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A Unifying View of Second-Order Measures of Quality for
Signal Classification

WILLIAM A. GARDNER, MEMBER, IEEE

Abstract—The major purpose of this paper is to promote interchange
between the fields of pattern recognition and communications, in the realm
of statistical classification. The general class of second-order measures of
quality for statistical classification is defined. The variety of members in this
class that have been used by practitioners or proposed by theorists for
numerical pattern-classification and signal waveform-classification are
compared and contrasted. The several measures that are the most generally
applicable are shown to be either equivalent to each other or charac-
terizable in terms of each other, thereby revealing an inherent unity. For
example, the ratio of between-class-scatter to within-class-scatter used in
pattern recognition and the ratio of signal-energy to noise-energy used in
communications are unified through an identification of signal with
between-class-scatter and noise with within-class-scatter. Results on
equivalences are stated and proved for waveform classification rather than
numerical classification in order to complement the extensive literature on
the latter, and to emphasize applicability to communications. This entails
introduction of a scatter ratio for waveforms. In a companion paper, !
second-order measures of quality are used as a basis for a general nearest-
prototype signal-classification methodology; canonical signal features for
this methodology are identified, and a general approach for determining
appropriate class prototypes is given. These two papers provide an in-
tegrated approach to the design of a complete signal classifier, i.e., feature
extraction and discriminant-functional design tailored to fit a minimum-
distance discrimination rule.

I. BACKGROUND AND PURPOSE

OR many problems of statistical classification, the Bayes

risk (e.g., probability of misclassification) is the most de-
sirable measure of performance of a classifier, and minimum
Bayes risk is the most desirable criterion for classifier design.
However, in many practical applications, the problem of ob-
taining an explicit solution for the minimum-risk classifier is
intractable, or is impossible because of incomplete specifica-
tion of the underlying probabilistic model. Similarly, the prob-
lem of evaluating the risk associated with a given classifier can
be difficult or impossible. As a result, various alternative de-
sign criteria and performance measures have been proposed
and used in practice. Perhaps the most popular family of alter-
natives that are not entirely ad hoc, and that have been studied
and used by theorists and practitioners is the family that is
based on second-order measures of quality. A second-order
measure of quality is a measure that is defined completely in
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1 The companion paper, ‘“Nearest-prototype signal classification,”
which will appear in the IEEE TRANSACTIONS ON INFORMATION
THEORY, subsumes [17] in [20], which was in preparation at the
time of publication [20].

terms of only second-order probabilistic parameters, viz.,
means and covariances.

In the field of communications, mean-squared error (MSE),
and various measures of receiver output signal-to-noise ratio
(SNR) are second-order measures of quality that are commonly
used for design of signal classifiers, e.g., detectors. Although a
general approach to signal classifier design based on MSE has
recently been proposed [20], no such general approach based
on SNR has yet been proposed, although both MSE and SNR
have been used for specific design problems (cf. [2], [19],
[23], [29, Section 7.3], [32], [39].) In the field of pattern
recognition, MSE and various measures of the ratio of be-
tween-class scatter to within-class scatter are second-order
measures of quality that are commonly used for design of pat-
tern discriminants (cf. [8], [10], [11, Sections4.10-4.12, 5.8,
5.12, 5.13], [17, Section 4.3], and references therein), extrac-
tion of pattern features (cf. [8], [10], [17, Section 9.2],
[18], and references therein), and design of clustering algo-
rithms (cf. [11, Section 6.8], [17, Section 11.2], and refer-
ences therein). A specific objective of this paper is to show
that there is a general approach to classifier design that is
based on SNR and that is equivalent to one form of the gen-
eral approach proposed in [20] based on MSE; and, further-
more, that this SNR approach is a natural extension of a well-
known general approach in pattern recognition, which is based
on a scatter ratio.

As design criteria, second-order measures have been success-
fully applied when the set of discriminant functionals (con-
straint space), within which an optimum is sought, contains
only linear functionals or their generalizations which are de-
fined in terms of prescribed linear spaces that are either finite
dimensional ([11, Section 5.3], [33, Section 2.11], [42, Sec-
tions 3.3 and 3.4]) or infinite dimensional [20]. Although
these second-order measures have also been used to predict the
performance of discriminant functionals and feature sets for
pattern and signal classification (cf. [8], [10], [11], [13],
[171, [32], [39], [45], [47, Section 4.3], and references
therein), they have met with more limited success as perform-
ance predictors (cf. [24]). As a result, a premise of this paper
is that second-order measures are of practical value for deriving
candidate classifiers, but since second-order measures can be
poor predictors of Bayes risk, the acceptance, rejection, or
modification of a candidate classifier should, whenever feasible,
be based on an evaluation of the risk associated with the can-
didate. Nevertheless, in applications where risk cannot be
evaluated or approximated, second-order measures might
have to be employed to assess classifier quality (e.g., via
risk bounding [8], [10]).

Motivated partly by the analytical tractability and partly by
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the practical utility of second-order measures of quality, a
number of investigators have contributed to the development
of thenretical justifications for their use when the Bayes risk
measure would be the most desirable but cannot be applied.
Although there has been some work on justification in the
communications literature (cf. [20], [36], [39], [41]), the
majority has appeared in the pattern recognition literature (cf.
[8], [10], [11], [17], [18], [28], [34], [42], [50]). In ad-
dition to the contributions on justifying individual second-order
measures, some results on unification of various second-order
measures have been reported in the pattern recognition litera-
ture. Results include equivalences among various design criteria
(cf. [8], [10], [11, Section 5.8], [17, Sections 9.2, and 11.2],
[18], [42, Section 3.2]), convergence of probabilistic second-
order-optimal discriminant functionals to Bayes optimal dis-
criminant functionals as the constraint space of generalized
linear functionals expands to include (in the limit) all poten-
tially optimal functionals (cf. [18], [42, Sections 3.2 and 3.3]),
and convergence of empirical second-order-optimal (e.g., least
squares and stochastic approximation) discriminant functionals
to probabilistic second-order-optimal (e.g., minimum MSE)
discriminant functionals as the number of samples increases
without limit (cf. [11, Section 5.8], [28], [34], [50]).

It should be clarified at this point that an empirical second-
order measure of quality is defined in terms of empirical
averages, viz., sample-mean and sample-covariance statistics
(e.g., Fisher’s discrimination measure [11, Section 4.10],
[15]), whereas the probabilistic counterpart is defined in
terms of parameters of probability distributions, viz., mean
and covariance. The empirical measures have been more com-
mon in pattern recognition applications, and the probabilistic
measures have been more common in communications applica-
tions with the exception of the rapidly developing adaptive
signal classification area.

Although there is a substantial and growing interchange of
statistical and probabilistic concepts and methods between the
fields of pattern recognition and communications (cf. [5, ch.
12 and references therein]), the theory of second-order meas-
ures of quality for classification has been developed mostly
within the field of pattern recognition, and this has left a gap
between these two fields. A unified treatment of the theory
of second-order measures of quality that emphasizes signal
classification and detection would narrow this gap and pro-
mote interchange. This emphasis requires extension and gen-
eralization of the established theory for a finite number of ob-
servables (numerical classification) to a theory for a nonde-
numerable infinity of observables (waveform classification).

With this brief review as background, the main purpose of
this paper can now be stated. In addition to the preceding
specific objective, the general objective is to extend, general-
ize, and unify the theory of second-order measures of quality
for signal classification. Specifically, the variety of second-
order measures of quality that have been used or proposed for
numerical and waveform classification are defined in the
Appendix, and are compared and contrasted there and in Sec-
tions II and III. The several measures that are the most gener-
ally applicable are shown in Section III to be either equivalent
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to each other or characterizable in terms of each other, thereby
revealing an inherent unity. In a companion paper,! a general
nearest-prototype signal-classification methodology that is
based on second-order measures of quality is proposed; and
canonical signal features, and appropriate signal discriminants
for this methodology are determined. These two papers pro-
vide an integrated approach to the design of a complete signal
classifier, i.e., feature extraction and discriminant-functional
design taylored to fit a minimum-distance signal discrimi-
nation rule.

Although only fixed-sample classification is treated, second-
order measures of quality are useful for sequential classifica-
tion as well. For example, approaches to linear least squares
sequential classification are described in [43], [44].

II. SECOND-ORDER MEASURES OF QUALITY

In Section II-A, the waveform classification problem is
formulated, and the generalized linear discriminant functional
is defined. Then, in Section II-B, the two major second-order
measures of quality for binary signal classification are defined.
These two measures are shown in the Appendix to be
superior or equivalent to, or to include as special cases, the
majority of the 12 second-order measures of quality that have
been proposed and/or used in practice. It is shown in Section
IIT that these two major measures of quality yield equivalent
discriminant functional design criteria. In Section II-C, these
binary (two class) discriminant functional design criteria are
generalized to M-ary (multiclass) design criteria. Then a single-
valued alternative to these M-valued measures of quality is
defined. It is shown in Section III that this single-valued meas-
ure can be characterized by each of the two M-valued measures.

A. Generalized Linear Discriminant Functionals

We consider observations consisting of a waveform y =
{»(®): t € T} on a time-interval T. The waveform y is a sample
path from a continuous parameter random process Y. The
probability measure u for Y is a mixture of M measures

{#i} 1 M

M
M= E DiM;. 1)
i=1

We are concerned with an M-ary communication system for
which we have the following probabilistic model: the ith of M
available signals is selected with probability p; for transmission,
and the corresponding received waveform is a sample from
the ith class C; which is defined to be the class of all sample
paths from the random process Y | C;, which has probability
measure u;. Thus, the problem of deciding which of the M
signals was transmitted is a Bayesian classification problem
with prior class-probabilities {P[C;]}1M = (.} M. and poster-
ior class-probabilities denoted by {P[C; | y]1}, M.

A discriminant functional @ is a functional that maps the
observed waveform y into an N-tuple x of real numbers {x,-}lN
that can be used to discriminate amongst the M possible classes,
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i.e., to classify y:

x=®@p)ERY

x;=®;(y)ER j=1,2, N )
The N-tuple x is referred to as a discriminant. If the functional
is constrained to be continuous and linear, the Riesz represen-
tation theorem [12] can be invoked to represent it in inner

product form

T

More generally, if the functional is constrained to be the com-
position of a continuous linear functional with a prescribed
nonlinear transformation g, it is called a generalized linear dis-
criminant functional, and it can be represented by
=12, N @)

Xj=(z, §j)a

z=g0),
where (-, *)5 denotes inner product on the linear space A con-
taining the images of the observed waveforms y (sample paths
of Y) under the transformation g.

An example of a generalized linear discriminant functional
is a generalized polynomial functional. As a specific example,

the transformation g corresponding to a second degree gen-
eralized polynomial is

g@):t€TH ={1,y@), ¥yt w(t)): 8, 11, t, €T},

and (4) becomes (with ¢; = {¢,°, ¢;", ¢;°})
xj=¢;° + / o' () de
T

+ /T{1¢i2(tl’t2»(tly(t2)dt1 dt,. )

Another example of a generalized linear discriminant func-
tional is a parallel connection of nonlinearities followed by
correlators, i.e.,

M .
xXj = :El /Tgi[J/(l‘i), t:1¢;' () dt;, (6)

for which the transformation g is
@ teTH ={aly@), 6] €T,

Specific examples of nonlinearities g; are clippers, limiters, and
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Fig. 1. Signal classifier. \

hole-punchers with possibly time-varying biases b;(¢), e.g.,

a; for y(t) —b,(t)>0

&l @), 1] =
. for y(t) — b;(1) < 0.

—u;

Discriminant functionals (3), (5), and (6) include signal de-
tector structures of demonstrated practical value. In the pat-
tern recognition literature g is often interpreted as a feature
extractor when its range is contained in finite dimensional
Euclidean space; this interpretation is used in Section III, and
expanded on in a companion paper® (see Fig. 1).

A second-order measure of quality for a random discrimi-
nant X is defined in terms of the following second-order
probabilistic parameters.2

1) The conditional mean N-tuple m;(X) with (f)th element

m(j) 2 E{X; 1 C;} = /(bj(Y) du;. (7

2) The conditional N X N covariance matrix k;(X) with
(jg)th element

kG, @) & E {[X; —m,()] [Xqg —mi@)] | G}

= f [D;(Y) —m;(D] [Dq (V) — my(q)] du;. ®)
The notation of m#(X) and k,(X) includes X explicitly so that
these quantities can be distinguished from the L?[T] vector
my(Y)and L?[T] operator k(Y)

mit) RE{Y(@)1C} &)

ki(t, 7) 2 E{[Y(t) — mi@)] [Y(r) —my(7)] | Ci}. (10)

For a linear discriminant functional, the N-tuple m(X)
and N X N matrix k;(X) can be expressed explicitly in terms
of the discriminant functional & and the L2(T) vector m(Y)
and L*(T) operator kA ¥) as follows

i) = /T B Omi)dt (11)

ki, a) = /T/T%(f)‘i’q(f)ki(ﬁ T)dt dr, (12)

2 Some second-order measures depend on the joint second-order
probabilistic parameters of X and a prescribed random variable [e.g.,
S in (A-3)|. But as shown in a companion paper,! the second-order
optimal discriminant for such a measure can still be completely specified
in terms of only (7) and (8) when § is appropriately prescribed.
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or alternatively in L?(T)) inner product notation

() = my(Y), ¢;) (13)
ki, q) = (:i(Y) * ¢q. &) (14)

Similarly, representations (13) and (14) hold for generalized
linear discriminant functionals if ¥ is replaced by Z and
(¢, *) is replaced by (-, *). Thus, a second-order measure of
quality for a linear discriminant functional is deﬁned in terms
of the discriminant functional representors {¢;()};" and the
mean functions {m;()};* and covariance functions {k;(,
T)}l , and similarly for generalized linear discriminant func-
tionals. (The specific examples of first and second degree gen-
eralized polynomials are considered in detail in [20].) The
general representations (13) and (14) for the second-order
probabilistic parameters of the random discriminant X, in
terms of the discriminant functions, {¢;} and the mean and
covariance functions of the observed waveform ¥ (or its trans-
formed version Z), simplify the general analysis of second-
order measures of quality as illustrated in Sections II and III.

The preceeding discussion pertains to probabilistic second-
order measures of quality. Empirical measures are defined in
terms of second-order empirical parameters obtained by re-
placing the expected values in (7) and (8) with the following
empirical averages:

1 Y
%]"\;— 2: ]-’(n) (15)
= Nl
kG, )& — v Z’I[x, ) — (D] [x' () —q)]  (16)

where {x;/(n): n = 1, 2, -+, N;} is a set of samples of the class-
conditional random varlable X; | C;. Similarly, the prior prob-
abilities {p;};" that are sometlmes used in probabilistic meas-
ures of quality are replaced with the sample estimates

M -1
_N,.[E N,J (17)
j=1

where V; is the number of samples drawn from the total
population (u) that belong to class C; ;).

B. Binary Classification '

Since Bayes-optimal classification can be accomplished with
a discriminant functional ® having only & = M-1 output dis-
criminants (viz., any M-1 of the M posterior class prob-
abilities), second-order measures of quality for binary (M = 2)
classification are most often defined for a discriminant func-
tional with a scalar (V.= 1) output X. From the 12 second-
order measures of quality discussed in the Appendix, the fol-
lowing three emerge as worthy of further consideration for
general use. (In these definitions, the standard notation m,(X)
and 0;2(X) is used in place of m;(1) and k,(1, 1), from (7)
and (8), for this scalar case.)

1) Generalized signal-to-noise ratio (GSNR):

@ =—my)?
N (X)_Wlalz(X)"'Wzazz(X) (1%

where {w;, w,} is a nonnegative weight vector. It can be
shown® that when w; = p;,

GSNR = SNR/(1 + p,p, SNR) (19)

where

[y (X) —m, (X)) 2

SNR &
o> (X)

) (20)

and 0*(X) is the unconditional variance of X. As a result of
(19), the design criteria of maximization of GSNR and SNR
(w.r.t. ®) are equivalent. We shall henceforth focus on SNR.

2) Mean-squared error (MSE):

MSE (X) £ E{(S — X)*} 2]

where S is a random signal parameter with unique (nonran-
dom) class-conditional values (see (22) for an example), and X
is an estimator for § (denoted by X =.S). As discussed in a
companion paper,! the appropriateness of MSE depends on
the prescription of the signal parameter S for M-ary (M > 2)
classification but is invariant (as a design criterion) to S for
binary classification. The most commonly used prescription
(see [20]) is the class indicator®

1 foryec
S=58(Cy)2 o=t (22)
0 fory £C,.

It can be shown® that the design criterion of minimization
(w.r.t. @) of MSE (X) with S = §(C;) is equivalent to the same
criterion but with S = P[C; | Y] . This is particularly interest-
ing since the “signal parameter” § = P[C; | Y] is a functional
of the observations and does not have unique class-conditional
values. Other prescriptions for S are binary-valued signal mod-
ulation parameters such as amplitude for an ASK signal, or
frequency for an FSK signal [19], [20], [23].

C. M-ary Classification

The two second-order measures of quality SNR and MSE
for binary classification can be applied to M-ary classification
simply by interpreting M-ary classification in terms of M binary
classifications (cf. [11, Section 5.12.3]). For this purpose, we
consider a discriminant functional ® with N =M (rather than
M-1) component discriminants {X,-}IM , and we define SNR
and MSE for each as follows.

3 Concise proofs are given in the unpublished report, “‘On minimum-
MSE and maximum-SNR signal discriminants,” which is available upon
request from the author.

4 Our notational convention is violated here since we use lower case
6, rather than capital A, to denote a random variable.
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[my(X;) — miS (X )1 ?
0% (X;)
MSE; (X;) 2 E {(S; — X,)*}

SNR; (X;) & (23)

@4

where, for example, S; = §(C;) or P[C; | Y]. In (23), m;*(X;)
is the “‘complement” of m;(X;), i.e., the mean of X; condi-
tioned on not C; (which is denoted by C;¢). In (24), the ex-
pectation is unconditional. As an alternative to such M-valued
second-order measures of quality, a single-valued measure of
scatter ratio can be used. As discussed in the Appendix, of the
six most well-known measures of scatter ratio, the following
turns out to be the only one that is closely relatéd to SNR and
MSE for the M-ary (M > 2) classification problem:

J(X) & trace {S77 185} (25)
where Sp is the between-class scatter matrix
M
S5 £ 2 wpilmX).— m(O)) mX) ~ m0]* (26)
i=1

with weight vector {w;} (m(X) is the unconditional mean
vector), and St is the total (within-class plus between-class)
scatter matrix with unit weight vector

M M
Sy =2, pikiX) + D, pilmy(X) — m(X)]
i=1 i=1

* [m(X) =m0

where m;(X) and k;(X) are the N-tuple and N X N matrix with
elements defined by (7) and (8), respectively. The symbol [*]*
denotes matrix transposition. It is easily shown that J can be
reexpressed by

@7

M .
JX) 2D pw[my(X) —m(X)]*
i=1

kO™ [m(X) — m(X)] (28)

where £(X) is the unconditional covariance matrix.
In order to relate J to SNR, we extend the definition (23)
from the scalar case X to the N-tuple case X

SNR; (X) & [my(X) — m (X)]"
k)T [m(X) — mf (X)), (29)

and we extend the definitions (28) and (29) from the N-tuple
case (numerical measures) to the general vector case (wave-
form measures) by using general inner product notation

M
J@)L Y pwimiZ)—m@), kZ)™'
i=1

- AmyZ) — m(@)})5 (28)

811

SNR; (Z) & my(Z)—m; (Z), k@Z)™*

“AmyZ) —m @), 29y
Similarly, these measures can be applied to the untransformed
observations ¥ simply by replacing Z with ¥ and letting the
inner product (v, *), be the L?(7T) inner product. Now, using
the identity m; —m = p;°(m; — m;°), we obtain

M
JZ)=D, wpip)* SNR; (Z) (30)

i=1

where p, = 1 — p;. Thus, if we prescribe the weight vector
w; = p;8,; (where §;; is the Kronecker delta), then

J@)= o)) SNR; (2). (31)
These relationships between the waveform scatter ratio J

and SNR are used in Section III to relate J(X) to {SNR(X;)},
and {MSE(X)},".

III. EQUIVALENCES

In this section, it 1s shown that MSE and SNR yield equiva-
lent discriminant functional design criteria, and that J, min-
MSE and max-SNR yield equivalent feature extractor design
criteria. It is also shown that all these design criteria are con-
sistent in the sense that they yield Bayes-optimal designs when
no constraints are imposed on the feature extractor g(-) or
the discriminant functional &(*).

It can be shown 3 that the generalized linear discriminant
that minimizes MSE for the prescription S; = §(C;) in (24) is

Oyse, ) =5(C)=P[C; | y]
=p{l +(z —m@)], kZ)~!

* [mi(Z) —m@)])alt, (32)
and that which maximizes SNR is
dgng,0) = + B[z —m@)], k@)™
* [mi(Z) —m @) (33)

where z = g(y), and «; and f; are arbitrary scalars. It follows
from (32) and (33) that dgn g, and Py gg; can be related by

Psnr; ) =0 + Bi(Pyse,0)/pi— Pyuse, ()pi).  (34)
If the transformed observations Z are centered (m(Z) = 0),
then m;¢(Z) = —p;(p;¢) " 'myZ), and (34) reduces to

Dsnr;0) = +Bi(ppi*) ™ (Puse, ) —py). (35)
Thus, except for scale factor and bias, &y gg; and Pgng; are
the same; with the prescription o; = p; and §; = p;p;©, they
are identical

PsNRr, ) = Pyse, (). (36)




812

It can be shown® that if ® is not constrained to be a gen-
eralized linear functional, but is allowed to be any functional
with finite mean square images {E{®(¥)} < °0), then maximi-
zation of SNR vyields the design

PsNR,0) =i + BAPIC; 19) /o — PICF ¥ 1/pf), (37)
and thus, {‘DSNRi(y)}IM comprises a Bayes-optimal set of dis-
criminants. Parallel to (37), it follows from (34) that the con-
strained max-SNR design (33) catl be reexpressed as

Dsnr,0) =& +B{P[C; 1¥) /o —PICE 191 /oY (37)

It can be shoWn3 that the maximum value of SNR; resulting
from the second-order-optimal design Py g} is

max-SNR; (X;) = SNRy(2) (38)
where SNR(Z) is defined by (29)'. Thus, it follows from (30)
that the waveform scatter ratio J can be characterized by the
maximum values of {SNR;(X,)}

M
J@) =2 wipipi©)* max-SNR,(X)). (39)

i=1

Furthermore, it can be shown® that the minimum value of MSE;
resultmg from the second-order-optimal design ®y g, ) =
8(Cyis

min- MSE; (6(C))) = pip, [1 — pip;° max- SNR, (X,)] .
(40)

Hence, (39) and (40) yield the alternative characterization

M
J@2)= 2 [wip; —wp;” ! min-MSE; (6(C))]. (41)
i=1 ,
Furthermore, it can be shown? that
M A
D) minMSE; 3(C)) =1 —||P||,,,2
i=1
M .
+ 2, min-MSE; @[C; | ¥])
i=1
(42)
and, therefore (41), with w; = p;, becomes
M
J@)=Pllms —llp I* =2, min-MSE; @[G | ¥])
i=1
(43)
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where
M
IPllns £ 27 E(PIC; | ¥]?) (44)
i=1
M
e 1P =2 p2.
i=1
Finally, it follows directly from the preceeding that
JeM)] =J@Z) =J(X+) (45)

where X« is the second-order- optlmal M-tuple of discriminants
that maximize {SNR;(X;)};” and equivalently minimize
{MSE;(x)};™ (with respect to {¢,}). Thus, it follows that as
a feature extraction criterion, maxnmzatldﬁ of J[g(Y)] with
respect to g( ) is equivalent to maximization of {max-
SNR,(X; )}1 and to minimization of {min-MSE;(X;)},* for
both X; = S(C) and X; = P[C; | Y].

If g(+) is not constrained to some prescribed design set,
then it follows from (43) and (45) that J[g(Y)] = J(X+) is
maximized if and only if X; = P[C; | Y] =P[C; | Y] (in mean
square). Thus, maximum-J/ is a consistent design criterion for
feature extraction. The maximum value of J is from (43)

max-J(Z) = || Pl —llpII>. (46)

A result similar to (36), but for the special case of only a
finite- number of observable random variables {Y;}, was ob-
tained by Sebestyen [42, Sections3.2,3.3]. Also since Fisher’s
measure of quality is the empirical version of GSNR, and the
sum-of-squared-errors is the empirical version of the MSE
measure of quality, it is not surprising, iri view of (36) and the
equivalence of the maximum-SNR and maximum-GSNR
criteria, that Fisher’s criterion is equivalent to the least-squares
criterion (cf. [11, Section 5.8]). Furthermore, an application
of the law of large numbers yields asymptotic equivalence be-
tween these probabilistic and empirical counterparts (cf. [11,
Section 5.8]). Results similar to (37), but for the special case
of only a finite number of observables for which a probability
density exists, have been obtained by R. Hines (cf. Sebestyen
(1960) and Section 3.2, both in [42]) and P. Rudnick [41].
Results similar to (43)-(46), but for the special case of only a
finite number of observablés for which a probability density
exists, have been obtained by Devijver [8], [10] ,and Fukunaga
and Ando [18].

In conclusion, in addition to introducing measures of quality
J and SNR, (28) and (29)', that apply to waveform observa- .
tions and features as well as numerical observations and fea-
tures, we have generalized previously obtained equivalences,’
and extended them in a way that unifies the various equiva-
lences and the various approaches to discriminant functional

5 The bulk of results on equivalence in Section III were obtained
and submitted for publication in another journal prior to publication
of [18].
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design and feature extraction as they have been applied to
both signal detection receiver design and pattern recognition
machine design (cf. Appendix). In a companion paper,! we go
one step further by proposing a general approach for designing
a discriminator that uses the second-order-optimal discrimi-
nants discussed in this section to carry out the final stage of

classification.

IV. CONCLUSIONS

Some of the literature cited in the Appendix indicates that
some investigators do not take advantage of the direct links
between their work, which is based on a specific second-order
measure of quality, and the large body or results (cited in
Section I) based on related, equivalent, or more general
second-order measures of quality. It is felt that this is due in
large part to insufficient cross-referencing and differences in
terminology between the fields of pattern recognition and
communications. This gap between fields in unfortunate
because the general suboptimality of second-order measures of
quality can yield misleading results in applications to both
classifier design and performance evaluation. Thus, it is hoped
that the unifying view of second-order measures of quality
presented in this paper will promote interchange and help
narrow the gap.

APPENDIX
CONVENTIONAL SECOND-ORDER MEASURES
OF QUALITY
A. Binary Classification

The following is a comprehensive list of second-order meas-
ures of quality together with references to their application
and in some cases, references to investigations of the measures
themselves. The notation in Section II-B is used here.

1) Elementary SNR:

_[mx)?

=— .
o*(X)

For detection of a sure signal s in additive zero mean noise NV

using a linear discriminant functional, X | C; = ®(s) + d(V) £
X, +Xyand X | C, = ®(V) £ X, and ([46, Section 4.2])

ESNR

(A-1)

[X,]°
o?(Xy)

ESNR = (A1)

2) Mean Square Ratio:

m2(X) + 0, 2(X)
my* (X) + 0,2 (X)

MSR £ (A2)

For the classification problem described in 1)

[X,]?

A-2)
o*(Xy) 2

MSR =1+

813

and for the problem of detection of a random signal S in addi-
tive independent random noise /V using a linear discriminant
functional, X | C; = Xg + Xy and X | C, = Xy, and

E{Xg?
MSR =1 + t Sz}. (A-2)"
E{Xy"}
3) Mean-Squared-Error SNR:
E{S?
MSE-SNR 2 L 5T (A3)
E{(S —X)*}

where X is interpreted as an estimate of a random signal para-
meter S([1], [4], [19], [20], [23], [25], [29, Section 7.3]).
4) Deflection:

pa @ =m0
2 - .
0" (X)

(A4)

For detection of a zero mean random signal § in additive in-
dependent zero mean noise' /N using a quadratic discriminant
functional X | C; = Xgg + Xgny + Xys + Xyy and X |C, =
Xy, and ([2], [3], [29, Section 7.3], [35], [36], [38],
[391, [47, Section 4.3], [49])

[m(Xss)]? .
=— A4
o* Xyw) (A-4)
5) Complementary Deflection.
s 2
e Mm@ —ms 01> )

0, * ()
For the classification problem described in 4) [26], [45]

[m(Xgs)]? ,
D¢ = —— _ ss) . . (A5)
0°(Xyn) + 0" (Xsy + Xyg) + 0" Xgg)

6) Modified Deflection (for detection of a signal in additive
noise N):

DA [m; (X)) —m, (0)]?

To @ —[XIN=0]) 0
For the classification problem described in 4) ([31])
m_ [mX )] __ (A6
o® (Xnn) + 0 (Xsn + Xns)
7) Incremental SNR [32] :
ISNR £ [y (X)]? -—[m2(X)]2 ' (A7)

022(X)
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8) Differential SNR (for detection of a weak signal in addi-
tive noise Y =68 +N)[27]:

|2 men];
Egmi(z‘ﬂlzo

- o = (A-8)
DSNR £ (0,200 150
where § | C; >0,8 |C, =0
9) Generalized SNR:
e (XY — 2
GSNR 2 [m; (X) —m, (X)) (A-9)

w101 2(X) +wy0,2(X)

where w = {w;, w,} is a parameter vector of nionnegative
weights ([16], [21], [24], [48]).

10) SNR [41] -
2
SNR & [m (X) (;")2(X)] (A-10)
o2
11) Generalized SNR':
[mi @) —m,(X)]*
rA ' )

O e im o (10

Of these 11 second-order measures of quality, the majority are
special cases of the remaining few, and/or are inappropriate in
general as brleﬂy explained in 'this paragraph. Since the
numerator of GSNR can be interpreted as a measure of the
separation between the centers of the two class-conditional
probability distributions of X, .and the denominator can be
interpreted as a measure of the dispersion of the two distribu-
tions away from their centers, then the ratio GSNR can be
interpreted as a normalized measure of distance between the
two distributions. The empirical version of GSNR with w; =
pi [see (15)-(17)] is Fisher’s discrimination measure [15],
[11, Section 4.10]. The two measures D and D€ are special
cases of GSNR corresponding to the weight vectors w = {0, 1},
and w = {1, 0}, respectively. Neither of these is as appropriate
as GSNR in general because each ignores one of the two dis-
pers1on terms. The measure D™ coincides with D¢ when
0*(Xss) = 0 (eg., S = phase randonnzed sinusoid, & =

matched-filter-square-law-envelope- detector) in general, D™
ignores contributions to dispersion that can indeed affect
discriminant performance. The measure ISNR coincides with
D when m;(X) = 0, and is not appropriate in general. The
measure MSR does not distinguish between separation and dis-
persion. The measure SNR can be expressed in terms of GSNR
(with weight vector w = {p;, p,}) by (19) and is, therefore,
a monotonic strictly iricreasing function of GNSR. Thus,
maximum GSNR and maximum SNR are equivalent design
cnterla The measure ESNR coincides with SNR when 1, (X) =
0 [e £.,(A-1)],butin general ESNR ignotes the separation be-
tween centers. Although D, D¢, D™, and DSNR are, in general,
~ less appropriate than GSNR, all five of these measures of qua-
lity aré approximately equal for the détection of a weak signal
in additive noise (for which 0, = g,). The appropriateness of

the measure MSE-SNR depends on the prescription of the signal
para,ineter S. As shown in Section III; minimization of MSE-
SNR for § = 6(C4) (the class indicator) is equivalent to maxi-
mization of SNR. Other choices for S are discussed in a com-
panion paper. 1 GSNR' is an interesting alternative:to GSNR
that has not received attention in the literature. Another meas-
ure that is similar to GSNR, and is derived from Becker’s meas-
ure of separability (c_f. [6])is

asng & I Zma @] (A-12)

01 (X) + 0y (X)
B. M-ary Classification

As discussed in Sectio‘n II-C, thé most generally useful
second order measures of quality for binary classification,
MSE-SNR and SNR, can be applied to M-ary classification to
obtain M-valued measures of quality: one valué for each com-
posite pair of classes, C; and its complement “not C;,” and
each component X; of an M-tuple X of discriminants. As alter-
natives, various single-valued measures can be obtained by ex-
tension of the single-valued measures for binary classification.
The second-order single-valued measures most commonly used
are the scatter ratios which are defined in terms of the fol-
lowing scatter matrices.

1) Between-Class Scatter:

B ‘
Sg 2 D) pilmi ) —mO] [m(X) —m(O].. (A-13)

i=1
2) Within-Class Scatter:

M

Sw L D) piki(X). (A-14)

i=1
3) Total Scatter:

Sp 88y, +8g (A-15)

where my(X) is the N-tuple and k(X)) the N X N matrix with
elements defined by (7) and (8) respectively, and [*] ¢ denotes
matrix transposition.

The most commonly used scatter ratios are defined as fol-
lows [17, Section 9.2]

J, 2t {Sy, 7 1Sg), (A-16)
J, Ltr {Sg}/tr {8y}, (A-17)
J3 £ det {Sg}/det {Sy} (A-18)

where tr {-} and det {-} denote trace and determinant, respec-
tively. In (A-18), it is assumed that V =M so that det {Sg} #
0.) Alternative second-order measures of quality use Sz in
place of Sy, to obtain J,', J,', and J3' from J,, J,, and J3,
respectively [17, Section 9.2]. Emplrlcal measures are ob-
tained by replacing p;, m; and k; with p;, m; and k [(15)-
(17)] ; respectively.

When M = 2 and N =1, it follows from (A-13)-(A-18)
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that

Ji'=J' =73 =p,p, SNR (A-19)
and forw = {p;, p,}

Jy =J,=J; =p,p, GSNR. (A-20)

Thus, each of the six scatter ratios is a formal extension of
either GSNR or SNR from binary to M-ary classification. The
relationships amongst Jy, J,, and J3 (and also, J;', J,' and
J3") for M-ary classification are discussed by Fukunaga [17,
Section 9.2]. When M > 2 and N > 2, there is in general no
relationship between the single-valued measures J;, J,, Js,
Ji', Jy' J3' and the M-valued measures {GSNR;(X)}™
{MSE(X)};™ and {SNR,(X,)},™. However, when these
measures are evaluated for a second-order-optimal generalized
linear discriminant X« (i.e., X = X« extremizes any, and,
therefore, all of the three M-valued measures), then there is
a simple relationship between one, and only one, of the single-
valued measures (viz., J;") and the three M-valued measures.
This relationship is discussed in Sections II-C and III. Al-
though these single-valued measures seem to be generally
favored over the M-valued measures in the pattern recognition
literature, the results in Section III indicate that the M-valued
measures are more fundamental, and contain more information.
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