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for any i, j, k, could also yield a code based on having all f’s
odd and all #’s odd.

DISCUSSION OF THE NEW ORCHARD CODES

All the codes here could be replaced by their mirror image.
Also, all were tested with'a computer program to verify their
nonambiguity.

The first two codes need about the same number of bits to
encode. Decoding requires about twice as many bits as
encoding in each case. Both require about a third again as
many bits as the Scott and Goetschel code for comparable
operations. Correction of the first two new codes could be
performed in a conceptually identical fashion [4]. For values
of n greater than those listed in Table I, they might be easier to
implement, because finding appropriate difference triangles
with minimal ¢, becomes increasingly difficult with large n.
Even for tabulated values of n, the symmetry of the patterns
would seem to simplify implementation.

The third code needs slightly fewer bits to encode or decode
compared to the Scott and Goetschel code for n < 4 (and the
same at n = 4). In that range the smallest SES’s are the same
and independent of n. This means that the same circuits can be
used for n < 4. Additionally, the number of bits saved will be
minimal except for the modified Shiozaki code, which is quite
difficult to decode.

Table V indicates the minimum value of ¢, for the different
error correction procedures. To indicate the number of bits
saved, one must add 1 and multiply by n, the number of tracks.

In the suggested implementation of the codes [4], the Scott
and Goetschel code, and by implication the first two new
codes, are easy to correct using combinational logic only.
Furthermore, they have good error propagation characteris-
tics. Only a relatively difficult way to decode the Shiozaki
code has been suggested [4]. Robinson and Bernstein decoding
is of about the same level of difficulty as the Scott and
Goetschel codes, but as noted, the code is of minimum
distance 4, compared to 5 for all of the others.

EXTENSIONS OF ORCHARD CODES

The circular diagrams can be extended to other code
designs, if

¢ all circular diagrams involving a number of nodes smaller
than or equal to the sum of the error-correcting and detecting
capability of the codes are considered and found to be
impossible, and

® each node has as many edges as the SES’s have bits.

In all of the cases presented here, any odd number of nodes
is impossible with the specification that the nodes have an odd
number of edges, so by showing that the four-node case is
impossible, the five-node case becomes the largest impossible
case. Therefore, the codes will correct two—detect three, or
correct one—detect four, or detect five errors.

To investigate a proposal for using difference triangles to
create four-bit syndromes for three-error correction, we need
to consider five- and six-node cases only. Initial investigations
have been made. The number of nodes and branches is
manageable if double intercancellation is excluded by ortho-
gonality. However, four-error correction would necessitate an
excessive number of nodes and branches for analysis.

SUMMARY

The design and verification of new orchard codes is not
difficult with the circular diagram concept. To verify that a
proposed code is unambiguous, all that we need to do is make
circular diagrams to check that the characteristics of the code
preclude realization of the diagrams. The design becomes
independent of the number of rows. '

N
TABLE V
MINIMIZED MAXIMUM BIT LENGTH ALONG ANY TRACK FOR VARIOUS
ORCHARD CODE DESIGNS, ROBINSON AND BERNSTEIN CODES

Code t
max

Scott and Goetschel 3n, n=4k + 2, n =4k + 3

3n + 1 otherwise

Shiozaki 2n+r, rs logz(n*l) and odd
New code I 4n or 4n - 1
New code II 4n - 2

New code III (n2 +n+ 4)/2

Robinson and Bernstein* | Selected values [3,4,8]
(n=4, length 19), (8,47),
(12,146), (16,206), (20,266)

* Minimum distance 4

To design a new code, we recommend that the circular
diagrams be examined for ways to eliminate them, although
construction of a new code based entirely on trial-and-error
methods is possible, this latter being extremely time consum-
ing, particularly for large n and minimal code length.
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Spread-Spectrum Despreading Without the Code

C. A. FRENCH AND W. A. GARDNER

Abstract—A new method for despreading direct-sequence spread-
spectrum signals, without use of the spreading code, is evaluated by
analysis and simulation. The new method exploits the cyclic autocorrela-
tion in place of the conventional autocorrelation, which was used in a
prior method. Both methods require that the period of the code be equal
to a multiple of the data symbol interval. Broad-band noise 2nd narrow-
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band interference rejection capabilities of both methods are compared. It
is shown tha( the new method, unlike the prior method, can provide
substantial immunity to strong narrow-band interference.

I. INTRODUCTION .

Despreading a direct-sequence spread-spectrum signal with-
out knowledge of the pseudonoise (PN) spreading sequence
(also known as blind despreading) can be accomplished,
provided that a few parameters of the signal are known. In this
paper, the case of interest is that in which the BPSK carrier
frequency, the data rate, and the PN code repetion rate are
known. Furthermore, it is assumed that the repetition rate of
the PN sequence is a small integer multiple of the data rate.
The simulation results in Section IV use a code repetition rate
exactly equal to the data symbol rate.

A previously proposed method of blind despreading for
direct sequence BPSK signals uses a type of autocorrelation,
and will be referred to as the conventional autocorrelation
method. This method correlates the incoming signal with a
delayed version of itself, where the delay is equal to the
repetition period of the spreading code. If the received
waveform consists of the spread-spectrum signal plus additive
broad-band noise, the signal and its delayed version will be
highly correlated, while the noise will be uncorrelated with a
delayed version of itself and of the signal. Unfortunately,
however, the autocorrelation operation multiplies the undesir-
able noisy portion of the received waveform by itself. If
narrow-band interference is present as well, the autorcorrela-
tion operation demodulates the interference into the demodu-
lated signal band, where it interferes with signal detection.

The new method of blind despreading proposed here has
interference rejection capabilities that greatly improve on the
performance of the prior method. This new method uses a type
of cyclic autocorrelation, and is therefore referred to as the
cyclic autocorrelation method.' This method compares the
incoming corrupted signal with a delayed version of itself (as
in the autocorrelation method) and jointly with a sinusoid of
frequency 2.fp, where fp is the carrier frequency of the BPSK
spread-spectrum signal. The introduction of this sinusoid in
the autocorrelation operation has the effect of shifting narrow-
band interference out of the demodulated signal band, as long
as the center frequency of the interference is not too close to
the BPSK carrier frequency, relative to the unspread signal
bandwidth. Broad-band noise rejection for the cyclic autocor-
relation method is comparable to that described for the
conventional autocorrelation method, due again to the self-
multiplication effect of the autocorrelation operation on the
noise.

Descriptions of the spread-spectrum signal of interest, and
of the two blind despreading methods considered, are given in
Section II. Theoretical comparisons of the two methods are
presented in Section III. Finally, computer simulation results
are given in Section IV to support the theoretical results.

II. DESPREADING WITHOUT THE CODE

Consider a series of data bits, d,, taking values * 1, where
d, is the first bit, d, is the second bit, etc. These bits can be
converted into a binary PAM waveform with time-samples
denoted by D(jT;), where T is the time between discrete
points (the sampling time) and j is the time index.? The data
period T, is assumed to be much greater than the sampling
time. If a pseudorandom discrete-time waveform C (JjT;
(taking values +1), with a chip interval of 7, seconds

I'The cyclic autocorrelation method of blind despreading originated from
the theory of cyclic autocorrelation developed in 21, 131

2In anticipation of the computer simulation as well as possible digital
implementations for sufficiently low-frequency applications, all quantitites are
expressed in discrete-time form. :

(assumed to be much smaller than 7}), which repeats every P
data periods, is used to multiply the data, a binary PN spread-
spectrum baseband signal results and is given by

B(jT))=D(T)CUTy)- 0]

The spread-spectrum signal of interest is obtained by modulat-
ing the amplitude (or equivalently, the phase) of a sinewave
with the baseband spread data sequence B(/jT). This yields
the BPSK signal

S(jT)=B(Ts) cos mfojTs+ ¢o)- @

In general, the received signal will be masked by noise and
interference, and therefore, the input to the receiver is
modeled as

X(jT)=S(UT)+I(T)+N(T;) &)

where S(JjT3) is as defined in (2), I(jT,) is a narrow-band
interference term given by the idealized (zero-bandwidth)
form

1(jT)=A; cos QufijTs+ i) @

and N(/jT,) is a band-limited white Gaussian noise term with
power spectral density given by

_{(No,  O<|fl-Lfol <V/Te ‘
Sn(f)= { 0(: otherwise? ®)

The cyclic autocorrelation of the corrupted spread-spectrum
signal evaluated at a lag of PT, is defined by

Ty/Ts—1
RUT,, PTa)=— > XUT,—kTy)

d k=0
- X(jT,— kT,— PT,) cos (27rozk7}+0) 6)

where the cycle parameter o takes on a value of 2, fo for the
BPSK spread-spectrum signal defined previously. For @ = 0,
(6) reduces to the conventional autocorrelation of X(jTy).
Manipulation of (6) suggests the implementations shown in
Fig. 1. For details of this manipulation, the interested reader is
referred to [1]. The outputs of the despreaders in Fig. 1 are
differentially encoded versions of the input data bits. Practical
considerations such as differential decoding of outputs, syn-
chronization to the data rate for sampling (for both despread-
ing methods), and synchronous detection (for the cyclic
method) are briefly discussed in [1].

III. THEORETICAL PERFORMANCE

One method of comparing the theoretical performance of
the conventional and cyclic autocorrelation despreaders is to
compare their output signal-to-noise ratios (SNR) and signal-
to-interference ratios (SIR), or equivalently, their SNR and
SIR gains (i.e., SNR gain = SNR,./SNR;,). Input SNR and
SIR are defined as

Ss(f) df
SNR;,=-————— (Ta)
I~ swn ar
and
[" s ar
SIRj, =—— (Tb)
" sinar

respectively, where Sg( f) is the power spectral density of the
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Fig. 1. (a) Conventional autocorrelation despreader. (b) Cyclic autocorrela-

tion despreader.

input signal, Sy(f) is the power spectral density of the input
noise [defined in (5)], and S,( f') is the power spectral density
of the zero-bandwidth interference. Output SNR and SIR
(before sampling) are defined as

|" ssstry ar

SNR == (82)
|" swin dar
and
|" st ar
SIR gy = ——— (8b)

|" s ar

respectively, where Sgs(f) is the portion of the output power
spectral density of the despreader due only to signal-signal
interactions, Syy(f) is the portion of the output power
spectral density of the despreader due only to noise-noise
interactions, and Sy;(f) is the portion of the output power
spectral density of the despreader due only to interference-
interference interactions. The output power spectral density of
either despreader in Fig. 1 has other terms due to signal-noise,
signal-interference, and noise-interference interactions. Con-
tributions of these crossterms can be significant, and they are
considered in [1].

Using definitions 7 and 8, expressions for input and output .

SNR and SIR, as well as SNR and SIR gain were derived for
the conventional and cyclic autocorrelation despreaders. Deri-
vations can be found in [1], and the results are summarized in
Table I.

From Table I it is clear that SNR gains for the two

despreaders are of the same form and same order of magnitude .
(since the factor cos? (2w fy PT,) is typically unity). Note that .

SNR gain for both blind despreading methods is also propor-
tional to the input SNR, due to the noise-multiplication effect
of the autocorrelation operations. Therefore, for SNR;, <1,
which is typically the case, these blind despreading methods
exhibit low tolerance to broad-band noise if the spreading gain
factor T4/ T, is not sufficiently large.

Referring to the SIR gains in Table I, it appears that
interference rejection for the blind despreaders might be poor,
since SIR gain is proportional to input SIR (which can be less

than 1) for these two methods. However, the equations for SIR

gain reveal that the cyclic autocorrelation despreader should
reject interference better than the conventional autocorrelation

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-34, NO. 4, APRIL 1986

TABLE 1
SNR AND SIR FOR BLIND DESPREADING
Conventional Cyclic
SNR;, Te T
8No 8No
B8Tyg 2 2 4Ty 2
SNRout ;_I—_:cos (2nfoPTq) SNR;,, 3—1'( SNR?,
SNRout |8Td aty
SNR".‘ 3—TcCO$ (2nfoPTd)SNRi,., 3_T< SNRiqn
S ' '
IR; — -
in A? A?
2cos?(2nfPTy) 5, |2 2 2
SIR % ———SIRin |3sinc [2T4(fo- ;)] SIR]
 3cosZannety o |3 [2Ta(fo - ] SIRin
s .
SIRout 2c0s“(2nfyPTy) 2 2
SIR; s sinc " [2Ty4(f, - ;)] SIR;
SiRin 3cos?(2nfiPTy) |3 (2Taho - 12] IR

despreader, due to the factor

sinc=? [2T4(fo~fi)]. )

This factor reveals that interference rejection for the cyclic
autocorrelation method improves as the center frequency of
the interference moves away from the carrier frequency of the
spread-spectrum signal, and that it is the separation of these
two frequencies relative to the unspread signal bandwidth,
1/Ty, that is the controlling quantity.

IV. SIMULATION RESULTS

Fig. 2 shows time waveform outputs of a computer
simulation of the conventional and cyclic autocorrelation
despreaders, to demonstrate qualitatively how the despreaders
perform in the presence of interference and noise. Table I(a)
gives the parameters used in the simulation. 10 data bits are
shown for each case in Fig. 2, and the tick marks indicate
where sampling should occur. Clearly, the cyclic autocorrela-
tion method outperforms the conventional autocorrelation |
method when strong narrow-band interference is present [see
Fig. 2(d)]. :

Input SNR tolerance was measured with a second run of the
simulation (see Table II(b) for parameters used). With no
narrow-band interference present, the input SNR was de-
creased until two or more errors in 30 bits occurred. At this
error rate, both blind despreading methods could tolerate an
input SNR as low as about — 15 dB, while an input SNR of
about —30 dB could be tolerated if despreading were done
using the PN code. i

Another run of the simulation (see Table II(b) for parame-
ters used) was used to measure tolerable input SIR for an
output error rate of less than two errors in 30 bits. A narrow-
band interference term was added to a signal already corrupted
with broad-band noise (i.e., SNR;, = —10, 0, or + 10 dB).
Varjous interference frequencies throughout the signal band
were tested, with three data points (from three statistical
samples) taken at each interference frequency for a given
SNR;;. These points were averaged to obtain the plot of Fig. 3.
Three points in the average was considered adequate since
their spread was relatively small. Data for despreading using
the PN code for SNR;, = — 10 dB is included for comparison.
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Fig. 2. Time waveform outputs from simulation.

TABLE II
SIMULATION PARAMETERS
(e) Version 1 (b) version 2
Number of bits 10 |l 30
Tg(sec) 800Tg 3200Tg
Te (sec) 8T 32T,
P 1 : 1
: 1 T
fo(H2) 8T 8T
“do(radians) 0.79 079
fH) L —
! 11.5Tg
¢, (rodiens) ) 05
-45 - S
-40 / with Code
@ 351 =% « X -1008
I -30 . Cyclic
=) a B
S = -25 A X 2 s +10dB
§ g =20 n\ \x\ h/;é o 0dB
e e O -
S °\‘~x/u_— o -10dB
~ o—o- Conventional
£ -0 gl [Co
= s a +10dB
' C1 SN /'\ L o
dB
0 a.g
e -10dB
4t 44 A | -
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103 95 85 8.1}7 71 6765
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Fig. 3. Averaged input SIR threshold for one interferer.
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Interferers were added in the following order:
ﬂ-si|||1|».1:|1

> 95767 85 71 92 76 103 65 6.1 79

Fig. 4. Input SI.R threshold versus number of interferers.

Fig. 3 again indicates the superiority of the cyclic autocorrela-
tion despreader over the conventional autocorrelation
despreader in interference rejection.

In a final experiment, ten different interferers centered at
various frequencies throughout the spread-spectrum band were
added, one at a time, to the spread-spectrum signal, with input
SNR held at 0 dB. Input SIR threshold (for one or fewer errors
in a string of 30 data bits) was determined for both blind
despreadmg methods after the addition of each interferer, with
the results shown in Fig. 4. For a given number of interferers,
input SIR was made the same for all interference frequencies.
It “appears in Fig. 4 that five or six mterferers are required
before the performance of "the cyclic autocorrélation
despreader degrades to about the same performance level as
the conventional autocorrelation despreader.

LA SUMMARY

The theoretxcal performance formulas in Section I, and
both the qualitative performance comparisons based on time
waveforms and the quantitative results presented in Section IV
indicate that the cyclic autocorrelation despreader is superior
to the conventional autocorrelation despreader for interference
rejection. For a spreading gain factor of 7,/7. = 100, and
depending on the amount of broad-band moise present, the
cyclic autocorrelation method can tolerate a 10-15 dB lower
input SIR than the conventional autocorrelatxon method (see
Fig. 3). '

As expected, bot.h blind despreading methods failed at
higher mput SNR and SIR than when the corrupted signal was
despread using the PN code. As long as an autocorrelation is
used (as required for blind despreading when the code is
unavailable), the noise-multiplication effect is unavoidable.

Although the implementation required for the cyclic auto-

correlatjon despreading method is more complex than that for
the conventional autocorrelation method (requiring an addi-
tional filter and a modulator which requires synchronization),
the benefits in interference rejection of the cychc autocorrela-
tion method could prove to be significant in certain apphca—
tions.
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On the Spectrum of Pseudo Noise
W. A. GARDNER AND C-K. CHEN

Although the magnitude of the discrete Fourier transform of a
maximal-length shift-register sequence is flat, except for its value at
zero frequency, the higher resolution spectral content given by the
Fourier-series transform is highly erratic. This little-known fact is
described, and its ramifications on fast Fourier transforms of one-
digit-extended pseudo noise and zero-padded pseudo noise are
explained.

A pseudo noise (PN) sequence is a sequence of numbers, most
commonly +1s and —1s (or 1s and 0s), that appears to be random
but in fact is perfectly predictable given the algorithm that gener-
ates it. A particularly important type of PN sequence is the maxi-
mal-length shift-register sequence, which when periodically re-
peated yields a limit autocorrelation sequence that is similar to that
for white noise. The limit autocorrelation sequence is defined by

1 Q
R (k)2 i Xpi kX 1
x() Qi-';noo 2Q+1n=E_Q n+k%n ()
and for a periodic sequence with period N we have
1 N1
Rx(k) =N Z XntkXn = Rx(k + N) (2)
n=0

The sequence given by (2) is called the circular autocorrelation of
the periodic sequence {x,}. For a-maximal length sequence {x,},
it can be shown [1] that

r(0) = {1

where N =2™ —1 for some positive integer M. Thus R, (k) ap-
proaches the limit autocorrelation for white noise as N = 0. It is
well known that the N-point discrete Fourier transform (DFT) of a
circular autocorrelation of a periodic sequence with period N is
given by

Z[k]sN—1 ©)

N-1

DFT{R,(k)} 2 Y R,(k)e 2mkm/N, m=0,1,2,---,N—1
k=0

4
1 IN=1 2
- N E Xne—Iqunm/N (5)
n=0
a 1 2
=—N’DFT{Xn}' (6)
and also that (3) can be used to show that

[N, m=0
DFT{R"(k)}_{1+1/N, 1< |m < N=1. )

Now, let us consider the DFT {X,,} of the maximal length
sequence {x,} itself, rather than the DFT of its autocorrelation
sequence. It follows from (6) and (7) that the magnitude of the DFT
{ X, } of a maximal-length sequence {x,} is given by

X | = 1, m=20 8
'”’"{W, 1< |m < N=1 ®)

which is flat except for a notch at zero frequency, as shown in Fig.
1(a).

The Fourier series transform (FST) of a sequence {x,} is defined
by
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Fig. 1. Magnitudes of DFTs of a +1 maximal-length shift-reg-
ister sequence of length N=127. (Data points connected by
straight lines.) (a) Original sequence. (b) One digit-extended

sequence with length N =128. (c) Zero-padded sequence with
length N/ =254,
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from which it follows that the DFT is simply the sampled FST
Xn=X(m/N). (10)

Furthermore, it is well known that the FST X(f) can be obtained
from the DFT {X,,} by interpolation, and since the DFT of {x,},
zero-padded out to length N = KN to produce (say) {y,}, is

Y, = X(m/KN) 1)

then the DFT {V,} of the zero-padded sequence can also be
obtained from { X} by interpolation. The interpolation formula is
easily shown to be
N=1
Yo=Y X,(p— m/K) ~ (12a)

p=0

0018-9219,/86,/0400-0608501.00 ©1986 IEEE
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where the interpolation function is given by

in(nq/K
/K1 = s ()
g (1(a/0)) = (/O = UN). (129

if one extra digit, say —1, is added to a PN sequence in order to
obtain an integer-power-of-two for the sequence length N =
N+ 1 =2M, then an FFT algorithm can be used to compute the
DFT. The DFT of the one-digit-extended PN sequence

Zn={XO,X1,x2,---,xn_1,—1} (13)
is given by
N
z., Y z zne—iZnnm/(N—n (14)

n=0
N-1

- 2 Xne—iZan/(N+1) _ e—iZﬂmN/(N+1)
n=0

- X( m ) — g~ i2rmN/(N+7)

N+1

_ X(—T _ __m___) _ e 2TmN/AN+) (15)
N N(N+1T)

For large N, the exponential term is negligible except at m = 0 (cf.

®)), and Z,, is, therefore, closely approximated by the FST X(f)

sampled at points that are slightly offset from the samples that yield

X, (10). This same result is obtained regardless of the position of

the extra digit among the original N digits.

Considering the flatness of the DFT magnitude {|X,,|}, one
would expect both the one-digit-extended DFT magnitude {|Z,|}
and the zero-padded DFT magnitude {|Y,,|} to be very nearly flat.
But this is not the case. For example, these three DFT magnitudes
are shown in Fig. 1(a), (b), (¢) for a maximal-length shift-register
sequence of length N =127, and it can be seen that both {|Z,]}
and {|Y,,|} are highly erratic. The reason for this is that the FST X(f)
is highly erratic, as shown in Fig. 2, and the reason for this is that

u 1

0 ol 02 03 04 05
FREQUENCY

Fig. 2. Magnitude of the FST (actually DFT zero padded out to
length 4096) of the +1 maximal-length shift-register sequence of
length 127, whose DFT magnitude is shown in Fig. 1(a). (Data
points connected by straight lines.)

although X(f) is an interpolated version of the DFT { X}, whose
magnitude is flat, the phase of { X} is highly erratic, as shown in
Fig. 3. OF course, even though X(f) is highly erratic, its samples
X,, = X(m/N) do have constant magnitude (for m # 0) as required
by (8).

Since the FST of a PN sequence is not at all flat, this brings into
question the idea that a PN sequence is similar to white noise.
However, the FST of white noise is also a highly erratic function. it
is only after smoothing that it approximates the ideal average
power spectral density which is flat. As a matter of fact, a PN
sequence is indeed similar to white noise since its highly erratic FST

-4
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Fig. 3. Phase of the DFT of the +1 maximal-length shift-reg-
ister sequence of length N=127, whose DFT magnitude is shown
in Fig. 1(a). (Data points connected by straight lines.)
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Fig. 4. Smoothed magnitude of the FST shown in Fig. 2.

Smoothing-window width is 100 points, which is approximately

3 bins from the DFT of the nonzero-padded sequence. (Data

points connected by straight lines.)

closely approximates a flat spectrum when it is smoothed as shown
in Fig. 4. The smoothing window used here is 100 points wide, and
the total number of transform points is 409. Thus approximately 3
bins from the original (nonzero-padded) 127-point DFT are aver-
aged. -

In summary, although one might expect the DFT of one-digit-ex-
tended pseudo noise, and the DFT of zero-padded pseudo noise, to
be nearly flat, these DFTs are in fact highly erratic, and this confirms
the idea that pseudo noise is similar to white noise.
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Performance of Adaptive Filters Using
Combined Lattice and Transform Techniques
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A composite scheme combining lattice and transform techniques
for implementation of adaptive filters is discussed. Results of the
eigenvalue spreads and convergence time for simple correlation
cancelers in combination with Walsh—-Hadamard Transform (WHT)
are reported.
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