L, and L, may be regarded as the inductances caused by the lack
of cahbratuon in the measurement [6). The input impedance seen
from the gate port of this 10-element circuit with the drain shorted
gives the relationship between L4 of 9-element circuit and L, and
L,. From Miller’s theorem[7], L, may be decomposed into two series
impedances at the input (Z;) and at the output (Z,). Since Cy <<
Cgir Legs Of 9-element circuit may be approximated by adding L, and
the imaginary part of the impedance Z; as

ngT
Le,f=Lg+L<1— = > (16)

gl

From (8), one may find 1/R, is the real part of the drain current
excluding the current flowing through Cy; when a unit voltage is
applied to the drain port with the input shorted. For the 10-element
circuit, this current may be accounted by two currents, 1/R, and
the additional in-phase cu rrent produced by y,,;accounting for the
frequency dependent term w SR in (15). The addmonal current is
due to the small voltage drop w’CyL, across L, and w *C,L, across
L which, in turn, causes the voltage drop w (C Ly — Cylg ) across

g,(c.:C Ry << 1is assumed) and it produces the in- phase current
with 1/SR0, as

W*Sp = W gm(C,L, — Cyly) Ay

provided w?L,Cy << 1and «’L,C; << 1.

From (16) and (17), one may obtain the correction inductances
Ly and L. The effect of L and L, may then be subtracted from-the
measured S parameters fand the remaining 8-elements of the 10-
element circuit may be obtained from (5) to (12). The newly obtained
element values are exactly the same as those of 8-element circuit
except Ry and R;, which are designated as R;,and Ry.. Ry is somewhat
changed and Ry, is reduced with the same frequency dependence
of R,. Calculated S parameters of this 10-element circuit (circles)
closely predict the measured data (dots) over the whole measu red
frequency range while Minasian’s model (triangles) is valid in the
lower frequency region.

° 2GHz

i

18
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Fig. 4. S-parameters calculated from this 10-element equivalent cir-
cuit(O)and from Minasian’s (A) with the original measurement data
(®). The 10-element circuit values are as follows: Ry, = 7.2 ohm, C
= 0.49 pF, C; = 39 fF, C; = 77 fF, Ry = 67 ohm, L, = 34 pH, L, = 24
pH, Ry = 460 ohm, g, = 39 mmho, and 7 = 4.0 ps. Minasian’s model
is as follows: R; = 10.2 ohm, C, = 0.512 pF, C, = 36 fF, C; = 72 fF,
R, = 388 ohm, g, = 39.6 mmho, and 7 = 4.28 ps.
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Simplification of MUSIC and ESPRIT by
Exploitation of Cyclostationarity

WILLIAM A. GARDNER

It is shown that for the problem of multiple-source location using
antenna arrays, the algorithms MUSIC and ESPRIT can be simpli-
fied by exploitation of the property called cyclostationarity, which
is exhibited by modulated signals. The advantages of the modified
algorithms are reduction in the required number of array elements
and associated reduction in the SVD computations. The disadvan-
tages are the requirement of either knowing or measuring fre-
quency parameters, such as carrier frequency or baud rate, and the
requirement of longer integration time for correlation measure-
ment, as well as the requirement of measuring a different correla-
tion matrix for each signal of interest.

I. INTRODUCTION

Eigenstructure methods for direction-of-arrival (DOA) estima-
tion ideally enable the individual DOAs of multiple interfering
signals to be determined from estimates of correlation matrices
provided that the number m of sensors (or sensor pairs) in a mem-
oryless array exceeds the number of signal sources. The purpose
of this letter is to introduce two new techniques, one of which
requires only two sensors and the other of which requires only two
matched pairs of sensors. This reduction in the required number
of sensors is accomplished by exploiting knowledge of frequency
parameters of individual sources, such as baud rates or carrier fre-
quencies. One of the techniques presented is a counterpart of the
well-known eigenstructure method MUSIC [1], [2], and the other
is a counterpart of the more recently proposed eigenstructure
method ESPRIT [3], [4]. In MUSIC and ESPRIT, the m X m corre-
lation matrix of the data from m sensors (two such matrices for
ESPRIT) isestimated, and then singular-value-decomposition (SVD)
methods are used to estimate and subtract off the additive com-
ponent of the correlation matrix due to additive noise (assumed
to be independent from one sensor to another), and to replace the
resultant matrix with an approximant havmg reduced rank equal
to the estimated number of signal sources.” Then the direction vec-
tors (in the MUSIC method) or actual DOAs (in the ESPRIT method)
are determined from the eigenvalues and eigenvectors (or their
orthogonal complement) of the reduced rank matrix. In the two
new methods introduced herein, the correlation matrix estimates
are replaced with cyclic correlation matrix estimates that reflect the
cyclostationarity of the signals, assuming these are bauded and/or
carrier modulated signals as they would be in radar and radio com-
munication applications. By selecting the cycle frequency param-
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"This rank-reduction step can be circumvented in the ESPRIT method.
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eter in these estimates to correspond to the cycle frequency of any
one of the signals (e.g., the doubled carrier frequency or the baud
rate), the contributions to the cyclic correlation matrix estimate
from the other signals (assumed not to possess the same cycle fre-
quency) and any noises (possibly correlated from one sensor to
another) converge to zero (ideally) as the integration time used in
the estimates grows without bound. As a consequence of this, the
estimated m X m cyclic correlation matrix has approximate rank
equal to unity, and the desired direction vector (in the MUSIC-like
method) or actual DOA (in the ESPRIT-like method) can be obtained
from the largest eigenvalue and corresponding eigenvector (gen-
eralized eigenvector for the ESPRIT-like method). Thus there is no
need for the number m to be any larger than 2, although any value
larger than unity will work.

The disadvantages of these new cyclic correlation (CYCCOR)
methods are that they require either prior knowledge or estimation
of a cycle frequency for each source of interest, and they require
longerintegration times in order for signals notof interestand noise
to decorrelate in the cyclic correlation estimates. Also, a different
cyclic correlation matrix for each signal of interest must be esti-
mated. Methods for the required detection and estimation of cycle
frequencies (e.g., baud rates and doubled carrier frequencies) that
have been developed for purposes of synchronization in conven-
tional communications and radar systems can be used [7] or more
general methods of cyclic spectral analysis for signal detection,
classification, and parameter estimation can be applied [8]. For-
mulas for bias and variance of cyclic correlation and cyclic spec-
trum estimates provided in (8], [9], can be used to predict the
required integration time to be used in the cyclic correlation esti-
mates for specific SNRs and SIRs (signal-to-interference ratios).

Inorder to be brief, itis assumed in the following that the reader
is familiar with the MUSIC and ESPRIT methods described in [11-
[4].

. Cycuic CORRELATION

The m x m CYCCOR matrix for the m vector x(t) of éhalytic sig-
nals of the data from m sensors is defined by

R.(7) = (x(t + 772Nt — 7/2) exp (—2wab)) o)

where « is the cycle frequency parameter, 7 is the lag parameter,
()T denotes conjugate transpose, and (-) denotes infinite time
average. Since the complex sine wave factor can be associated with
either data vector in the lag product, we see that the cyclic cor-
relation is the cross correlation between freq uency-shifted as well
as time-shifted data vectors. For a stationary process, this cross cor-
relation is ideally zero forall « # 0. But for acyclostationary process
(which essentially all modulated signals are [5], [6]), this cross cor-
relation is nonzero for discrete values of « related to the peri-
odicities of cyclostationarity (which are typically baud rates, dou-
bled carrier frequencies (for real data), spreading code repetition
rates, chip rates, hop rates, and their harmonics, sums, and dif-
ferences).

I, MUSIC-Like CYCCOR METHOD

If the received data vector of analytic signals for a narrow-band
planar sensor array is expressed as

x(t) = As(t) + n(t) 2)

where s(f) is any one signal of interest, A is its associated direction
vector, and n(t) consists of all other signals and noises present in
x(8), and if we choose « to be a cycle frequency of only this one
signal® s(t), then we have from (2) (see [9))

RZ (1) = R(1)AAT. 3)

The matrix (3) is obviously a rank one matrix and the right (or left)
eigenvector associated with its one eigenvalue is A (or A*). (Since
R: (1) is, in general, complex, this matrix is neither symmetric nor
Hermitian symmetric.) Thus by using a rank-one approximant to
an estimate of R, obtained from a finite-time average in (1), we can
obtain an estimate of the direction vector A.

*This requires that signals arriving from different directions not share a
common cycle frequency. This rules out multipath propagation.
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IV. ESPRIT-Like CYCCOR MEeTHOD

If, corresponding to every sensor represented in (2), there is a
matched sensor in the same plane displaced by a distance A (in the
same direction for every sensor), then the received vector for this
matched array can be expressed as

y(t) = Aps(t) + m(t) @

where m(t) plays the same roll as n(f) in (2), and ¢ is given by
¢ = exp [iwA sin (§)/c] (5)

in which v is the center frequency of the signal s(t), c is the speed
of propagation, and 6 is the AOA of the signal s(t), relative to the
displacement direction. As in Section 111, we have from (2) and (4)
the cyclic cross correlation

R5, (1) = RZ(1)¢*AAT. (6)
With the use of (3) and (6) we obtain
Re(r) — ARG, (1) = RY(I[1 — Np*JAAT. @

Consequently, A = 1/¢* is the generalized eigenvalue of the rank-
one pair of matrices R, () and R, (7). Thus by using the SVD method
we can estimate ¢ from estimates of RS, () and R?, (1) obtained from
finite-time averages. From an estimate of ¢ and knowledge of wand
A we can obtain an estimate of the AOA using (5).

V. DiscussioNn

Itis obvious that for both methods described herein there is no
inherent reason for the array size m (which is the dimension of the
vector A in (3) and (6)) to be any larger than two, in which case the
computational complexity of the SVD required is minimal—in fact,
trivial (see Appendix). However, there might be some advantage
to usimg m > 2 in practice.

The value of the lag parameter 7 is important since the required
integration time for a given accuracy in the rank-one approximant
will usually be minimum when |R%(7)| is maximum. Unlike the con-
ventional autocorrelation (¢ = 0) which peaks at 7 = 0, the cyclic
autocorrelation can reach its maximum at 7 # 0 [9]. For example,
for typical PAM signals, the maximum occurs at half the baud inter-
val for a equal to the baud rate; whereas for AM, the maximum (of
the cyclic conjugate correlation) occurs at 7 = 0 for o equal to twice
the carrier frequency for real data or equal to zero for the analytic
signal. In some cases it might be advantageous to use in place of
the cyclic autocorrelation its Fourier transform, the cyclic spec-
trum [10].

Although the CYCCOR methods presented here do not require
estimation and subtraction of a noise-power matrix, and do not
require that the noise be uncorrelated from one sensor to another,
they do require a long enough integration time to insure that the
noise as well as the interfering-signal components in the cyclic cor-
relation matrix are sufficiently small. This integration time will
undoubtedly be longer than that typically required in the MUSIC
and ESPRIT methods.?

The cyclic correlation defined by (1) is appropriate if a baud rate
isto be exploited. However, if a carrier frequency isto be exploited,
then the cyclic conjugate correlation, defined by

Ra() £ (xt + m2w(t — 712) exp (—i2rat)) ®)

where (-)’ denotes transpose (without conjugate), must be used
with & = 0 and similarly with R3,-(7) [9]. In this case, the Hermitian
matrix AAtin (3), (6), and (7) becomes the symmetric non-Hermitian
matrix AA’; however, (3), (6), and (7) are still rank-one matrices. Also,
R (7)in (3), (6), and (7), and ¢* in (6) and (7) becomes R (7) and ¢,
respectively, in this case.

In conclusion, the new CYCCOR methods proposed here have
both advantages and disadvantages relative to previous methods.
The best method will inevitably depend on the constraints imposed
by each particular application. Itis hoped that the immunity to noise
and interfering signals gained through use of cyclic correlations
and longer integration times, the possibility of reducing the num-
berof sensors toonly two or four, and the corresponding reduction

’Extensive simulations of a related method of AOA estimation based on
ageneralized cyclic cross correlation function for a two-element arrayyielded
excellent performance but at the expense of a relatively long integration
time [10].
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in computational complexity will render SVD techniques practi-
cally feasible in a broader range of applications.

APPENDIX
Consider the generalized eigenequation
Rv — ASv =0

where R and Sare 2 X 2 matrices, S is nonsingular, and A and v are
the eigenvalue and right eigenvector. The two values for Aare given
by

a+d [a2+d2
A=——+

1 12
—— —-ad + bc}
2 4 2

and the corresponding right eigenvectors (un-normalized) are given
by

v =[1 (N — a)b]

a b
sw=l ]
c d
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An On-Line Least-Squares Parameter
Estimator with Finite Convergence Time

ROMEO ORTEGA

We present a new on-line parameter estimator with the follow-
ing features: 1) It reduces to the linear least-squares (LS) estimator
after a set of regression vectors that span the full dimension of the
parameter space has been processed, and 2) When the regression
model is linear in the parameters, the parameter and prediction
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errors converge to zero in finite time. Both, continuous- and dis-
crete-time versions of the algorithm are given.

Notation: In this letter we treat parameter estimation for both
discrete- and continuous-time systems. When refering to time
sequences or continuous-time functions we will denote (*), or (*)(t),
respectively. The argument is omitted if the relation applies to both
cases.

I. INTRODUCTION AND PROBLEM FORMULATION

We are concerned with the problem of on-line parameter esti-
mation of regression models of the form

y = 8, 6) (1.1

where 6 € R" is a vector containing the unknown parameters,
¢:R,(Z,) » R", y:R,(Z,) = R are time functions (sequences) of
measurable signals.

Our problem is to determine a mapping from the data ¢, y to the
model parameters § to define an on-line estimate § with suitable
properties. A common and natural way to choose the estimate is
by minimizing in discrete time

N
Zlyo- g, OF +@~8 ) Pi6 -8 (122

or in continuous time

S {y(© — gl(d), 013> d¢ + [ — 6] PO)~ "8 — 6(0)]

0

(1.2b)

where 8_,(8(0)) is the initial estimate, and P_, = PT, > 0 (P(0) = P(0)”
> 0) is a measure of confidence in the latter. The procedure is
known as the LS solution. In mathematical statistics itis shown that
the LS solution has particularly simple statistical properties and
enjoys wide popularity in control, signal processing, and predic-
tion theories.

It is well known (e.g., [1], [3]) that when the regression model is
linear in the parameters, that is

y=0"¢ (1.3)

the LS algorithm is given by
B, =8,_,+ Poe (1.4a)
Pl =Py + 07 (1.5a)
e =y, —0l_.¢, (1.6a)

or

by = P o) e(® (1.4b)
Pt)=" = o(t) ()" (1.5b)
e(t) = y(t) — 8(t)7 (). (1.6b)

To establish convergence of the parameter estimates to the true
values of the parameters, we study the following equations
obtained from (1.3)-(1.6) .

b= — PgdD),_s (1.72)
or
B = —P(o) $(t) S0 B(t) (1.7b)
where .
6=20-0 (1.8)

The following facts regarding these equations are well known.
Fact 1.7 [1]: Equation (1.7a) is globally stable if ¢, is weakly per-
sistently exciting (PE), i.e., if

1 N
pil = lim — X ¢87 = p,! (1.9a)
N—o N t=1
where p,, p, > 0. Furthermore the convergence rate is 1/t. VvV

Fact 1.2 [2]: Equation (1.7b) is globally exponentially stable if and
only if ¢(t) is PE, i.e., if there exists constants p,, p,, § > 0 such that
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