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Likelihood Sensitivity and the Cramér—Rao Bound
WILLIAM A. GARDNER, MEMBER, IEEE

Abstract—The Cramer—Rao bound on the error variance of an unbiased
estimator of an unknown parameter is given an intuitively pleasing inter-
pretation in terms of the sensitivity of the likelihood function to changes in

parameter value.
LIKELIHOOD SENSITIVITY AND THE CRAMER—RAO BOUND

It has been said that the Cramér—Rao bound (1) on the error
variance of an unbiased estimator § of an unknown parameter 6
evades intuitive interpretation (e.g., [1, p. 232]). The purpose of
this note is to bring to light an intuitively pleasing interpretation
of the bound in terms of the sensitivity of the likelihood function
of # to changes in the value of 4.

Let #(X) be an unbiased estimator of an unknown parameter
@ that is based on a random sample of data X, and let p(-|d) be
the probability density function for X. The Cramér—Rao bound
(normalized by #) is defined to be the right member of the

inequality
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This inequality was first stated by Fisher [2, sec. 7] and proved

by Dugué [3], but is generally attributed to Cramér (cf. [4, sec.

32.3)) and Rao (cf. [5, p. 83]). The incremental sensitivity of the

likelihood function of 6, p(x|-), to changes in the value of 8 is

defined by
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and is the ratio of the resultant percentage change in p(x|8) to
the causal percentage change in 6, evaluated at §. The limiting
value (as A§—0) of (2) is given by
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Therefore, the normalized bound (1) can be characterized by the

sensitivity (3): '
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This yields the intuitively pleasing interpretation that the
attainable mean square accuracy of an unbiased estimator is
lower-bounded by the inverse mean square sensitivity of the
likelihood function. If an unbiased estimator with error-variance
as small as the Cramér-Rao bound exists, it is said to be
efficient [2], and it is the maximum-likelihood estimator [2]
defined by ‘

p(x|8)>p(x|8).  forallg.

B=(E{|S](X)

(5)

Thus, if the sensitivity of the likelihood function is high, the
error variance of an efficient estimator is low and vice versa.
This agrees with intuition.

A more concrete intuitive interpretation in terms of sensitivi-
ties can be given to the Cramér-Rao bound and its tightness for
some specific models for p(x|#), as exemplified in [6, p. 70] for
the model where X |6 is a vector of independent identically
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distributed normal random variables with mean equal to a
known function f(-) of an unknown parameter 6.
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A Comparison of Some Kalman Estimators
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Abstract—Various estimators of a dynamical state vector are optimally
combined to obtain new estimators. The performance of these new estima-
tors is evaluated by comparing the traces of their covariance matrices. A
nontrivial example is given to illustrate the techniques.

I. . INTRODUCTION

The Kalman theory develops a particular approach to the
problem of estimating a dynamical state vector x. A system
model is used to propagate an estimate of x throughout a time
interval, say [fo,f), and a measurement model is used to update
the estimate at time ¢. Suppose at a given point in time we have
two unbiased estimates of x, say £ and y. For example, £ could
be an estimate obtained from a forward Kalman filter and y an
estimate obtained from a backward Kalman filter. Then we may
combine them in a linear fashion, say

{=T2+4Ap
to obtain a new estimate § of x. If the matrices T and A are so
chosen that {'is an unbiased estimate of x, and also such that the
trace of the covariance matrix of { is minimized, then we call { a
smoothed estimate of x.

The specific problem we wish to address in this corréspon-
dence is the following. Suppose x(—) and y(—) are unbiased
estimates of x at time ¢, and z is an independent observation at
time ¢ obtained from the measurement model. Using this infor-
mation we wish to construct a better estimate of x at time . We
have available at least five options:

1) smooth x(—~) and y( ), and then update with z;

i) update ¥(—) with 7 to obtain x(+), and then smooth
X(+)and yp(—);

i) update y(—) with z

x(—) and y(+);

simultaneously process x(—), y(—), and z;

to obtain y(+), and then smooth

iv)
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