximated by

1 fo+B/2
y0=35 1" 50w ar (49)

~B/2
which is the standard radiometer.

If the additive noise plus interference is not white, but it is
stationary and Gaussian, then the weak signal maximum-
likelihood detector, (46) and (25), generalizes to (46) and (28),
provided only that 7 is large enough that a spectral window of
width 1/7 will resolve Sg( J). This can be verified using the
standard noise-whitening approach to detection.

Unfortunately, even if the modulation type and its parame-
ter values (e.g., carrier frequency and chip rate for a BPSK
signal) are known, the optimum multicycle detector (47)
cannot be implemented without knowledge of the phase of the
signal because the quantities S*(f) depend on this phase.
For example, the spectral correlation function for s'(t) =
s(t — t,)is

52 () =82(f)e 1. (50)

Thus, if the wrong value for 7, is used, the resultant phases of
the individual terms in (47) can result in destructive interfer-
ence rather than constructive interference when the sum over o
is performed.

Although (47) might not be practical for implementation, it
lends further support to the cyclic spectral analysis approach to
detection since this approach enables the user or an automated
algorithm to exploit more than one cycle frequency of the
signal of interest. This can be beneficial not only for detection,
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but also for identification of signal-modulation type as well as
for signal analysis (parameter estimation). In fact, it is shown
in [13] that maximization of (47) with respect to signal
parameters on which S2(f) depends yields their weak signal
maximum-likelihood estimates. Also, the alternative forms of
implementation of maximum-likelihood detectors described in
[21], which follow directly from (43) for the weak signal case,
can possibly be more practical than (47) in some situations.

VII. MAXIMUM-DEFLECTION DETECTION

An alternative approach to arriving at the multicycle
detector (47) as a detector with optimality properties is based
on a performance measure called deflection. Specifically, the
deflection is a measure of output SNR that is particularly
appropriate for weak signal detection [26]-[27]. For a
detection statistic y(¢), the deflection is defined by

|E{y(2)|s(¢) present} — E{y(t)|s(¢) absent}|
(var {y(t)|s(¢) absent})!?

a(t) &

(51

For a quadratic detector, we have the general representation

T/2

T/2
y(t)=g S K, v)x(t—u)x(t—v) du dv. (52)
-T/2

-172
For the case in which x(7) consists of either the signal s(¢) plus
additive white Gaussian noise 7n(¢), x(¢) = s(t) + n(¢), or
just noise alone, x(#) = n(¢), substitution of (52) into (51)
yields

T/2 772 2
g § Ky, V)R(t— 1, t—v) du dv

-7/2 Y -T2

d¥ ()= (53)

T/2 ST/Z

2nz | Uk, v)]? du v
2

=772 Y -1/

[where it has been assumed without loss of generality that
k(u, v) = k,(v, u)]. Application of the Cauchy-Schwarz
inequality to (53) yields the deflection-maximizing kernel [7]

ki(u, v)=

NAT Ry(t—u, t—v) (54

and the resultant maximum value of squared deflection

1 T/2 7/2
PDm=r5 || [Rlt=u, t=v)P dudv. (55)
2N2 -1z )1

It follows from (52) and (54) that the quadratic detector that
maximizes deflection is identical to the weak signal likelihood-
ratio detector (43), which is a multicycle detector (47).
Furthermore, the value of maximized deflection is completely
characterized by the maximized SNR’s (21) obtained from the
optimum single-cycle detectors (25). Specifically, substitution
of (2) into (55) yields

1 T
—_ o B
dz(t)max_zNiEB S_TRS(T)RS(T)

. sin [w(a+B)(T—|7])] dre-i2m@+B) (56)
w(o+06)
T

T
= [ IRz ar (57)

Ez—ﬁz > 7 Iz ar. (58)

0 a
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The approximation (57) is accurate if 7 is sufficiently large
relative to the longest period of cyclostationarity (7 > 1/ami),
and sufficiently large relative to the largest width of the cyclic
autocorrelations R (7). The latter condition on 7 also renders

(58) a close approximation. Comparison of (58) to (21) |

(including o = 0) for the case of white noise (SYf) = N,)
yields the characterization

d*(Dmax = 3 SNR® (59)

max *

The preceding equivalence between the maximum-deflec-
tion quadratic detector and the weak signal likelihood-ratio
detector holds as well for nonwhite stationary Gaussian noise
(e.g., interference plus noise), and the performance character-
ization (59) also holds with SNR* given by (21) (including
a = 0).

In a)ddition to this reinterpretation of the weak signal
likelihood-ratio detector (the multicycle detector), we can also
reinterpret the maximum-SNR single-cycle detector as a
maximum-deflection detector. Specifically, it can be shown
that when a detector includes a narrow bandpass filter with
center frequency « at its output, then

SNR® = d2(t) a#0 (60)

where d, is the deflection (51) for this detector with output
Yalt).

VIII. A FUNDAMENTAL DISTINCTION BETWEEN RADIOMETERS
AND CYCLE DETECTORS

The fact that (21) and therefore (60) are valid only for o #
0 is at the heart of the difference between the radiometer (48)
and the cycle detector (25). The reason that (21) is not valid
for @ = 0 is that the radiometer output contains a spectral line

at « = 0 regardless of whether or not the signal is present, |

whereas the cycle detector contains a spectral line at « # O
only if the signal is present. Thus, the radiometer must
distinguish between the strength of the spectral line at « = 0
due to signal plus noise and/or interference, and the spectral
line at « = 0 due only to noise and/or interference, whereas
the cycle detector need only distinguish between the presence
and absence of a spectral line at « # 0. This follows directly
from the formula [8], [13]

pe= S“ K(f+a/2, f-a/2)S(f) . 6

for the spectral-line power of any quadratic detector [K is the
double Fourier transform of the kernel &, cf. (19)], and the
fact that

SN, a+0, signal present
0 0 — . t
Se(f)= SN +S8%f), =0, signal presen ©2)
iy 0 a#0, signal absent
N 2(f )s a=0, signal absent

where it is assumed that the noise plus interference n(¢) does
not exhibit cyclostationarity with cycle frequency o, Se(f) =
0. This fact also results in the following differences in the
asymptotic behavior of the detection statistics for the optimum
radiometer [(25) with « = 0] and the optimum cycle detector
[(25) with o # 0]:

1 (e
= | _Issorar,
lim |y, ()| = a#0, signal present (63)
T—o
0, a#0, signal absent
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-

1 =3
= ["_suntssn+s.om df,

a=0, signal present

lim | yo(£)] =4 (64)

1 @
= | SANSin df,

o

a=0, signal absent.

A measure of performance that is comparable to SNR® for
the radiometer (¢ = 0) can be obtained as follows. The
strength of the spectral line at « = O regenerated by any
quadratic detector with kernel ky(u, v) [cf. (12)] is given by

(8]

Po= [S: SUNEKoS: £) df] L6

If the signal is present, then S%(f) = S%f) + S%/).
Otherwise, Sg( f) = S?,( f). If the noise-plus-interference
spectral-line power

) 2
Py, = [S _SUNK D df]
is known, then its effect can be subtracted from the detector
output, and we can thus define SNR to be the ratio of the
spectral line power due only to the signal, to the power of the
output noise-plus-interference that is continuously distributed
versus frequency throughout the band of width 1/7 centered at
f = 0. The resultant formula for SNR? would then be given by
(21) with @ = 0. Furthermore, if the detector includes a low-
pass filter at its output, then the deflection characterization
(60) would be valid with @ = 0. But it must be emphasized
that the preceding justification for use of the conventional
deflection performance-measure [(21) and (60) with o = 0] is
predicated on the assumption that the spectral-line power (66)
due to noise plus interference is known. When it is not known
and, worse yet, changes with time, the deflection is not an
appropriate measure of the performance of the radiometer.
Moreover, in this case, the radiometer unlike the cycle
detector is faced with the difficult task of detecting the
presence of the signal spectral-line power

(66)

- 2
P, = [ " sunkes df] G
which is superimposed on the possibly much larger unknown
and changing-noise-plus-interference spectral-line power (66).
This greatly complicates the problem of setting the threshold
level to be used with the radiometer, and renders the
radiometric approach to detection inherently more susceptible
to unknown and/or changing noise and interference, especially
for weak "signals. This is corroborated by performance
comparisons to cycle detectors to be reported in a sequel to this
paper. The following example demonstrates the superiority of
cycle detectors for a BPSK signal in a variable white noise
background.

Example: Let us consider a BPSK signal, with keying
interval 7, and carrier frequency f., to be detected in the
presence of white Gaussian noise with a mean spectral density
level E{N,} that results in an in-band SNR of 0 dB (i.e., the
expected noise power within the signal band B = {f: | f + f,|
<2/T,} is equal to the expected signal power). The spectral
density level IV, is a positive-valued random variable from
which a statistically independent random sample is drawn for
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a=2f;

PROBABILITY OF DETECTION

o]
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PROBABILITY OF FALSE ALARM
Fig. 3. Receiver operating characteristics for three detectors for a simulated
BPSK signal in white Gaussian noise with random spectral density level
having a coefficient of variation of 1/10.

each collection interval. Its coefficient of variation is equal to
1/10,

var {N,} 1
(E{N,})* 10

The collection time T contains 128 keying intervals, each of
which contains 16 time samples. The receiver operating
characteristics for three detectors were determined from
simulations and are shown in Fig. 3. It can be seen that the
optimum cycle detector corresponding to o = 2f,. performs
the best, the optimum cycle detector corresponding to a =
1/T, performs next best, and the optimum radiometer per-
forms the worst. The relative performances of the two cycle
detectors is consistent with the relative strengths of their
features as shown in Fig. 2(a).

IX. CONCLUSIONS

In this paper, a unifying approach to the design and analysis
of quadratic detectors for signal interception is presented. The
methods of detection that are incorporated in this unification
include radiometry, delay-and-multiply chip-rate feature de-
tection, filter-and-square carrier feature detection, dual-chan-
nel correlation detection, ambiguity-plane feature detection,
Wigner-Ville time-frequency plane feature detection, spec-
tral-correlation plane feature detection, likelihood-ratio detec-
tion for weak signals, maximum-deflection detection, and
optimum spectral-line regeneration detection. The unification
reveals the fundamental role that spectral correlation and
spectral-line regeneration play in the signal interception
problem, and shows how to modify various ad hoc techniques
to make them optimum. It also suggests the spectral-correla-
tion plane approach as a general approach to interception that
offers great flexibility as well as inherent tolerance to one of
the most challenging problems in interception, namely,
accommodating unknown and changing noise level and inter-
ference activity. This tolerance is illustrated in an example
involving the detection of a BPSK signal in a variable white
noise background.
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