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Structural Characterization of Locally
Optimum Detectors in Terms of Locally
Optimum Estimators and Correlators

WILLIAM A. GARDNER, MEMBER, IEEE

Abstract—Explicit formulas for locally (SNR — 0) optimum (MMSE)
signal estimators (smoother, filter, and predictor) for discrete-time observa-
tions of a random signal in additive random noise are derived and used to
characterize the locally optimum (likelihood ratio) signal detector for
on—off signaling. The characterizations are canonical (distribution-free)
detector structures involving estimator—correlators. These structural char-
acterizations provide new interpretations of known detectors for various
special cases. If the one-step signal predictor is recursive and the noise is
white (possibly non-Gaussian or nonstationary), there is a canonical struc-
ture that admits recursive computation. The primary motivation for these
structural characterizations is to render the estimator—correlator design
philosophy applicable for the purpose of simplifying implementations and
enhancing adaptability. Unlike the known estimator—correlator structural
characterizations for continuous-time globally optimum detectors, the new
characterizations apply for non-Gaussian as well as Gaussian noise, and the
estimators are explicit rather than implicit.

I. INTRODUCTION

A. Motivation

HE practical value of the signal-detector design

philosophy based on an estimator—correlator struct-
ural characterization of the optimum detector, for a
Gaussian signal in additive Gaussian noise, was demon-
strated [1] shortly after it was proposed [2], 25 years ago. It
is shown in [1] that the filter in the optimum detector can
be significantly simplified (for the purpose of implementa-
tion) with only negligible degradation in detection perfor-
mance. As demonstrated more recently [3], the practical
value of simplified implementation afforded by this char-
acterization can be exploited in a variety of ways while
maintaining near optimal performance. The practical value
of an analogous design philosophy for point and jump
process signal detection [4] also has been demonstrated by
elimination of nonlinearities with negligible performance
degradation [5]. Based on this practical motivation of
simplified implementation, a number of investigators have
contributed to the derivation of estimator—correlator
structural characterizations, and, more generally, the
elucidation of the role of signal estimation in optimum
(likelihood ratio) detection for a wide variety of probabilis-
tic models for continuous-time observations [6, and refer-
ences therein], [7]-[11]. However, efforts to develop analo-
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gous characterizations for probabilistic models for
discrete-time observations have met with more limited
success for all but the most elementary model of a Gauss-
ian signal in additive Gaussian noise [12, and references
therein]. This is illustrated by the fact that the estimator—
correlator characterization for continuous-time observation
of a non-Gaussian signal in additive Gaussian noise has no
counterpart for discrete-time observation [12, and refer-
ences therein], except in a generalized sense [13] that has
not been shown to be of practical value as a basis for a
design philosophy (but does yield a recursive formula,
which might suggest an efficient implementation).

Motivated by the increasing practical importance of
discrete-time implementation and of low-SNR detection
[29], the purpose of this paper is to show that, in contrast
to the limited applicability of the estimator—correlator
design philosophy to globally (arbitrary SNR) optimum
detection with discrete-time observations, this philosophy
is widely applicable to locally (SNR — 0) optimum detec-
tion with discrete-time observations.'

It is well known that the structure of the locally opti-
mum detector for an arbitrary on-off random signal in
additive arbitrary noise is mathematically explicit [14], and
that for several special cases (such as coherent and non-
coherent detection of a sine wave in white noise [15], [16],
[29]) the structure is functionally explicit, consisting of
functional elements such as zero-memory nonlinearities,
correlators, squarers, and summers. For these special cases,
the applicability of the estimator—correlator design philos-
ophy is based on alternative structural characterizations of
known structures. For some of these special cases, the
known structure is sufficiently amenable to implementa-
tion that the design philosophy based on a structural
reinterpretation in terms of an estimator—correlator is un-
likely to lead to a simplified implementation (although it
can enhance adaptability). However, the structural char-

'At the time of preparation of this manuscript, the author was not
aware of other work on this topic. However, a literature survey conducted
before submission of this manuscript for publication revealed the work of
Sosulin [27] (and references therein) on locally optimum recursive estima-
tor—correlator structures for on—off Markov signals in additive Markov
noise and some generalizations thereof. The results in [27] are, in essence,
embellishments of the structural characterization (33) derived in Section
V. This derivation, however, applies to a general signal model, whereas
Sosulin’s applies to a Markov signal model.
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acterization can still be of conceptual value in such cases.
For example, for detection of a sine wave transmitted over
a Rician channel [17, p. 360], the characterization reveals
that it is the sum of the specular signal component and the
MMSE (linear) estimate of the Rayleigh fading component
that is correlated with the observations; and, regardless of
the fading distribution and the noise distribution, the char-
acterization (Section IV) reveals that the signal to be
correlated with is still the sum of the specular component
and the local-MMSE (nonlinear) estimate of the fading
component.

As another example of practical value, the characteriza-
tion reveals that the only difference between coherent and
noncoherent detectors for an arbitrary cyclostationary sig-
nal (AM, PM, PAM, PCM, etc.) in additive arbitrary noise
is that a synchronized periodically time-varying linear
estimation filter in the coherent detector is replaced with
its time-averaged counterpart in the noncoherent detector.
The practical significance of this is discussed in Section VI,
and in more detail in [3]. This simple relationship between
coherent and noncoherent detectors applies to all weak
cyclostationary signal in additive noise detection problems,
whereas, previously known explicit relationships between
coherent and noncoherent detectors require that the signal
be narrow-band, the noise be broad-band, the signal phase
and amplitude be independent, the noise distribution be
circularly symmetric, etc. [29, and references therein].

For some signal detection problems (such as detection of
a random signal in non-Gaussian narrow-band noise [16]),
the locally optimum detector can be sufficiently complex
that the design philosophy based on the estimator—correla-
tor structural characterization can be of significant practi-
cal value in obtaining a simplified implementation,
especially if adaptation is required. Since the particular
noise (or signal) distribution governing observations in a
given application is likely to be unknown and possibly
time-varying, an adaptive implementation of a locally opti-
mum detector is often indicated [15], [16], [18]. In such a
signal /noise environment, the estimator—correlator struct-
ural characterization can be used to advantage. For exam-
ple, for serial signal detection (e.g., digital data transmis-
sion), a decision-directed adaptive estimator can be used
(possibly following an initial supervised training mode).
~ One advantage offered by the estimator—correlator struc-
ture for adaptive implementation is that a performance
indicator for control of the adaptation is available during
operation; viz., the error between the decided (detected)
signal and the estimated signal. (This is an alternative to
the SNR performance measure employed in [18].)

As additional motivation, it is mentioned that in addi-
tion to being near optimal for low SNR, the locally opti-
mum detector can yield adequate performance for larger
SNR [15], [16]. Also, the locally optimum detector can be
near optimal under conditions of low-energy coherence in
the signal, even when the detector output SNR is large
(yielding high-performance detection) [3]. Therefore, esti-
mator—correlator structural characterizations of locally op-
timum detectors can be of practical value for moderate-to-
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high performance detection and for moderate-to-low noise,
as well as for low-performance detection and high noise.
The performance of locally optimum detectors, according
to various criteria, has received considerable attention
[14]-[16], [18]-[22], [29]. For example, certain locally opti-
mum detectors have been shown to be asymptotically
(observation time — o0) optimum.

B. Problem Statement

The class of detection problems to be considered is
modeled by the hypothesis testing problem

Hy: y=n

i’

H:y=s+n i=1,2,---,m,

for which the m observations y = {y,}T" consist of an
m-vector of random noise variables (with joint probability
density (pdf) denoted by fy(n)) under the null hypothesis
H,, and consist of the sum of the noise m-vector and an
m-vector of random signal variables (with joint pdf de-
noted by fs(s)) under the alternative hypothesis H,. It is
assumed that the signal vector s is statistically independent
of the noise vector n. Multiplicative noise can be included
in the model for s, as described in Section VII.

As is well known, the optimum (Bayes, Neyman—Pear-
son, or minimax) signal detector is (equivalent to) the log
likelihood ratio test ‘ '

for some threshold value y, where

m(y) éIOg[fym,(y)] _IOg[meo(Y)]- (1)
The conditional densities in (1) are given by

fY|H0( y)=fn(y),
Frin(¥) = [In(y = 5)fs(s) ds, )

where the integral is m-fold. When the signal is known, f; is
an m-dimensional Dirac delta. For later reference, we
introduce the notation

g(y) =log[ fn(»)],
g:(») Zlog[ fy (3] 3)

The class of estimation problems to be considered is
described by H,. As is well known, the optimum (MMSE)
signal estimator is the conditional mean; e.g., for the
smoothing estimator,?

$(y) = E(S|y} = [sfaw(s|y) ds. @)

The objective in Sections II and III is to obtain ap-
proximations to the estimation function, §(-) (for smooth-
ing, filtering, and prediction) and thée detection function,
7(+), that are asymptotically (SNR — 0) exact. These are

2We use capital letters for random m-vectors, and corresponding
lowercase letters for realizations (statistical samples) of the random m-

‘vectors.
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the locally optimum estimator and detector. The objective in
Sections IV and V is to characterize 7(-) in térms of §(-).

To define the statement SNR — 0, we denote the ran-
dom signal vector S by

S £88,,

where 6 is a nonrandom scalar, and §; is any “normalized”
version (e.g., trace of correlation matrix for .S is unity) of
the m-vector S. Then

SNR - 0 = § - 0. (5)

C. Overview

In Section II, explicit formulas for the locally optimum
(MMSE) noncausal fixed-interval smoother and the causal
filter and one-step predictor are derived. It is shown that
these causal estimators are recursive if the signal is wide-
sense Markov and the noise is white, but not necessarily
Gaussian or stationary. In addition, it is shown that the
estimator is linear if the noise is Gaussian.

In Section III, a derivation of the well-known mathe-
matically explicit formula for the local log likelihood ratio
is presented for completeness.

In Section IV, the formulas from Sections II and III are
employed to derive a canonical (distribution-free) estima-
tor—correlator structural characterization of the local log
likelihood ratio. It is shown that this structure admits a
recursive implementation if the signal is wide-sense Markov
and the noise is white, but not necessarily Gaussian or
stationary. In addition, it is shown that this structure
decomposes into a linear estimator—correlator preceded by
a noise whitener if the noise is Gaussian.

In Section V, an alternative derivation of the locally
optimum detector that is tailored to the objective of recur-
sive computation is presented. It is shown that the local log
likelihood ratio can be computed recursively if the noise is
white and the one-step signal predictor is recursive.

In Section VI, the estimator—correlator structural char-
acterization is employed to compare coherent and non-
coherent detector structures for arbitrary cyclostationary
signals in additive arbitrary noise.

Finally, in Section VII, applicability to multiplicative
noise is briefly discussed, and potential extension to jump
and point process observations is suggested.

II. LocarLLy OPTIMUM ESTIMATORS

By using Bayes law, (4) can be expressed as

fsfy|s( y|s)fs(5) ds
$(y)= :
ffy]s( y|s)fs(s) ds

(6)

where
(7)

The first-order Taylor series expansion of the function fy

fy\s(J’ls) =fw(y—s).
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Fig. 1. Local-MMSE estimator.

about the point y, evaluated at y — s is*

fN(.V_s):fN(Y)_STVfN(.V)’ (8)

where Vfy(p) is the gradient vector of fy evaluated at y
and has ith element [Vfy(y)], = 0fy(y)/0y,. It follows
from (3) that

Vin(¥)/In(y) = v&(y). 9)
Substitution of (8) into (7) into (6), and use of (9) yields the
approximation
5[1 —S_TVg(~y)] _KSVg(y)’ (10)
1-5"vg(y)

which is further approximated (by ignoring the vanishingly
small term 57 vg( y) for SNR — 0) by

§(y) =5+ Kg[=ve(y)],
where K is the covariance matrix for §,

Kg=E{SST} — 557,

$(y) =

(11)

and § is the mean vector for §,
s =E{S}.

For example, 5§ can be interpreted as the known signal
component, so that K is the autocorrelation matrix for the
random signal component, S —5; Kg= E{(S — s} —
§)T}. Eq. (11) can be written out as

m
5(y) =5+ 3 Ke(i, )| —0g(y)/ay], (1)
j=1
where K(i, j) = E{S;S;} — 5,5,

A signal flow block diagram of this local-MMSE estima-
tor is shown in Fig. 1. The observations y are transformed
by the nonlinear (in general) transformation — WVwg(-),
which is specified by the noise pdf. Then the transformed
observations z are filtered (matrix product) by the linear
transformation K, which is specified by the signal pdf.
Finally, the known signal component s is added. The
nonlinearity, — vg(-), has been studied extensively (in
connection with signal detection) for various non-Gaussian
noise distributions that arise in practice [15], [16], [29].

The estimator (6) and (11) is the noncausal (smoothing)
estimator for s, in terms of the observations y = {y;: 1 =J
<m} £y™ By letting m = i in (11) with y denoted by
y™, (11") yields the causal ( filtering) estimator

]
s(y) =5+ 3 Ke(i, j)[—0g(y) /8y (12)
j=1

Similarly, the one-step predicting estimator can be shown to

3The superscript T denotes matrix transposition; thus, since s is taken
to be a column vector s” is a row vector.
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be .
§i+1(}’i) =S5t g Kg(i+1, j)[—ag( .Vi)/ayjl
" (13)

A. Independent Noise and Recursive Estimation

If the noise variables {N,} are independent, then
—0g(y') /3y, = —dg,(y)/dy, = z,(»,).
Therefore, both the filtering estimator (12) and the predic-
ting estimator (13) can be computed recursively provided
that the covariance K exhibits Markov structure. For
example, the first-order Markov structure K (i, J) =
ogrl makes (12) reduce (with 5 = 0 for simplicity) to the

first-order recursion

fi(yi) = rfi—l(yi_l) +05z,(5,).
Furthermore, in this case, the one-step predictor and the
filtered estimator are related by (letting § = 0 for simplic-

ity)
§i+1( .V') = "§i( y'),
5(07) =501 + adzi(x).
B. Gaussian Noise
In general, these local-MMSE estimators (11)—(13) are

nonlinear. However, if the noise is Gaussian, then

gly) = —%(y — E)TK;,’(y — n) + constant, (14)

and therefore Vg(y)= —Ky'(y — #), from which (11)
(for example) reduces to

$(y) =5+ KsKy'(y— ).

This is clearly an approximation (SNR — 0) to the /linear
MMSE estimator

$:.(») :§+KS[KS+KN]_1(.V_§—'7)-

III. LocaLLy OpTIMUM DETECTOR

The log likelihood ratio is, from (1) and (2),
w(y) =log [ /(v = s)fs(s) ds = log fy(»). (1)

The second-order Taylor series expansion* of the function
fn about the point y, evaluated at y — s is

In(y=s)=fy(y) —s"viy(py) + %STHM( y)s,
A (15)

where H, (y) is the Hessian matrix of f, evaluated at y,
and has (ij)th element

[HfN(y)]ij = 32fN(y)/8y,. ayj.

“Although only two terms were retained in Section II (8), we must
retain three terms here (15) because the first two terms, when substituted
in (1), represent only the signal mean, and not the random component of
the signal.
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It follows from (3) that

H, (y)/fv(p) = H(y) +vg(y)ve(y)]". (16)
Substitution of (15) into (1), and use of (9) and (16) yields®

() =tog 1 =57 vg( )1 ~ 357 va( )]
+ 2 [ve( )] K »)

+%tr{[Ks+s'ET]Hg(y)}], (17)

which is further approximated (by use of 1 — 157 yg( y) ~
1 for SNR — 0, and by use of log(l — x) =~ —x, since
x — 0 as SNR - 0) by

w(y) = =57 98(y) + 5 [ve( )] Ksvg(y)

+ %tr {[Ks+s5T]H(p)). (18)

This formula is identical to Middleton’s formula [14, eq.

(19)].
IV. ESTIMATOR—CORRELATOR STRUCTURES

In order to characterize the local log likelihood ratio in
terms of the local-MMSE estimator, we first manipulate
(18) into the appropriate form. This requires the following
characterization of the Hessian operator (on g( y)) as the
outer product of the gradient operator (on g( y)) with
itself,

H(y)=vvig(y). (19)

In the remainder of this section, approximations (1 D—(13)
and (18) will be written as equalities, which simply means

that 7(-) and §(-) are to be interpret.d as locally optimum,

rather than globally optimum. Substitution of (19) into
(18), and regrouping of terms involving 5 yields

() = %ET[—Vg(.V)]
+%(5+ Ks[=vg(»)]) [~ va(»)]
_%tr (v(5+K-ve(»)])

+v(5T[—ve(»)]lsT)}. (18')

Substitution of (11) into (18’) yields the desired characteri-

zation:
1

1(y) = 7[5+ 3] [ va(»)]
— S {(s(]T + v [T ve(»)]])
, (20)
T(J") = 2 5(51 + fi()’))zi

1

d 1
25,

$.(y) +(2§jzj)5,}§, (20)

5The quantity tr {M} denotes the trace of the square matrix M.

I
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Fig. 2. (a) Locally optimum canonical detector structure, characterized in
terms of the local-MMSE estimator (smoother). (b) Alternative sche-
matic for the detector structure in Fig. 2(a)

where

AL

z = —vg(y).

This local log likelihood ratio formula can be represented
by the signal-flow block diagram shown in Fig. 2(a), where
the alternative notation®
r (v[s(»)]7) = 3 [diag (v [5(»)]7}],
i=1

is used. The upper signal-flow path in this canonical struc-
ture, which corresponds to the first sum in (20"), is an
estimator—correlator. That is, the observations y are first
transformed by — vg(-) into z. Then the local-MMSE
estimate §( y) is obtained from z by the filter (matrix) K
and addition of the known component s. Finally, the
arithmetic mean of the known component and the esti-
mated signal is correlated with the transformed observa-
tions; i.e., the discrete-time signals [§( y) + §]/2 and z are
multiplied together and summed (over time). In the special
case for which the signal is completely known (K¢ = 0),
the upper signal-flow path degenerates into the conven-
tional locally optimum correlator detector for a known
signal [15, and refs. therein]. In the special case for which
the signal is completely random (s = 0), the upper signal-
flow path remains an estimator—correlator and is a new
interpretation of the conventional locally optimum quadra-
ture correlator detector for various applications involving
bandpass signals with random amplitude and phase [16,
and refs. therein].

The lower signal-flow path in the canonical structure,
which corresponds to the second sum in (20'), involves the
derivatives, with respect to the observations, of the signal

The quantity diag {M} is the m-vector on the diagonal of the m X m
matrix M.
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estimator and the known signal-component part of the
correlation performed in the upper path. In certain special
cases, this signal-flow path degenerates to yield a term that
is independent of the observations, but that contributes an
important bias to the threshold—an SNR-dependent bias.
These and other special cases are discussed in the following
subsections.

For application of the estimator—correlator design
philosophy, the alternative signal-flow block diagram shown
in Fig. 2(b) should be used. The only functional elements
contained in the upper signal-flow path of this diagram are
the signal estimator §(-), a nonlinearity, Vg(-), which is
dependent on only the noise distribution, and a correlator,
(-, ). The lower signal-flow path can be implemented
using only the “hardware” in the upper signal-flow path,
but in a time-shared mode, provided that the derivatives
/0y, are approximated by finite differences.

A. Gaussian Noise

If the noise is Gaussian, then it follows from (14) that
H/(y)= —K,', in which case the output of the lower
signal-flow path in Fig. 2(a) is simply the signal-indepen-
dent bias term

n, = —tr {KgKy'} — 5TKR's.

(21)

This term is closely related (in fact, equal in some special
cases) to the SNR-dependent bias term in the optimum
detectors for known and Gaussian signals in Gaussian
noise [23, ch. 2]. Furthermore, for this special case of
Gaussian noise, the nonlinear transformation in the upper
signal-flow path degenerates into the linear transformation
—wvg(y) = Ky'(y — n), which removes the mean noise,
and then whitens the remaining zero-mean noise. Specifi-
cally, (20") reduces to (letting § = rn = 0 for simplicity)

w(v) = 5 [8()] Ky'y — 3t (KeK7'),  (22)

w(v) = 5 875 — Jir (Ks) (22)
where
y=Ky'"%y, p|H =5+34, (23)
and
K;=Ky'?KoKy'/?, Ki=1. (24)

In (23), K'/? is the unique, positive definite, symmetric
square root of the matrix K, (which is assumed to be
positive definite). The signal-flow block -diagram for this
locally optimum detector for zero-mean random signals in
additive zero-mean Gaussian noise is shown in Fig. 3. This
noise whitener estimator—correlator structure is function-
ally similar to the optimum detector structure for continu-
ous-time observations [6], however, the local-MMSE esti-
mator in Fig. 3 is noncausal, whereas that in the optimum
detector (for non-Gaussian signals) is causal, and similarly
for the noise whitener. Nevertheless, both noncausal filters
K and K'/?, can be replaced with equivalent causal
filters. Specifically, by defining K5'/? to be the causal
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Fig. 3. Locally optimum detector for zero-mean signal in additive

Gaussian noise: Local-MMSE estimator—correlator preceded by a noise
whitener.
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Fig. 4. Optimum causal noise-whitener causal estimator—correlator de-
tector structure for a zero-mean signal in additive Gaussian noise.

square root of Ky, and by using the identity

where K is the causal part of K, i.e.,

s( J)—{KS(I 2

) Jj=>1,

J=1i,

(22') can be reexpressed as

()= 330575 S ol

i=1

+57),  (22)

where §,( §') is the causal estimator for §; (12), and K'/?
in (23) is the causal noise whitener. The signal-flow block
diagram for this locally optimum causal detector is shown
in Fig. 4.

B. Independent Noise

Another special case of interest is that for which the
noise variables are independent. In this case

[Vg( J")]i = dg,(y,)/dy;,

[Hg(y)]ij: (d2gi(yi)/dyi2)8ij’ (25)
where 6, ; 1s the Kronecker delta. As a result of (25), the
nonlinear transformation — vg(-) in the upper signal-flow
path in Fig. 2(a) is memoryless (and therefore causal), and
the nonlinear transformation in the lower signal-flow path

is also memoryless, i.e., the ith terms at the outputs of
these transformations are

z,(y) = —dg,(y)/dy,
Cx(y) = (052,- + El'z)dzgi(yi)/d%z-

Therefore, by using the identity

(26)

1
s Ksz + 5 2 (052,)°

Kz =
2 121

together with (26), (20") admits a characterization in terms
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Fig. 5. (a) Locally optimum causal estimator—correlator detector struc-
ture for independent noise variables. (b) Alternative schematic for the
detector structure in Fig. 5(a).

<3 V>
1

of the causal estimator §,( y*) (12),

fi(yi) =5t 2 Ks(i7 ])ZJ()}_])’
j=1

viz.,

()= S5z +a S [x0

i=1 i=1

- (US,Zf(yi))Z:I -

(27)

A signal-flow block diagram for this locally optimum causal
detector is shown in Fig. 5(a). We note that if K¢ exhibits
Markov structure then §,( y'), and therefore 7( y), can be
computed recursively as discussed in Section II.

For application of the estimator—correlator design
philosophy, the alternative signal-flow block diagram shown
in Fig. 5(b) should be used. The only functional elements
contained in the upper signal-flow path of this diagram are
the causal signal estimator §(-), a scaling amplifier with
gain oS, a zero-memory nonlinearity, vg(-), which is de-
pendent on only the noise distribution, and a correlator,
(-, ). The lower signal-flow path can be implemented -
using only the nonlinearity vg(-), provided that the de-
rivatives, d/0y,, are approximated by finite differences,
and vg(-) is implemented in a time-shared mode.

If the independent noise variables are Laplacian,

)= (V2oy) " exp (=21l /on).

then (26) reduces to

2
Zi(yi) = N Sgn()’i)’

i

x,(y) =0,
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and therefore, the lower signal-flow path in Figs. 2 and 5
vanishes, and the nonlinearity in the upper path is simply a
time-varying clipper. This, of course, includes the well-
known locally optimum clipper-correlator structure for
known signals, and the locally optimum clipper quadrature
correlator structure for incoherent bandpass signals as
special cases of these locally optimum clipper-estimator-
correlator structures.

In general, if the function g is not nearly quadratic or
lower order (piecewise linear)—i.e., if the noise is not
nearly Gaussian or Laplacian—then the lower signal-flow
path in the canonical structures cannot be deleted without
incurring suboptimality.

V. RECURSIVE ESTIMATOR—-CORRELATOR
STRUCTURE

It follows from (27) that if the noise is independent, then
the detection statistic can be computed recursively pro-
vided that the causal estimator §,( p') can be computed
recursively. An alternative approach to the derivation of
locally optimum detectors that is tailored to the objective
of recursive computation is presented in this section.

By using Bayes law, the likelihood ratio L( y*), which is
based on observations up to time i, can be expressed in
terms of L( y*~ ") as follows

Frr=m(nly'™")
‘ f}’i|Yi—',Ho(yi|yi-1)

We shall assume that the noise variables are independent
so that

fY,|Y‘—f,H0(Yi |yi_l) = fy,.|H0(Y.') =fv(»). (28)

By again using Bayes’s law, we obtain the expression

fY,-|Y"“,H,()’i|yi_l)

= ffY,.|Y'*‘,s,()’i|yi_l’ si)fS,-lY”'(si |yi_l) ds;.
(29)

Furthermore, it follows from the additive noise model for

¥;| H, that
“s;) sy 7Y, (30)

and it follows from the independence of {N,}T and {S;}T,
and the independence of the individual noise variables N,
and N, that (30) reduces to

_l’si) :fN,-(yi—si)' (31)

Approximation of fy(-) by the Taylor series (15), and
substitution of (28)— (31) into the preceding expression for
L(y") yields

fY,|Y‘_',S,(yi|yi :fN,.|Y"“(yi

fY,|Y"‘,S,(yi|yi

But (32) reduces to (using (16))
L(y') = L(y"“)[l — E{S,|y"""}dgi( )/,
+ 3 E{(S) 1) (4%8(0) /]

+ {dgi(yi)/dyi}z)], (32)

where g,(y;) = log fN( »;). Finally the log likelihood ratio
m(y') = log L(y") is, from (32’) (using log(l —Xx)= —Xx
since x —» 0 as SNR — 0),

1(p) = r(y7") = 5y )dgi(5)/d;
+ %E{(Si)z |yi_l}(d2 i(yi)/dyiz

+ (dg.(7,) /1)), (33)

where $,(y'~") = E{S;|y"""} is the one-step predicting
estimator for S; and similarly E{(S;)*|y"~'} is the one-step
prediction of (S;)?. Therefore, 7('y') can be computed
recursively if these two predictions can be computed recur-
sively. Equation (33), when approximated by deleting the
term involving E{(S;)*|y'~'}, agrees with Sosulin’s for-
mula [27, eq. (1.12)], which was derived for a Markov
signal process.

In order to relate (33) to the canonical structure (27), we
use the locally optimum form (13) for §,( y'™ "), viz.,

4 i—1
fi(yl—l)

=5+ 2 K(i, j)zj(yj)’
j=1
where z,(-) is defined by (26)." Similarly, the predicting
estimator of (S,)? can be approximated (replacing S, with
(S;)? in (34) and deleting the higher order term which — 0
as SNR - 0) by

(34)

E{($) |y} = 7. (35)
Substitution of (34) and (35) into (33), use of (12) and (13)
(and use of 1 — 35,dg,(y;)/dy; = 1 as done in deriving (18)
from (17)) yields the recursion

(¥) =2y +5(¥)z ()
+ 3 (%00 = (e5200))] G6)

where x,(-) is defined by (26), and 5.(y") is given by (12).
Summation of (36), and use of 7(y°) =0, yields the
canonical form (27).

VI. COHERENT/NONCOHERENT DETECTION OF
CYCLOSTATIONARY SIGNALS

If the signal s to be detected is cyclostationary [24] with
period, say, p, then the covariance matrix K is periodic

/[fN,(yi) _sidi,(yi)/dyi _Szdsz()’z)/d)’z]f:ﬂY‘ '( i|yi_l)dsi

L(y)=L(y™")

o) G2)
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(block-Toeplitz)

KS(I+P7j+p):KS(1’]) (37)
As a result both upper and lower paths in the canonical
detector structure in Fig. 2 contain a periodically time-
varying transformation (viz., §(-)) that must be synchro-
nized to the periodicity in the observed process (when the
signal is present). This usually requires estimation of the
phase (time origin) of the signal, from the observations.
When such phase estimation is impractical (as it is in many
applications), a noncoherent detector must be employed.
The optimum noncoherent detector is simply the optimum
detector for the phase-randomized (stationarized) signal
(denoted by §). Since the locally optimum detector shown
in Fig. 2 depends on the signal to be detected through only
its mean vector and covariance matrix, then the only
difference between the locally optimum coherent and non-
coherent detectors is that the signal mean and covariance
in the coherent detector are replaced by their time-aver-
aged (stationarized) versions [25] in the noncoherent detec-
tor:-

sal é’:
[ i+g>
P
1 P
Ks(i —7) :; D K(i+gq,j+q). (38)
q=1

That is, § and §( y) are replaced with § and §( y), where
§(y) is the local-MMSE estimator for the phase-rando-
* mized signal §. This provides a general framework within
which coherent and noncoherent detector structures can be
compared (cf. [3]). This relatively simple characterization
of the relationship between these two types of structures
includes as special cases, and /or provides alternative inter-
pretations of, the results for various specific problems
involving random/deterministic amplitude and phase,
slow /fast fading channels, narrow-band /broad-band and
analog /digital modulation [14]-[16], [29, and refs. therein].

VII. CONCLUDING REMARKS

The new structural characterizations shown in Figs. 2(b)
and 5(b) provide the basis for extending the estimator—cor-
relator design philosophy, referred to in the Introduction,
from continuous-time detectors to discrete-time detectors.
This extension of estimator—correlator structures from con-
tinuous time to discrete time is, in fact, a generalization
since it is valid for non-Gaussian as well as
Gaussian noise, a feature which is absent from the struct-
ural characterization for continuous-time detectors. The
design philosophy is, specifically, to try using practical but
suboptimal implementations of estimators (e.g., adaptive
estimators) in place of the optimum (or locally optimum)
estimators in the estimator—correlator structure. If the re-
sultant detection performance for a trial implementation of
an estimator proves to be acceptable in practice (or in
simulations), then the approach is successful. This design
philosophy has often been successful for continuous-time
detection as discussed in the Introduction. The new struct-
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ural characterizations reveal not only what to correlate the
signal estimate with (viz., the nonlinearly transformed ob-
servations, — Vg( y)), but also reveal explicitly what the
signal estimator to be approximated with a practical imple-
mentation is (cf. Fig. 1). This should be contrasted with the
globally optimum characterizations that provide no more
than the implicit conditional mean characterization of the
signal estimator.

Aside from their fundamental roles in the canonical
structures of the locally optimum detectors, the locally
optimum estimators (the smoother, filter, and predictor)
may be useful in their own right. That is, their relatively
simple explicit formulas (11)-(13) may render them useful
as suboptimum estimators for applications in which the
SNR is not low. The fact that these estimators are recursive
for white (non-Gaussian, nonstationary, in general) noise
and wide-sense Markov signals is of particular utility.
Nevertheless, it can be shown that without some modifica-
tion, locally optimum estimators will probably perform
unnecessarily poorly when the SNR is not low. This is
easily demonstrated for Gaussian noise, using the results in
Section II-B. Moreover, the results in Section II-B suggest
the following modified version of the locally optimum
estimator (11)

s(y)=s5+ Ks[Ks +KN]_1KN[_Vg(y - 5)],

which is optimum for Gaussian noise. Since the modifica-
tion is negligible for low SNR, then this modified version is
still locally optimum, regardless of the noise distribution.

There are signal detection problems (other than the
additive noise problems addressed herein) for which the
optimum detector structure is quite simple, except for
the computation of the MMSE estimator (e.g., jump pro-
cess observations [4], [8]-[11]). For such problems, a possi-
bly adequate suboptimum detector can be obtained by use
of the local-MMSE estimator in place of the global-MMSE
estimator. For example, it has been shown [5] that an
adequate suboptimum detector for Poisson observations is
obtained by replacement of the MMSE nonlinear estimator
with the linear MMSE estimator (cf. [26]). Therefore, a
possibly fruitful topic for future research is the study of
local-MMSE estimators for observations other than signal
in additive noise.

The random signal in additive random noise problem
addressed in this paper includes the signal (both random
and nonrandom) in multiplicative and additive random
noise problem simply by redefining the signal S to be
S = [M]S,, where S is the actual signal, and [M] is a
diagonal matrix representing the multiplicative noise vector
M. (More generally, [M] need not be diagonal.) The net
result is that the matrix K in the canonical estimators and
detectors decomposes into Ky = E{[M]K s,[M 17}, which
further reduces for diagonal [M]to Kg = K,, ® K s,» Where
® denotes Schur matrix product, Kg(i, j) =
Ky (i, K (i, j) [28, p. 646], for which K,,(i, j) is the
correlation of the /th and jth diagonal elements of [M]. In
addition, the mean vector § in the canonical estimators and
detectors decomposes into § = E{[M]}5,,.
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