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Cycloergodic Properties of Discrete-
Parameter Nonstationary Stochastic
Processes |

RUSSELL A. BOYLES anD WILLIAM A. GARDNER, MEMBER, IEEE

Abstract—1It is shown that a large class of nonstationary discrete param-
eter stochastic processes possess novel ergodic properties, which are re-
ferred to as cycloergodic properties. Specifically, it is shown that periodic
components of time-varying probabilistic parameters can be consistently
estimated from time averages on one sample path. The cycloergodic theory
developed herein extends and generalizes existing ergodic theory for
asymptotically mean stationary and N-stationary (cyclostationary)
processes, and is presented in both wide-sense and strict-sense contexts.

I. INTRODUCTION

HE CONCEPT of ergodicity in relation to a temporal
random process has as its major practical application
justification of the assumptions that a) the long run behav-

ior of time-averaged measurements on a sample path of a |

random process can be predicted from calculated expecta-
tions based on the probabilistic model of the random
process, and b) the large sample behavior of hypothetical
ensemble-averaged measurements can be predicted from
actual time-averaged measurements on one member of the
ensemble (one sample path). In general, these assumptions
simplify mathematical analysis and experimental design.

The great majority of discussions of ergodicity in the
engineering and applied sciences literature treat the prop-
erty of stationarity as a necessary prerequisite for ergodic
properties. This seems intuitively appropriate since a time-
averaged quantity is independent of time and therefore
cannot approximate a probabilistic parameter that depends
on time (i.e., that is nonstationary). However, time-aver-
aged parameters for nonstationary processes are indepen-
dent of time, which suggests that nonstationary processes
can possess ergodic properties associated with these time-
averaged parameters. This is indeed true for both asymp-
totic time averages of expectations for asymptotically mean
stationary (AMS) processes ([1], [2]), and finite time aver-
ages of expectations for cyclostationary (CS) processes ([3],
(4]).

Let Z denote the integers. Loosely speaking (for the
purposes of this motivating discussion) a process {X;:
Jj € Z} possesses AMS properties if asymptotic time aver-
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ages of its probabilistic parameters exist; e.g., if E(X))
exists for all j we define its asymptotic time average to be
J
lim — E(X)).
T oo J jgl ( j)
A CS process is one for which the probabilistic parameters
are periodic (with period N, say) and therefore possess a
time-averaged value; e.g., if E(X;) exists for all j we have

E(X,x)=E(X), JEZ
and
AE(X))= Jim 5 3 E(X)
1 N
=5 2 5%)

Thus, a CS process possesses AMS properties. Ergodic -
properties of such nonstationary processes guarantee the
equality of asymptotic sample-path time averages such as

s . 12
(X} = lim 5 2‘X1
=

with the corresponding time-averaged probabilistic param-
eters, €.g.,

(xH= (X))

Wide-sense ergodic properties guarantee that the above
relation holds in the sense that

2

J ,
lim E };)(j—<{E()(j)}> =0.

J— 00
Strict-sense ergodic properties, on the other hand, guaran-
tee the almost sure equality

{rh={EM)H
for a large class of processes (¥} obtained by applying a
class of measurements (measurable functions) to the origi-
nal {X;} process.
In addition to this type of extension of ergodicity from

stationary processes to CS processes and other nonsta-
tionary processes with AMS properties, ergodicity can be
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extended to CS processes without restriction to time-aver-
aged expectations ([2], [4]-[6]). This results from the fact
that a CS process is equivalent to a vector-valued sta-
tionary process {X,} where

X, = (X(j—l)NHa' : "‘X}N)

(cf. [7]). Note that CS processes are sometimes called
N-stationary [2].

The purpose of this paper is to introduce some novel
ergodic properties of nonstationary processes. We shall
show that CS processes are not the only nonstationary
processes for which time-varying expectations can be con-
sistently estimated from time averages on one sample path
of the process. Specifically, we shall show that periodic
components of time-varying (not necessarily periodic)
probabilistic parameters can be consistently estimated for a
large class of nonstationary processes. Furthermore, we
shall show that, in certain cases, the entire time-varying
parameter can be consistently estimated. We shall establish
convergence of estimators in a wide-sense context (Section
IT) as well as a strict-sense context (Section III). The
material in Section II is easily adapted from discrete-
parameter processes to continuous-parameter processes.
This is not the case for the material in Section II1.

'The general class of processes that is appropriate for the
study of these novel ergodic properties is the class of
processes possessing asymptotically mean cyclostationary
(AMCS) properties. The novel ergodic properties are to be
referred to as cycloergodic properties. Loosely speaking (for
the purposes of this motivating discussion) a process (X}
with AMCS properties is a process for which asymptotic
time averages of sinusoidally weighted probabilistic param-
eters exist; e.g., if E(X;) exists for all j we define 7

e s 12 o

(E(X)e ™)) = lim = 3 E(X,)e ",
J— o0 =1

where « is a real number and i = y— 1. Cycloergodic
properties of such nonstationary processes guarantee the
equality of asymptotic sinusoidally weighted sample-path
time averages such as )

—iaj L 9. 1 ! —iaj

<{Xje }> a thlolo 7}.§1Xfe ’

with the corresponding time-averaged sinusoidally weighted
probabilistic parameters, e.g.,

{Xem b= {E(X)e ).

In Section II we present a relatively straightforward
wide-sense theory of cycloergodicity that incorporates the
results of Gudzenko [4], Kampé de Fériet and Frenkiel [3],
Hurd [6], and Parzen [1] as special cases. That is, only
time-averaged expectations (a = 0) are estimated in [1]
and [3], and only CS processes are considered in [4] and [6].

In Section IIT we present a somewhat less straightforward

strict-sense theory. This theory extends the work of Nedoma
[5] on N-stationary N-ergodic processes and supplements
the work of Gray and Kieffer [2] (since the class of

strict-sense AMS processes turns out to be identical to the
class of strict-sense AMCS processes defined in Section
II1.) Moreover, the class of processes of primary interest in
Section III turns out to coincide with the class of quasi-
periodic measures studied by Blum and Hanson [10]. On
the other hand, Jacobs ([11]-[13]) has developed a theory
of almost periodic measures, but in a more restrictive
setting than that of [10]. His results, therefore, do not carry
over to the class of measures studied herein.

In both the strict-sense and the wide-sense theory, a
subclass of processes of particular interest possessing
AMCS properties is the class of almost cyclostationary
(ACS) processes [8]. Probabilistic parameters of ACS
processes are almost periodic functions of time [9].

There is considerable practical motivation for an investi-
gation of the cycloergodic properties of ACS and other
processes possessing AMCS properties, since these
processes are appropriate models for a wide variety of
phenomena involving cycles, i.e., phenomena giving rise to
processes for which there is some underlying periodicity in
the generating mechanism. In communications, radar, and
sonar, the underlying periodicity arises from periodic sam-
pling, scanning, modulating, multiplexing, and coding op-
erations [7], [14, ch. 8]. It can also arise from interference
caused by rotating reflectors such as helicopter blades, and
air- and water-craft propellers. In mechanical vibration
monitoring and diagnosis for rotating machinery, the peri-
odicity arises from rotation, revolution, and reciprocation
of gears, belts, chains, shafts, propellers, bearings, pistons,
etc. In atmospheric science, the periodicity arises from
seasons caused primarily by rotation and revolution of the
earth. In radio astronomy, the periodicity arises from revo-
lution of the moon, rotation of Jupiter and revolution of its
satellite Io, rotation and pulsation of the sun, etc. A wide
variety of examples of CS and ACS processes are given in
[7], [8], [14], [15], (and references therein). For brevity, they
are not repeated here.

II. WIDE-SENSE THEORY

Let X = {X;: j € Z} be a real discrete-parameter ran- -
dom process with uniformly bounded second moments. We
are primarily concerned with processes possessing wide-
sense AMCS properties; i.e., processes for which limits of
the forms

| Kot K=l
ex(jia) = lim LS E(X,)e ()
K= oo k=k,
and
| kot L=
. Jay .

dy(j; N) = lim 2 2 E(‘X;'+kN) (2.2)

L—oo k=k,

exist for some real numbers «, and some natural numbers
N. We want to determine the conditions under which the
probabilistic parameters cy(j; «) and dy(j; N) can be
consistently estimated from one sample path of the process
X. Thus, by letting X be a function of another random
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process, say Y (e.g., X, = Y, ;,Y;» with fixed parameter j, ),
we can apply these conditions for estimating cyclic compo-
nents of the time-varying mean to problems of estimation
of cyclic components of other probabilistic parameters
such as the autocorrelation
E(X;) = E(Y,,,,Y))

or a spectral density as described in [15]. The term cyclic
component is used here since it follows from (2.1) and (2.2)
that ¢y (J; a) is sinusoidal,

ex(J+ k@) =cx(jsa)e™, VY, keEZ,
and that d,(j; N) is periodic,
dy(j+kN; N) =dx(j; N),

Definition: For any real number «, X is said to be
a-cycloergodic in the mean if

V), k € Z.

2

| kotK—1 : -
pm || %S [ e | <o
(2.3)

forallj, k, € Z.

Definition: For any positive integer N, X is said to be
N-ergodic in the mean if
2

ko+L—1
Jm BT S [ ]| | =0
(2:4)

for allj, k,'€ Z.

Let the covariance of X, and X, be denoted by
cov[X,, X,].

Theorem 2.1: a) The following are equivalent:

ko+K—1 ko+K—1

1 o
Jm s 33 eov[X, X e =o0;
p=ko  q=kg
(2.3a)
| Kotk
: —iak| — 0.
KILH:OCOV *X;'+k0+](—l’f kgko X e =0; (2.3b)

X is a-cycloergodic in the mean.

b) The following are equivalent:
ko+L—1 ko+L—1

1 ,
lim — 3 > cov[XhLPM X}.+qN] =0; (2.4a)
L-o L P=ko  q=kg
| KoL
Llim cov ‘Xj+(k0+L—])N’E 2 Xivin| =05 (2.4b)
oo k=kq

X is N-ergodic in the mean.

The proofs that (2.3) = (2.3a) and (2.4) < (2.4a) are
trivial. The proofs that (2.3a) < (2.3b) and (2.4a) < (2.4b)
are analogous to the argument (for the case a = 0) given in
[16, pp. 74-75].
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In general, a-cycloergodicity for one value of a does not
imply a-cycloergodicity for any other value of a.

Definition: If X is a-cycloergodic in the mean for all real
a, then we shall say that X is cycloergodic in the mean.

It follows from the next theorem that the preceding
ergodic properties are precisely the properties required for
consistent estimation of the cyclic components of a nonsta-
tionary mean. Define estimators by

1 kot K—1
i)t 1 S Xt (29)
k=ky
and
‘ | hotL-
"oy, ~
d,gf)(]?'N) = b 2 X n- (2.6)
k=kg

Theorem 2.2: a) If the limit (2.1) exists and X is a-
cycloergodic in the mean, then

lim E(|e§{‘>(j; a) = cx(Js a)lz) =0,
K- o0

for allj € Z. b) If the limit (2.2) exists and X is N-ergodic
in the mean, then

(2.7)

Jim E(|dP(: V) dy(j N)[) =0, (238)

for allj € Z.

The proofs of a) and b) are straightforward.

The two estimators ¢{) and d{/) are not unrelated. In
fact, each can (in principle, at least) be obtained from the
other, in the special case for which a /2 is rational.

Theorem 2.3: a) If a/2 is rational, then let Na/27 be
an integer. It follows that
At A
N EO O+ p; N)e ™ = o9(js a),  (2.9)
p=
where K = LN. b) Let a,, = 27m/N, and let K/N be an
integer. It follows that

N lim

1 N . A .
Jim S 2 &35 a,) =dP (5 N),

|m=M
(2.10)
where L = K/N.

The proofs are straightforward after substitution of (2.5)
and (2.6) into (2.9) and (2.10).

Although the estimator d{"(j; N) can always be ap-
proximated (M must be finite) with the estimators {&{( J;
a,,)} using (2.10), the estimator ¢{)(j; «) can be obtained
from the estimators {d{")(j + p; N)} using (2.9) only if
a /2w is rational. Therefore a-cycloergodicity is quite dis-
tinct from N-ergodicity when a /27 is irrational.

Wide-Sense Almost Cyclostationary Processes

The preceding results on estimation of cyclic compo-
nents of a nonstationary mean can be applied to the
problem of estimation of the entire nonstationary mean
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provided that it is an almost periodic (AP) function (in the
mathematical sense). A process whose mean and autoco-

variance are AP is said to be wide-sense almost cyclosta-

tionary [8].
Let {E(X,)} be AP in the sense of Bohr [9], with

associated Fourier series
E(X)~ 3 cx(a,)e™.

meZ

(2.11)

Since cy(a,,)e’*/ = cx(J; a,,), then E{X;} can, in princi-
ple, be estimated via estimates of {cx(J; «,,)} (e.g., [17, p.
59)).

Theorem 2.4: If {E(X)} is AP and the partial sums of
the Fourier series (2.11) converge, and X is cycloergodic in
the mean, then

2
=0

(2.12)

lim lim E

M—o00 K— o0

> 803 a,) — E(X)
|m|l=M

forallj € Z.

Even if the partial sums in (2.11) do not converge, there
is an alternative method of summation [9, p. 41] that can
be used to obtain an alternative to Theorem 2.4.

In view of the relationship between d$ and ¢§> when
a,,/27 is rational, it is not surprising that, in this case, we
have the following alternative to the estimation procedure
suggested by (2.12). If ¢y (j; a) = O for all irrational « /2,
then {E(X)} is said to be limit periodic (LP) and

lim dy(j; N) = E(X;)
N—oo

J

(2.13)

uniformly in j [18]. This yields the following theorem, of
which an example is given in [19].

Theorem 2.5: 1f {E(X;)} is LP and X is N-ergodic in
the mean for all N, then

. 2
lim lim E(|a¢(j; N) = B(x)| ) =0. (2.14)

It should be mentioned that if the convergence in (2.2)
and (2.4) is uniform in j, then the convergence in (2.8) and
(2.14) is uniform in j.

Mixing Conditions

Observe that in order to apply Theorem 2.4, one must
know that X is a-cycloergodic in the mean for a possibly
infinite set of values of a. Note further that in order to
apply Theorem 2.2 to the problem of estimation of a
number of probabilistic parameters in addition to the mean
(e.g., the autocorrelation evaluated at a number of lag
values, j,), one must know that each measurement process
whose mean is to be estimated (e.g., X; = Y, Y, for the
problem of estimation of the autocorrelation of Y) is
a-cycloergodic in the mean. Therefore, it would be helpful
to have a single condition (property) that guarantees a-
cycloergodicity in the mean for all measurement processes
of interest and for all real a. Specifically, we would like a

property of a process Y that guarantees the property (2.3)
for all measurement processes of interest, X, on the process
Y and for all real a. .

In the latter part of Section III, several mixing properties
that provide the desired guarantee are given. Although
such mixing properties are rarely amenable to verification
in practice, they do nevertheless provide a conceptual link
between the wide-sense theory presented in this section,
and the strict-sense theory presented in the following sec-
tion.

III. STRICT-SENSE THEORY

The major drawback of a wide-sense ergodic theory is
that it deals with only mean square convergence. Thus,
Theorem 2.2 does not guarantee that for a given sample
path of X the sequence of estimators {é{(j; a): K =

1,2,3, -} converges. And even if it does converge for a
given sample path, Theorem 2.2 does not guarantee that it |

converges to the appropriate quantity, viz., cx(j; «). This
theorem guarantees only that convergence (to cy(j; «))
occurs on the average over the ensemble of all possible
sample paths.

Unfortunately (from a practical point of view), the de-
velopment of a stronger theory of cycloergodicity is in-
timately tied to the development of more abstract mathe-
matical concepts. We therefore begin this section with
measure theoretic versions of definitions of classes of
processes that were loosely defined in the Introduction. As
is well-known for the property of stationarity, the class of
wide-sense stationary processes is much more inclusive
than the class of strict-sense stationary processes. Similarly,
the class of processes on which our strict-sense theory is
built does not include many of the processes to which our
wide-sense theory applies.

Let R denote the real numbers, and let R* denote the
space of all two-way sequences x = (*++, X_, Xg, X, " ")
and let B denote the smallest o-algebra of subsets of R*
containing the finite-dimensional rectangles [20]. Define
the coordinate functions {§;} on R* by

&(x) =x

for j € Z and x € R*. Let S denote the shift operator on
R%*, defined by

S,‘(Sx) = £j+l(x)'

Together with a probability measure p on (R, %), {§ )
= {£,(S7)} comprises a discrete parameter stochastic pro-
cess. In fact, { f(S7)} is a stochastic process on (R%, B, u)
for any %_-measurable function f on R*. In the special
case f=§&,, p is referred to as the distribution of the
process. By the Daniell-Kolmogorov extension theorem
[20], p is uniquely determined by its values on finite-dimen-
sional rectangles, i.e., by the finite-dimensional distribu-
tions of the process {£;}. Thus, studying the process {§,} is
equivalent to studying the measure p. The properties of
{¢;} investigated in this section are more conveniently
phrased in terms of u.
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w is said to be stationary if p = uS, ie.,
p(E) =u(SE), VEE®D,.

We are concerned with the following generalizations of this
concept. p is said to be cyclostationary (CS) if there exists
an integer N such that uSY = p. p is said to be almost
cyclostationary (ACS) if, for each E € B_, {u(S/E)} is an
almost periodic sequence [9]. p is said to be asymprotically
mean stationary (AMS) if the limit

L—1

lim l > w(S*E)
L— o0 k 0

(3.1)

exists for all E € %_. Another class of interest, apparently
smaller than AMS, is the class of asymptotically mean
cyclostationary (AMCS) measures. These have the property
that the limit

hm — 2 p(SKE)e *k
K,

(3.2)

exists for every E € B and every a € R. However, Theo-
rem 3.1 and the bounded convergence theorem show that
in fact AMS C AMCS; hence, AMS = AMCS. Note, how-

ever, that
CS C ACS C AMS.

We now define the concepts of ergod101ty that we shall
study.

Definition: For any positive integer N, p is said to be
N-ergodic if for every E € %_ we have

p(EAS™YE)=0=u(E)=0o0rl,

where “A” denotes symmetric difference.
Of course, this is equivalent to

p(x f(x) = f(5 Y0} = 1
= plxf(x) = E()) =1

for every B -measurable f on R*.

Definition: For any real number a, p is said to be
a-cycloergodic if for every B_ -measurable complex-valued f
we have

p{x: f(Sx) = f(x)e'™,Vj € Z} =1
plxiflx) =E(f)} = 1.

It follows immediately from these definitions that 1-
ergodicity is equivalent to O-cycloergodicity, which is
equivalent to (ordinary) ergodicity.

As far as ordinary ergodic theory is concerned, we can
confine our attention to the class of AMS processes since it
has been shown that p € AMS if and only if the individual
ergodic theorem holds, i.e., if and only if

(3.3)

(3.4)

| K=
p.{x:E > f(S*x) convergesas K — oo} =1

k=0
(3.5)

for every bounded measurable function f on (R®, %) [2].
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Similarly, the following version of the individual ergodic
theorem reveals that as far as cycloergodic theory is con-
cerned, we can confine our attention to the class of AMCS
= AMS processes, since 4 € AMS if and only if

K—1 4
‘u,{xl % > f(S*x)e 'k convergesas K — oo} =1
k=0

(3.6)
and

{x T 2 f(S/*kNx) convergesas L — oo} =1

(3.7)

for every bounded measurable f on (R*, B,), all « € R,
all j € Z, and every positive integer N. In fact, as the
following theorem shows, an even stronger statement is
true. For r = 1, let Q"(r) denote the class of %_-measura-
ble functions f on R® such that {|f(S/)|: j € Z} is
uniformly p-integrable [21; p. 629]. Note that AU'(n) con-
tains all bounded %_-measurable functions.

Theorem 3.1: Let r = 1 and let p be a probability mea-
sure on (R*,%B_). Then u is AMS if and only if the
following statements hold for every f € U'(p): a) for each
a € R there exists f € () such that

— 2 f(Sk) —iak Lsr([’;]

as K - oo b) For each positive integer N there exists
fv € W' (p) such that for all j € Z

2 £( _H‘kN) L’([”)]

- fa (3.8)

In(87) (3.9)

as L — o0.

It is clear that a) and b) imply p € AMS. A proof of the
converse is outlined in the Appendix. It should be em-
phasized that Theorem 3.1 reveals not only that we can
confine our attention to the class AMS, but also that we
must (initially) consider all of AMS, since AMS = AMCS.
It is easily verified that { JA (Sf)} is sinusoidal with proba-
bility 1 and that {fy(S”)} is N-periodic with probability
one:

p{x: £(Sx) = f(x)e'™, Vj € Z} = 1; (3.10)
p{x: fy(87°"%) = fy(87),vj e z} = 1. (3.11)

Furthermore, it follows from Theorem 3.1 that
E(f)= g (fS¥)emi e (3.12)

and
1 Lo
E(f)=lm — 3 E(fs*Y).  (3.13)
L~ L k=0 .

The following theorem reveals that the properties of
cycloergodicity and N-ergodicity are equivalent to certain
mixing properties.
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Theorem 3.2: Let p be AMS, let « € R, and let N be a
positive integer. a) The following are equivalent:

K—1

2 [n(S*4 N B) — p(S*4)u(B)]e " =0,

lim 1
K- o0 K

(3.4a)
forall4, BE®;

hm cov{ 2 f(S¥)e “""k} =0, (3.4b)

for all f, g € A(p);
u is a-cycloergodic (i.e., satisfies (3.4)).
b) The following are equivalent:
-1

‘Llim % 3 [p(8*% N B) — u(S*4)u(B)] =0
—oo by
(3.3a)

foral 4, BE B ;
lim cov{ 2 f(SkN)} =0 (3.3b)
L

for all f, g € WA p);
p is N-ergodic (i.e., satisfies (3.3)).

The proof of Theorem 3.2 is by standard arguments and
is therefore omitted.

Theorem 3.3: For any pu, N-ergodicity implies a-
cycloergodicity for all « € N~ '27Z. If u is AMS, the
converse holds.

A proof of Theorem 3.3 is outlined in the Appendix.

It follows from the next theorem that these ergodic
properties are precisely the properties required for estima-
tion of the cyclic components of the nonstationary mean of
a large class of measurement functions on an AMS process.

Theorem 3.4: Let u be AMS. Then a) p is a-cycloergodic
if and only if

o — E f( ) —wzkas [:U‘]

T E(f) (314
as K — oo, for all f € AU'(p); b) p is N-ergodic if and only
if

2 w2t p iy )

L'(p)
as L — oo, for all f € QU'(p).

This theorem follows immediately from Theorem 3.1,
and the preceding definitions. The quantities E W f ) and
E (fN) in (3.14) and (3.15) (cf. (3.12) and (3. 13)) are the
probablhstlc parameters of interest in strict sense
cycloergodic theory. We introduce notation consistent with

that of Section II by defining

¢ (J; @) = E#(fan) = E#(f:])ei“f,
(@) =¢,(0; @) = E( ).
d/(ﬁ N) = Eu(fNSj)‘

The following theorem reveals that (by contrast with
wide-sense a-cycloergodicity) strict sense a-cycloergodicity
is of no practical interest when a /2 is irrational, because
in this case ¢,(a) vanishes for all AMS p.

Theorem 3.5: Let u be AMS and a-cycloergodic, where
a /2 is irrational. Then,

¢(a)=0, VieU(p).

A proof of Theorem 3.5 is outlined in the Appendix.
This result leads us to consider a smaller class of probabil-
ity measures than the class of AMS measures as the
appropriate domain of study for a theory of cycloergodic-
ity. We denote by AMS* the subclass of AMS p for which

() =0, VfEU(n)

whenever a/27 is irrational. Furthermore, we define the
class

(3.16)

ACS* £ ACS N AMS*. (3.17)

The following lemma shows that ACS* coincides with the
class of quasi-periodic (QP) probability measures studied by
Blum and Hanson [10]. p is said to be QP if the following
holds: given € >0 and E € % there exists a positive
integer N such that

IL(S/E) — p(S/THVE)| < e
for all integers j, k. Clearly
QP C ACS. (3.18)

Lemma 3.6: Let h: Z — R be AP. Then the following
are equivalent: a) limg_ (1/K)SX-Jh(k)e i*k =0 if
o/2m irrational; b) there is a sequence {%,} of periodic
sequences such that 4, — h uniformly on Z; c) given € > 0
there exists a positive integer N such that | () — h(j +
kN)|<e, for all integers j, k

The equivalence of a) and b) is already part of the theory
of almost periodic functions [18]; the proof that b) < c) is
straightforward, and is omitted. A sequence h: Z — R
possessing property b) is said to be limit-periodic (LP).

The next theorem records some results from [10] con-
cerning ACS*. First we introduce some additional
terminology.

Definition: If p is AMS*, and p is a-cycloergodic for all
a such that a/27 is rational, then we shall say that p is
cycloergodic.

In view of Theorem 3.3, p is cycloergodic if and only if g
is N-ergodic for every positive integer N. Let ACS¥ denote
the class of cycloergodic measures in ACS*. For any g in
AMS, let & denote the stationary measure defined by
- ] K= .

K—»nclgov K kEOM(S A)’

i (A) AED,.
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Recall that p < & [2]. A set A € B is periodic if SV = A
for some N.

Theorem 3.7: (Blum-Hanson) Let u be ACS*. Then we
have a) pis ACS§ if and only if p is an extreme point of the
set ACS*. b) If uis ACS§ then p is ergodic. c) Let 4 belong
to the o-algebra generated by the periodic sets.

If for such 4 u(A)>0 implies po(A4) >0 for some
Lo € ACS§, then we have a “cycloergodic decomposition”
for w. Specifically, there is a o-algebra ¥ of subsets of
ACS{ and a probability measure P, on (ACS§, Z) such that
for every 4 € B_ the function » — »(A) is S-measurable
on ACS{, and moreover

pA)=[ s(4)dB(»), AE€BD,. (3.19)
ACS§

See [10] for proofs of the above statements and a more
precise description of the decomposition (3.19). Also, it is
shown in [10] that ACS* is strictly larger than the class of
denumerable convex combinations of periodic (CS) proba-
bility measures.

Mixing Conditions

It follows immediately from Theorem 3.2a) that the
following weak mixing property is sufficient for cycloer-
godicity:

K—1
lim — 3 (84 N B) — u(S*4)p(B)|= 0,
K- o0 K k=0

(3.20)

forall 4, B € %_,. A similar kind of mixing property plays
a role in the wide-sense theory presented in Section I1.
Consider the following three properties:

lim [p(S/"%4 N S/B) — p(S/**4)u(S’B)] = 0

|k|—
(3.21)
uniformly inj€ Zforall4, BER_;
K—1
lim — 2 |u(Sk4 N SXB) — p(S*4)u(S¥B)|=0
K—»oo
(3.22)
forall4, BE€®_;
| K21
lim covq f(SX7), — 3 f(S¥)e ikt =0,
Koo K=o
(3.23)

for all f € A*(u), and all a € R.

Property (3.21) is uniform strong mixing, and is equiva-
lent to ordinary strong mixing when u is stationary. Prop-
erty (3.23) is simply the cycloergodicity-in-the-mean
property (2.3b) for all f € Q*(p). Furthermore, property
(3.23) modified by the replacement f(S*~!) — g is simply
the cycloergodicity property (3.4b). Similarly property
(3.22) modified by the replacement SXB — B is the weak
mixing property (3.20).
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Theorem 3.8: (3.21) = (3.22) = (3.23).
The proof is straightforward.

Estimation for ACS Processes

Theorem 3.9 below is the strict sense analog of Theorem
2.4 on mean square estimation of an AP expectation. It is
easily shown from the definitions of ACS and ACS* that a
measure p is ACS (resp. ACS*) if and only if {E,( 1S} is
AP (resp. LP) for every f € A'(p). Let p be ACS* and
denote the Fourier series associated with the LP sequence
(E(fS))) by

) E,(fs/)~ (3.24)

2 ola,)e™,

mezZ

for any f € AU'(p).

Theorem 3.9: Let p be ACS¥, and let f € AU'(n). As-
sume that the Fourier series (3.24) converges. Then for
everyj € Z

lim lim

(K) i, —
(am)e =
M- o0 K- !m|<M

E,(fS7) (3.25)
in L'(p) and with p-probability one, where &5(a)
= (1/K)2EZ o f(S¥)em ok,

Theorem 3.9 follows immediately from Theorem 3.4.
Theorem 3.10, the strict-sense analog of Theorem 2.5, is
also an immediate consequence of Theorem 3.4.

Theorem 3.10: Let p be ACSY and let f € A'(n). Then
for allj € Z,

lim llm dP(j; N) =E (/87)
N—-oo L—

in L'(p) and with probablhty one, where d(L)( Jji N)
= (1/L)SEZf(STHRY),

(3.26)

Gaussian ACS Processes

We denote the mean and correlation sequences for a
process {§;} by -
E,u('gj )

M) =
K(j i) =E(&¢)-

It is well-known that if {£;} is Gaussian, then p is sta-
tionary if and only if M(j) and K(j, i) are independent of
J- Furthermore, if {§;} is Gaussian, then p is cyclosta-
tionary if and only if there exists an integer N such that
M(j) and K(j, i) are each N-periodic in j for all i. One
might suspect that a similar result would hold for the class
of ACS* (or ACS) measures. Our present understanding of
the situation is summarized by the following theorem and
corollary. Let & denote the field of finite-dimensional sets
in %®_, and let C(s,,---,s,) denote the covariance matrix
for §s|, gh,- . -,ésn.

Theorem 3.11: Let {¢} be Gaussian. If for all i € Z,
the sequences {M(j)} and {K(j, i)} are AP (resp. LP) in j,
and if the determinant of C(s, + j,---,s, + j) is bounded
away from zero uniformly in j for every fixed positive
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integer n and every fixed set of n integers sy, 5,, - ,s

39y

then the sequence {i(S7A4)} is AP (resp. LP) for all4 € &

Corollary 3.12: Assume, in addition to the hypotheses of
Theorem 3.11, that u is AMS. Then p is ACS (resp. ACS*).
Proofs of Theorem 3.11 and Corollary 3.12 are outlined
in the Appendix.
- An open question is whether or not for a Gaussian
process, wide-sense cycloergodic properties imply corre-
sponding strict-sense properties.

IV. CONCLUSION

To the extent that the wide-sense and strict-sense theo-
ries of cycloergodicity presented in this paper mimic the
corresponding theories of ordinary ergodicity, these theo-
ries appear to be appropriate, with regard to the general
application of estimating cyclic components of nonsta-
tionary expectations, as discussed briefly in the Introduc-
tion, and in more detail in [15]. Nevertheless, there are
some bothersome aspects of the strict-sense theory. In
particular, the fact that for an AMS a-cycloergodic mea-
sure, the cyclic components c¢,(a) corresponding to all
uniformly integrable measurement functions f vanish if
o /2 is irrational is disturbing. To illustrate, we consider
the example of a nonstationary process composed of inde-
pendent Bernoulli variables {£;} whose sequence of param-
eters {p;} is AP, e.g,,

1 1 .
pj=5+zcos(]).

For f = §,, we have

I —ik
(1) = Kh_r)r:o X IEOE”(&,{)e
K—1
= lim = Y pe
K=o B y—p
= 1/8 0.

Thus, c,(a) # 0 for an irrational a/27, viz.,, a/27 =
1/2m. It follows from Theorem 3.5 that p is either not
AMS, or not a-cycloergodic for a =1, and therefore
Theorem 3.4a) does not apply to this Bernoulli process.
Nevertheless, by the strong law of large numbers, the AP
sequence of parameters { p;} can be estimated with proba-
bility-one convergence of estimators. More generally, for
any process {§;} consisting of integrable independent ran-
dom variables, one can construct a strongly consistent
estimator of ¢,(a) (where f= £;) whenever c,(a) exists.
However, if ¢,(a) 7 0 for irrational a /27 then by Theo-
rem 3.5 p is either not AMS or not a-cycloergodic. Since
neither of these properties can be deduced from finite-di-
mensional considerations, we cannot be more specific.

The preceding discussion shows that there exist processes
that possess strict-sense cycloergodic properties, but do not
belong to the class AMS*. Thus, a strict-sense theory of
cycloergodicity inclusive enough to cover all applications
of practical interest does not yet exist. Moreover, such a
theory cannot presuppose the existence of a dominating
stationary measure, as does the theory presented herein.

APPENDIX

Proof of Theorem 3.1: Assume p is AMS. The formula,
K—1
B(A) = lim 2 w(st), A€,
defines a stationary probability measure on (R*, %) having the
property that p < [2]. The convergences in a) and b) follow,
with u replaced by p, from the individual ergodic theorem for
stationary processes [21]. Now use p < to obtain almost sure
[p] convergence. The L'(p) convergence now follows from the
uniform p-integrability of {| f(S/)|"} by standard arguments.

Proof of Theorem 3.3: The first statement is obvious. For the
second, assume p is AMS and a- cycloergod1c foralla € N~ '27Z.
Let A, B € %, and define

h(k) = p(s*4 0 B) = u(S*)n(B)
for k € Z. Now by Theorem 3.1b) the limit

K—1

1 -
> Tgirany
k=0

~ A

1,(j) = lm —

A(J ) Koo K
exists almost surely [p] for all j € Z. Here 1 g denotes the
indicator function of any event E € B_. It follows that

L[5
almost surely [p]. Let () denote the integral (du) of the left

member in the above equation. By the bounded convergence
theorem we have

K—1

—u(B)] = Jm i 2 Tsran[15 = n(B)]

K—1
1
)= lim - 3 A(j+ kN).
(/) KWKEO (J + kN)

Thus n: Z — R is a periodic sequence with period N. Moreover,
for n € Z we have

N—1

1 o
- 2 n(j)e—xZﬂ'_/n/N
N =
Jj=0
| kSl N
= lm — X + X h(j+kN)e /N
K- K20 N 5o
| Kv-1
— 1 —i2nkn/N —
dim ey goh(k)e 0

by Theorem 3.2a). Thus we have
n(j) =0,
By Theorem 3.2b), p is N-ergodic.

jez

Proof of Theorem 3.5: Let f € A'(n) and assume ¢ (@) #0.
Define

| K= »
Q= {x: X > f(Skx)e ek - c/(a)}.
k=0
Then @ € B, and by Theorem 3.4 p(Q) = 1. Moreover
| K=
S"Q = {x: X > f(Skx)emi*k - ¢ (a)e"""}
k=0
Since cf(a) #0, we obtain (S"Q)N(R)= T unless n €

a”'27Z, in which case S"Q = Q. Suppose that Z N (a~'272)
= {0}. Then

(5"Q) N (S"Q) =&, n+*m.
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But p <, so p(Q) =1>0=p(R)>0=p(S"Q) = p(2) >0
for all n € Z, since p is stationary. Thus

,E( U S”Q) = > 5(S"Q) = + oo,
neZz nez

a contradiction. It follows that Z N (a~ '27Z) contains n 7 0,
ie., a =2wk/n for nonzero integers k, n. This contradicts the
assumption that a /2 is irrational, hence we must have c¢,(a) = 0.

Proof of Theorem 3.11: Let s,,---,s, be fixed integers. Set
C(j)= C(s, +j, -8, +j) for all j € Z. The joint density of

& 1jr &+ 1s given by
50 = @m) I e, e R,

where

N T Ay oyl .

0(j,0) = 5(t=m(j)) C(j) (t=m()))
and
N & . 1T
m(j) =[M(sy+)),--- . M(s, + )]
Assume | C(j)|= € > 0 for all j € Z. The components of C()

are AP (resp. LP) by assumption, hence [9, pp. 11-13]| C(j)|~'/*
and the components of C(;)~! are AP (resp. LP) (cf. Lemma

3.6¢)). The components of m(j) are AP (resp. LP) by assump-
tion. Now let £ € R” and let j, k be integers. We have

2[0(j,1) = Q(k.1)]
=¢(c(j) " —c(k) )t
+Hm() () =m()Tc() e
+T[c(k) " 'm(k) — () 'm())]
+m(j) () 'm(j) —m(k) C(k) 'm(k).

For a vector or matrix a let ||al|? denote the sum of the squares
of the components of a. Then

12(2(J, 1) = 0(k, 1))
<lelPIc() ™ = ck) 7
+2lm(k) (k) —m() () el
Hm()NTC() () — m() ) m(k)|.
This inequality shows that if B" is any bounded set in R",

{Q(j, 1)} is AP (resp. LP) uniformly with respect to ¢ € B" [9, p.
51]. From this it follows that {f(¢)} has the same property,

T (e

is AP (resp. LP) for all bounded Borel sets B".
Now let B" be any n-dimensional Borel set. Clearly, for any
R>0

'fB"fj(t) dt—fmfk(t) dt

<

(t) dt — t) dt
/B"n(nruzszz)f’( ) fB"m{utnzsR)fk( )

+ (1) de +41”2>Rfk(t) dt.

liell2>R

Thus we see that in order to prove that

fB"fj(t) dt

113

is AP (resp. LP) it suffices to verify
lim 5.1
Aim (5.1

fi(t)dt=10,  uniformlyin;.

el >R

To prove (5.1), first assume m(j) = 0 for all j € Z. Since the
components of C(j) are bounded functions of j, the eigenvalues
of C(j) are bounded positive functions of j. Reducing C() to
diagonal form and letting 0 < M| < +o00 be a universal upper
bound on the aforementioned eigenvalues, we obtain

2
£(¢) dt S_[ e It12/2My gy
fntn2>R’( lell2>R

This proves (5.1) for the zero-mean case. To settle the general
case, simple arguments yield ‘

f e QU gy < /DTN gy
llelI>>R 112> (R 2— M,)?

where M, = sup;llm(j)ll < +oo. By the zero-mean case, the
right member converges to zero uniformly in j, so we are done.

Proof of Corollary 3.12: Since p < p, given € > 0 we can find
8 > 0 such that for all 4 € B, we have

p(4) <d=p(4) <e
Let E € ®_. Then there is E;, € ¥ such that

B (EAE,) <6.
Since p is stationary we have
i (SIEASIE)) <8, Vg€ Z,
hence
w(SYEASE,) <¢, VqEZ,
hence _ .
|n(SE) — p(SE,) |[<e, VqEZ

By Theorem 3.11, {u(S7E,)} is AP (resp. LP). Since € > 0 was
arbitrary, it follows that {u(S9E)} is AP (resp. LP)..
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