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Abstract. A comprehensive analysis of the mean-square learning characteristics of stochastic-gradient-descent algorithms is
presented. The approach is based on the commonly exploited simplifying assumption of stationary independent training
vectors. Characteristics analyzed include stability, steady-state misadjustment, initial rate of convergence, optimum step size,
and steady-state autocovariance and spectral characteristics of the weight-vector. Effects on these characteristics due to
degree of randomness of stochastic gradient, particular data distribution, and data corruption are isolated and analyzed. An
objective of the work is to keep the number of simplifying assumptions and approximations to a minimum. Comparisons of
results with previous more approximate analyses are made.

Zusammenfassung. Lernkurven von stochastischen Gradienten Algorithmen werden untersucht. Die vereinfachende
Annahme von stationdren, unabhéngigen Trainingsvektoren wird benutzt. Charakteristiken die untersucht werden beinhalten
Stabilitét, ‘steady state’ Fehlanpassung, Start Konvergenz, optimaler Schritt sowie ‘steady state’ Autokovarianz und spektrale
Charakteristik des Gewichtsvektors. Die Effekten auf diese Charakteristiken von dem Zufalligkeitsgrad des stochastischen
Gradienten, besonderer Daten Verteilung und Daten Verderbung werden isoliert und analysiert. Ein Zielpunkt dieser Arbeit
ist es die Anzahl vereinfachenden Annahmen und Approximationen auf ein minimum zu beschrinken. Vergleiche mit
Resultaten die von approximativeren Analysen stammen werden gezogen.

Résumé. Une analyse d’ensemble des caractéristiques de convergence de 'erreur quadratique moyenne dans les algorithmes
utilisant la décroissance du gradient stochastique est presentée. Cette approche est basée sur I’hypothése simplificatrice
classique de stationnarité et indépendance des vecteurs de test. Les caractéristiques analysées comprennent la stabilité, ’écart
d’état stable, la vitesse initiale de convergence, le pas optimum d’incrémentation, et I’autocovariance de I’état stable, ainsi
que les caractéristiques spectrales du vecteur de pondération. Les effets sur ces caractéristiques de la variance du gradient
stochastique, avec en particulier la distribution des données et leur dégradation, sont isolées et analysées. Un des objectifs
de ce travail est de garder le nombre d’hypothéses simplificatrices et approximations minimal. Les résultats obtenus sont
comparés aux analyses antérieures basées sur de plus larges approximations.

1. Introduction the other hand, is its relatively slow convergence
(e.g., by comparison with recursive least squares
and Kalman algorithms [1, and references
therein]). Consequently the LMS algorithm is
viable—and in fact popular—in applications where
simplicity is important, and requirements on speed
of convergence are not too stringent.

Although the behavior of the LMS algorithm

1.A. Purpose and overview

The LMS algorithm for adaptive linear estima-
tion has been used in a wide variety of applications
including sensor array processing, channel equaliz-
ation, echo and other noise and interference can-

cellation, and system identification. The most
attractive feature of the LMS algorithm is its sim-
plicity and corresponding amenability to simple
implementation. The most detractive feature, on

has been studied at length by many, and is fairly
well understood in general, there remains a need
for a relatively comprehensive analysis that
explains the effects on analytical results of many
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of the commonly used simplifying assumptions and
approximations such as non-random data (or,
equivalently, assuming the weight vector variance
is negligible by focusing on the mean exclusively),
Gaussian random data (or, equivalently, assuming
that higher than second moments can be deleted
or approximated), uncorrupted training signals,
and small step-size. In order for such a relatively
comprehensive analysis to be tractable, there is
one simplifying assumption that cannot be
removed, and therefore whose effects on analytical
results cannot be determined (analytically). This
is the commonly exploited assumption that the
training data is a sequence of statistically indepen-
dent random vectors. Nevertheless, it has been
experimentally verified by many that when the step
size is sufficiently small (and the convergence
therefore sufficiently slow) analyses of algorithm
behavior based on this independence assumption
agree closely with empirical evaluations of
algorithm behavior (e.g., [2]H9]). Moreover,
recent research has provided analytical verification
of the fact that the independence assumption will
yield accurate analyses if the step size is sufficiently
small [10]-{13]. To supplement this recent pro-
gress, this paper carries through exact analyses
without invoking the commonly used simplifying
assumptions and approximations—except for the
independence assumption—to obtain quantitative
evaluations of the accuracy of previous approxi-
mate analyses.

Unfortunately, the relatively comprehensive
analysis presented herein, based on the indepen-
dence assumption, coupled with the recent analysis
of the independence assumption itself, still does
not provide a complete self-consistent analysis,
since the independence assumption apparently
cannot be analytically justified for relatively large
step sizes (which is, indeed, a case of practical
interest, as explained in Section 4.C). But this is
perhaps the best that can be done from the prag-
matic point of view of obtaining a good tradeoff
between model realism and model tractability.
Consequently, analyses of algorithm behavior
must continue to be verified, augmented, and in
some cases invalidated by empirical evaluations
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and/or simulations. Nevertheless, model tractabil-
ity and its necessary complement, empirical evalu-
ation, are essential components of the scientific
method.

In Section 1.B, the linear mean-square estima-
tion problem, and the stochastic-gradient-descent
approach to solution are formulated. Then a
variety of applications are briefly described. The
section concludes with a description of the sim-
plifying assumptions exploited in the analysis
presented in Sections 2 and 3.

In Section 2, several fundamental learning
characteristics are defined. These are stability, mis-
adjustment, initial rate of convergence, and
optimum step size (the important time-to-conver-
gence characteristic is not analyzed herein, for
reasons explained in Section 4.F). Then effects on
learning characteristics, of several fundamental
features of the algorithm and data, are isolated
and analyzed. These features include randomness
of data, degree of randomness of stochastic
gradient, the particular probability distribution of
the data, and data corruption.

In Section 3, general formulas for learning
characteristics are derived. These include bounds
and approximations for arbitrary data distribution
in subsections 3.A and 3.D, and exact formulas
for the case of Gaussian data in subsection 3.C.
Also, an exact, linear, time-invariant recursion for
the learning curve for arbitrary data distribution
is derived in subsection 3.B.

In Section 4 a critique of previous closely related
studies is given. Specific comparisons of results and
clarifications of simplifying assumptions and
approximations are included.-

1.B. Problem formulation

Consider the problem of adaptive estimation of
a desired possibly random sequence {d (i)} with the
random sequence of linear estimators' {d(i)},

d0= 3 wixnO=WOX0, )

! For a matrix M, M" denotes the transpose of M, and for
a square matrix, tr{M} denotes the trace of M, and M?= MM
denotes the product of M with itself.
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where W(i) is the estimation weight-vector, and
X (i) is the observed data vector. This paper is
concerned with the transient and steady-state
behavior of the sequence of weight-vectors { W (i)}
and corresponding estimators {d(i)}, when the fol-
lowing stochastic-gradient-descent (SGD)
algorithm is used/for adaptation:

W([i+1f]K) = W(iK)—g-\?s(iK),
ee(iK)=—%K>§le(iK+q)X(iK+q), 2)

W(iK +q)=W(iK), ¢=1,2,...,K—1.

In this algorithm, Ve is the stochastic gradient
of the time-averaged squared stochastic error

(e2(iK)) 2 %Kg (K +q), 3)

and Ve is also an estimate of the gradient of the
mean squared error

Ve(iK)=VE{e*(iK)} =—2E{e(iK) X (iK)}.

(4)
In these expressions, e(i) is the estimation error
e(i)=d(i)—d(i). (5)

For the special case K =1, the SGD algorithm is
the well known LMS algorithm.?

2 Itis well known that K = 1 yields the most rapidly converg-
ing algorithm, if convergence rate is measured in units of data
time-samples. However, if convergence rate is measured in
units of algorithm iterations (which are K times less frequent
than data time-samples) then, speed of convergence increases
monotonically with K. Thus, in applications (such as satellite
antenna array adaptation using microwave power dividers) for
which adjustment of the weight vector can be a time-consuming
costly task, K >1 is preferable. Also, as shown in this paper,
steady-state misadjustment is approximately proportional to
K. Consequently, in applications for which misadjustment
can be undesirably large (e.g., because of data corruption, as
explained in Section 2.D), K > 1 is preferable (cf. [7]). Further-
more, regardless of desirability of K > 1 in practice, an analysis
that includes K as a parameter reveals important relationships
between stochastic-data algorithms and non-stochastic-data
algorithms, since the latter can be obtained from the former
by letting K -0, as exploited in this paper. Moreover, as
explained at the end of Section 2.B, the effects of the degree
of randomness of the stochastic gradient are explicitly para-
meterized by K. As a final remark, it should be mentioned that
algorithms which average the gradient over K instants, but
adjust the weight vector every instant, do not perform as well
as the SGD algorithm (with either K =1 or K >1) studied
herein.

B.1. Applications

Before continuing, we briefly review five types
of applications in order to give physical meaning
to the mathematical quantities (1)-(5) to be dealt
with in the analysis. The five tasks of system iden-
tification, noise filtering, noise cancelling, system
equalization, and signal prediction are depicted in
Figs. 1-5. With regard to Fig. 1, the task is to
identify the unknown system. This is accomplished
by adaptively adjusting W to make the estimate
d similar to the desired quantity d, in which case
W should be similar to the unknown system (n is
measurement noise). With regard to Fig. 2, the
task is to reduce the noise #. This is accomplished
by adaptively adjusting W to make the estimate
d similar to the desired signal d, thereby filtering
away the noise, n. With regard to Fig. 3, the task
is to reduce the noise d. This is accomplished by
adaptively adjusting W to make the estimate d
similar to d, and then subtracting this noise esti-
mate from the noise corrupted signal d, in an
attempt to cancel the noise d (s is the noiseless
signal). With regard to Fig. 4, the task is to remove
the distortion of the signal d caused by the
unknown system. This is accomplished by adap-
tively adjusting W to make the estimate d similar
to d, thereby making W similar to the inverse of
the unknown system (n is noise due, for example,
to decision errors in decision-directed adaptation).
With regard to Fig. 5, the task is to predict the
value of the process x, i, units of time into the
future. This is accomplished by adaptively adjust-
ing W in the lower signal path to make the delayed
(by iy) estimate d(i) similar to the delayed desired
signal d(i), and then slaving the non-adaptive W
in the upper signal path to the adaptive W. In all
five of these applications, the only quantities that
are physically available for use in adaptation are
X, 3, d, and therefore é = d — d. All other quantities,
viz., s and n, are unavailable.

It should be clarified that, as shown in Figs. 1,
3, 4, the error signal € used to adjust W is the
difference between d and 3, not the difference
between d and d; that is d, which is physically
available, is used in place of the desired d, which
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n(i)

x(i) UNKNOWN
o— SYSTEM

Fig. 1. System identification.

is not physically available. The analysis in the body
of this paper is carried out in terms of e = d—d.
Then in Section 2.D, the modifications of results
that are required when é= d—d is used in place
of e, for adjustment of W, are explained. In all five
problems described here, the vector X (i) in (1)
has nth element x,(i)=x(i—n). But this is not
the case for adaptive sensor array problems, and
is not assumed to be the case in this paper, except
in Section 3C.2.

B.2. Simplifying assumptions

As discussed in Section 1.A, it is assumed that
{X (i), d(i)} is an independent identically dis-
tributed sequence of zero-mean pairs, and this shall
be referred to as the primary independence assump-
tion>. Tt is also assumed that the vectors X (i) have
finite fourth moments, and the scalars d(i) have
finite second moments. The autocovariance matrix
for X (i) and the crosscovariance vector for X (i)

X0 - d "Q% a0

B(i) = e(i)

+ d() = d(i)

o/

Fig. 2. Noise filtering.

3 For the important case of x,(i)=x(i—n), the primary
independence assumption is literally impossible, unless the
algorithm is slowed down by a sufficiently large factor, say L,
so that the sequence X (i) is replaced with the sequence X (iL).
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10) ¥) 20
+

s(i)

+/2\ e(i) = s(i) o

unknown | X W d()
SYSTEM

Fig. 3. Noise cancelling.

and d(i) are denoted by
R2 E{X()X"(i)},

A N (6)
P= E{X(i)d(i)},
and the variance of d(i) is denoted by
o4 = E{d*(i)}. (7)

It is well known and easily shown that the weight

vector that minimizes the mean-squared-error
(MSE), which is denoted by

e(i) £ E{e’(i)}, (8)
is given by
W,=R'P, 9)

and the corresponding minimum value of (i) is

eo= E{eq(i)}

(10)
=03—P'R'P,
where
eo(i) 2 d(i)— WiX(i). (11)
o d@ =] UNKNOWN

SYSTEM

Fig. 4. System equalization.
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O W R+t

d(i) = x(i)

Fig. 5. Signal prediction.

The behavior of the SGD algorithm shall be
characterized in terms of the learning curve, which
is defined to be the evolution of the excess MSE,
which is defined by

4 (i) = e(i) — &,. (12)

In order to obtain the simplest explicif formulas
for learning curves the secondary independence
assumption that the minimum attainable error e (i)
is independent of the training vector X(i) is
employed. This assumption is satisfied, for
example, if the desired sequence, d(i), is of the
form

d(i)=WTX(i)+z(i) (13)

for some non-random vector W and for some
random sequence z(i) that is independent of X (i)
(since, in this case, z(i) = e,(i)). Model (13) is valid
for the problem of adaptive identification of an
unknown finite-impulse-response system (W) of
order <N, with measurement noise z(i) that is
independent of the probe signal X (i) (e.g., Fig. 1,
with z(i) = n(i)). Model (13) is also valid for the
problem of noiseless adaptive equalization of an
all-pole channel with <N poles (e.g., Fig. 4), and
for the problem of noise cancellation involving an
all-pole reference channel with <N poles (e.g.,
Fig. 3). Finally, the secondary independence
assumption is valid, regardless of model (13), if
X (i) and d(i) are jointly Gaussian sequences (as
in Section 3.C), because the uncorrelatedness of
eo(i) and X (i) (which follows from the orthogonal-
ity property of dy(i) = WEX(i)) then renders e(i)
and X (i) independent. In applications for which

neither model (13) nor the Gaussian model are
valid, the secondary independence assumption
must be considered an approximation akin to the
primary independence assumption.

2. Effects of randomness, particular distribution,
and corruption of data on learning characteristics
2.A. Learning characteristics

It is well known, and easily shown (using the
primary independence assumption only), that the
excess MSE is given by

e4())= E{V'())RV (i)} =tr{Ry ()R}, (14)

where V(i) is the weight-vector error (or excess
weight-vector)

V(i) £ W)= W, (15)

and Ry (i) is its correlation matrix. Manipulation
of the SGD algorithm (2) yields

V([i+1]K)=A(K)V(iK)+ B(iK)

(16)
V(iK+q)=V(iK), ¢=1,2,...,K—1,
where
“ K—1
A(iK)éI—E Y X(iK+q)X"(iK +q),
q=0

(17)
. w K1 .
B(iK)2—= Y e,(iK +q)X(iK +q).
K o
Substitution of (16)—(17) into (14) (evaluated at
i>(i+1)K), and use of both the primary and

secondary independence assumptions yields the
exact formula

e, ([i+1]K)=E{V'(iK)GRV(iK)}+h
=tr{Ry (i) GR}+h, (18)
e (iIK+q)=¢,(iK), q=1,2,...,K—1,
where

h= E{B"(iK)B(iK)} = £o(tArms) N/ K,
(19)
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and
G2 E{AT(K)A(IK)}R!
=(I—uR)*+ u*S/K, (20)
SLE{X()XT()RX()X"(i)}R™'— R*.

In (19), A, is the root-mean-square value of the
N eigenvalues of R:

1N 1/2 1 1/2
)\rmsé,:_ﬁ > /\i] =[Ntr{R2}] . (21)
n=1

Formulas (14) and (18)-(20) are the point of
focus for discussion of the effects of randomness
of the gradient, the effects of the particular distri-
bution of the data, and the effects of corruption
to the desired training signal, on the characteristics
of the learning curve. The characteristics of
primary concern are:

(i) Stability: The largest value (supremum) of
the fixed step-size parameter u that yields a stable
algorithm is denoted by w,:

lirg £4(i) exists if and only if 0<pu <pu,.
(22)

(ii) Final Misadjustment: The fractional amount
by which the steady state MSE exceeds the
minimum attainable MSE is called the final misad-
justment and is denoted by M:

M2A .lilg e4(i)/ &o. (23)

(iii) Initial Rate of Convergence: The initial rate
of convergence is defined to be the inverse of an
effective initial time constant (7), which is obtained
by fitting &, (iK) (at i=0and i = 1) to an exponen-
tial (cf. (46)):

[8*(0) - 8*(00)] e /"= [5*(K) - 8*(00)]§

thus,

1,1
— 2 In{{e4(0) = £4(20))/[e4(K) — £4(=0) .
(24)

(iv) Optimum  Step-Size  Sequence: The
sequence of step-size parameters that minimizes
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the instantaneous MSE at every adaptation instant
is denoted by wo(iK):

&4 (K| = (i) < €4 (IK) | = i) (25)
for all sequences u(iK).

2.B. Isolation of effects of data randomness

Formula (18)—(20) can be used to isolate the
effects on the learning curve of randomness of the
data and therefore the stochastic gradient. Since
explicit formulas for exact learning characteristics
exist when randomness vanishes, this isolation aids
analysis of the effects of randomness on charac-
teristics of the learning curve derived in this paper.

With reference to (2), it can be seen that in the
limit (as the gradient-averaging time-interval
becomes large) K — 00, the stochastic squared error
(3) and its gradient (2) approach non-random
quantities (i.e., they approach their mean values
because of ergodicity guaranteed by the primary
independence assumption), and the SGD
algorithm becomes simply a non-stochastic
gradient-descent (GD) algorithm, for which the
adapting weight vector is non-random. As a result,
for sufficiently large values of K, the expectation
operator in (14) and (18) can be deleted, and (14),
(18)—(20) become

£4(iK)=V'(iK)RV(iK), (14)'

e4([i+1]K)=VT(K)GRV(iK)+h, (18)
where

h=0, G=I-uR) (19), (20)’

It is well known and easily verified that these
equations reduce (with the aid of (16)) to

£,(iK) = VT(0)G'RV(0). (26)

Equation (26) can be decomposed into a sum of
the N natural modes of the learning curve by
transforming the vector V with the orthogonal
matrix Q composed of the eigenvectors of R,

V4QTy. (27)
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The result is

uiK)= 3 enn(0)(1—p, )"

N .
=3 e4a(0) e /™, (28)
n=1

where the nth time-constant is defined by

7, = K{ln(1/y,)} 7,

(29)
Yn £ (1 - MAH)Z,

and
£4n(0) = T2, (30)

which is the component of the initial excess MSE
due to the nth mode.

(i) Stability: It follows from (28) that the largest
step-size for which the GD algorithm is stable is

/‘L*=2//\max, (31)

where A, is the largest of the N eigenvalues
A1

(ii) Final Misadjustment: It follows from (28)
that the final misadjustment for the GD algorithm
is zero,

M=0. (32)

(iii) Initial Rate of Convergence: It follows from
(28) that the initial rate of convergence for the
GD algorithm is

1 ;1 E*n(O)
A : (33)
L 2 (01 —pA,)?

Q=

We see that the effective initial time constant, 7,
depends on the initial distribution of excess MSE
among the N modes. We therefore define the
nominal time constant to be that which results from
a uniform distribution of initial weight-vector error
among the N uncoupled modes (i.e., 2 =0?);

Then (30) and (33) yield

N
XA,
n=1

=—1n —_—

nom K N

i Y Aa(1-pA,)?
n=1

_1 { tr{ R} }

"k " RI-uR)Y

_1 tr{R}

K In{tr{GR}}' (34)

In the special case of slow adaptation (u <1/A,,),
(34) is closely approximated by

1 2utr{R%}
Toom K tr{R}
An intuitively pleasing interpretation of formula

(35) results from re-expression in terms of the
parameters A, (21) and

(35)

1
Mve 2T t{RY =23 A,
ned IR} =1 % (36)
for which
/\Ems=a'i+A§ve’ (37)

where o3 is the variance of the distribution {\,.}}
about its mean A,,.. Substitution of (36) and (37)
into (35) yields

1 2ILLAave

= (Hae) (14 p), 38
- ( 2 )( ») (38)
pE 0N/ Ale, (39)

for which p is a normalized measure of the spread
of the distribution {A,}). Hence, the larger the
spread is, the faster the algorithm is (initially)
relative to the conservative estimate of speed based
On A, alone. The estimate,

1 é 2 ,LL)\ ave
Tconserv K

, (40)

is conservative because it ignores the fact that the
slower modes (smaller A,) have smaller weights
as revealed by (28) and (30). Nevertheless, the
slower modes eventually dominate, so that the
larger the spread is, the slower the algorithm is in
terms of reaching steady state.
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(iv) Optimum  Step-Size  Sequence: The
optimum step-size sequence for the GD algorithm
can be obtained by equating to zero the derivative
of e, ([i+1]K) in (18)’, with respect to u, which
yields
_ V'GK)R?*V(iK)

" VI(GK)R?V(iK)

po(iK)

Use of the bound
Amin VIGK)R?*V (iK)
< V'(iK)R’V(iK)
< Apmax VI(iK)R*V (iK)
in the demoninator yields
omin< po(IK) < tmax,
Panin ™1/ Amas Hmax = 1/ Amin- (41)

Another approach to maximization of speed of
convergence is to minimize the nominal time con-
stant 7., (34), with respect to w. This results in

Knom = tr{ R*}/tr{R"}, (42)

and

-1
Tgom=K{ln< 1 )} ,
11—«

a £ pion tr{ R/ tr{ R} = p0onhave(1+ p).
(43)

It should be noted that w2, is within the bounds
(41).

In conclusion, the essence of the difference
between (18) for the SGD algorithm and (18)’ for
the GD algorithm is that E{-} vanishes in (18)'.
In addition, h vanishes in (18)', and the form of
G is different in (18)' than it is in (18) because
the term w?S/K in (20) vanishes in (20)’.
However, the fact that the form of G is different
has no bearing on the existence of an explicit
solution of the form

e,(iK) = VT(0)G'RV(0),

although the form of G does determine the rates
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of convergence (time-constants) of the N
exponential modes which comprise e4(iK).
Similarly, the presence of a non-zero h in (18)
would simply make the linear recursion non-
homogeneous, in which case M # 0. In contrast to
these minor differences, the presence of the
expectation operator E{-} in (18) smears the
simple evolutionary law, (18)’, and in effect intro-
duces a coupling between modes that cannot be
removed by a transformation of coordinates (as in
(27)). Nevertheless, in the special case for which
the elements of X (i) are jointly Gaussian, a partial
decoupling can be accomplished, and is directly
responsible for the explicit formulas, in terms of
N coupled recursions, for exact characteristics of
the learning curve derived in Section 3.C. Unfortu-
nately, no decoupling of modes can be accom-
plished in the general case of non-Gaussian data.
And it is for this reason that the exact solution
involves N? (actually, only (N*+N)/2, due to
symmetry) coupled linear recursions, as revealed
in Section 3.B.

As a final remark, it is mentioned that the effects
of the degree of randomness of the stochastic
gradient in the SGD algorithm are explicitly
characterized in Sections 2 and 3, through the
explicit dependence of learning characteristics on
the gradient-averaging time-interval, K.

2.C. Isolation of effects of particular data
distribution

The only parameter in formula (18) that
depends on the distribution of X (i), through more
than just the covariance matrix R, is the matrix S,
which depends on the fourth joint moments of
X (i). This matrix can have a significant effect on
all of the characteristics, (i)-(iv), of the learning
curve. To illustrate the nature of the effects of the
distribution of the data, without undue complica-
tion, the case of independent identically distributed
(i.i.d.) elements of the training vector is con-
sidered.

If the elements of the vector X (i) are indepen-
dent and have identical even distributions, with
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variance and kurtosis* denoted by o7 and v,, then
h and the matrices R and G in (14) and in (18)—
(20) reduce to
R =], G=I, (44)
+ —
’)/=1_2}L0')2(+M20'1<1+Mx—2‘>,
K
h=¢go(uo?)*N/K.
Substitution of (14) and (44) into (18) yields
e ([i+1]K) = ye,(iK) +h, (45)
which can be solved to obtain

8*(iK) = [5*(0) - 8*(00)] e /T4 3*(00)7

(46)

where
e4(0)=h/(1—7), (47)
r=K{n(1/y)} " (48)

(i) Stability: It follows from (45) that the SGD
algorithm (2) is stable if and only if

lyl<1. (49)

Substitution of (44) into (49) yields the follow-
ing maximum value (supremum) of the step-size
parameter for which the SGD algorithm is stable

p*=2|:a'i(1+—]\]+—1?_—2>:|_ ) (50)

Hence, distributions with large kurtosis, v,, require
small step-size for stability. Similarly, the larger
the parameter ratio N/K is, the smaller the step-
size must be. This should be contrasted with (31)
for the GD algorithm, for which stability is
independent of the parameters v,, N, K. We note
however, that (31) is the limit of (50) as K —» 0.
(ii) Final Misadjustment: It follows from (47)
that the misadjustment for the SGD algorithm is

_ Ui
M A K + v 2) )
N d

72 uwoiN/2K. (52)

(51)

4 The kurtosis, v,, for a zero-mean variable, x, is defined by
v, = E{x*}/(E{x*})*. For example, », = for the Cauchy dis-
tribution, v, = 1—its minimum value—for a binary symmetric
distribution, and v, =3 for a Gaussian distribution.

Hence distributions with large kurtosis require
smaller step-size for a given misadjustment.
Similarly, the larger the parameter ratio N/K is,
the larger the misadjustment is. This should be
contrasted with the fact that M =0 (32) for the
GD algorithm. We note, however, that (32) is the
limit of (51) as K » .

(iii), (iv) Initial Rate of Convergence, and
Optimum Step Size: The initial rate of convergence
(1/7) is given by (48). This rate is as high as
possible when v is as small as possible. It follows
from (44) that the minimum value of y is

‘)’0:1_,“00')2(, (53)
and is achieved with the step-size u =

o= [az(ui%d)]_ =uy/2. (54)

Formula (54) should be contrasted with (41) and

(42), for the GD algorithm, which reduce (using
(44)) to

po=1/0 )2c (55)
Hence, for the SGD algorithm, the initial optimum
step-size is smaller by the factor K/ N (for K/N <
1).

Substitution of (54) into (53) yields

_ (N+»-2)/K
Y Y (N+v,—2)/K’

(56)

Hence, maximum initial speed of convergence is
low for distributions with large kurtosis. Similarly,
the larger the parameter ratio N/K is, the lower
the maximum initial rate of convergence is. We
note that for large values of (N +v,—2)/K, (56)
is closely approximated by

Yo=1-K/(N+v,—2), (57)
in which case '

To=N+vr,—2. (58)

2.D. Isolation of effects of data corruption

As briefly discussed in Section 1.B, there are
many applications for which the desired signal d
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is unavailable for adaptation but for which a related
(corrupted) signal d is available instead (cf. Figs.
1, 3, 4). As a result, the error signal e (5) is
unavailable for use in the SGD algorithm (2), and
the related (corrupted) error signal

)2 d(i)—d(i) (59)

must be used in its place. If an interference (corrup-
tion) signal & is defined by

82 d(i)—d(i) (60)

(e.g., =n in Figs. 1, 4,'and 8 =s in Fig. 3), then
the error signals € and e are related by

e(i)=e(i)+58(i). (61)

If 6(i) and X (i) are orthogonal (as they are, for
example, in the applications depicted in Figs. 1
and 3), then the GD algorithm is unaffected by
the interference &, because E{e(i)X(i)}=
E{e(i)X (i)} in (4). On the other hand, the SGD
algorithm (2), is indeed affected by 6, regardless
of possible orthogonality or even independence
between 6(i) and X (i).

The effects of 6 can be determined simply by
replacing e with é = e + § everywhere that e occurs
in the analysis in Sections 2.C and 3. However,
since e affects only the quantities €, and ¢, in these
results, then we need make only the replacements

€0 Ep, (62)
£4(1) > £4() 2 £(i) — &,
where
£(i) £ E{e*(i)},
’ (63)
&o(i) £ E{é,(i)},

and ¢, is defined parallel to (11) (with d replaced
by d), provided that it is assumed (parallel to the
primary independence assumption) that §(i) is a
zero-mean sequence of independent elements. A
significantly simplifying assumption that is justifi-
able for many applications is that §(i) is orthogonal
to both X (i) and d(i). In this case,

£o=¢9+ 03 (64)
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and
£,(1) = e4() +2E{e() (i)}, (65)

where o3 is the variance of the interference 8(i).
Furthermore, since 6(i) is orthogonal to e(i), then
(65) reduces to

E4() = £,(i), (66)
from which it follows that
E(iy=¢e(i)+ o2 (67)

Therefore, the dynamics of (i) are the same as
those of £(i). Hence, the only modifications to be
made to the analysis in Sections 2.C and 3 follow
from the appropriate modification to the constant
driving term h in the learning curve equation (18);
i.e., h gets multiplied by the degradation factor, D,

Dégo/80=1+0'§/80. (68)
The consequences of this are:

(i) Stability: unaffected

(ii) Final Misadjustment: M is replaced with M,
which is given by formulas in Sections 2.C and 3.
But the misadjustment factor of real interest is still
M, not M, and

M =MD, (69)

where M is given by the formulas for M in Sections
2.C and 3. A
(iii) Initial Rate of Convergence: unaffected
(iv) Optimum Step-Size Sequence: The instan-
taneous misadjustment M (i) = ,(i)/ &, is replaced
with

M (i) = £,(i)/ éo=M(i)/ D (70)

in the formulas for wq(i) in Section 3, which leaves
the initial optimum step-size unaffected, but multi-
plies the final step-size arithmetic sequence by the
attentuation factor 1/ D.

In the special case for which g,=0, we cannot
divide by &9 as in (68)—(70); however, the
appropriate counterpart of the result (69) is

lim e(i)=]\710§, (71)

i->o0
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where M is given by formulas for M in Sections
2.C and 3.

3. General formulas for learning characteristics

In this section, formulas giving exact evaluations,
approximate evaluations, and bounds on learning
curves and characteristics are derived.

3.A. Bounds on characteristics

The simplicity of the preceding analysis (Section
2.C) of the first-order, linear, time-invariant recur-
sion (45) for the learning curve for the special case
of i.i.d. elements of the training vector, X (i), moti-
vates the approach of seeking bounds on the learn-
ing curve (18), for the general case, that are of
the form (45).

It is well known that a quadratic form such as
that in (18) can be bounded by another quadratic
form as follows

<E{V"(iK)GRV(iK)}
< YmaxE{ VT (iK) RV (iK)}, (72)

where v,,, m = min and max, are the minimum and
maximum eigenvalues of the matrix H,

HA2{(G+GYH=(I—uR)*+u*(S+8")/2K.

(73)-

Both vy, and 7y.,., are non-negative since G is
non-negative definite. Substitution of (72) \and
(14) into (18) yields

ex([i+11K) = e, (iK)+h. (74)
It follows from (74) that the learning curve is
bounded above and below by

Smin(iK)s 8*(11{)S emax(iK): (75)
where
em([i+1]K) = ¥pnen (iK) + h, (76)

£(0) = £,(0),

for m = min, max.

It follows from (76) that
Em(iK) = [£4(0) = £,(00)Je™ /™ + g,,(c0),

(77)

where
em(0) =h/(1=7v,), (78)
T 2 K{In(1/y,,)} . (79)

(i) Stability: Since the exact learning curve must
be stable (lim e, (i), i— 0, exists), if its upper
bound is stable, then a sufficient (but not necessary)
condition for stability is

| Ymaxl <1. (80)

Similarly, a necessary (but not sufficient) condition
for stability is

I'Ymin|<1' (81)

(ii) Final Misadjustment: It follows from (72)-
(78) and (19) that the exact final misadjustment
(23) for the SGD algorithm is bounded by

Mmin =M= Mmax7 (82)
Ams) N/ K
M,, é%‘ (83)

(iii) Initial Rate of Convergence: It follows from
(75)—(79) that the exact effective initial time con-
stant (24) is bounded by

Tmin =T Tmax> (84)

T 2 K{In(1/7,,)} . (85)

(iv) Optimum Step-Size Sequence: Since the
optimum sequence of step-sizes for a bound on
the learning curve is not, in general, a bound (or
even a useful approximation) to the optimum
sequence of step-sizes for the exact learning curve,
we cannot use the bounds (77) to investigate step-
size optimization. However, quadratic-form
bounds analogous to (72) can be used to obtain
bounds on the exact optimum step-size sequence
as follows. In order to minimize e, ([i+1]K) at
each adjustment instant, iK, the derivative of (18)
(which is quadratic in w), w.r.t. u, is equated to
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zero to obtain the condition

o(iK)

_ E{V'(iK)R*V(iK)}

E{VT(iK)[R*>+S/K]RV(iK)}+ eqA\2, N/ K’

(86)

which is implicit since V(iK) depends on uo([i—

1]K). Substitution of (86) into (18) yields

e, ([i+1]K) =€,(iK)

— mo(iIK)E{VT(iK)R*V (iK)}. (87)

Now, use of bounds analogous to (72) in both the
numerator and denominator of (86) yields

I‘Lgnn(lK)g/-LO(IK)gl"'glax(lK)’ (88)
0 . A /\maxM(iK)

4L 89

Hmax(IK) = 5 G + A NTK (89)

(and similarly for w2, (iK)), where M (iK) is the
instantaneous misadjustment, defined by

M (iK) £ ¢, (iK)/ &0, (90)
and 8., is the minimum eigenvalue of the matrix
D

D2R*+(S+S8")/2K. (91)
Furthermore, by bounding the quadratic form in

(87), the following bounds on the exact step-size-
optimized learning curve, £3(iK), are obtained

[1 = Amax o (iK) €% (iK) < £3 ([i +1]K)
<[1— Apinko(iK)]eL(K). (92)

Consider now the two extremes of initial and final
behavior.

Initially, M(iK)> 1, and (89) reduces (since 3,
typically has order of magnitude A7, N/K,

which—for example—is easily verified for
Gaussian X (i)) to
/J’g-nax(iK) = )‘max/ 6mim (93)

and similarly for uoi(iK). (For the special case
considered in Section 2.C, (93) reduces to (54).)
Use of bound (93) in (92) yields

E?k(o)(l - /\rznax/ Bmin)i = Ei(lK)
= 82:(0)(1 _)‘ﬁdin/ 6max)i’ (94)
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from which it follows that the minimum initial
time-constant is bounded by (84)—(85), with yuin
and Ymax replaced with y2;, and Yo

ygﬁn £ 1 - /\fnax/ 6min- (95)

Finally, M(iK) <1, and the counterpart of (89)
reduces to

) = O X /KO ) 3K,
(96)
Use of (96) in (92) yields
eQ([i+1]K) <[1—c,e(iK)]en(iK), 97)
where ¢, is a constant. But since ‘
e ([i+1]K) < e(iK), (98)
(97) implies

eo(li+1]1K) <{1—c e ([i+1]K)}e%(iK),
(99)
which is equivalent to

eq(iK)

e ([i+1]K) ST e oGk K
k

(100)
The solution to (100), with the inequality replaced
with equality, yields the upper bound

eQ(IK)<(cy+¢,iK) "< (¢;iK) 7" (101)

Use of (101) in the counterpart of (96) yields an
upper bound on uo..(iK) and therefore on
wo(iK), viz.,

woliK) < c3/iK. (102)

It is concluded that both the exact optimum step-
size and the exact excess MSE decrease at least
arithmetically in the final stages of convergence.
This should be contrasted with the optimum step-
size sequence for the GD algorithm. As revealed
by (41), the speed-optimized GD algorithm does
not exhibit an arithmetically decreasing step-size
(because its final misadjustment is zero for a fixed
step-size).

For the special case of independent elements of
the vector X (i), which is addressed in Section 2.C,
all upper and lower bounds (preceding (98) in this
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Section (3.A)) coincide to give exact formulas.

However, the stronger the dependence among the

elements of the vector X (i) is, the more disparate
the upper and lower bounds in this section are.
This is a result of the well-known fact that as the
correlation among a set of variables increases, the
ratio of the maximum-to-minimum eigenvalues of
the corresponding correlation matrix increases. As
a result, the quantitative utility of these bounds,
when used directly, diminishes (although their
qualitative interpretations can remain useful) as
dependence increases. For this reason, exact for-
mulas for learning curves are developed in the next
section.

3.B. Exact solution for learning curve

It follows from (16), using both the primary and
secondary independence assumptions, that the
excess weight correlation matrix,

Ry (iK)2 E{V(iK)V"(iK)}, (103)
satisfies the linear recursion

Ry ([i+1]K) = E{A(K) Ry (iK) A (K)}

2
o (104)
K

Ry (iIK+q)=Ry(iK), ¢q=1,2,3,...,k—1.
Expressed more explicitly in terms of the (nm)th
element of Ry, (104) becomes

Ry [+ 1K) = Y Mg Ry (K]

+£ ;j" [Rl..,  (105)
where
Mty 2 ELAGK) ] [AGK) ]} (106)

By concatenating the column vectors of each of
the matrices R, R, (iK), they each can be re-
interpreted as (column) vectors in an NZ-
dimensional space, and the N*XN? array with
elements M, can be interpreted as a linear

operator, (matrix), M, on this space. Then (105)
can be re-expressed as the N?-dimensional vector,
first order, linear, time-invariant recursion

RV([i+1]K)=MRV(iK)+’uK8°

R (107)

The solution to this recursion is

Ry (iK)=M'R(0)

+% [I-M]'[I-M'IR, (108)

which has the steady state value

2

K 20— M1 'R, (109)

Ry () = K

This formula (108), together with (14) yields the
desired formula for the exact learning curve &,(i).
With the aid of a computer, this learning curve
formula can be used to graph learning curves, and
thereby graphically study learning characteristics.

Unfortunately, this formula requires products
with and inversion of an N*x N? matrix (e.g., 10°
matrix elements for a 100 weight filter or a 100
element antenna). A considerable simplification of
this solution, that involves a matrix of dimension
only N XN, occurs in the special case for which
X (i) is Gaussian, as revealed in the next section.

3.C. Explicit formulas for the case of gaussian
data®

If the elements of the data vector X (i) are jointly
Gaussian (with zero mean), then the fourth-joint-

5 The unpublished work of Kenneth D. Senne [19] is closely
related to some of the results in Section 3.C.1. Specifically,
explicit equations and formulas (125), (138), (145), (152) can
be derived (with some algebraic manipulation) from Senne’s
equations. Some of these derivations were carried out by
Horowitz and Senne (independently of the author’s work,
which was not based on [19]), and are reported in [20] (which
was published 6 months after the author’s first disclosure). All
results in Section 3.C.1 and in [20] (for real weight vectors)
follow from (111) as shown herein, and (111) follows from
(104) simply by exploiting the fourth-moment decomposition
(110) for Gaussian variables. From this point of view, the results
in [19] follow from the author’s more general linear recursion
(104) by invoking the Gaussian assumption.
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moment decomposition,
E{x, (8) x,, () 2, (1) x ()}
= E{x, (1) %, () }E{x, (i) x4 (i)}
+ E{x, (1) x, (1) }E{ %, (1) x4 () }
+ E{x, (1) x, ()} E{x,n (1) x, (i)}, (110)

can be used (together with (17), and the primary
independence assumption) to simplify the first
term on the right side of (104),

E{A(K)Ry (iK)A(K)}
= —puR)Ry (iK)(I-uR)
+—'LI§[RRV(iK)R
+tr{RRy (iK)}R)]. (111)
Substitution of (111) into (104) yields
Ry ([i+1]K) =Ry (iK)—uRy(iK)R
—wRRy (iK)

K+
+/.LZTIRRV(iK)R

+%2 [eo+tr{RR (iK)}]R.

(112)

C.1. Learning curve and characteristics.

Equation (112) is still an N*-vector linear, time-
invariant recursion in the N? elements of the
matrix Ry (iK). However, it yields an N-vector
recursion for &, (iK) through use of (14), which is
repeated here

£,(iK) = tr{R, (iK)RY}. (113)

(Also, (112) yields an N-vector recursion for
E{| V(iK)|?, through use of E{|V(iK)|* =
tr{Ry (iK)}.) Specifically, let Q be the orthogonal
matrix composed of the eigenvectors of R. Then

R=QAQ", (114)

where A =diag{A} is the diagonal matrix whose
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N-vector of diagonal elements,

A={0 0, (115)
is composed of the eigenvalues of R. Define the
non-diagonal (in general) matrix I'(iK) by

I'(iK)< Q"Rv(iK)Q, (116)
and denote the N-vector of diagonal elements of
I'(iK) by

(K) = {y (K} (117)

Substitution of (114) and (116) into (112) yields
the following N-vector recursion for the diagonal
elements of I'(iK) (the off-diagonal elements,
which are not of concern here, are specified by an
N?-vector recursion)

2
y([i+1]K)=Fy(iK)+'“T%A, (118)
for which
K+1 w?
FA1- A+<—) ZAZ+ AT
2u K )" K
(119)

Let U be the orthogonal matrix composed of the
eigenvectors of F. Then

F=U diag{f}U", (120)

where diag{f} is the diagonal matrix whose N-
vector of diagonal elements, f ={f,}}, is composed
of the eigenvalues of F. Substitution of (120) into
(118) yields

2
&n([iﬂ]K)=fn&n<iK>+“Ke°X,,, (121)
where
y2UY, AL2U"A (122)

The solution to (121) is

2 i
~ . ~ i M Eg ~ ]._fn

= +E2 207 | —L=
¥n(iK) = ¥,(0)f}, X An[l_fn

By expressing the geometric progression in terms
of an exponential

fo=e %/, (124)

]. (123)
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the time constants of evolution of y(iK),
T = K[In(1/£)17, (125)

are identified. Substitution of (114), (116), (123),
(124) into (112) yields the desired formula for the
learning curve:

uliK) = 3 [ea(0)= ea(0)] e ey o),

(126)
for which
£,(0) =1,7.(0), (127)
_gop’Ai/K
en(o0) =12, (128)
‘and
FORPHACON (129)
£4(0)= él £,(0). (130)

To obtain an explicit formula for the steady state
excess MSE, €,(0), it is easiest to start with (14),

£4(0) =tr{Ry ()R}

=tr{l'(c0)A}

—y @A=L pE, (13D
~ N -~

=7 @=L L. (132)

Substitution of i+1=i=oc0in (121) yields
SO;LZX"/K

1-f.
which, together with (132), verifies (129). Now,

let us use (131), and proceed to evaluate v,(0).
Substituting i+1=1i=00in (118) yields

Yn(0) = (133)

(o) =%(I—F)_1A. (134)

Since I—F is the sum of a diagonal matrix and a
rank-one matrix, it can easily be inverted using

Woodbury’s Identity (e.g. [14, p. 655]) ta obtain

MHEQ 1 1 )
Lo - 135
ne b)) a3
for which
poN An
n

T2K 21— (K +11/2K)pA,

K+ -1
=5%tr{R[I—-2—K1,uR:| } (136)

and
K+1

,3n=—2K M (137)

Substitution of (135)—(137) into (131) yields

(138)

n
E£4(00) =¢ y
) = e
which is the desired result.
To obtain a linear-system interpretation of the

time constants, {7,}Y, it is easiest to again start
with (14)

£, (iK) =tr{Ry (iK)R}
= tr{I'(iK)A}

=yT(IK)A = Izj Ay (K. (139)

Now, let us express equations (118) and (139) in
standard unity-feedback state-variable form [14]

Z(i+1)=AZ(i)+ Blu(i)+ y(i)],

y(i) = CZ(i), ; (140)
where the system state is
Z(i)=v(iK), (141)

the system input and output are

y(i) = £, (iK), (142)

u(l) = &p»
and the system matrices are

+
A=F"BC=I—2[.LA+%/.L2A2,

2

7
B=—7A,
K

C=2" (143)
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Since A is diagonal, the open-loop states are un-
coupled. A signal-flow diagram of this system is
shown in Fig. 6. It follows from the conventional
transfer-function formula for a unity-feedback
state-variable model that this system has transfer
function [14]

_ C(A-z)'B
B =1 ca—n B’

(144)

from which the system poles (and corresponding
time constants, {7,}}) can be obtained as the roots
of the denominator polynomial, which are simply
the eigenvalues of the matrix A+ BC = F,in (119).
(i) Stability: The SGD algorithm is stable if and
only if e, (c0) <co. It follows from (138) that insta-
bility sets in, as the stepsize (u) is increased, when
1 = 1. The corresponding value of w is the solution,
M4, to 7 =1, which can be expressed (using (136))
as
p— 2K .
H T w{RII- (K +1)/2K)uy RT '}

(145)

An explicit approximation for this stability bound
is
2K
H Ry

(146)

To determine the conditions under which (146) is
a close approximation, (146) is substituted into

(145) to obtain

2K 2K
tr{R} tr{R[I—([K+1)/tr{R})RT '}’

which is, apparently®, a close approximation if

(te{R})*

(K+1)< R |

(147)

Since the right side is upper-bounded by N, then

N/K >1 is sufficient for (146) to be accurate.
(ii) Final misadjustment: It follows from (23)

and (138), that the final misadjustment is

M=-—"_ (148)
I-n
A commonly used (small-u)-approximation (cf.
[17, Chapt. 4, and references therein]) for M is

" .
M=—— .
2K tr{R} (149)
It follows, parallel to the argument in the preceding
paragraph®, that this is a good approximation if
both

2K ( N )
FEuRI\K+1

¢ This approximation can be verified by expanding the
inverse matrix into a power series in the matrix ([K+

1]/tr{R})R.

K+1,,2)2
RARRNTL\
K

@
®
®
€o R ,U~2}\n .
‘ K
[
: .
| ° 1-2UA, +
I
L

Fig. 6. Signal-flow diagram of linear system model of learning curve dynamics.
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and

2K

,u,<@. (150)

C.2. Steady state behavior of weight vector

In order to obtain an explicit formula for the
steady-state autocorrelation matrix, R, (o), for
the weight-error vector, V(i) defined in (15), it
would appear that the N?-vector recursion (112)
must be solved. However, the non-diagonal matrix
I'(iK) is asymptotically (i o) diagonal so that
again we need the solution for only the N-vector
recursion (118). Substitution of (135)—(137) into

Ry ()= QI'(0) Q" (151)
yields
T O U S R
RV(OO)_ZK (1_7')[1 K ,uR] .
(152)

This solution is _easily verified by substitution into
(112) with i=1+1=o0.

A commonly used (small—u)-approximation
(cf.[15],[16], and [17] and references therein) for
Ry () is

Rv(oo)zg—;{ol. (153)
It follows from (152) that (153) is an accurate
approximation if u is small enough to satisfy (150).

In applications of the SGD algorithm to spectral
analysis problems, the spectral characteristics of
the weight vector are of interest (e.g. [15]). It is
known (e.g. [6]) that in steady state,

W(i)=W,+ V(i), (154)

where W, is, of course, non-random and V(i) has
zero steady-state mean. Therefore the steady-state
autocovariance of V(i) is identical to its steady-
state autocorrelation (152). It is now assumed that
the elements of X (i) are x,(i)=x(i—n), as dis-
cussed in Section 1.B.1. It follows from (9), and
the theory of discrete-time Wiener filtering
(and/or the theory of asymptotics of toeplitz

matrices [21]{23]) that the discrete Fourier trans-
form (DFT) of the sequence of mean weights,
Wo(1), wo(2), wo(3),..., wo(N) is approximated
by

DFT{Wo} = Sax(f)/ Sx(f), (155)

where S,, is the cross spectral density of d(i) and
x(i) (from which X (i) is derived as {x(i), x(i—
1),...,x(i—N+1)}),and S,(f) is the power spec-
tral density of x(i). The approximation is close for
N much greater than the correlation time of x(i),
and becomes exact as N - 00. Furthermore, in
steady state, the elements {v;(i)}] of V(i) are
correlated stationary random processes with time
index i. Moreover, with i fixed the N-vector V(i) =
{v,(i), v,(i), ..., on ()} ={v;(i)}} can be viewed
as a segment of a random process with index j.
The autocovariance of this zero-mean process is

Ry»y(J, k)= E{Uj(i)vk(i)} = [RV(i)]jka (156)

and is the (jk)th element of Ry (i). Since R is a
Toeplitz matrix, it follows from (152) that Ry (i)
is, in steady state, the inverse of a Toeplitz matrix.
Thus for sufficiently large N (N much larger than
the correlation time of the process x(i)), Ry (i) is
approximately Toeplitz

Ry (J, k) =R, (j—k). (157)

This approximation becomes exact as N - 0.
Hence the process v;(i) (with i fixed) is approxi-
mately wide-sense stationary, and its power spec-
tral density is (for N - o) the DFT

Sw()= I Rape 7 (158)
It follows from (136), (152), (157), (158), and the

theory of asymptotics of toeplitz matrices [21]-[23]
that

of 1
Son(f) =%(ﬁ)

x[ 1 ] (159)
1—([K+1]/2K)uS.(f)
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where

df.
(160)

Formulas (155) and (159)—(160) comprise the
desired spectral characterization of the steady-
state weight vector for large N. It follows from
(159) that for sufficiently small values of w, Syi)(f)
is accurately approximated by a constant, indepen-
dent of frequency, f, in which case the weight
process is white.

Finally, the physical significance of S,;( f) is that

e[ S:f)
"T2K ) a1 (K +1/2K) uS.(f)

E{% IDFT(V(DI?| = S 1 (161)

i.e., the left side of (161) is a smoothed version of
the right side (with smoothing-window width
1/N), provided that N is sufficiently large to vali-
date (157). This is a standard result from the
spectral theory of stationary processes.

3.D. Approximate misadjustment formula for non-
Gaussian data

It follows from (14) and (18) that in steady state
£4(00) = tr{Ry () R} = tr{ Ry () GR} + h,

(162)
which can be manipulated into the form
2

© 2

— Jtr{R
M=) (K> ) (163)

=10 1 _tr{Rv(W) GR} '
tr{ Ry () R}

In obtaining this formula, no simplifying assump-
tions other than the primary and secondary
independence assumptions (to obtain (162)) were
used. From this characterization for M, the upper
and lower bounds (83), in terms of the extreme
eigenvalues of G+ G, can be obtained directly.
As an alternative, motivated by the approximation
(153) (cf. [15], [16]), which yields

tr{Ry (©)GR} _tr{GR}
tr{Ry ()R}  tr{R} ’

Signal Processing

(164)

M can be approximated, from (163) and (164) by

_ (w*/K)tr{R*}
1-tr{GR}/tr{R}

Use of (20) yields

(165)

tr{ GR} = tr{(I — /.LR)ZR}+% tr{SR}, (166)

which upon substitution into (165) yields

M,

M= 1—M [tr{SR}+Ktr{R3}]’ (167)

°L t{R}r{R?*}
AP
My,= 2K tr{R}. (168)
Substitution of (20) for § into (167) yields
M,

" 1- M, [tr{[KX +(K— 1)I]R3}]’ (169)

0 tr{ R}tr{R?}

where Kx is the kurtosis matrix

Kx = E{(X()X () PHE{X () XT(D)}] >
(170)

As an example, if the elements of X (i) are i.i.d.
(non-Gaussian in general), then (164) is exact, and
consequently (169) reduces to the exact formula
(51)—(52). On the other hand, if X (i) is Gaussian,
then the approximation (164) can be shown to
agree closely with the exact formula (148) only if
w is sufficiently small to render (149) an accurate
approximation.

4. Critique

4.A. Independence assumption

It is important to emphasize that the useful
characterization (14) of excess MSE is, in general,
invalid if X (i) and d(i) are not each independent
sequences. In [6, Secs. VII, IX] and [3, p. 547],
(14) is used without this independence assumption.
As a result, attempts in [6, Sec. X] and [3, p. 551]
to verify the applicability of theoretical learning
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curve characteristics (derived on the basis of the
independence assumption) to situations where the
independence assumption is violated, proceed by
substitution of simulated samples of V(iK) into
(14) to evaluate £,(iK). Hence, the independence
assumption is inadvertently invoked, thereby
invalidating the verification procedure.

4.B. Effects of data randomness

The important matrix § in (20), which vanishes
only for the GD algorithm (or K »c0) and for
binary symmetric data x,(i)= +1 (so that K, =1
in (170)), is omitted from most previous investiga-
tions of SGD algorithms, either by consideration
of only sufficiently small values of u (so that terms
in u? are negligible compared with terms in w)
[5], [6], [17; chapter 4], or through use of
apparently inaccurate—in general—approxima-
tions; e.g., E{x*}=(E{x*)* [3, p.555], or
E{[X() X" (i) Py =[E{X (i) X"()}T*[7, p. 838], or
XT(i)X (i) = NE{x?} [9, p. 307].

4.C. Stability

It is well known that the LMS algorithm réquires
a relatively small step-size for adequate stability.
It would thérefore appear that analyses of thre LMS
algorithm that fdke simplifying siall-stép-size
approximations are adequate (cf. [17, chiapter 4]
and references therein). However, the more gen-
eral SGD algorithm (K >1) can be stable for a
relatively large step size. In fact, in applications
for which K >1 is desirable (see footnote 2), a
good tradeoff between rate of convergence and
misadjustment requires a relatively large step size.

The conditions (80) and (81) yield stability
bounds on u that contradict the bound in [9,
p. 310], where it is concluded (by using a combina-
tion of a bound and an approximation) that w, <
2/ NApax (for K =1). The analysis in Section 3.C
for Gaussian X (i) and large N yields stability
bound (146), which corroborates [10,(46)];
however the Gaussian assumption is hot made in
[10], but rather terms in u 2 are discarded by assum-
ing wm, is small, and by making an apparently

inaccurate—in general—approximation of a fourth
moment [10, Appendix].

4.D. Misadjustment

The exact formulas (148) and (163) contradict
[7, p. 838] where it is concluded that M is propor-
tional to 1/K. The dependence on K in the
denominators in (148) and (163) vanishes in [7]
due to use of the apparently inaccurate—in
general—approximation E{X({)X"()]}=
[E{X (/)X "(i)}]*. In addition, (148) and (163) are
not in agreement with [4, (22)-(24)], which is
obtained through use of an assumed bound on the
norm of W (i) [4, (24¢)]. Also, neither the bounds
(82)—(83) nor the exact formulas (148) and (163)
are in complete agreement with [10, (47)], where
it is concluded (by using an apparently innacur-
ate—in general—approximation [10, Appendix])
that misadjustment is given by M = (u/2) tr{R}
(for K =1). Nevertheless, [10, (47)] is valid for
Gaussian X (i) and large N (cf. (149)), although
the Gaussian assumption is not made in [10]. The
exact explicit formula (148) reduces to the exact
implicit (in terms of eigenvalues or diagonalized
R) formula in [18], for the special case K =1.

4.E. Optimum stép-size

Previous investigations seek characterizations of
the optimum step-size and corresponding
maximum rate of convergence by optimizing u for
an upper bound on &,(iK), [4, pp. 127,129], or a
combination upperbound and approximation
[9, pp.- 307, 310]. In contrast, Section 3.A provides
bounds on the optimum quantities, rather than
optimum quantities for bounds. The bound (93)
does not, in general, agree with [4, (31)], where it
is concluded that o= Apin/A2. (for K =1); nor
does it agree with [9, p. 310], where it is concluded
that wo=1/NA,. On the other hand, the bound
(101) corroborates [4, (35)] (which is obtained by
approximation of inequality [4,(30)] with
inequality [4, (34)] in which some, but not all,
terms of the same order of magnitude are dis-
carded).
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4.F. Time to convergence

Asrevealed in Section 2.B for the GD algorithm,
the fastest modes of the learning curve are, in
general, dominant initially, and the slower modes
become dominant finally. The same is apparently
true for the SGD algorithm (cf. (126)—(127)). This
multimodal behavior complicates the problem of
evaluating the time to convergence. Moreover,
even for a unimodal learning curve (cf. (46)),
time-to-convergence cannot be determined
without knowledge of the initial and final excess
MSE, &,(0) and &,(c0), since this determines how
many time-constants, say Q, are needed to satisfy
the steady-state condition [£,(0)—e,(0)]e %=
e4(c0). Specifically, if £,(0)=Ze (), for some
large number Z > 1, then it is required that Q =
In(Z) time constants. Consequently, analytical
evaluation of time-to-convergence is a challenging
problem that is beyond the scope of this paper.
Nevertheless, the exact formulas for learning
curves given in Sections 3.B and 3.C can be used
to determine time-to-convergence graphically, or
with trial-and-error solution of

£, (iIK) = (1+ &) e, (0),

for some appropriate tolerance, ¢ (e.g., e =1 for
3 dB tolerance), using the exact formulas, (126),
or (113) and (108), for &,(iK).

References

[1] D.T.L. Lee, M. Morf and B. Friedlander, ‘‘Recursive least
squares ladder estimation algorithms”, IEEE Trans. on
Circuits and Sys., Vol. CAS-28, June 1981, pp. 467-481.

[2] A. Gersho, “Adaptive equalization of highly dispersive

- channels for data transmission”, The Bell Sys. Tech. J.,
Vol. 48, Jan. 1969, pp. 55-70.

[3] G. Ungerboeck, “Theory on the speed of convergence in
adaptive equalizers for digital communication”, IBM J.
Res. Develop., Nov. 1972, pp. 546-555.

[4] R.D. Gitlin, J.E. Mazo and M.G. Taylor, “‘On the design
of gradient algorithms for digitally implemented adaptive
filters”, IEEE Trans. on Circuit Theory, Vol. CT-20,
March 1973, pp. 125-136.

[5] B. Widrow, J.R. Glover, Jr., J.M. McCool, J. Kaunitz,
C.S. Williams, R.H. Hearn, J.R. Zeidler, E. Dong, Jr. and
R.C. Goodlin, ‘“Adaptive noise cancelling: Principles and

Signal Processing

applications”, Proc. IEEE, Vol. 63, Dec. 1975, pp. 1692-
1716.

[6] B. Widrow, J.M. McCool, M.G. Larimore and C.R.
Johnson, Jr., “Stationary and nonstationary learning
characteristics of the LMS adaptive filter”, Proc. IEEE,
Vol. 64, Aug. 1976, pp. 1151-1162.

[7]1 R. D. Gitlin and S.B. Weinstein, “The effects of large

interference on the tracking capability of digitally imple-

mented echo cancellers’, IEEE Trans. on Commun., Vol.

COM-26, June 1978, pp. 833-839.

J. Zeidler, “Adaptive enhancement of multiple sinusoids

in uncorrelated noise”, IEEE Trans. on Acoustics, Speech

and Signal Processing, Vol. ASSP-26, June 1978, pp.

240-254.

[9] R.D. Gitlin and S. B. Weinstein, “On the required tap-
weight precision for digitally implemented, adaptive,
mean-squared equalizers”, The Bell Sys. Tech. J., Vol.
58, February 1979, pp. 301-321.

[10] J.E. Mazo, “On the independence theory of equalizer
convergence”’, The Bell Sys. Tech. J., Vol. 58, May-June
1979, pp. 963-993.

[11] D.C. Farden, “Stochastic approximation with correlated
data”, IEEE Trans. on Information Theory, Vol. IT-27,
Jan. 1981, pp. 105-113.

[12] D.C. Farden, “Tracking properties of adaptive signal pro-
cessing algorithms”, IEEE Trans. on Acoustics, Speech
and Signal Processing, Vol. ASSP-29, June 1981, pp.
439-446.

[13] S.K. Jones, R.K. Cavin, IIl and W.M. Reed, ‘““Analysis of
error-gradient adaptive linear estimators-for a class of
stationary dependent processes”, IEEE Trans. on Infor-
mation Theory, Vol. IT-28, March 1982, pp. 318-329.

[14] T. Kailath, Linear Systems, Prentice-Hall, Englewood
Cliffs, New-Jersey, 1980.

[15] J.T. Rickard and J.R. Zeidler, “Second-order output

“'statistics of the adaptive line enhancer”, IEEE Trans. on
Acoustics, Speech, Signal Processing, Vol. ASSP-27, Feb.
1979, pp. 31-39.

[16] N.J. Bershad, P.L. Feintuch, F.A. Reed and B. Fisher,
“Tracking characteristics of the LMS adaptive line enhan-
cer-response to a linear chirp signal in noise”, IEEE Trans.
on Acoustics, Speech, Signal Processing, Vol. ASSP-28,
Oct. 1980, pp. 504-515.

[17] R.A. Monzingo and T.W. Miller, Introduction to Adaptive
Arrays, John Wiley & Sons, New York, 1980.

[18] P. Monsen, “Linear estimation in an unknown quasi-
stationary environment”, IEEE Trans. Sys., Man, Cyber-
netics, Vol. SMC-1, July 1971, pp. 216-222.

[19] K.D. Senne, “Adaptive linear discrete-time estimation”’,
Stanford University Center for Systems Research, Tech.
Report 6778-5, SU-SEL-68-090, June 1968.

[20] L.L. Horowitz and K.D. Senne, ‘“‘Performance advantage
of complex LMS for controlling narrow-band adaptive
arrays”’, IEEE Trans. on Circuits and Systems, Vol. CAS-
28, June 1981, pp. 562-576.

[21] U. Grenander and G. Szegd, Toeplitz Forms and Their
Applications, Berkeley, Calif.: Univ. of California Press,
1958.

(8

[




W.A. Gardner |/ Learning characteristics 133

[22] R.M. Gray, “On the asymptotic eigenvalue distribution [23] R.M. Gray, “Toeplitz and circulant matrices: 11", Infor-
of Toeplitz matrices”, IEEE Transactions on Information mation Systems Laboratory Tech. Rept. No. 6504-1, April
Theory, Vol. IT-18, Nov. 1972, pp. 725-730. 1977, Stanford Univ. Center for Systems Research,

Stanford, Calif. 94305.

Vol. 6, No. 2, April 1984




