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x(¢) satisfies

x(t — v) = cx(2) v
for all r if and only if .
(1) = X (®)
Co m,o/ex x for some - f (exercise 3). As a consequence, the for?ﬂﬂofa
anc yealt F bounded function x(¢) is invariant to convolution if and only if x(r) = Xe"™, in
0. 33
g( As a final item in this brief review it is pointed out that inspection of (13)
and (32) reveals that if a function. say v, is given by the convolution of two
other functions;{ say x and 4, then the Fourier transform of v, Y, is given by A
the product of Fourier transforms of x and ﬁ' Y = XH. This result is known

as the convolution theorem. Additional review material is incorporated in exercises
2.4,7,8.9.10, 12, 13, 14, and 16.

function A, 7). Itis therefore of interest to determine the particular data-tapering
. L{Z window a; of a given width that yields the finest possible spectral resolution.
(D . By adoptingjthe square root of the second central moment (standard deviation)
ﬁW( Ce of the square of a function as a particular measure of its width, it can be shown
[Franks 1969] that the product of widths of temporal and spectral apertures is

minimized by the Gaussian aperture,

ar(t) = exp [—(IZ/T)-}, (16a)
The minimized resolution product is
min{ArAF?} =%, = (17)
\ / . ar
Zz_ wice the < Qmo(a'ra/ for which Ar° and Af° are defined to be of the
[

oy ‘L‘r' (unsquared but positive) apertures, (16). Apertures that are more convenient for
(atroms implementation such as (13) (and other measures of width) yield resolution products

/ \__I_fgt_a’_[r%yewy than (17).
G2 ¢ general relation (10) and the specific bound (17) are referred to as




r=0 =7, =27T,,.... =T. (67)

which is precisely the discrete-time counterpart of the continuous-time correlogram
(19) (with the change of variables v = u /TTI/Z). The relation (64) can be -+
shown to be a direct consequence of the convolution theorem for the FST

21. Verify that the inverse FST is given by T

|aTa /’ s
() = f X fre="df. (109)
I

T
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Hint: Substitute (110) into_§l09) _a.nd use the identity " T;
1/2

S, 1 =0
i e _ [ %_____ (11
7} f-x/z% o {0, = integer # 0. i

22. (a) Consider the sum of two sine waves as in exercise 3, and assume that the two

P17
17. Derive (7) in Appendix 3-2 from (4) and (5) in Appendix 3-2. Hint: See the note in

g exercise 9(¢) in Chapter 4 regarding changes of variables in double integrals in order
t

o reexpress (4)-(5) as ;
v = j_ Tk,(T)RYT(I. 7) dr.

@\ ( 26 - m(t, 7) = g_\,(\t + %)a.,_\,— ) (79a)

= gm(t)hl/’.\f(f). AtAf>> 1. ’ (79b)
Substitution of (79a) into (74) and then (74) into (73) yields (exercise 10)
+ — Y1) = {x(Ox(0) @ (a50e” TN ® gudr), ’ (30)




a' = min s(u, v)

P |33 el d)

P .

olef

Rectangle (Dirichlet):

Triangle (Bartlett or Fejér):

Raised Cosine (von Hann):

Raised Cosine on a Platform (Hamming):

h(r) =

b’ = max s(u. v)
u € [a. b] C(
v E [c.d].

and then solve for ¢’ and d' as functions of 7. usj

C

the same/fninimization and
int s(u, v) = 7 for
=d. t = (u+ v)/2

e =cf /2. d =
d |rl/2. Hint: Draw a picture that describes this change of variables as a
transformation of coordinates in a plane and shows the region of integration as
a rectangle.

(b) Consider the quadratic time-invariant transformation

/ST

where 8,_, is the Kronecker delta. and the temporal variance is given by (exercise

— “ J1 : )
var(X7(r. f)} = S.(f) & 2 7(f) ‘*E’M{’f“'ur(f -a) - 5f—u] : @7)

Thus. as the length T of the data segment is increased, the coefficient of vgria}ign

(91a)

h() = (92a)

2T

0.54 + 0.46 cos(— .

Il >1/2
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/
e s

%[1 + cos(~—~ (93a) Y-ep (Q. €L
0 —_—

(94a) ‘\.\ with Ws




Blackman:

0.42 + 0.50 cos(z-”—"> +0.08 cos(“—’-’—’), Irl < {/2
h(7) F 7 (95a)

0. l7l > [/2.

These windows are identical for discrete and continuous time. The corresponding
Fourier-series transforms (using the sampling increment T, = 1) are as follows;

Dirichlet (Rectangle):

H(f) = M i s% (91b)

sin(mf) '
Bartlett or Fejér (Triangle):

HOF) X{sm(wf!/z ] ’ ] <

1
sin(mf) 2 (92b)
von Hann (Raised Cosine):
H(f) = Lsinnf2)  1sinmff - 1P
T 2sin(nf) | 4 sinm(f - 1P
, Lsin 2+ D A<l o
Y p YT ’
Hamming (Raised Cosine on a Platform)
4 sm(ﬂ-fz sin ﬂ]’(f
H(f) = 0.5 nnf +023 7r(f x /
sinwf + 1/4) <1
+0.23 Snmf + l//) Ifl = 5 (94b)
Blackman: f)
_ sin(mf7) sin w’(f 1/ sin w['(f + 1/
H(f) = 0.42 sin(mf) + 0.25 “in ﬂ’(f-l//) 0.25 sinfr(fi-\l//)
sin((m/2(f + 2/ sinln/2f = 2/ 1
M=y S 004 = n s - ) f=3
(95b)

For T >> 1, these spectral windows are essentially the same as the Fourier
transforms of the continuous-time counterparts for |f] < 1/2.
In addition to these five spectral windows, there is the rectangle spectral
window,
A =12

which is referred to as the Daniell window. The four spectral windows (91b)-
(94b) are shown in Figure 5-5. Observe how much smaller the sidelobes are for
the second two compared with the first two. The Hamming window is designed
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Figure §-5 Lorefatumtapesng windows (left) displaved with linear ordinate and Spacisat——
SDoschiassmsiasanes (right) displayed with log ordinate (from (91)—(95) with § = 32).
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TABLE 5-2 SPECTRAL WINDOW PARAMETERS

] W

I

| ~ Highest Asymptotic 3-dB Reliability ;
Effective sidelobe decay rate bandwid factor !

' spectral window (dB) (dB/octave) (X N ;
—

) l Dirichlet (rectangle) -6.5 -3 1.21 1 §

t’\ /
(7 (CH
3-dB bandwidth of the main lobe, and the reliability factor

g \ > hi(m

(with W=T) A — DT 7RO
’ whichloccurs in the discrete-time counterpart to the proportionality coetticient
n (75) that determines the coefficient of variation (77). The factor 7, in (97)
depends not only on the particular window but also on the number of time

V\J samples per window width 7: however, this latter dependence becomes negligible

La’S‘TEE'numBer of time-samples increases (7 >> 1). Therefore, the values given
in Table 5-2 are asymptotic values for (97) obtained from the continuous-time
counterparts of the windows.” Observe that if the temporal windows in Table
5-2. (91a)-(95a), are data-tapering windows rather than effective autocorrelation-
: tapering windows, then |H(/)|* rather than H(f) is the effective spectral smoothing
e, AF = 7/W window for a temporally smoothed periodogram, and therefore the decibel values

97)

‘ Since Af/7m, in (77) m;an be interpreted as an effective bandwidth. then | 7, is
sometimes called the standardized bandwidth but should not be confused with the resolution bundwidth
(e.g.. the 3-dB bandwidth in Table 5-2).
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</7 )7 = 0. 75) — moderately larger reliability factor Pr——=8=3"9, then (101) becomesAb w
7 |

P.(éé

345

for frequencies sufficiently far removed from zero (|f] > 1/T). For a time-averaged
periodogram. the factor 7 in (98), which is defined by (75), reduces to the reliability

factor o) 1 ,A'F .
| il
n = A— L“%(;::“T }}f A"FW%@%

g—
ﬁfﬁ\f/z.,\aﬁ

where ar(r) is the data-tapering window. It follows from (98) and (99) that for a
coefficient of variation of ¢, we need a data segment of length

Ar = 1om(T. wet, W2 0]
"~ For example. it follows from (100) and Table 5-2.that for no data tapering (4, =

rectangle = hr = triangle), the 3-dB resolution bandwidth is Af = 1.78. T and the
reliability factor is@é&-}, and therefore (101) becomes =8 . W

0,606 oo LEBHTY 55
Ezg  Map
. _Thus, for Af = B/5and B = 1 KHz, we need Ar = 30 ms of data. For comparison,
3B if we use a data-tapering window that yields an effective autocorrelation tapering
window (100) that is the raised cosine (namely, the inverse transform of the square
- root of the magnitude of the transform of the raised cosine) to obtain better leiikage
behavior_at the cost of moderately larger resolution bandwidth (Af. = 2/7) ang

OT7S T (10@)2) _7.5

At = = . (A S‘t na
2843 Yaas W Lo

and therefore we need A¢ = 37.5 ms of data. This is only a 25% increase, but it

As another alternative, a spectrally smoothed periodogram with the rectangle
smoothing window can be used. Then since AtAf >> 1, approximation (54b) can
be used for the effective spectral window to obtaingthe approximate 3-dB bandwidth
(Af,= 1/T) and approximate reliability factor (-,,F_ 1); however, the exact formula

__Z'Sala) must be used to determine the sidelobe behavior. For example, with no data
 tapering, the asymptotic decay rate will be that of the Fejér spectral window, which
is the same as it was for the time-averaged periodogram with no data tapering.
However, the highest sidelobe will be lower (and will continually decrease as ArAf
is increased). The cost of this improvement is that At = 50 ms of data is needed.
which is an increase of 67% above the 30 ms needed for the time-averaged periodogram

with no data tapering. :

Observe that if the desired spectral resolution width were cut in half to

348 Af, = B/10, then for the same coefficient of variation, the amount of data required

1s simply doubled in each of the cases considered.
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«g;‘“\ of Af = B/5. when triangle data tapering/is used. Compare the result with the
5 results in the example.
(d) Consider the second example in Section D. and evaluate the fractional leakage
at f = f, for triangle data tapering. when the sine wave frequency is f, =
f, + B/S. fy + 3B/10. fy + 2B/5..and the sine wave power is P, = 2B|K(f,)[.
Explain any unexpected results and discuss practical implications.
15. Consider the problem of designing a wave analyzer using conventional analog electrical
circuitry. that is. passive resistive-inductive-capacitive networks. The simplest BPF
to implement would be a second-order resonant circuit with impulse-response function

ki) = e " Tecos2mft), =0,
and the simplest LPF to implement would be the first-order circuit with impulse
response function g(r) = e, = 0.

Determine the following characteristics of this spectrum analyzer:

(a) Effective data-tapering window.

(b) Effective autocorrelation-tapering window.

(¢) Effective spectral smoothing window and its 3-dB bandwidth (E(At /2) = E}(,Q)/"
(d) Time-averaging window.

(e) Reliability factor (73).

(f) Highest sidelobe (if any) of the effective spectral smoothing window.

(g) Rate of decay of spectral window sidelobes (skirts).

Hint: Use the fact established in Chapter 4. Section E. that the real implementation
described here is essentially equivalent to the complex implementation with BPF

At/-’_ /\“ —I Tef"’//
provided that A+f >> | and m [f1 T

16. Consider the problem of designing a swept-frequency wave analyzer for audio spectral
analysis. Assume that the spectral band to be analyzed ranges from 300 Hz to 15,000
Hz. the desired resolution is 100 Hz. and the desired coefficient of variation is 5.
Also assume that at each frequency fin the band that is swept across. one can treat
the swept frequency analyzer as an unswept wave analyzer with the particular filters
described in exercise 15. In order to specify design parameters for this spectrum
analyzer. determine the following characteristics:

(a) The time constant T required for a 3-dB resolution bandwidth of Af = 100 Hz.

(b) The time constant Ar required for a coefficient of variation of 5. —— 30{{3

(c) The sweep rate 8 = Af/Ar. o(\.B

(d) The analysis time AT (AT = period of sweep).

(e) If it is desired to detect a very brief audio event that occupies a band of width
500 Hz. what is the fraction-of-time probability of detection using this spectrum
analyzer?

Assume that there is a constraint to cut the analysis time to half that found in

(d). Propose a modification to the above design to meet this constraint; that is.

adjust the requirements on sweep rate, resolution. and reliability.

Answers: (a) T = 1/100m s. (b) A&z = 5/1007 s. (c) 8 = 20007 Hz/s. (d) AT =

7. 3*/7- s. (e) Probability = 0.034. (f) Since 8 must be doubled and since ArAf =

(Af)/B. then if reliability is held fixed Af must be increased by the factor V2. orif

Af'is held fixed then the coefficient of variation is doubled.

17. Evaluate the coefficient of variation R(f) given by (73) for the spectrum estimates
specified in exercise Y(a)-(g).

(f
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14. Consider the hopped time-averaged periodogram of triangle-tapered data as a stalistical
spectrum.
(a) Determine the 3-dB bandwidth of the sinc' spectral window, which results from
p - ( 7 Q a triangle data-tapering window. That is, determine the value of f at which
sin(mf7))+ _ 1
[ af T ] P
and then double this value of f. Compare the result with that for the triangle
autocorrelation tapering window (which corresponds to no data tapering) from -
Table S-2uw(th = W=2T,
(b) Determine the reliability factor n, (99) for the sinc* spectral window, and compare
the result with that for the triangle autocorrelation tapering window. Hint: The
corresponding effective autocogrcelation tapering window for sinc* is ¢ L

' hys(7) # Tor(n) ® vr(), W =x7
where v7(r) is the unit-area triangle window with base of width 2T. Use this
convolution characterization to show that

T3

_ 3TV 48T <T
! %(r> AT i
[ Ty 5
jmz 21 - 47) T<l|d<2T
0, |7| > 2T.

(¢) Consider the first example in Section D, and use the results of (a) (3-dB bandwidth

_—" = B*63~L) and (b) (n, = 0.269) to determine the length Ar of data segment
7 L4 S‘f/W 7o &

needed for a coefficient of variation of r,, = % and a spectral resolution width
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optimizing this type of spectrum estimate in order to minimize spectral leakage
is to optimize the band-pass filter for each value of f to minimize the average
powe }x“ 6 f)ac at its output subject to the constraint that the strength of its
response to an input sine wave of frequency f is equal to unity,

eE |\ S &
S

N-1
z a{/M(u)eIZfrf(r-u) = 2, (48)
u=0
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2. Fourier Transformation of Tapered Cross
Correlation

By analogy with the argument in Chapter 4, Section B, it is easily shown (exercise

77 ) that the two spectrally smoothed statistical cross spectra, of which (8) and
(10) are examples. can be obtained by Fourier transformation of tapered cross
correlations,




and corresponding impulse-response sequence denoted by g, '. The white excitation
of the inverse mode

=87 ®xr) (17a)
/‘is called the innovations representation for x,(r),
x(r) = 8, ® 2, (17b)

because each new value 2, of the time-series is uncorrelated with all prior values
{z, : j < n} of the time-series and therefore provides completely new information—
an innovation. Since g, is a causal stable sequence, then (176) reveals that x,(r) b
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P.QGO

also admits a stable MA model (see (87) in Chapter 3) with transfer functiop

given by
L-1
GHf) = 2 ble ) (18)

q4=0 @)/
in which the order L is possibly infinite and b, = g~ It is easy to show that

q
if L is finite. then M in (3) is infinite, and if M is finite, then L in (18) is infinite,

Also. either model can be obtained from the other by polynomial division of its

@-26(

where fi)[x,(L)] is the Lth-order joint fraction-of-time probability density for

the vector of L variables {x,_,, x,.5. . . ., Xeas b
fanld) 2 ca llm—z Ulz, = x.,] Ulzs — ] Ulz
ol 82,02+ 37y ko K | Z k+1 Iy T Xpsna ~L_:L]’____, L_
(21
h 3 BQ corresponding to a causal time-invariant filter with discrete-impulse response se-
quence g, and show that

/——)/ In(l4) = (L)lﬂéo}
(c) Use the results of (a) and (b) to show that the relative entropy rate (20) for the
time-series defined by
/ reg ([ace byacRets

Yn 2 [)'0» YirYrs oeos yn-l],

L T gé—l\_ V;,r-f(caﬂ with n — <o is given by _ :
\ V’/ H, = H, + Infaf. : (159
\‘\ EMS ‘ ’ ‘ (d) It can be shown [Doob 1953] that for a minimum-phase linear time-invanant
\—__——_'\ . -
— transformation, with transfer function G(f). we have

= / up J = f " In|G(f)| df. i

Use (159) and (160) to prove that
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with frequency « (but containing no first-order periodicity). It can be shown

(exercise 5) using (2) and (5) and Parseval’s relation for Fourier transforms that§
the power in the generated spectral line is given by

- ' 2
P L me? = 3 U f k(u, VIRI(u — v)e™™“**) dy dy
o ——— AT T

(42)

B d s M_,,;'ﬁa..‘:w‘i:u

ALYt ose
P, Bl

Thus, the Fourier transform of R,(r) cannot exhibit a spectral line at f = a. Use
this fact to show that the spectral line at « (and at —a) in S,(f) is given by (3)

(b) Use (5b) and (2) (with x(¢) replaced by y(1)) to show that M2 # 0 for some
A, ) if and only if R¥(7) = 0.

(c) To gain some insight into the type of time-series that can exhibit discontinuities
in the limit cyclic autocorrelation, consider the infinitely long chirp signal

x(r) = sin(Br).
Verify the identity

—
A\

( |

p-%?Z

(b) Show that this optimum QTI transformation can be implemented as the product

/ig / of two filtered waveforms (see Figure 10-2)

¥®) = (o) ® x0lf0 ® x(0),
/ 382 Introduction to Second-Order Periodicity ~ Chap. 10
— Al '—

et
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28+ 2/T,

Figure 11-5 Regions of support of the
spectral correlation function in the bi-
frequency. plane for a time-sampled
bandlimited time-series.




