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Design of Nearest Prototype Signal Classifiers
W.A. GARDNER, MEMBER, IEEE

Abstract— The mean-squared-error measure of quality is used as a basis
for a general nearest prototype signal-classification methodology. Canoni-
cal signal features for this methodology are identified. A consistency
requirement is proposed and used to develop a general approach for
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determining appropriate class prototypes in discriminant space. It is shown
that the class indicator, which is a commonly used class prototype in
pattern recognition applications, will often violate the consistency require-
ment. The general results are used to obtain a solution to a previously
posed complexity-performance trade-off problem for matched-filter-
tapped-delay-line receivers for serial signal classification in an M-ary data
transmission system.

I. INTRODUCTION

As discussed in [1], the general approach to signal-classifier
design that is based on minimizing mean-squared error (MSE)
leads to two alternative signal-classification rules: one employs
the mode of the minimum-MSE estimate of the posterior distri-
bution, and the other employs the mean. A specific objective of
this correspondence is to provide a general solution to the prob-
lem of determining when the mean, rather than the mode of the
estimated posterior distribution, should be employed. This
question was first raised in [2], where it took the form of a
complexity—performance trade-off problem for matched-filter-
tapped-delay-line receivers for serial signal classification in an
M-ary data transmission system. The general formulation of this
question, which is answered in this correspondence, was put forth
in [1], where an answer to only a special case relating to [2] was
given. The question arises in a natural way from the results in [3]
and [4] on the characterization of linear minimum-MSE receivers
for digital data transmission.

More generally, the objective of this correspondence is to
employ the MSE measure of quality as a basis for a general
nearest prototype signal classification methodology, to identify
canonical signal features for this methodology, and to propose a
consistency requirement that leads to a general approach for
determining appropriate class prototypes for this methodology.
These results together with the results in [5] (on MSE, signal-to-
noise ratio (SNR), and other second-order measures of quality)
provide an integrated approach to the design of a complete signal
classifier, i.e., feature extraction and discriminant—functional de-
sign tailored to fit a minimum-distance discrimination rule.

The notation used here is the same as that in [5]; in particular,
capitals are used for random quantities and lower case letters are
used for samples of random quantities.

II. NEAREST PROTOTYPE SIGNAL CLASSIFICATION
Let A denote the vector of random class indicators

Aé {A(Cl)aA(Cz)" T ’A(CM)}'
Samples, §(C;), of A(C;) take on values of either 0 or 1:

(1)

1, YEC,

where y is a received waveform and C; is the class of all sample
paths y of the random waveform ¥ that can occur when the ith of
M possible signals is transmitted. The problem of detecting which
of the M signals was transmitted corresponds to the problem of
classifying y into one of the M classes {C;}. This is usually
accomplished by transforming the waveform y into an N-tuple of
numbers x, called a discriminant vector, and then using a decision
rule to partition the discriminant space into M decision regions
that are in one-to-one correspondence with the M classes {C}
(and M possible transmitted signals).

A common choice for the transformation that maps y into x is
a generalized linear transformation that minimizes the MSE,
E{llIX —AIIZ}, between X and the vector of random indicators
[1], [5] (where |||l denotes Euclidean norm). In this case the
minimum-MSE X is denoted by A. As shown in [1], A(C)) is
mean-square equivalent to the generalized linear minimum-MSE
estimator of the random posterior probability P[C;|Y]:

A(c)=Plc¥].

@
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A discrimination rule that is consistent with the use of the
minimum-MSE design criterion for deriving its input discrimi-
nants is a minimum-distance rule. That is, if the discriminant
vector is derived so as to minimize the mean square distance
between it and an ideal discriminant (e.g., the vector of class
indicators), then it would appear to be appropriate to employ the
ideal discriminants as class prototypes in discriminant space and
to classify the received waveform y as belonging to the class C,
whose prototype is closest to the computed discriminant. In this
correspondence we formalize this approach and propose a general
method for prescribing appropriate class prototypes in discrimi-
nant space.

The most frequently recommended random prototype vector in

- the pattern recognition literature is the vector of class indicators

A. The M samples of this random prototype vector are of the
form

3:{0’...’0’1,0’...’0}, (4)

where the 1 is the ith position when p is in class C,. Observe that
the class-conditional vector A|C; is given by (4) and is therefore
nonrandom. The corresponding minimum-distance discrimina-
tion rule is

{min {I|§—6|Cj|i} =16-8|C } o {classify y in C;}. (5)
J
It follows from (3) that (5) is equivalent to the decision rule

{mjax {P[cly]} :]S[C,«|y]} ={dassifyyin C;}, (6)

which chooses the mode of the estimated posterior distribution
(see Theorem 1).

In spite of the popularity of the random prototype vector A in
pattern recognition applications, it has been shown by example
that A is not appropriate for some important signal-detection
applications [1], [4], [6] because even when class variability (e.g.,
additive noise) vanishes, classification performance is unaccept-
able for linear discriminant functionals in these applications. It is
also shown in [1], [4], [6] that for these applications, use of an
even simpler prototype vector yields acceptable classification
performance. The estimation-theorists’ approach' to signal detec-
tion that is recommended in [1] to circumvent the inappropriate-
ness of A is referred to here as the nearest prototype signal-
classification methodology and is characterized by the classifica-
tion rule

{min (15 =51G 1} = 5= 5|C/l | = (classity yin €.}, (7)
J

where s is a sample of an N-tuple S of random variables whose
class-conditional values §|C; are (like those of A, (4)) nonran-
dom. For example, § could be a vector of random signal-
modulation parameters. Specifically, for amplitude-shift keying
(ASK) and discrete pulse-amplitude modulation (PAM), § could
be the random scalar (N = 1) amplitude parameter; for phase-shift
keying (PSK), S could be either the random scalar (N = 1) phase
parameter or the random 2-tuple of in-phase and quadrature
amplitude parameters (N = 2); for frequency-shift keying (FSK),
S could be the random scalar (N = 1) frequency parameter. In all
cases, S could also be chosen to be S = A(N = M).
Using the characterization

s=00, (8)
where the N X M nonrandom matrix 0 has the (nm)th element
O =52 o )

!This term was borrowed from [7, p. 387].
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and s, is the nth element of s, we obtain the characterization
§=046 (10)

for the generalized linear minimum-MSE estimator for § [5]. This
characterization suggests a new interpretation of & as a canonical
second-order-optimal feature vector (rather than a discriminant
vector) and an interpretation of @ as a set of N linear discrimi-
nant functionals whose outputs comprise a discriminant vector §
which is to be used in the minimum-distance rule (7). The feature
vector 0 is canonical in the sense that every minimum-MSE (and
other second-order-optimal [5]) discriminant vector § can be
obtained from & with the linear transformation (10). This role of
0 is illustrated for matched-filter-tapped-delay-line receivers for
serial detection of M-ary data signals in [3] and [4]. The alterna-
tive interpretation in which & is the discriminant vector and 0 is
interpreted as a weight matrix in the weighted-norm distance
measure which defines the discriminator (7) is less viable because
when the appropriate 0 is not of full rank (as discussed in the
following) the distance measure is not a valid metric; i.e., it does
not distinguish between vectors contained in certain subspaces of
discriminant space.
Use of (3), (9), and (10) yields

M a
3= 3 G1G)PIG, Y], (1)

from which it follows that § is the mean of the estimated posterior
distribution of S. Thus rule (7) chooses the closest prototype s|C;
to the mean of S with respect to the estimated posterior distribu-
tion; whereas rule (6) (and rule (5)) chooses the mode. These two
rules coincide when S =4, i.e., when 0 is the identity matrix.

Having the characterization (10), we are now in a position to
propose a formal approach to the prescription of appropriate
class prototypes {s|C }}’, which is equivalent to the prescription
(design) of the matrix 6. The basis for the apgroach is the
imposition of the following consistency requirement:

[§[Cj],,:0=s|Cj, J=12,--- M, (12)

where V represents variability. That is, when class variability
vanishes, the estimate of each class prototype must be identical to
that prototype. An implicit definition of the condition V=0 is
given by the necessary and sufficient conditions

@) [»|G],-,= unique waveform,

@ [vICGlo#[ 9G], for (13)
An explicit definition of the condition V=0 depends on the
particular signal-classification problem. For example, for one-shot
detection of known signals in additive noise (W), V= W, and for
serial detection with additive noise and intersymbol interference
(ISI), V= {W, ISI}. Thus V represents “channel randomness” in
an abstract sense. Substitution of (8) and (10) into (12) yields the
prototype design equation

i

0- ‘1, =0 s
where the M X M matrix ¢ has an (ij)th element defined by

v = [8(C)IC] (15)
Substitution of [5, eq. 32] into (15) yields the explicit formula

v=p {1+ ({[216]y ~m(2)),

(14)

K(z) (m(2|C)-m(2)}),}. (16)

2This consistency requirement is conceptually related to the well-structured
condition employed in empirical discriminant analysis [8], [9].
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where
Z=g(Y), (17)

and (-, ), denotes an inner product in feature space, and m(Z)
and k(Z) denote mean vector and covariance operator, respec-
tively (cf. [5]). Thus once the (waveform) feature extraction
transformation g(-) has been prescribed, and variability has been
explicitly defined for the problem at hand, the matrix ¢ is
completely specified. There is still some freedom in the choice of
prototypes, however, since (14) does not possess a unique solu-
tion.

One of the most important characteristics of ¢ is its rank (Ry),
since this sets an upper limit on the rank of any @ that satisfies
(14): Rg<R,<M. An important conclusion which follows im-
mediately is that the conventional prototype vector s = 8 violates
the consistency requirement (14) if ¢ is not the identity matrix.
An application where ¥ is not of full rank (and therefore is not
the identity) is the detection of linearly dependent M-ary signals
(e.g., ASK, PSK, APK, etc.) in additive noise using a linear
receiver (g(-) = identity transformation) [1]. As a matter of fact,
when ¢ is of less than full rank, receiver complexity can be
significantly reduced simply because only N =R, <M statistics
need to be computed. For example, as shown in [3] and briefly
discussed in [2], the number of tapped-delay lines in an adaptive
receiver for high-speed data transmission can be significantly
reduced from NM to N2 (N =R,) by choosing 0 to be N X M
rather than M X M. Specifically, for APK signaling N =2, and
with four phases and two amplitudes, M =38; thus only four
tapped-delay lines rather than 16 are needed. These results answer
the query in [2]: “It would be interesting to know whether the
more complex structure [which uses Ry = M when R, < M] yields
any significant advantage [in probability-of-error performance].”
The answer is an emphatic no. Rather, the more complex struc-
ture (with Ry>R,) yields a higher probability of error as dis-
cussed? (in terms of examples only) in [1], [4], and [6].

When ¢ is of full rank it is helpful to know under what
conditions a proposed set of prototypes {s| C}}’l” (e.g., values of a
vector of signal modulation parameters) is equivalent to the
indicator vectors {8| C;}II” in the sense that the two classification
rules (5) and (7) are equivalent. In the remainder of this corre-
spondence we compare these two rules with each other as well as
with the maximum-estimated-posterior-probability rule (6).

The norm used in rules (5) and (7) as referred to in the
following theorem can be any norm induced by an inner product,
not just the Euclidean norm (e.g., a weighted norm); this is
emphasized by use of the modifier Hilbert.

Theorem 1
i) The nearest-indicator (Hilbert) rule (5) is equivalent to the
maximum-estimated-probability rule (6).
ii) The rules (5) and (6) are equivalent to the nearest proto-
type (Hilbert) rule (7) if and only if the class prototypes {s|C}}’1”
are mutually equidistant.

The norm used in rules (5) and (7) as referred to in the
following theorem need not be induced by an inner product (e.g.,
any of the /? norms can be used); this is emphasized by use of the
modifier Banach.

Theorem 2
i) For binary classification the nearest indicator (Banach)
rule (5) is equivalent to the maximum-estimated-probability rule
(6).
ii) The rules (5) and (6) are equivalent to the nearest proto-
type (Banach) rule (7) if and only if the class prototypes {s| CJ}Zl
are distinct.

These two general equivalences are related since every two
distinct vectors constitute a mutually equidistant set. Since non-

3The results referred to in [1, ref. [17]] are contained herein.
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distinct prototypes would never be used in practice, rules (5), (6),
and (7) are always equivalent for binary classification. Proofs of
the preceeding theorems are given in the Appendix.

III. SUMMARY

The results in this correspondence can be summarized as
follows. The signal classification rule (6) classifies the received
signal y as belonging to the class C; whose estimated posterior
probability is largest; i.e., this rule employs the mode of the
estimated posterior distribution. The signal classification rule (7)
classifies y as belonging to the class C; for which the class
prototype s|C; is closest to the mean § of the prototypes {s| C}}’l” ,
with respect to the estimated posterior distribution. We “can
conclude that in general the mean, rather than the mode, of the
estimated posterior distribution should be used, since the mode
yields an inconsistent (cf. (12)) rule except in the special case. for
which the matrix of class-conditional estimated class indicators
evaluated at zero variability (15) is the identity matrix, whereas a
set of class prototypes for which the mean yields a consistent rule
can always be found by solving the linear matrix equation (14)
for the matrix 0 (cf. (9)). As a further result, necessary and
sufficient conditions for equivalence among classification rules
based on the mean of the estimated posterior distribution (7), but
using different sets of class prototypes, and rules (5) and (6) are
determined in Theorems 1 and 2.

Since the minimum-MSE discriminant-design criterion em-
ployed in this correspondence and in [1] is equivalent to the
maximum-SNR  discriminant-design criterion [5], and both of
these criteria can be characterized in terms of a waveform scatter
ratio [5], then the consistency requirement proposed herein for
discriminator design based on MSE (i.e., for the selection of
appropriate class prototypes) is applicable, more generally, to
discriminator design based on other second-order measures of
quality, as discussed at length in [5]. The results in this correspon-
dence, together with the results in [5], provide an integrated
approach to the design of a complete signal classifier, i.e., feature
extraction and discriminant-functional design tailored to fit a
minimum-distance (nearest prototype) discrimination rule.

APPENDIX
PROOFS OF THEOREMS

Proof of Theorem 1 on Multiclass Discrimination

Expansion of the Hilbert norm in (7) in terms of inner prod-
ucts yields the following equivalent criterion for classification:

max {(3,5G) =415 G117}, (A1)

Substitution of (10) and [5, (32)] yields
m}X{él(lem,slq)f’[Cm!y]—%lls|c,.||2}, (A2)

which can be reexpressed as

mfmx{%él (ns|cn2+ ||s|cm||2—d}m)ﬁlcm|y]—%||s|cjnz},

(A3)

where d;,, is the distance between s|C; and s|C,. Use of
[1, appendix A],

(A4)

Tz

Plc,|y]=1,
1
reduces (A3) to

M M
max{ S Isc, 1?1, v]- 3 d,z,,.ﬁ[cmm}, (43)
J m=1 m=1

371

which is equivalent to
M "
J m=1

This criterion is independent of the class prototypes {s|cH if
and only if 4 j%is independent of j and m (for j % m), i.e., if and
only if {s|C;}{" are mutually equidistant. In this case (A6) be-
comes

(A6)

min {aﬂ > P[cm|y]}, (A7)
J mj
which upon substitution of (A4), becomes
max (£[G4]). (49)

This criterion is identical to that used in rule (6). Furthermore,
since {8|Cj}],” are mutually equidistant, rule (5) is equivalent to
rule (7).

Proof of Theorem 2 on Binary Discrimination
Substitution of (10) into (7) for M =2 yields
I P[C)|p1s|C+P[Cy| p1s|C—s|ClI
&
S
G

Use of (A4) in (A9) yields

IB[C|p]s|Ci+P[Cly]s|C—5|Coll. (A9)

G
IP[C2|Y]||'S|C1_S|C2”C§ |P[Cl|y]|||s|C1—s|C2||.
2

(A10)

By hypothesis, the vectors s|C, and s|C, are distinct; thus the
nonzero norm can be cancelled in (A10), and (A4) can then be
used to obtain the equivalent rule

G

P[czlylc§ﬁ[clly], (A11)

in which the absolute value operation has been removed. This
rule is identical to rule (6) for M =2. Furthermore, by letting
s =9, it follows that (5) is equivalent to (7). Hence all three rules,
(5), (6), and (7), are equivalent for binary classification.
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