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Measurement of Spectral Correlation

WILLIAM A. GARDNER, SENIOR MEMBER, IEEE

Abstract—Various methods for measurement/computation of spec-
tral correlation functions for time series that exhibit cyclostationarity
are described in a unifying theoretical framework. Some of these are
amenable to digital hardware or software implementations, others are
amenable to analog electrical or optical implementations, and other
implementation types used for conventional spectral analysis are also
possible. The interaction among reliability and temporal, spectral, and
cycle resolutions is determined. Novel problems of computational com-
plexity, cycle leakage and aliasing, cycle resolution, and cycle phasing
are discussed. Sample spectral correlation functions are calculated with
digital software for several simulated signals.

GLOSSARY OF NOTATION

Ii’fj 6] Cyclic autocorrelation: (6), (11)

R, 1) Cyclic correlogram: (16) (T can be re-
placed with either Az or 1/Af)

S(f) Cyclic ‘spectrum (spectral correlation
function): (7), (8), (10)

Se, f) Cyclic periodogram: (14), (15) (T can be
replaced with either Ar or 1/Af)

Seu(, f)ar Spectrally smoothed cyclic periodogram

for continuous time: (18)

S%a(t, f)ar Temporally smoothed cyclic periodogram
for continuous time: (17)

Spectrally smoothed cyclic periodogram
for discrete time and frequency: (25)
Ay (6> f)ar Temporally smoothed cyclic periodogram

for discrete time and frequency: (26)

X, f) Continuous-time complex envelope of
narrow-band component of x(r) with
center frequency f and bandwidth 1/7:
(9) (T can be replaced with either Az or
1/Af)

Discrete-time complex envelope of nar-
row-band component of x(¢) with center
frequency fand bandwidth 1/T: (25b) (T
can be replaced with either Ar or
1/Af)

S?A,(ta f)Af

XT(ta f)

I. INTRODUCTION

HE spectral analysis of stationary random time series
has diverse applications in many fields of science and
engineering. As a consequence, methods for improving
resolution, reliability, and computational efficiency are
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prime subjects of research. However, many random time
series encountered in the field of signal processing are
more appropriately modeled as cyclostationary because of
underlying periodicities due to various periodic signal
processing operations such as sampling, scanning, mod-
ulating, multiplexing, and coding, or due to periodicity
in the physical phenomenon that gives rise to the time
series. These underlying periodicities are more subtle than
the most commonly treated case of additive sine-wave
components, and their properties are, in general, not re-
flected in the power spectral density function, which is a
mean-square measure of spectral content. However, im-
portant characteristics of such underlying periodicity are
reflected in the spectral correlation function. Although the
spectral correlation function is equivalent to the set of
cross-spectral densities for the set of all pairs of fre-
quency-shifted versions of the time series, and cross-
spectral analysis is an active area of research, there has
been no focus, and in fact essentially no published work,
on the problem of empirical spectral correlation analysis
of cyclostationary time series. One reason for this is that
analysts typically employ probabilistic models that incor-
porate a random phase variable that reduces the otherwise
cyclostationary model to a stationary model, and station-
ary models exhibit no spectral correlation. A problem with
this approach is that certain cycloergodic properties [1],
[2] are destroyed by phase randomization in the sense that
each sample path of such a process does indeed exhibit
spectral correlation, but this correlation averages to zero
over the ensemble of random phases in the probabilistic
model.

The important role of spectral correlation analysis in
the study of cyclostationary time series is discussed
(within the probabilistic framework of stochastic pro-
cesses) at some length in a chapter devoted to this subject
in the book [1], where applications to detection, classifi-
cation, parameter estimation, and extraction of cyclosta-
tionary signals, especially those buried in noise and fur-
ther masked by interference, are discussed, and where an
extensive set of examples of cyclostationary time series
that arise in signal processing systems such as communi-
cations, radar, sonar, and telemetry, are described. In the
simplest of terms, spectral correlation plays a fundamen-
tal role in any problem for which the cyclostationary au-
tocorrelation function plays a central role, because the lat-
ter is completely characterized by the former. Specifically,
the cyclostationary autocorrelation with period 7T, is de-
fined for a time series x(f) by the average of lag products
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which is synchronized to the period 7,. This periodic
function can be expanded into a Fourier series,

=Rt +T,,

R(t, 1) = 2 Ri(n) &, )
where the Fourier coefficients are given by
T,
A 1 {7 4 ;
Ri(n) & — S Ro(t, 7)™ di (©)
o 40

for « ranging over all integer multiples of the fundamental
frequency of periodicity 1/7,. The Fourier transform of
this lag-dependent coefficient,

S2(f) = S R¥(7) e " dn, )
is the spectral correlation function of interest for a given
harmonic frequency «. Its interpretation as a spectral cor-
relation function arises from the fact that it can be shown

[1] that it is obtainable from the operations described by
the expression

S$¥(f) = lim lim —
(f Af~0 Ar—> o A

- Xiart, f — al2) dt, ®)

where X;/5¢(¢, v) is the complex envelope of the narrow-
band-pass component of x(f) with center frequency » and
approximate bandwidth Af,

1+ 124f

x(u) e—i27rvu du
t— 17241

At2
S AfXyart, f + @/2)
—At/2

Xy/ar(t, v) = S ©)
(sometimes called the short-time Fourier transform). This
expression (8) represents the limit, as spectral resolution
becomes infinitesimal (Af — 0), of the limit (Ar — o0)
temporal correlation of the two spectral components at
frequencies f + «/2 and f — «/2. An introduction to the
(nonprobabilistic) spectral correlation theory of cyclo-
stationary time series is given in [3].

To see that the cyclostationary autocorrelation function
plays a central role in many- signal processing problems,
one need only observe that the low-SNR likelihood ratio
for detection and the low-SNR likelihood function for pa-
rameter estimation for a cyclostationary signal in additive
noise is in general completely specified by the cyclosta-
tionary autocorrelation and the noise model (cf. [4] and
[51)

The purpose of this paper is to survey various alterna-
tive approaches to measurement of spectral correlation,
within a unifying theoretical framework, and to bring to
light the ways in which spectral correlation analysis of
cyclostationary time series differs from conventional

e

IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL. ASSP-34, NO. 5, OCTOBER 1986

spectral analysis and cross-spectral analysis of stationary
time series. For this purpose we begin with several alter-
native but equivalent definitions of the spectral correla-
tion function (cf. [1] and [3].) In addition to the two def-
initions (4)-(7) and (8) and (9), it can be shown that
S%(f) is given by the following limit of spectrally
smoothed products of spectral components:

f+ Afi2
S¥(f) = li lim—S — X, v + o2
() A}TO am ) am A At v + al2)
- Xkt v — al2) dy, (10)

where X,, (¢, f) is defined by (9) with 1/Af there replaced
by Ar. It also can be shown' that (6) is given by the al-
ternative formulas

A2
R?(T) = lim — S_Am x(t + 7/2) x(t — 7/2) e~i2met gy

At — o At
(11)
and
Atf2
R?(T) = lim — S ut + 72) v*@ — 7/2) dt  (12)
Ao At J—am2
where
u(t) = x(f) ™ (13)
u(®) = x(1) et (14)

Consequently, R%(7) is the cross-correlation of u(z) and
u(?), and it therefore follows from (7) that S¥(f) is the
cross-spectral density of u(f) and v(). The function
Iéff () given by (11) is called the cyclic autocorrelation
and its Fourier transform $%( f), the spectral correlation
function, is called the cyclic spectral density.

For convenience in the sequel, the integrand in defini-
tions (8) and (10) is denoted by

S5, f) = 2 X, £ + o) XEQ,f— @), (14)

and is called the cyclic periodogram. The symbol T is
used as a dummy parameter, which can represent either T
= 1/Af as in (8) or T = At as in (10). It can be shown
that the cyclic periodogram is given by the Fourier trans-
form

Se, f) = S: Ry, 1) e dr, (15)
where the function
1 t+(T—|7))2
R @, 1) = T St_(T_hW x(u + 7/2)
cx(u — 7/2) €™ dy (16)

'Ri‘_(r) given by (11) is the Fourier coefficient of the sine-wave compo-
nent e'z”""‘ contained in the lag product waveform x(¢r + 7/2) x(t — 7/2),
whereas R3(r) defined by (6) is the Fourier coefficient of €?™ in R (¢, 7).
Since R (¢, 7) as defined by (4) is simply the T,-periodic component of
x(t + 7/2) x(t — 7/2), then these two Fourier components must be one and
the same as long as o = integer/T,. Furthermore, the equivalence of (11)
and (12) follows directly from substitution of (13).
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is called the cyclic correlogram. The parameters « and f
are called the cycle frequency and spectral frequency, re-
spectively.

It should be observed that for « = 0, RXO(T) given by
(11) is the conventional autocorrelation function, and
§2( f) given by (8) is the conventional power spectral den-
sity function, and (7) therefore reduces to the well-known
Wiener relation for o = 0 [1], [3]. Furthermore, for o =
0, S%.(t, f) given by (14) and R2,(z, 7) given by (16) are
the conventional periodogram and correlogram, respec-
tively. It should also be mentioned that if the time series
x(#) exhibits no cyclostationarity, then the autocorrelation
in (4) is invariant to ¢, and the cyclic autocorrelation in
(11) is identically zero for all & # 0. Consequently, the
spectral correlation function $%(f) is identically zero for
all « # 0 if the time series exhibits no cyclostationarity.
This is particularly important for measurement of the
spectral correlation of a signal masked by stationary noise,
or for that matter masked by an interfering signal that does
not exhibit cyclostationarity at the particular cycle fre-
quencies of interest, because for sufficiently large values
of AtAf the effects of the masking noise or interference
will be negligible (cf. Appendix B), and this is true re-
gardless of spectral overlap between the signal of interest
and the masking noise or interference. This potentially
useful noise-rejection and interference-rejection property
obviously does not exist for conventional spectral analysis
(o = 0).

As a final introductory remark, it is mentioned that if
the time series x(#) exhibits cyclostationarity with more
than one period, and these periods are incommensurate,
the representation (5) of the time-variant autocorrelation
is still valid except that the sum ranges over all harmonics
o of all the fundamental frequencies (reciprocal periods),
as explained in [1] and [3]. In this case, the Fourier-coef-
ficient functions in (5) are still given by (11), but no longer
by (4) and (6).

In Section II of this paper, the interaction among reli-
ability and temporal, spectral, and cycle resolutions of
measured spectral correlation functions is briefly de-
scribed. In Sections III-VII, a variety of methods for
measurement of spectral correlation is described, and
some of the novel problems associated with spectral cor-
relation analysis are briefly discussed. In Section VIII,
one of the digital methods implemented in software is used
to provide samples of computed spectral correlation sur-
faces for several simulated signals.

II. RESOLUTION AND RELIABILITY

It follows directly from definitions (8) and (10) that both
the temporally smoothed cyclic periodogram [using T =
1/Af in (14)],

S?l/Af(ta f)At 2 —

Ar a7

t+ A2
S S.’:I/Af(u? f) du,

t—At2

and the spectrally smoothed cy¢lic periodogram [using T
= At in (14)]
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f+Af12

1
Sf(!m(t’ f)Af é Zf S S?A,(t, U) dv, (18)

- af2
provide estimates of the ideal spectral correlation function
(which is obtained by letting At — oo and then letting Af
— 0). It is shown in Appendix A that these two estimates
approximate each other for sufficiently large At (At >>
1/Af). The rightmost subscript in (17) and (18) denotes
both the type (temporal or spectral) and amount of
smoothing. The spectral resolution capability of a mea-
surement, such as (17) or (18), is the capability to resolve
variational dependence on the spectral parameter f. The
spectral resolution capability of the cyclic periodogram
measurement S5, (¢, f) is denoted by Af°. Since the cyclic
periodogram is defined by (14), then it follows that the
spectral resolution capabilities of Sg.(¢, f) and X;(z, f)
are one and the same, and it follows from (9), as a well-
known property of Fourier transformation, that the spec-
tral resolution capability of X(z, f) is on the order of the
reciprocal 1/T of the length of the waveform segment that
is Fourier transformed

Af° = 1T (19)

Also, since Xr(¢, f), and therefore, Sy, (¢, f) is obtained
by integration in time over a sliding interval of length T,
then the temporal resolution capability, denoted by Az,
of S5, (¢, f) is simply

At =T, (20)

Thus, the temporal-spectral resolution product is approx-
imately unity,

APAf° = 1 @1)

regardless of the value of 7. Now, when the cyclic per-
iodogram is smoothed as in (17) or (18), then one of these
two resolution capabilities is decreased. In order to obtain
a substantial reduction in random effects, it is required
that a substantial amount of smoothing be used. Thus, for
(17) it is required that

At > 1/Af=T
and for (18) it is required that
Af > 1/At = UT.

In (17), the temporal smoothing operation increases the
temporal resolution width from A:° = T = 1/Af to At
>> 1/Af, and in (18), the spectral smoothing operation
increases the spectral resolution width from Af° = 1/T =
1/At to Af >> 1/At. Thus, for both estimates (17) and
(18), the temporal-spectral resolution product must greatly
exceed unity

AtAf >> 1 22)

in order to obtain a substantial reduction in random ef-
fects. This is a well-known result for conventional spec-
tral analysis (o« = 0), which is sometimes referred to as
Grenander’s uncertainty condition for reliable spectrum
estimation, and can be similarly corroborated for spectral
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correlation analysis by mathematical analysis of the tem-
poral mean and temporal variance of the spectral corre-
lation estimates, as shown in Appendix B. For example,
for AtAf >> 1, and Af small enough to resolve the spec-
tral correlation function, it is shown in Appendix B that
the temporal variance normalized by the squared temporal
mean is typically dominated by a term that is approxi-
mately 1/ArAf divided by the autocoherence function
magnitude

1S2(f)]
[SUf + a/2) SUf — a/2)]'?

for a time series with Gaussian fraction-of-time distribu-
tion.

A cyclic spectrum estimate is said to be reliable only if
the random effects have been made sufficiently small, in
which case the spectrum estimate is nearly independent of
the time 7 at which it is measured (ideally for all |f] <
o). Consequently, (22) reveals that there is a fundamen-
tal tradeoff among temporal resolution, spectral resolu-
tion, and reliability. This is a well-known fact for con-
ventional spectral analysis (o« = 0). For spectral
correlation analysis, however, there is yet another reso-
lution parameter involved, namely, the cycle resolution
denoted by A«. It is shown in Appendices A and B that,
for both estimates (17) and (18), A« is on the order of
1/At

|ICe(f)] &

Ao = 1/At, (23)

regardless of the value of Af. That is, these estimates can-
not resolve spectral correlation for two cycle frequencies
unless these frequencies are separated by more than Aa
= 1/At. Thus, the reliability condition (22) can be reex-
pressed as

AffAa >> 1, (24)

i.e., the resolution in o must be much finer than the res-
olution in f for high reliability. Although this result can
be exploited in certain applications, it can also be a source
of problems for implementation as discussed in Section
III, and in more detail in [6].

It should be clarified that temporal resolution is of in-
terest when spectral correlation is a local phenomena that
changes with time and therefore requires a tracking mea-
surement. When spectral correlation does not change with
time (for practical purposes), the temporal resolution At
simply denotes the total integration time which is approx-
imately equal to the total amount of data used in the mea-
surement.

Another performance characteristic that is as important
as resolution and reliability is leakage. The cycle leakage
and spectral leakage effects associated with resolution are
quantified in the following section and Appendix B.

III. MeTHODS BASED ON THE CyCLIC PERIODOGRAM

One feasible approach to implementation of the two
cyclic spectrum estimates (17) and (18), obtained by tem-
porally or spectrally smoothing the cyclic periodogram, is

- ]
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based on digital implementations that use the FFT algo-
rithm for computation of a discrete-time/discrete-fre-
quency counterpart of the sliding-window complex Fou-
rier transform (9). However, analog electrical filtering
methods may be needed for large bandwidths, and optical
implementations also appear to be feasible for some ap-
plications, and perhaps preferred for large bandwidths.
For digital implementation, computational complexity can
be a cruical issue, especially when a full cyclic spectral
analysis (spectral correlation analysis) over a broad range
of both f and « is desired. The development of computa-
tionally efficient algorithms for cyclic spectral analysis is
a current topic of research. Only the two most straight-
forward smoothing methods are mentioned here.

The discrete-frequency smoothing method is given by

M-
S?Az(t’ f)Af = A_l b= -Gt 12 B XAt(t, f + O[/2 + UFS)

Xkt f— a2 + UF,), (25a)

where
N—-1
Xu(t, f) & 2 anKT) x(t = KT,) e 715, 25)

which is the downconverted output of a sliding DFT, and
where a,, is the data-tapering window, Af = MF; is the
width of the spectral smoothing interval, F; = 1/NTj is
the frequency sampling increment, 7 is the time-sam-
pling increment, and N is the number of time samples in
the data segment of length At, which is Fourier trans-
formed by the DFT, N = At/T,; + 1. Thus, the resolution
product is AtAf = M(N — 1)/N = M.
The discrete-time averaging method is given by
KM~1
oy EO AfX,apt — wKAf, f + al2)
- XTar(t — wKAf, f — al2), (26)

where X, /ar(t, f) is the downconverted output of a sliding
DFT, and where At = ([1 + M — 1/K]N — 1) T, is the
length of the total data segment, Af = 1/(N — 1) T, is the
spectral resolution, and N is the number of time samples
in each of the data segments of length 1/Af, which are
Fourier transformed by the DFT. Thus, the resolution
product is AtAf = ([1 + M — 1/K]N — 1)/((N — 1) =
M. Because of a cycle leakage phenomenon that does not
occur for conventional spectral analysis of stationary data,
the block-overlap parameter K, in (26), often cannot be
taken as small (e.g., K = 1 or 2) as it is for the conven-
tional hopping-FFT method for spectral analysis. De-
tailed analysis, based on (28), and simulations reveal that
K = 4 is typically the minimum tolerable value when
properly designed data-tapering apertures are used. How-
ever, the actual value of K required depends on the
strength of cycles present in the data. This is clarified in
the following paragraph. Another phenomenon that does
not occur for conventional spectral analysis is the de-
crease in cycle resolution width, Ao = 1/At, with an in-

S?]/Af(ta f)At =
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crease in the number KM of blocks averaged. In fact, Ax
= Af(N — D/([1 + M — 1/KIN — 1) = AfIM is in-
versely proportional to the effective number M of non-
overlapping blocks. However, the frequency sampling in-
crement provided by the FFT used to transform each block
is F;, = 1/NT; = Af, which does not decrease as Aa de-
creases. Thus, adjacent cycle frequency samples are sep-
arated by F,/Aa = M cycle resolution widths. Conse-
quently, the density of cycle frequency samples is 1/M
times what it should be in order not to miss parts of the
cyclic spectrum. This is especially problematic because
the cyclic spectrum is, by nature, discrete in o [1]. An
obvious but computationally burdensome remedy is to
zero-pad the blocks of length N out to length MN to obtain
a frequency sampling increment of F; = Af/M. More so-
phisticated remedies that are substantially more compu-
tationally efficient for large N are currently being devel-
oped [6].

Cycle Leakage: The discrete-time averaging (hopping-
FFT) method of cyclic spectrum analysis effectively em-
ploys an output comb filter, rather than an output low-pass
filter, and this can result in cycle leakage. Unfortunately,
as the amount of overlap between adjacent blocks is de-
creased (K decreased) to improve computational effi-
ciency, the effects of the cycle leakage phenomenon
worsen. This can be illustrated for continuous time as well
as for discrete time. For example, the statistical cyclic
spectrum
L-nr

1
Sgr(t’ f)At & -

o /K,
Lu=-@-nn2 Sa(t + uTIK, f)

@7
obtained by advancing the temporal index by integer mul-
tiples of 7/K to cover a total time span of approximately
At = LT/K, can be expressed as the sum of its temporal
mean (cf. Appendix B) and a residual,

4 1
S5, f) = 3 {sff(f) ® [}Aur(f + 18— a2)

“Afr(f— B — a]/Z)B Crur(B — @) £I2m(B— o

+ residual, (28)

where

Cour(f) & 2 wenr(f = mKIT),  (29)
and the residual converges to zero as L — oo. In (28), ®
denotes convolution with respect to the variable f, 4,7 is
the Fourier transform of the data-tapering aperture a;used
in S, f) [e.g., aris a rectangle in (9)], and the sum is
over all 8 for which §f (f) # 0. In (29), w, is a unity-
height sinc window with null-to-null width 2A. It follows
from (28) that in addition to the desired cyclic line which
shows up if @ = 8 for some cycle-frequency 3 contained
in x(#), additional lines show up due to other cycle fre-
quencies, § # « (including 8 = 0) contained in x(¢), for
which the cycle-smoothing comb-window (29), and the
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spectral-smoothing product window

1
=Aur(f + (B — al/2) Afir(f — [B — al/2),

T (30)

are both sufficiently large to pass the cyclic contribution
from S?(f). These undesired contributions that leak
through the windows can be made as small as desired by
selecting K sufficiently large to render the separation be-
tween cycles passed by adjacent teeth of the comb win-
dow sufficiently large, designing the data-tapering aper-
ture to render the sidelobes of the product window
sufficiently low, and choosing LT sufficiently large. This
can be seen from the fact that the comb window has teeth,
with width parameter K/LT, separated by integer multi-
ples of K/T. Thus, K must be large enough to render the
window product

= Aur(f + mKD2T) Aly(f ~ mKI2T)
that coincides with the mth tooth of the comb window
sufficiently small for all nonzero integers m. Of course,
leakage will occur only if there are cycles present at ap-
propriate frequencies; that is, potential leakage requires
|8 — @ — mKI/T| < K/LT for those values of § for which
S8H # 0.
IV. FourieR TRANSFORMATION OF TAPERED CyYCLIC
AUTOCORRELATION OR AMBIGUITY FUNCTION

Application of the convolution theorem and the cyclic-
periodogram/cyclic-correlogram relation [(15)] to (18) re-
veals that a spectrally smoothed cyclic periodogram can
be obtained by Fourier transformation of a tapered cyclic
correlogram

St ar & S2,(t, ) ® Hye(+)

(€2Y)

= F{R,(t, ) hyar(*)} (32a)
where
t+ (At —|7])2
RL(t, 7) & — S + 72
alts 7) At Ji—ar- o2 Xu + 1/2)
cx(u — 7/2) e T dy, (32b)
hus (") & F'{Hy ()}, (32¢)

and F~'{-} denotes inverse Fourier transformation, and
H yy is the spectral smoothing window [e.g., Hysis a rect-
angle in (18)]. Since considerable effort has gone into the
development of methods for measurement/computation of
radar ambiguity functions, it should be mentioned that the
cyclic correlogram in (32) can be reinterpreted as an am-
biguity function (cf. [1] and [3]), and therefore, some
knowledge and methods (e.g., for optical implementa-
tions [7]-[14]) can be transferred from the radar ambi-
guity problem area to the cyclic spectral analysis area,
although caution must be used here because of the distinct
differences between the radar ambiguity function for the
complex envelope of a time series and the ambiguity func-
tion (cyclic correlogram) for the real-time series.
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V. FoOuriER TRANSFORMATION OF SPECTRALLY
SMOOTHED WIGNER-VILLE DISTRIBUTION
It can be shown that the cyclic periodogram is the nor-
malized (by Ar) Fourier transform of the Wigner-Ville
distribution [15] of the finite data segment® of length At

¥(6) & X(t) up(t' — 9.
That is,

Sht', ) = S_m E(. f) e ™ dt,  (33)
in which the dependence of the Wigner-Ville distribution
E(t, f) on the location ¢’ of the segment y of x is sup-

pressed in the notation
Eft, f) & g Yt + 7/2) yt — 1/2) e 2 dr.  (34)

Therefore, the spectrally smoothed cyclic spectrum can
be obtained from the spectrally smoothed Wigner—Ville
distribution by Fourier transformation

Selt's Plag 2 S5t f) ® Hy(f)
— _1_ ” —2mat
= S_m [Ey(t, f) ® Hpe(f)] e dr. (35)

Furthermore, the spectrally smoothed Wigner-Ville dis-
tribution can be obtained by lag-product tapering

Ey(t’ f) ® HAf(f)
= S_ Yt + 7/2) Yt = 7/2) hyag(r) e 27 dr. (36)

It follows from (35) and (36) that methods of implemen-
tation, such as acoustooptical methods for broad-band
analysis [7]-[14], which have been developed for mea-
surement of the Wigner—Ville distribution [16], are po-
tentially useful for measurement of the cyclic spectrum.

VI. CycrLic WAVE ANALYSIS
The temporally smoothed cyclic periodogram (17),
generalized for tapered data by use of
Xp(t, v) = [Z ap(t — u) x() e ™ du,

in place of (9), can be reexpressed (by executing a low-
pass-to-band-pass transformation) as

St Har = Af{[x(@) e it ® al/Af(t)]

C () €™ ® a1} ® gald), (37a)

in which

a};/Af(t) a ayar(®) &>, (37b)

where a5y is the data-tapering aperture, g,, is the tem-
poral smoothing window, and the convolution is with re-
spect to the variable #. Formula (37) can be reexpressed
(by executing a band-pass-to-band-pass transformation) as

The symbol u,, denotes a unity-height rectangle of width Ar.
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S?l/Af(t Dar = Mf{[x@) ® al/%;f(l‘)]
C () ® a?//if_f(t)]} ® 8(0) e—i27rozt,

(38a)
in which
At (O & ayp@) P! (38b)
ga(0) £ galt) e (38¢)

The smoothing functions defined by (38b) and (38c) can
be interpreted as the impulse-response functions of filters
with transfer functions

AP ) = Ayv — al2 F f) (39a)
Giia) = Gyualv — o), (39b)
where
App(*) £ F{al/Af(‘)} (390
Gual®) & F{ga()}. (39d)
Thus, AZ}Z */ and GY)a; are the transfer functions of one-

sided (i.e., complex) BPF’s (band-pass filters) with center
frequencies /2 + fand «, respectively, and with band-
widths Af and 1/At, respectively. Formula (38a), there-
fore, reveals that the temporally smoothed cyclic spec-
trum S5, (¢, f)a; can be obtained by filtering x(¢) with two
complex BPF’s, multiplying the results, filtering the
product with a complex BPF, and then frequency shifting
the result down by « to the vicinity of zero frequency, as
depicted in Fig. 1(a). By analogy with the term wave
analysis used for conventional spectral analysis (o = 0),
this method for cyclic spectrum analysis shall be called
cyclic wave analysis.

In order to obtain a real implementation, the real part
of 8% (t, f)a €*™, from (38a), is taken to obtain

X1/Af

i2
I]/Af(t f)At l mx’

= |85, f)ml cos (2mar + arg {85,/ fa})
= ({x(® ® [aysr(®) cos 2m[a/2 + fIn]}

*{x(® @ [ayaf(®) cos 2nla/2 — f101}

— {x(® ® [ayas@) sin C7le/2 + f10]}

* {x(® ® [ayar@® sin Qala/2 — f11]})

& [gadt) cos 2mat)]

— ({x(@) &® [ayap@) cos 2mle/2 + fID]}

{x(®) @ [ayar@) sin 2nla/2 — f19]}

+ {x(® ® [ay57() cos Qn[a/2 — f1D)]1}

{x(®) ® layar@) sin @7[a/2 + f101})

® [gald) sin Crad)].

Formula (40) can be implemented as shown in Fig. 1(b).
Thus, a real implementation of the cyclic wave analyzer

(40)
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At
al2 +t
> BPF /At
- . x|
x(H one- Sx/a1(t Nar
sided BPF
one-sided
BPF
w2 —1 exp(-i2mat)
At
(a)
Hay
cos(mat) BPF o zr:tl =|S(af)|
/A1
[Skart D, (1) a2 +1 R BPF
a/l2 — 1
= arg{S(a,f)
) BPE pt(;zfe {stan}
[ Ska/artt Dady Kag

"At/2 -
T ol vat S(af) 2 2f Hpg(v + a/2 + Kx (v — a/2 + 1)SE(v + N)dv G 54(a)
sin(mat) -At/2
©) ()]

env | =|S(«0)]

Hay Gg/m det

X0 o) LpF > ()2 > BPF
phase|=®9{S0}

det

A, [(atla2 . -
S(a,0) 2 2 f Hp(v+ a/2)Hj (v — a/2)8(v)dv G5 0 (a)
(at-lal)2

(e
Fig. 1. (a) Complex implementation of cyclic wave analyzer. (b) Real im-
plementation number 1 of cyclic wave analyzer. (c) Real implementation
number 2 of cyclic wave analyzer. (d) Real implementation number 3 of
cyclic wave analyzer. (Input BPF’s satisfy the condition |a/2 + f|] >
Af/2.) (e) Real implementation number 4 of cyclic wave analyzer. (Input
LPF satisfies |a| < Af)

is quite complicated since it requires six special symmet- into (37a) to obtain the real and imaginary parts
ric BPF’s, four multipliers, and three adders. It should be N
mentioned at this point that a quadrature BPF (Q-BPF), [S%0ar @ Pladr = Scuar®s Har = Souar® Hac - (422)

ith i 1 o
WIth IMPUISe response [S2,0,(t Hadi = —[Sesuias® ar + Sserar(t Fad

a(?) sin 27vr),
X . . = _Z[Scsl/Af(ta f)At]r, (42b)
can be obtained from an in-phase BPF (I-BPF), with im-
pulse response in which the terms in the right members are conventional
spectrum estimates such as

. a(t) cos 2mve),
— f f
by following (or preceding) the I-BPF with a Hilbert Sesuar t Nar = Af {lc(®) @ ay5p®O][s(t) & ayap®O]1*}
transforming filter. This equivalence is exact as long as ® 5. 42
a(?) is band-limited to fe (—», ») [1]. | 80 (420)
Another approach to obtaining a real implementation is  As is well known, the wave analysis method of cross-

to substitute the representation spectral analysis requires special symmetric filters. Thus,
this alternative real implementation is still somewhat

+irat .
x(@®) e” = c(® + is(), (412) complicated, as shown in Fig. 1(c), but simpler than that
where shown in Fig. 1(b). Nevertheless, the characterization (42)
of the spectral correlation estimate is revealing. In partic-
c(®) = x(t) cos (mar) (41b) ular, it is typically assumed for conventional spectral
analysis that both (42a) and (42b) are negligible compared
s(@®) = x(®) sin (7wat), (41c) 10 Sy, (@, f)a for AzA f >> 1. It is quite clear from (42)
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that this assumption is valid (for AtAf >> 1) for all « if
and only if x (¢) exhibits no cyclostationarity.

Yet another approach to obtaining real implementations
is based on the representation’

Suar (2, f)At S {x® ® hyar@O1x (@) ® kyas®]}

® gi() (43a)

= Re {[S_ HAf(a/Z + V) KAf(a/Z - V)

© 83() d[GYale) €™} + residual,
AAf >> 1, (43b)

in which the residual becomes increasingly negligible as
AtAf — oo for any fixed Af. In (43b), Hpyand K, are
the transfer functions of two arbitrary filters with band-
widths of Af,

Hpp(*) = F{hy50(-)} (44a)

Ky () = Flkyap()}, (44b)

and G7{),, is the transfer function of an arbitrary BPF with
center frequency o, and bandwidth 1/At,

Gia*) = F{gi(")}. (440)

The first term in the right member of (43b) is the temporal
mean of the left member (cf. Appendix B). There are two
cases of interest identified by the relative magnitudes of
the smoothing bandwidth A fand the frequencies |a|/2 +

| 1.

Case 1: It can be shown that if Hy;is a BPF with center
frequency /2 + f, and K,; is a BPF with center fre-
quency a/2 — f, and if

|f + al2| > Afi2,
then (43) reduces to
Sar® o = |S(e, )| cos @t + arg {S(a, f)})
(46a)

(45)

+ residual,

in which
Afi2

S, f) £ 2 § Hy (v + /2 + f)
—Af12

“Kup(—v + a2 — f) S35 + f) dv Gale).
(46b)

Thus, an envelope detector at the output of the real quad-
ratic time-invariant device represented by (43a) yields the
magnitude of the spectrally smoothed cyclic spectrum
(46b) as depicted in Fig. 1(d). The difficulty with this ap-
proach, however, is the problem of designing tunable
BPF’s H,rand K, s with appropriate phase characteristics.
For example, to obtain an appropriately smoothed cyclic
spectrum, these filters must be phase complementary in

3The pnme in the notation in (43) indicates that, unlike Svar& Han
8%t f)a is not necessarily exactly equivalent to a temporally smoothed
cyclic periodogram.
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the sense that the phase of the product
Hyf(v + /2 + f) Kpp(—v + /2 — f) 47

must be approximately invariant within the passband » €
[—Af/2, Afi2]. An alternative approach in which the de-
sign problem is transferred from phase-complementary
filters to phase-locked (in-phase and quadrature) demod-
ulators is described in Section VII.

Case 2: It can be shown that if H, rand K, rare identical
LPF’s, and if

la| < Af, (48)
then (43) reduces to (46a) with f = 0 in which
(Af= )2
S, 0) £ 2 S Hyp(a/2 + v)
—(Af= a2
“ Hyp(al2 — v) $2) dv GSp(00).  (46c)

Thus, an envelope detector at the output of an LPF-
(square-law)-BPF device yields the magnitude of the
spectrally smoothed cyclic spectrum (46¢) as depicted in
Fig. 1(e). But to obtain an appropriately smoothed cyclic
spectrum, the LPF H,, must exhibit appropriate phase
symmetry about the frequency «/2, such that the phase of
the product

. H(y + o/2) H=v + «a/2) (49)
is approximately invariant within the passband, » € [—(Af
= lerz, (Af = |a))r2].
VII. CycLic DEMODULATION

It follows directly from (17), (14), and (9) (generalized
to incorporate an arbitrary data-tapering window) that the
temporally smoothed cyclic periodogram of tapered data
can be expressed as

Stuar® Par = Af({lx @) e+ ayar®}
Al @ e P2 ayar®})
® gad?). (50)

By interpreting ay,arand g,, as the impulse-response func-
tions of LPF’s, the implementation shown in Fig. 2(a),
which consists of two demodulation (downconversion)
operations followed by a product and an LPF operation,
is obtained. By analogy with the term demodulation used
for conventional spectral analysis (o« = 0), this method
shall be called cyclic demodulation.

In order to obtain a real implementation of the cyclic
demodulation method, we consider the decomposition of
(50) into its real and imaginary parts:

(S50 Hads
= Af({(x(®) cos 27(f + a/2)f]) ® a6}
G cos 27(f — a/2)d]) ® ayup(1)}
+ {G® sin 27(f + a/2)1]) ® ay,44(1)}

A sin 27(f - @/2)1]) ® ayap (D)) ® gald),
(51a)




GARDNER: MEASUREMENT OF SPECTRAL CORRELATION

exp(-i2m[a/2 + 1))

Af

X LPF
(1) X LPF SNUDN
; 1/t
X LpF
Af
exp(-i2m[a/2 — 1]1)
(@)
At
—=(X)—{vpF
cos[2mi(f — a/2)]
LPF
x(t)
[ sin[2m1(1 — a/2)]
LPF :
sin(2mt(f + a/2)] +
LPF :(:) S 174t

Af
cos[2mt(f + a/2)]

()

Fig. 2. (a) Complex demodulation method for cyclic spectral analysis. (b)
Real implementation of demodulation method for cyclic spectral analy-
sis.

(858 (@ Padi
= Af({(x(@) cos 27(f + a/2)1]) ® aya (D)}
“{G@ sin 27(f — /2)1]) ® a4, (D)}
= {&x® sin 27(f + a/2)1]) ® aysp(0)}

*{&® cos 27(f — a/2)1]) @ aysp(D}) @ gald).

(51b)

An implementation of formula (51) is shown in Fig. 2(b).
Although quite complicated, in that it requires four phase-
locked demodulators, four multipliers, and two LPF’s, it
is practical for analog implementation.

VIII. SIMULATIONS

To illustrate spectral correlation measurement, two cy-
clostationary signals were simulated, and their spectral
correlation functions were measured (computed) using the
spectrally smoothed periodogram method (25a), based on
an FFT (25b) of a segment of the simulated signal. The
two signals are a binary-phased-shift-keyed (BPSK) car-
rier, with a white binary phase-modulating (data) se-
quence, and a quarternary-phase-shift-keyed (QPSK) car-
rier with a white quaternary phase-modulating sequence.
It is shown in [1] that for the BPSK signal, the spectral
correlation function'is given by

4 1
S:(f) = aT, {IO(f + f. + a/2) Q(f + f, — al2)
+ Q(f - fc + 01/2) Q(f— fc — a/2)] e—i21rato
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+ O(f+ a2 +f)O(f— a2 = f)

< e —iQmla +2fc]to — 2¢0)

+O(f + al2 = f) Q(f — /2 + [

. e—i(21r[0t—2ﬂ-]tn—2¢u)}’ a = KTy, (52)
for all integers k, where
i T,
Q( f ) = .S_li(lf_d) , (53)
©f

and where f. and ¢, are the carrier frequency and phase,
respectively, z, is the timing parameter for the phase key-
ing, f; /T, is the keying rate, and it is assumed that 2f.T,
is an integer. It is also shown in [1] that for QPSK, the
spectral correlation function is given by

A 1
53N = 2T, [O(f + /2 + f) Q(f — /2 + f)

+ O(f+ a2 — ) O(f — a2 — )] e 2™,
o = k/Ta', (54)

for all integers k. Thus, the only cycle frequencies in both
these signals are at harmonics of the keying rate. Hence,
an adequate cycle resolution is Ao = 1/107,. Also, it
follows from (52) and (54) that an adequate spectral res-
olution is Af = 1/107,. However, because of the relia-
bility condition (24), we must have a cycle resolution
width Aa = 1/At that is much smaller than Af = 1/107}.

In Figs. 3 and 4, the magnitude of the measured spec-
tral correlation function is graphed as the height of a sur-
face above the ( f, @) plane, for values of fand « available
from the FFT of length N. Fig. 3(a) shows the surface for
BPSK with a segment length of N = 128, a carrier fre-
quency of f, = 1/4 T, a data rate of f; = 1/8 T, and res-
olutions of At = 128 T, and Af = 1/32 T, for a resolution
product of AtAf = 4 (i.e., the number of frequency bins
added together by the smoothing operation is M = 4).
Fig. 3(b) shows a surface for the same signal but with a
segment length of N = 32 768, and resolutions of Az =
32 768 T, and Af = 1/327T, for a resolution product of
AtAf = 1024. Fig. 3(c) shows a surface for the same
signal, etc., as in Fig. 3(b), except that the signal is
embedded in additive Gaussian white noise with total
power equal to four times the signal power (SNR = —6
dB). It can be seen in Fig. 3(b) that the surface height is
nonnegligible for only o = kf; and o = +2f, + kf, for
all integers k. It can be seen in Fig. 3(c) that the strong
additive noise gives nonnegligible contributions only for
o = 0, for AtAf >> 1. This illustrates the noise-rejection
property (for o # 0) of spectral correlation measurement.
Fig. 4(a)-(c) parallels Fig. 3(a)-(c), except that they are
for QPSK. Fig. 4(a) [and to a lesser extent Fig. 4(b)] re-
veals a relatively large variance in the vicinity of a =
+2f, and f = 0. This is predicted by the variance formula
in Appendix B because S+ al2) Y f— a/2) is large
(although S3(f) is zero) in this vicinity.
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(®

Fig. 3. (a) Measured spectral correlation function magnitude for BPSK with
AtAf = 4. (b) Measured spectral correlation function magnitude for
BPSK with AtAf = 1024. (c) Measured spectral correlation function
magnitude for BPSK in noise with SNR = —6 dB and AtAf = 1024.

IX. ConcLusioN

Various methods for measurement/computation of
spectral correlation functions are presented in a unifying
theoretical framework. Some of these are amenable to
digital hardware or software implementations, others are
amenable to analog electrical or optical implementations,
and other implementation types used for conventional
spectral analysis also are possible. Due to novel problems
of computational complexity, cycle phasing, cycle leak-
age and aliasing, and cycle resolution, the measurement/
computation of spectral correlation functions is more
challenging than is the measurement/computation of the
conventional spectral density function, and also the con-

Fig. 4. (a) Measured spectral correlation function magnitude for QPSK
with AtAf = 4. (b) Measured spectral correlation function magnitude
for QPSK with AtAf = 1024. (c) Measured spectral correlation function
magnitude for QPSK in noise with SNR = —6 dB and AtAf = 1024.

ventional cross-spectral density function for stationary
data. Nevertheless, empirical spectral correlation analysis
is indeed practically feasible. The fact that the spectral
correlation function for a signal can be accurately mea-
sured, even when the signal is buried in noise or masked
by interference, contrasts with the fact that noise and in-
terference have an unremovable (in general) masking ef-
fect on the measured power spectral density of a signal.
This unique noise-rejection and interference-rejection
property of spectral correlation measurement has various
interesting applications to detection and estimation for
signals buried in noise and/or masked by interference (cf.
[17] and [18]).
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APPENDIX A
APPROXIMATE EQUIVALENCE OF TEMPORAL AND
SPECTRAL SMOOTHING

It is desired to show that the temporally smoothed cyclic
periodogram (17) and the spectrally smoothed cyclic per-
iodogram (18) approximate each other for sufficiently
large At (At >> 1/Af). For this purpose, let T = 1/Af,
and consider the string of equalities and one approxima-
tion,

1 t+ At/2
Sgr(tr f)At = XT(W’ f) dW
At
1 t+At/2
= — S —XT(w,f + al2)
At Ji—am
- XFw, f— al2) dw (A-1)
t+ A2 pw+ T2
— _1_ S g x(u) e—i21r(f+d/2)u du
TAt Ji—nr2 Jw-112
w+T2
. S X(U) ei27f(f‘oz/2)v dv dW, (A‘Z)
w—T/2
B 1 ST/Z ST/Z i St+[u+v]/2+At/2
TT o Jon At 4 [+ )2 — A2

caxw + [u— vl/2) x(w — [u — v1/2)

e g o2 (A-3)
1 T2 772

sl S S Rt + [u + v)/2, u — v)y
T J-tn J-mn

e~ i27f =0 g a0, (A-4)

L7

= — X, Lu—v
T S—T/2 S—T/Z Rl )
A e—i27rf(u—U) du dv’ At > T (A'S)

(1 — |7|/T) Re(2, ) e *™" dr (A-6)

Il

¢

8 |

= S Tvr(7) Re(t, 7) e 2™ dr (A-7)
= S 2uyr(@) Se(t, f— v) dv (A-8)
= S Hur- (A-9)

In (A-7), vy is a triangle window with base of length 2T
and unity area, and in (A-8), zyr is its scaled Fourier
transform, a sinc-squared window with unity area. (If a
data-tapering window ar is used in X, then z;,7 becomes
the squared magntiude of the Fourier tranform A4;,;.) It
follows from the preceding that (with T = 1/Af) the ap-
proximation

Scuar® Dac = S5, Fag AtAf > 1 (A-10)

is close provided that (A-5) is a close approximation. It
can be shown that for each T and any ¢ > 0, no matter
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how small, there exists a Az sufficiently large (At >> T,
typically) to guarantee that the error of approximation in
(A-5) is smaller than e, provided only that the cyclic au-
tocorrelation R% exists. Thus, the error of approximation
in (A-10) is smaller than ez, (f) (which is proportional
to 1/Af) for Az sufficiently large (typically At >> 1/Af).
In order to determine the cycle resolution capability Ao
of the temporally smoothed and spectrally smoothed cyclic
periodogram, we simply use (A-1)-(A-9) to obtain

S?Al(t’ f)Af = xl/Af(t f)Ar

T

S Tor(1) R¥t, T)a e 2™ dr,  (A-11)
-T

where

1 t+ A2
R, T)a 4 E‘ St—A'/Z x + 7/2) x(u — 7/2) g iZmau g

(A-12)

It follows from (A-12), as a well-known property of Fou-
rier transformation, that the resolution capability in « of
the measurement R{(z, 7),, is

Ao = 1/At, (A-13)

and it follows from (A-11) that this also must be the res-
olution capability in « of both the measurements Sy, (z,

f)Af and S.?l/Af(t7 f)Ar-

APPENDIX B
MEAN AND VARIANCE OF MEASURED CYCLIC SPECTRA
The output of a sliding cyclic spectrum analyzer [e.g.,
(17) or (18)], tuned to f = f, and o« = «,, can be expressed
as

Z(t) = S S k(u, v) x(t — u) x(t — v) du dv e—i27raot,

(B-1)
in which the kernel is given by .
k(u, v) = m([u + v]/2, v — u) VTV gImalTY),
(B-2)
where m is typically of the form
m(t, ) = galt) hyar(7), (B-3)

for which gy, and hy/f are unimodal* windows of widths
At and 1/Af, respectively. Approximation (B-3) is either
exact or a close approximation at least for |f| < A#/2 and
|7| < 1/2Af, provided that AtAf >> 1 (which is gener-
ally desired). For example, for the time-smoothed cyclic
periodogram method [cf. (50)] using tapered data,

“The term unimodal is used here to describe windows with a single
mainlobe. It does not rule out sidelobes that are small compared to the
mainlobe. The unimodality assumption rules out the hopping time-average
method since it employs a comb time window g,,; also, in this case, (B-3)
is not an accurate approximation.
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hijap(r) = S_ aypp(m + 1) ayap(@® dt,  (B-4)

where a,,5s is the data-tapering window, and gy, is the
time-sroothing window. For the frequency-smoothed
cyclic periodogram method [cf. (32)] using tapered data,

ga®) = laa®’, (B-5)

where a,, is the data-tapering window, and A, is the
inverse Fourier transferm of the frequency-smoothing
window. Using (B-1)-(B-3), it can be shown [18] that the
mean of the analyzer output z(#) is given by

mean {z(1)} = 2 m, "M@ ) (B-6a)

for which ~

Mg = Guala — ay) S_m Hyy(f, = f) S3(f) df. (B-6b)

Thus, if there are cycle frequencies « within + 1/2 At of
o,, or if the sidelobes of Gy, are not sufficiently small,
there can be substantial cycle leakage in the analyzer out-
put. Also, if Af is not small enough to resolve $(f) in
f, then there will be a substantial spectral smoothing effect
in the output, and if the sidelobes of H,, are not suffi-
ciently small, there can be substantial spectral leakage. It
follows (as also discussed in Appendix A) that the cycle
resolution capability of the analyzer is

Ao’ = 1/At (B-7a)
and the spectral resolution capability is
Af° = Af. (B-7b)

When these resolution widths are small enough to resolve
S(f), then (B-6b) yields the close approximation

mean {z())} = S(f,) Gy/al0) hiap(0).  (B-8)

If it is assumed that the input x(¢f) to the analyzer is
Gaussian (e.g., dominant noise for a low-SNR signal),
then it can be shown [18] that the variance (averaged over
all time) of the output of the analyzer is given by

var {z(1)} = A—Af [SAL, + @/2) SASf, — a,/2)
+ wa,CEISA /2P + C(f,, a)],
(B-9a)

for which C(f,, a,) is a correction term that reflects spec-
tral correlation effects’

Clfor ) & 2 war(@) S3(f, + af2) $3(f, = a/2)

+ §0 war(a = 2f) |S%e,/2)?,  (B-9b)

SWhen two or more uncorrelated spectral components are superposed,
their variances add; however, when the spectral components are correlated,
the variance of the sum can be either smaller or larger than the sum of
variances. This is reflected in the correction term C(f,, o).

where

Hyp(a + f) szf(f) df

War(o) = = (B-9¢)
S_m |Has ()] af
At S_m galt) dr Af S_m |Har (O df
Y= o 2" o 2
H_w 8ad?) dt} S_ Hys (f) df
| (B-9d)

In (B-9b), it has been assumed that H, is a real even
function, and Af is small enough to resolve S f), and
that AtfAf >> 1; and it has also been assumed that the
analyzer exhibits unity gain Gy4,(0) hy/5f(0) = 1. For typ-
ical windows, g,, and H,y, vy is on the order of unity. The
correction term will be nonnegligible only if there are
cycles S°‘( f) # 0 at values of o within +Af of O and at
values of f within +Af/2 of f, + «,/2, or at values of «
within +Af of 2f, and at values of f within +Af/2 of
a,/2. When the correction term in (B-9a) is negligible,
and the cycle leakage terms in (B-6b) are negligible, then

|mean {z()}|* _ AfAf dop £12
var {z(9)} = ‘C I

|fol > Af,

(B-10)

where |C2(f)| is the autocoherence function [1], [3] de-
fined by

. oo S f)
Ci(f) = S%f + a/2) SUAf — a2
which satisfies
6l = 1. B-12)

Although (B-9) is based on the assumption that x(¢) is
Gaussian, it is a good approximation for many non-
Gaussian signals.

Forx = s + n and very low SNR conditions (e.g., in
spread-spectrum signal detection), the variance of the out-
put of the analyzer is dominated by the noise at the input.
If this noise is stationary with power spectrum S f), then
(B-9) reduces to

var {z(f)} = ATf ISXf, + a,/2) SASf, — /2)],

|f,l > Af, (B-13)

(the variance is doubled for f, = 0). For white noise, S,(f)
= N,, (B-13) is simply

N2
var {20} = 3%,

Also, for low SNR, the ratio of squared mean to variance
of the analyzer output is, from (B-8) and (B-13),

Ifol > Af.  (B-14)
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|mean {z(2)}|? _ ArAf
var {z(H}

|Se ()]
v SUf, + af2) SUS, —

|fol > Af,

assuming sufficient spectral and cycle resolution [and a
negligible correction term (B-9b)]. On the other hand, if
a broad spectral smoothing window is used (as is desired
in signal detection applications), then (B-6) and (B-14)
yield

|mean {z()}|> _ AtAf
var {z(?)} = IN?

a,/2)’
(B-15)

o 2

S_m Hur(f, = ) S5(f) df|

(B-16)

assuming white noise, where ¥ is obtained from vy by re-
placing the numerator in the second factor in (B-9d) with
Af alone.
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