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Nonstationary Learning Characteristics
of the LMS Algorithm

WILLIAM A. GARDNER, SENIOR MEMBER, IEEE

Abstract —Upper and lower bounding first-order linear recursions for
the mean-squared error realized with the LMS algorithm subjected to a

quence of independent nonstationary training vectors are derived. These
bounds coincide to give the exact evolution of mean-squared error for the
problem of identification of a nonrecursive time-varying system with
white-noise excitation. This leads to an exact formula for time-averaged
mean-squared error that is used to study optimization of the step-size
parameter for minimum time-average misadjustment. New results on de-
pendence of the minimal step size and the minimum misadjustment on the
degree of nonstationarity are obtained.

I. INTRODUCTION

HE TRACKING performance of the LMS algorithm

is studied in [1] and [2] for a particular type of
time-variant system identification problem. The analysis
and conclusions there are based on the a priori assump-
tions that the step size in the algorithm is small and the
time variations of the system are slow. The purposes of
this paper are i) to present a general approach to studying
the tracking performance of the LMS algorithm that is
applicable to many types of problems in addition to sys-
tem identification and ii) to apply this general approach to
the particular system identification problem studied in [1]
and [2] in order to determine the effects of the a priori
assumptions of small step size and slow time variations on
the results and conclusions presented there.

In brief, it is found that the small step-size assumption
alone does not seriously affect the optimization of the step
size for minimization of misadjustment for the cases con-
sidered, but does lead to the prediction of a misadjustment
that for large step sizes can be off by a factor that is as
large as 2 to 3. It also removes all dependence of the
algorithm’s performance on the kurtosis of the data (in
which case, for example, the predicted performance is
identical for Gaussianly distributed data and uniformly
distributed data). In addition, it is found that the slow
time-variations assumption coupled with the small step-size
assumption has a substantial effect on the results obtained
and some of the conclusions drawn. For example, it is
shown herein that the optimum step size is not a monoton-
ically increasing function of the degree-of-nonstationarity,
and the two components of misadjustment, due to gradient
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noise and nonstationarity, can be highly unequal when
their sum is minimum.

In Section II, the general approach to studying the
tracking performance of the LMS algorithm is presented
and implicit solutions for bounds on the time-averaged
excess mean-squared error are obtained. Then, in Section
III, it is shown that for the system identification problem
of interest, the implicit solutions reduce to explicit solu-
tions and the upper and lower bounds coincide to produce
the exact solution. This solution is then used to study the
misadjustment-minimization problem. The section con-
cludes with simulation results that corroborate the theoret-
ical results.

Finally, in Section IV, the results obtained in Section III
are compared with results from other studies of the same
problem, and discrepancies are explained.

Other work on the tracking performance of the LMS
algorithm, which employs various methods of bounding
and approximation, is reported in [5]-[11].

II. GENERAL ANALYSIS

The LMS algorithm for adaptive adjustment of the
N-vector of filter weights W is well known to be given by

(1)

where p is a step-size parameter,! X(i) is the filter input
vector, e(i)=d(i)— d(i) is the error between the desired
quantity d(i) and the filter output d(i) = W7(i)X(i), and
2e(i)X(i)=—wve?(i) is the negative gradient of the
squared error with respect to W(i). It is assumed that X(i)
and d(i) are possibly nonstationary random processes
with zero means and finite second and fourth moments,
and that the covariance matrices R(i) for the vectors X (i)
are positive definite. It is also assumed that X(i) and d(i)
are each independent sequences. This significantly sim-
plifying assumption of independent training vectors, which
is commonly made in analyses of (1), is rarely true in
practice; it is generally true only if the adaptation rate of
the algorithm (1) is reduced by incrementing the weight
vector only once every K units of time (in which case i is
replaced with iK') and K is chosen to be sufficiently large.
Nevertheless, theoretical predictions obtained on the basis
of this independence assumption have proven useful in

W(i+1) =W(i)+2ue(i) X(i)

! The step-size parameter p is the same as that defined in [1] and [2] but
differs from that in [3] by a factor of two.
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practice (cf. [3]), and this is confirmed by simulations
presented herein. It is also assumed that ey(i) an X(i) are
independent, where e, (i) is the error that would be real-
ized with the minimum-mean-squared-error weight vector

Wo(i) £ R™Y(i) P(i) 2

for which P(i) is the covariance vector for d(i) and X(i)
(cf. [4]). This simplifying assumption is easily verified for
various applications; for example, it is valid for X(i) and
d(i) jointly Gaussian (cf. [4]) or for the system identifica-
tion problem treated in Section III, for which d(i)=
WT(i)X(i)+ n(i) for some sequence of system weight
vectors W(i) and some measurement noise sequence (i)
that is independent of X(i).

Using only the above assumptions, it is shown in the
Appendix that the excess mean-squared error

ex(i) 2 (i) = ¢o (i)
in which €(i) £ E{e?(i)} and (cf. [4])
eo(i) = E{e3(i)} = of(i)— PT(i)R'(i) P(i) (3b)

is bounded above and below by the solutions to first-order
linear recursions

(3a)

€min(1) < €x(7) < €ux (1) (4)
where €,,(i) (m = min, max) satisfy

€ (i +1) = 7, (i)e, (1) + (i) (s)
with €,,(0) = €,(0). In (5), v,,(/) are the extreme eigenval-
ues of the matrix

H(i) & 2 [F)+ ()] (62

where
F(i)2R Y*(i)E{A(i)R(i+1)A(i)}R™'/*(i) (6b)
and
A2 T-2uX(i)X7(i). (7)
The driving term (i) in (5) consists of two components
B(i) =By (i) + Bu(i) (8)
where
B (i) = 4u’eo(i)b(i) )
Bu(i) 2 [AT(1) =207 (i) A()] R(i +1)A(i). (10)
In (9)
b(i)2tuw{R(i+1)R(i))} (11)

and, in (10), the overbar denotes expected value and the
vector sequence

~

(1) 2 W (i) =W, (i) (12)

satisfies
V(i+1)=A()V(i)- A(i) (13)
where
A(i) £ W, (i+1) = Wy(i)

A(i)=T-2uR(i).

(14)
(15)
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Fig. 1. System model of vector recursion that determines the conver-

gence inhibitor 8, (i) due to nonstationarity.

If the N elements of X(7) are i.i.d., then H(i) is diago-
nal and Toeplitz and therefore vy, ,, = y,,,- Thus, the upper
and lower bounds (4) coincide to give the exact mean-
squared error in this case.

If X(i) and d(i) are jointly stationary, A(i)=0 and
therefore B,(i) = 0. Hence, nonstationarity is a necessary
source of B4(i). Notice, however, that W, can be time-
invariant even though both X(i) and d(i) are nonsta-
tionary. This occurs in the problem of identification of a
time-invariant system with nonstationary excitation and
measurement noise. In this case, A(i)=0 and therefore
Br(i) =0. If the stochastic gradient of the squared error
used in (1) is replaced with the nonstochastic gradient,
then the socalled gradient noise (Section IV) is identically
zero and therefore B, (i) (and also ,(7)) vanishes (cf. [3]).
Hence, gradient noise is a necessary source of 8, (i) (and
of B,(i)). Notice, however, that ¢, can be zero even though
the gradient noise is nonzero. This occurs in the problem
of system identification when there is no measurement
noise. In this case, B (i) =0. Since €, (i) and €_; (i)
will converge to zero only if B(i) is zero or converges to
zero, then B (i) and B,(i) can be interpreted as conver-
gence inhibitors.

It follows from (10), (13), and (14) that the convergence
inhibitor due to nonstationarity 8,(i) can be interpreted as
an inner product of the input and output vectors of a
time-varying first-order linear vector recursion

Bu(i) =¥7()A(i) (16)

where ¥ (i) is the output, corresponding to the input A(i),
of the vector recursion represented by the signal-flow
diagram shown in Fig. 1. Furthermore, B,(i) admits a
particularly simple interpretation in the special case for
which only d(i) is nonstationary (as in the application
considered in Section III). That is, when X(i) is sta-
tionary, the vector recursion shown in Fig. 1 is time-
invariant and has the system transfer function matrix
(z-transform of unit pulse response matrix) @ given by

O(z)2R[Iz+A][Iz-4]".

(17)

By using a transformation of coordinates to diagonalize ®,
(16) can be reexpressed as

(i) = [¥'(1)] "0 (d) (18)

where
N(i) =0 'A(i). (19)

0 is the matrix of eigenvectors of R (cf. [3]), and ¥'(i) is
the output (corresponding to the input A’(i)) of the system
with diagonal transfer function matrix ®’(z) whose kth
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1—wy | 1-wi

Fig. 2. Pole-zero diagram for the system model shown in Fig. 1 for the
special case of stationary X (i).

diagonal term is

®;,(2) = [”1“"k] . (20)

z—=1+w,

where A, is the kth eigenvalue of R and w, = 2p),. The
pole-zero diagram of this transfer function is shown in Fig.
2. For values of p satisfying p <1/2A,, the pole and zero
approach the unit circle and @}, becomes a low-pass filter
with high gain (> A,). For values of p satisfying p =
1/2\,, the pole and zero approach the origin and ®;,
becomes an all-pass filter with gain A,. Since the size of
the output ¥'(i) determines the size of B,(i), we would
like ¥'(i) to be as small as possible. This involves a
tradeoff between small bandwidth and small gain.

Example: As an example of the feedback factors v,,(i)
in the bounding recursions (5), we consider stationary
Gaussian vectors X(i). In this case, (6) reduces to H(i) =
G, where (cf. [3])

G2[I-2pRP+4p2(R*+tr { R?}) (21)

from which it follows that (cf. [3])
max

Y s = (min) {[1=260 ]+ 42 (84 ML, )} (22)
(min)

where A is the root-mean-square value of the N eigen-
values {A,} of R (N =tr{R*}/N). If p<1/4X_,
then

2
Y max = (1_2':U‘A min ) +4“‘2(}\2min +N>\2rms)' (23)
(min) (max) (max)

It follows that the separation of the upper and lower
bounds (5), which is determined by Y. — Yn Can be
large when A, —A_. is large, which occurs when the
elements of X(i) are highly correlated. However, as the
step size p is decreased, Y., — Ymn decreases for a given
A max )\min‘

A performance parameter of particular interest is the
average value of the time-variant excess mean-squared
error €4(7), after initial transients of adaptation have died
out. If the time-series of matrices R(i) and P(i) are
assumed to possess ergodic properties, then the idealized
average

1 z
(€x) 2 ZIEle 7 215*(i)

i=

(24)
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in which initial transient effects vanish, can be used. It
follows from (4) that

<€min> < <€*> < <€max> (25)
and equality holds in (25) when the elements of X(i) are
11.d., as discussed in connection with (4). If it is assumed
that X(i) is stationary (as it is in the application consid-
ered in Section III), then F(i) is independent of time i
and, as a result, the eigenvalues vy,,(i) are independent of i.
Consequently, the time-averaged values of the solutions to
the recursions (5) can be obtained simply by equating the
time-averaged values of both sides of (5)

(€m) = Yol €m) +(B) (26)

which yields
B)
(em) = B

1-v,

(27)

Moreover, when R(i) is independent of i because X (i) is
stationary, then the two components (8,) and (B ) of
(B) in (27) can be evaluated as follows. Substitution of
(11) into (9) yields

<IBV> = 4:“‘2N>\2rms<€0>' (28)
To obtain (f,), we simply note that it follows from (16)
that (B,) is the sum of time-average cross-correlations of
the elements of the input vector A(i) and the output vector
V(i) of the linear time-invariant system depicted in Fig. 1.
Thus, we have, as a standard result from the second-order
theory of stationary time-series (cf. [4]), that

(Bs)

0

> tr{‘f(")’%(”)}

n=-—o0

[ @S 09)

where the transfer-function matrix ®(z) is given by (17)
and S,(f) is the cross-spectral density matrix for A(7)

L Ry(n)e?™

n= —o0

It

(30)

in which R A(#) is the cross-correlation matrix
Ry(n) = (A(i+n)AT(i)).
Substitution of (14) into (31) yields
Ry(n) =2R;(n)—Ry(n-1)-R;(n+1). (32)

Thus, in this case for which X(i) is stationary, the
dependence on the nonstationarity in d(i) of the upper
and lower bounds (27) on the performance parameter (e, )
can be completely specified in terms of 1) the time-average
of the minimum mean-squared error

(o) =(0i)=(P'R™'P) (33)

in (28), and ii) the cross-correlation matrix IQ’,;, in (29),
(30), and (32) for the sequence of optimum weight-vectors.
In the next section, the formulas (28) and (29) are
explicitly evaluated for the system identification problem
in which the excitation of the system is stationary white

(31)
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noise. The resultant explicit formula for the exact value of
(€x), which is given by (27) and (8), is then used to study
the step-size optimization problem. However, before pro-
ceeding, it should be emphasized that the study of the
dependence of the upper and lower bounds (25) on the
nonstationarity of the training vectors is considerably more
difficult when X(i), as well as d(i), is nonstationary,
because then the bounding recursions are time-variant and
therefore (26) does not apply.

III. TIME-VARIANT SYSTEM IDENTIFICATION

For the system identification problem described in [1]
and [2], we have

d(i)=WT(i)X(i)+n(i) (34)
where W is the N-vector corresponding to the umit-pulse-
response of the unknown system which is assumed to have
memory length <N, X(i) is the N-vector of samples of
the excitation sequence x(j)

X)) =[x(i),x(i-1),x(i-2),...,x(i - N+1)]7 (35)

and n(7) is measurement noise at the system output. It is
assumed that the system excitation x(i) is 2 stationary
process, in which case X(7) is stationary. Comseguently,
the upper and lower bounds on the excess mean-squared
error are given by (27). If it is further assumed that the
system excitation is white noise (i.i.d.), then A, =A;=A,
=--- =hy=02 and v, = Y, = v. Therefore, (25) and
(27) yield the exact value :

(es)

for the performance parameter. Moreover, the usigue ei-
genvalue v is, from (6), given explicitly by (cf. [3])

B

-1~ (36)

y= (1—2u03)2+4p2(xx+N—2}5;
=1—4dpo? +4p*(k, + N—1)c?

where the parameter

(37

E{x*(i)}

(E{=*())})"
is the kurtosis of the zero-mean random variable x (7).
The two components of the numerator in (36), which are
specified by (28) and (29), can be evaluated explicitly as
follows. Since W,(i) = W (i), then eo(i) =mn{i), and there-
fore {€,) = 0,2, which yields (from (28))

(By)= 4u2N0f0,,2.

(38)

(39)

Also, since
R=o021 (40)
then (17) and (15) yield
z+1-2po? 1
?(z)=0| ———=|I. 41
(2) =0 [z—1+2;mx2J )

In order to proceed with the evaluation of either the sum
or the integral in (29), we must adopt a specific model for
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the unknown system W(i ). In order to facilitate compari-
son with previous studies of the LMS algorithm for time-
variant system identification [1], [2], we adopt the same
model used previously. Specifically, it is assumed that the
N elements fluctuate independently of each other accord-
ing to first-order Markov time-series. That is, the time-
average cross-correlation matrix for W(i) is given by?

Ry(n) =621 (42)
for some r such that |r| <1. Using (32), (41), and (42), it
can be shown that (29) reduces to

dpoleN(1—r)

SR

(43)

It is convenient to normalize the time-averaged excess
mean-squared error (e,) by the time-averaged minimum
attainable mean-squared error {¢,) to obtain a time-aver-
aged counterpart (for nonstationary training vectors) of
what is commonly called the fractional misadjustment
parameter

Mi ﬂ
(€0)
It follows from (8), (36), (37), (39), and (43) that this
misadjustment is given by the sum of two components

(44)

M=M,+ M, (45)
where
LB/ pNe?
Mg = 1—vy _1—y(nx+N—1)sxz (40)
M2 (Buy/{eo) _ { 1 }
1-v 1—p(k,+ N—1)¢?

p(1-r)
1

- r(1—2p.oxz)

} (47)

and the parameter

A 2.2 ,.2
p—Noxgw/gn

(48)

is the ratio of time-averaged mean-squared signal to time-
averaged mean-squared noise (SNR) at the output d(i) of
the unknown system.

The general formulas (45)—(47) can be used to study the
dependence of misadjustment on the step-size y and the
degree of nonstationarity, which is determined by 7. In
order to reduce the number of parameters, we shall focus
on Gaussian data in which case x, =3. The formulas
(45)—(47) can be reparameterized as

1
1—bp

M:

cp+ (49)

1+ ap

*Unlike the model in [1] and [2], for which 62 = 62/(1 — r2), o2 is here
taken to be independent of r, so that the degree of nonstationarity
DNS=1-r can be varied independently of the system gain and there-
fore output SNR (48).
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where
2re?
at ——= (50a)
1-r
b2 (N+2)e? (50b)
c2 No?. (50¢c)

Using (49), it can be shown that the step-size p, that
minimizes the misadjustment is given by

—p— 172
o= {[l+ (a—b c/p;)cp] _1} bp+c
(bp+c)

provided that the parameter r is in the range

(51)

ac

1>r>r,.

The critical value r, is specified by

(52)

A

2 -1
r.= [1 + m] > 0. (53)

For r <r_, there is no optimum step size in the admissable
range, for which |y|<1 so that the algorithm is stable.
Since r determines the rate of the fluctuations of the
time-variant system, this condition indicates that the de-
gree of nonstationarity (DNS) cannot be too high if an
optimum step size is o exist. A convenient definition for

DNS is
DNS£1—r. (54)

Then DNS =0 for a stationary (time-invariant) system,
and the maximum value of D is 1 for over-damped non-
stationarity, and 2 for underdamped nonstationarity (cf.
(42)). It can be seen from (53) that the critical value of
DNS (1—r,) decreases (the situation worsens) as either W,
the number of weights, increases or p, the SNR, decreases.
If r is outside the range (52) where an optimum exists,
then either r <0 or 0<r<r, and in both cases the
misadjustment possesses an infinum at g =0, that is, M
(and, in fact, both M_ and M,) decrease monotomically,
and M approaches the minimum M =p as g — 0. More
specifically, M_ — 0 and M, —p as p—0. In this case,
the nonstationarity cannot be tracked and therefore misad-
justment is made smallest by minimizing the effects of
gradient noise which requires minimizing p. The adaptive
filter converges to the besi time-invariant system in this
case.

The two extreme cases of high degree of nonstationarity
(r > r.) and low degree of nonstationarity (r —1) are of
particular interest. It follows from (49)—(51) that as r -1

[o(1-r2)/N]"? .

Fo 2c:rx2

0 (55)

M(po) = [No(1-r?)]* >0
and as 7 — r, (assuming r, 1)

[2+ NQ+1/0)] ' -(-r)/2r
’1'0_) 20,3

(56)

-0 (57)

(58)

M(p,) = p-
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It follows that g, has a maximum within the range (52) of
DNS.

To illustrate the dependence of the optimal step-size p,
and the minimum misadjustment M(p,) on the filter-
length parameter N, the degree-of-nonstationarity parame-
ter r, and the signal-to-noise-ratio parameter p, Figs. 3-6
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functions of DNS for several values of N and p=SNR.

Since the only effect of 62 is to scale p, > was set equal

to unity. As shown in Fig. 3, u, increases from 0 as the
degree of nonstationarity increases from 0 (r decreases
from 1) and reaches a peak (between r =0.95 and 1 in all
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50, DNS = 0.01.

cases considered) and then u, decreases (at a slower rate)
to 0 as r approaches the critical value r.. As shown in Fig.
4, M(p,) increases from 0 as the degree of nonstationarity
increases from 0, and approaches a maximum (p) as the
degree of nonstationarity approaches the critical value
(r = r,). For higher degrees of nonstationarity (r <r,), M
cannot be made less than p but can be made arbitrarily
close to p by choosing a sufficiently small value of p, say
. Specifically, it follows from (45)—(48) that

ps=amin{p/No2,1/(x, +N—1)o2} (59)

where a <1, say a =1/10.

It should be mentioned that since the minimum M in
the worst case equals the SNR p, it would appear that the
worst case is better when the SNR is smaller. But recall
that M is fractional misadjustment. Consider as an alter-
native the time-averaged mean-squared error, normalized
by the time-averaged mean-squared value of the quantity
being estimated, d(i). When M = p, this quantity is equal
to 1+1/p. Therefore, decreasing the SNR does indeed
increase this measure of error, even though M decreases.

No optimization study is complete without some analy-
sis of sensitivity. In order to show how sensitive perfor-
mance (i.e., misadjustment M) is to deviations of the
step-size u from its optimum value of p,, graphs of M as a
function of p for several values of N, SNR and DNS are
displayed in Fig. 7(a) and (b). It can be seen that M can,
for example, be increased by a factor of from 2 to 5 by
increasing p from p, by a factor of from 2 to 4.

Simulations: In order to corroborate the theoretical re-
sults presented here, simulations were conducted for two
sets of parameters: 1) N =25, p = 50, DNS = 0.002, and ii)

|
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Fig. 8. Time-average misadjustment M as a function of adaptation
step-size p: Theoretical (smooth curve) and simulated (data points). (a)
N =125, SNR =50, DNS = 0.002. (b) N=35, SNR =10, DNS = 0.004.

N=5, p=10, DNS=0.004, and the resultant time-aver-
aged misadjustment was measured for various values of
the step-size parameter p. In order to measure the mean-
squared error €(i), an ensemble of 300 statistically inde-
pendent sample paths of x(i) and n(i), both from unit-
variance white Gaussian noise generators (software), was
averaged over. In order to measure the time-average of
(i), the 3583 time samples from i =512 to i = 4095 were
averaged (initial transients had died away by time i = 512).
Each of the N weight sequences in the unknown system
weight vector was an independent sample path of a
Gauss-Markov process. These N sample paths were fixed
throughout the ensemble of excitation sequences x(i) and
measurement noise sequences 7n(i). The results are shown
in Fig. 8(a) and (b). The theoretical graph of M(u) is
shown as a solid curve, and the data points from the
simulations are shown superimposed. It can be seen that
agreement between theory and simulation is quite good.

IV. CoMPARISON WITH OTHER WORK

As explained in [3], many studies of the LMS algorithm
use the assumption of a small step-size u to make various
simplifying assumptions (cf. [12]-[14]). But for values of p
that are not sufficiently small, the theoretical results ob-
tained do not always agree with less approximate results
obtained without the assumption of small p. Although the
discrepancies described in [3] are all for the case of sta-
tionary training vectors, discrepancies can also arise for
the case of nonstationary training vectors studied in this
paper. In fact, the problem is potentially more critical for
nonstationary training vectors because a major objective in
this case is to solve for and study the optimum step size,
which need not be sufficiently small to justify certain
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W(i)
s

Fig. 9. Exact model of the LMS algorithm (1).

approximations. To investigate this, a comparison was
made between the results presented here and those ob-
tained in the previous studies [1], [2] of the same time-
variant system identification problem.

In order to gain some insight into how the overall model
of the LMS algorithm is affected by the commonly made
small-u approximations, we compare the exact model with
the approximate model used in [1]. The exact model of
interest can be obtained directly from (1) simply by sub-
stitution of the following identity for the negative stochas-
tic gradient

—ve?(i) =2e(i) X(i) =2R(i)[Wy (i)~ W(i)]
+2[R(i) = X()X7(0)] (i) -2 P(i) - d(i) X (i)]
(60)

where W,(i) = R™Y(i) P(i), e(i) = d(i)— d(i), and d(i) =
XT(i)W(i). This substitution yields
W(i+1) = () + 2R ()= ()] + V()
(61)
where
2R() [ (i) =W (i)] =~ ve(i)
is the negative nonstochastic gradient and
N(i) 2 ve(i)—ve?(i)
=2NR(i)W(i)_2NP(i)
is the socalled gradient noise in which
N() 2 R(i)— X (i) X" (i) (64)
Np(i) £ P(i)— X(i)d(i). (65)
A signal-flow diagram of the recursion in (61) and (63) is
shown in Fig. 9. The components (64) and (65) of N(i) in
(63) are called the autocorrelation matrix noise and the
cross-correlation vector noise, respectively.

The model (61) of the LMS algorithm, as shown in Fig.
9, depicts W (i) as the response of a deterministic first-order
linear recursion driven by a deterministic input W,(i) plus
a random noise input N(i). Unfortunately, part of the
random noise input is obtained through a random feed-
back matrix from the system output W(i). Thus, the
overall system is neither deterministic nor linear. This
considerable complication is not discussed in [1] and [2],
but ignoring it can be justified by arguing that if p is
sufficiently small and i is sufficiently large, then W(i) in
(63) can be approximated by W;(i), thereby decoupling
the input noise V(i) from the output.

Now let us consider the accuracy of this and the corre-

sponding small-p approximations. The formulas given in
[1, egs. (51) and (74)] (but without the additional ap-

(62)

(63)
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proximations [1, egs. (75)-(77)]) for misadjustment are

M, = pNa? (66)
p(1-r)

1
MA;{l—uaﬁHl—r(l—2uo§)]' (67)

The discrepancy between (46) and (66) is the result of a
small-p. approximation in [1] and [2], and we can see from
(46) that it is negligible if (cf. [3])

1
(k,+N—-1)¢?"

(68)

The discrepancy between (47) and (67) is the result of the
assumption in [1] and [2] that M, can be obtained simply
by setting the gradient noise equal to zero. Although it is
true that this makes M =0, it also changes the feedback
factor y. Specifically, (67) results from using y=(1—
2poe?2)? (which is valid only for the nonstochastic gradient
descent algorithm, cf. [3]) instead of (37). It follows from
(37) that this will be a close approximation if (68) holds.
By inspecting Figs. 7 and 8, it can be seen that the
optimum step size does indeed satisfy (68) for the parame-
ter values considered. However, a consequence of the
discrepancy between (47) and (67) is that (67) predicts too
small a misadjustment for large step sizes. For example,
for large N, (67) is a factor of 2 smaller than (47) for
p=1/2No? and (67) is a factor of 3 smaller than (47) for
p=2/3No?. This is particularly important in view of the
simulations in Fig. 8, which reveal that even (47) predicts
too small a misadjustment for large step sizes.

Another consequence of the discrepancy between (47)
and (67) is that, unlike (47), (67) shows no dependence of
performance on the kurtosis «, of the data. Experiment
shows that the LMS algorithm does indeed behave differ-
ently for, say, uniformly distributed data (x, =1) than for
Gaussianly distributed data («, = 3). An additional conse-
quence is that when the first factor in (67) is ignored
because of small p, as done in [1] and [2], then M,
decreases monotonically as p increases. However, M, given
by (47) is not necessarily monotonic in p when r is not
very close to unity.

Another comparison with the results in [1] and [2] can
be made in order to determine the effects of the assump-
tion of very slow nonstationarity used there. By making
such an assumption before optimization of p, the resultant
formula for the optimum p turns out to be the asymptotic
result (55). Thus, (55) corroborates the result in [1] and [2].
However, the substantial difference between (55) and the
more general formula (51) reveals that some of the general
conclusions drawn in [1] and [2] do not apply when the
nonstationarity is not very slow. Specifically, it is assumed
in [1] and [2] that p is sufficiently small and r is suffi-
ciently close to unity to approximate (67) by [1, eq. (80)]

p(1-7)

My=——.
. 2po?

X

Using (66) and (69), it is shown that M, = M_ when their
sum is minimized, and the minimal value of u is [1, eq.

p<

(69)
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(86)], [2, eq. (82)]

)

nu'0=—2 2N

OX

However, the exact formulas (46) and (47) yield highly
unequal M, and M_ when their sum is minimized for
values of r not very close to unity, but still close. For
example, Figs. 5 and 6 shows that for DNS =0.04 (r =
0.96), M, =10M_ when M = M, + M, is minimum. Also,
the optimum step size (51) is not monotonically decreasing
in r (except for sufficiently small DNS) as it is in (70).

Because of this limited applicability of the results in [1]
and [2], the significant conclusion drawn in [2], regarding
the favorable comparison of the statistical efficiency of the
LMS algorithm with that of the least-squares algorithm,
cannot automatically be applied to nonstationarity that is
not very slow.

V. CONCLUSIONS

A general approach to studying the tracking behavior of
the LMS algorithm, which is based on upper and lower
bounding linear recursions for excess mean-squared error,
has been presented. The bounds are close together when
the data x(i) being adaptively filtered is not too highly
correlated, and they are identical when there is no data
correlation (white noisé). The recursions are time-invariant
when the data being filtered is stationary, but the time-
varying driving terms reflect the nonstationarity of the
desired signal d(i). For the case of stationary x(i), evalua-
tion of the time-averaged value of the bounds on excess
mean-squared error is quite tractable.

Application of this general approach to the time-variant
system identification problem studied in [1] and [2] yields
exact results that corroborate most of the approximate
results in [1] and [2] but show that several results and
conclusions require substantial modification when the as-
sumption of very slow time variation made there is not
satisfied. Specifically, the optimum step size is not, in
general, a monotonically increasing function of degree of
nonstationarity, and the two components of misadjust-
ment, due to gradient noise and nonstationarity, are not
equal in general when misadjustment is minimum. Also,
there is some question concerning the favorable compari-
son of the LMS algorithm with the least-squares algorithm
when the degree of nonstationarity is not very low.

It should be kept in mind that the analysis presented
here assumes that the algorithm is implemented with in-
finite precision multiplication and addition. In practice,
there is a tradeoff in the step size between two opposing
effects of finite precision [15], [16], and it is conceivable
that such a tradeoff could overshadow the tradeoff for
optimum tracking with infinite precision that is studied
here.

APPENDIX
DERIVATION OF BOUNDING RECURSIONS

Under the first of the two independence assumptions
made in the text between (1) and (2), it can be shown (cf.
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[3]) that?

ex(i) =E{VT(1)R(i)V(i)}

where V(i) is defined by analogy with (12). Also, the LMS
algorithm (1) is easily manipulated into the form

V(ii+1)=A(i)V(i)+ B(i)— A(i)
where A(i) and A(i) are defined by (7) and (14), and
B(i) £ 2pe,(i) X (). (A3)

Substitution of (A2) and (A3) into (A1), and use of the two
independence assumptions, yields (cf. [3])

(A1)

(A2)

e*(i+1)=E{VT(i)C(i)V(i)}+,8(i) (A4)
where B(i) is defined by (8)—(10), and
C(i)2E{A(i)R(i+1)A4(i)). (A5)
Now, consider the quantity
c2 E{VT(i)C(i)V(i)}
=E{VT(i)Rl/z(i)F(i)Rl/z(i)V(i)} (A6)
where
F(i) 2 RV2(i)C(i)R™V2(i). (A7)
This quantity can be upper and lower bounded by
€ min < € < Cpoa (A8)
where
e =1 E{VT(I)R()V(i)} (A9)

for m = min, max, and {y,,} are the extreme eigenvalues
of the matrix H(i) defined by (6). Substitution of (Al)
into (A9), and (A9) and (A6) into (AB), yields the bounds

m=

<y eli) + B(D)

m = min

on (A4). It follows from (A10) that €,(i) is bounded above
and below by (4) and (5), which is the desired result.

ex(i+1) (A10)
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X (1), as explained in [3]).
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