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Stationarizable Random Processes

WILLIAM A. GARDNER, MEMBER, IEEE

Abstract—The familiar notion of inducing stationarity into a
cyclostationary process by random translation is extended through
characterization of the class of all second-order continuous-pa-
rameter processes (with autocorrelation functions that possess a
generalized Fourier transform) that are stationarizable in the wide
sense by random translation. This class includes the nested set of
proper subclasses: almost cyclostationary, processes, quasi-cy-
clostationary processes, and cyclostationary processes. The ran-
dom translations that induce stationarity are also characterized.
The concept of stationarizability is extended to the concept of as-
ymptotic stationarizability, and the class of asymptotically sta-
tionarizable processes is characterized. These characterizations
are employed to derive characterizations of optimum linear and
nonlinear time-invariant filters for nonstationary processes. Rel-
ative to optimum time-varying filters, these time-invariant filters
offer advantages of implementational simplicity and computational
efficiency, but at the expense of increased filtering error which in
some applications is quite modest. The uses of a random translation
for inducing stationarity-of-order-n, for increasing the degree of
local statiomarity, and for inducing stationarity into discrete-
parameter processes are briefly described.

I. INTRODUCTION
A. Purpose

YCLOSTATIONARY random processes are charac-
terized by the invariance of their joint probability
distributions under translations that are integer multiples
of a fundamental translation T, which is referred to as the
period of cyclostationarity. For example, a real continu-
ous-parameter process X is cyclostationary in the wide
sense (WSCS) with period T, if and only if the mean
function my and autocorrelation function kx possess the
periodicity!

mx(t) = EX(t))=mx(t+T)
kx(ts) = E{IX()X () =kx(t+ Ts+ T). (1)

WSCS processes have been the subject of an increasing
number of research papers since the late 1950’s, and they
have been shown to be appropriate models for a wide va-
riety of physical phenomena (see [1] and references
therein). Because of their similarity to stationary processes,
cyclostationary processes are more amenable to analysis
than nonstationary processes in general [1]. The most
widely exploited property of cyclostationary processes is

Manuscript received July 25, 1975; revised April 13, 1977. This work
was presented at the IEEE International Symposium on Information
Theory, Ronneby, Sweden, June 21-24, 1976.

The author is with the Department of Electrical Engineering, Uni-
versity of California, Davis, CA 95616.

! In this paper, all equations involving functions evaluated at the time
values t,s,7 and the frequency values f, v are valid for all values of t,s,7,f
in the set of reals R = (—«,») unless otherwise stated. The symbol (+)R
denotes the positive half of the reals, [0,) and the symbol I denotes the
integers. The symbol E denotes the statistical expectation operator. The
superscript * denotes complex conjugation.

their stationarizability. That is, the randomly translated
process

X(t) 2 X(t+0), (2)

where § is a random variable that is statistically indepen-
dent of X (¢) and is uniformly distributed on [-T/2,7/2],
is stationary in the wide sense (WSS), i.e.,

 BXO)=mx(0)
EX ()X (s)} = kx(t — 5,0), (3)

if and only if X is WSCS with period T' [2]. If X is WSS,
it is WSCS with any period T'; and if X is WSCS with pe-
riod T/n withn =2or3or4or---, it is also WSCS with
period T'. In the engineering literature, randomly trans-
lated cyclostationary processes are commonly referred to
as phase-randomized processes because they are gener-
alizations of randomly phased sinusoids (cf. [1] and various
references therein).

In this paper, it is shown that cyclostationary processes
comprise only a subclass of the class of all processes that
are stationarizable by random translation. For example,
it is shown that most processes of practical interest in the
class of almost cyclostationary processes, which includes
the class of cyclostationary processes as a proper subclass,
are stationarizable by random translation. More generally,
the purpose of this paper is to characterize the autocor-
relation functions of nonstationary processes that are
stationarizable and of nonstationary processes that are
asymptotically stationarizable (in the wide sense) by
random translation, and to characterize the random
translations that induce stationarity.

B. Motivation

There are various practical motives for the development
of the concept of stationarizability. Two such motives that
arise in estimation and detection problems are briefly
described.

1) Simplicity of Implementation of Filters and De-
tectors: The lack of stationarity of a random process is
reflected in the lack of time-invariance of estimators and
detectors for that process. For example, if observations
start at t = —o, the linear minimum-mean-squared-error
(MMSE) filter, smoother, or predictor (to be referred to
collectively as filter) for a WSCS signal in additive WSS
noise is a periodically time-varying linear system [1].
Similarly, the minimum-probability-of-error detector for

‘a Gaussian signal in additive white Gaussian noise de-

composes into a linear MMSE filter and a correlator, and,
if the signal is WSCS and the observation interval is [0,7],
the filter is asymptotically (r — «) periodically time-
varying. It has been shown that WSCS processes can be
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decomposed into a countable set of jointly WSS rep-
resentor processes (either continuous-time or discrete-time
representors); furthermore many WSCS processes require
only a finite number, let us say M, of jointly WSS processes
in the decomposition [1]. More specifically, this is true if
the process admits an exact or approximate mean-square
equivalent orthogonal expansion over one period [t,t + T
in terms of M basis functions (e.g., any WSCS process that
is approximately band-limited to [-M/2T,M/2T]). It
follows that the periodically time-varying MMSE filter for
such a process can be decomposed into an M-input, M-
output multiport time-invariant filter, preceded and fol-
lowed by a bank of M periodic product modulators or pe-
riodic switches that are synchronized to the WSCS process
[1]. On the other hand, if the stationarized model is used
for the WSCS process, then only one (instead of M 2)
time-invariant filter is needed, and—more important—no
synchronization is required. Thus, for detection problems,
use of the time-invariant filter in place of the time-varying
filter in the estimator-correlator structure amounts to use
of a noncoherent detector in place of a coherent detector.
It is shown in Section V that the time-invariant MMSE
filter for the stationarized process is identical to the min-
imum-time-averaged (over one period) mean-squared-
error filter for the WSCS (not stationarized) process. Of
course, the cost of the implementational simplicity is a
degradation of MSE performance for filtering, and a
degradation of probability-of-error performance for de-
tection. This degradation can be, but is not necessarily,
substantial. For example, if the WSCS process is the fre-
quency division multiplex of M WSS signals, then the
MSE degradation is always less than a factor of two.
However, if the WSCS process is the time-division multi-
plex of M WSS signals (e.g., from an array of sensors in an
inhomogeneous medium excited by a stationary random
process), then the degradation can be as large as a factor
of M, but in many practical applications will be less than
a factor of two [1]. Similarly, degradation of detection error
can be modest.

For a finite observation interval, the MMSE filter for
estimation or detection of a WSCS process is not periodi-
cally time-varying. Similarly, the MMSE filter for the
stationarized model is not time invariant. However, Kai-
lath et al. [3] have recently shown that the MMSE-filter-
correlator detector for stationary processes on a finite in-
terval can indeed be implemented using only (two) time-
invariant filters (although the MMSE filter—if imple-
mented directly—is time-varying). Thus, even for finite
observation intervals, use of the stationarized model leads
to a simple time-invariant detector.

For stationarizable processes that are not WSCS, the
simplicity of implementation of the time-invariant filter
for the stationarized model can be even more attractive,
since decomposition of the time-varying filter into a mul-
tiport time-invariant filter would not, in general, be pos-
sible, and the generalized synchronization problem would,
in general, be more difficult. The almost cyclostationary
processes discussed in Section II provide examples. It

should be mentioned that, in certain applications such as
broad-band filtering and equalization of channels for
multiplexed signals, the use of synchronized time-varying
filters is not appropriate, and the aforementioned per-
formance degradation is of no practical significance. It
should also be mentioned that the complexity-performance
trade-off described in the preceding paragraph applies to
nonlinear as well as linear filtering (see Section (V-D)) and
to detection of non-Gaussian as well as Gaussian signals.
These trade-offs are currently under investigation.

2) Efficiency of Computation of Filters: Kailath et al.
[4] have recently shown that the efficiency of computation
of continuous-time linear MMSE filters that is attainable
using a discretization scheme on the extended (two-pro-
cess) Sobolev and generalized (continuous-time) Levin-
son-Krein equations is determined by a measure of the
distance of the correlation functions of the observed and
desired processes from stationary correlation functions.
This measure of distance is called the displacement rank,
and is denoted by «. For the sake of simplicity, a dis-
crete-time process observed for N time instants is con-
sidered here. For a correlation matrix of arbitrary form,
computation of the MMSE filter requires O(N?3) multi-
plications; whereas, if the correlation matrix has dis-
placement rank «, only O(aN?) multiplications are re-
quired (1 < a < N). This savings can be substantial when
N is large. If the observed process is M-dimensional rather
than scalar (one-dimensional) and if the M component
processes are jointly WSS, then « = 2M and the number
of multiplications needed is O(M3N?) (compared with
O(MB3N3) for arbitrary nonstationary correlation) [5].
Now, as discussed in paragraph 1, a scalar WSCS process
can be decomposed into an M-dimensional WSS process;
this is obvious for a discrete-time process with M time-
points per period T. Thus « = 2M for a WSCS process. But
if the stationarized model for this process is used, then «
= 2 and the number of time instants observed is MN; thus
the number of multiplications needed is O (M2N?) (com-
pared with O(M3N?)). This savings can be substantial
when N is large, and the number M of jointly WSS pro-
cesses required in the decomposition of the WSCS process
is large. Of course, the cost of the computational efficiency
is degradation of MSE performance which can be, but is
not necessarily, substantial. For example, linear MMSE
estimation for two-dimensional discrete-parameter bi-
stationary image processes can be equivalently reformu-
lated in terms of one-dimensional discrete-parameter cy-
clostationary processes by concatenating subsequent
horizontal line scans of the image. (It should be noted,
however, that many one-dimensional cyclostationary
processes are not equivalent to any two-dimensional bis-
tationary process.) Furthermore, it has been shown that
the performance degradation resulting from the use of the
MMSE linear time-invariant filter (instead of the peri-
odically time-varying filter) for a continuous-time cyclo-
stationary image process is negligible for typical video
signals [1].

For stationarizable processes that are not WSCS, the




10 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-24, NO. 1, JANUARY 1978

computational efficiency for the stationarized model can
be even more attractive, since O(IN3) multiplications
would, in general, be needed for the nonstationary process,
but only O(N2) would be needed for the stationarized
model. The almost cyclostationary processes discussed in
Section II provide examples.

C. Outline

Because of the importance of the class of almost cyclo-
stationary processes as practical examples of stationari-
zable processes, Section II is devoted to the definition,
characterization, and exemplification of this class. The
published work on almost cyclostationary processes is
sparse. The only publications we have found in which al-
most cyclostationary processes are a central issue are
Gladyshev [6] on the Fourier series representation (7) of
an almost periodic autocorrelation function, Jacobs [7, and
references therein] on almost periodic Markov processes,
and Ohta and Koizumi [8] on an almost periodic model for
white Gaussian noise.

. The characterization and exemplification of the class
of stationarizable processes and stationarizing distribu-
tions is the topic of Section 111, and the characterization
and exemplification of the class of asymptotically sta-
tionarizable processes is the topic of Section IV.

In Section V, it is shown that time-invariant MMSE
linear and nonlinear filters for stationarized or asympto-
tically stationarized versions of nonstationary processes
can be characterized as minimum-time-averaged-MSE
filters for the nonstationary (not stationarized or asymp-
totically stationarized) processes.

Finally, in Section VI, some extensions and generaliza-
tions are briefly discussed; viz., stationarizability of order
n, degree of local stationarity, processes that are almost
stationarizable, and stationarizable discrete-parameter
processes. Conclusions are drawn in Section VII.

D. Terminology and Abbreviations

When the point of focus is the nonstationary behavior
of an autocorrelation function, as it is in this paper, it is
more convenient to work with the function [x (-, -) defined

by

Ix(t,7) = kx(t+ 7/2,t — 7/2) (4)

rather than to work directly with the autocorrelation
function kx (-, -). A change of variables in (4) yields

kx(t,s) = Lx([t + s]/2,t = s). (5)

Thus the autocorrelation kx is stationary if and only if Ix
is independent of its first argument (¢ in (4)), and kx is
cyclostationary if and only if [y is periodic in its first
argument. It is appropriate to refer to the first argument
in [x as the location variable, and to refer to the second
argument in [y as the separation variable. Thus [x could
be referred to as the location-separation autocorrelation
function to distinguish [x from kx. However, in the re-
mainder of this paper, [x is used exclusively; so for con-

TABLE 1
ABBREVIATIONS FOR CLASSES OF RANDOM PROCESSES*

WSS(A) wide-sense stationary (asymptotically)

WSCS(A) wide-sense cyclostationary (asymptotically)

PM(A) periodic in mean-square (asymptotically)

WSQCS(A) wide-sense quasi-cyclostationary (asymptotically)
wSACS(A)0 wide-sense almost cyclostationaryo (asymptotically)
APM(A)0 almost periodico in mean-square (asymptotically)
WSS(A). wide-sense stationarizable (asymptotically)

(H*;'he meaning of the subscript o is given in Definitions (II-2) and

venience [y is referred to simply as the autocorrelation
function.

The abbreviations used for the classes of processes of
interest in this paper are listed in Table I. In these abbre-
viations, the prefix “WS” stands for wide sense, the suffix
“A” stands for asymptotically, the subscript ~ indicates
that the suffix “izable” is to replace “y” in the word sta-
tionary, and the subscript “o0” is explained in Definitions
(IT-2) and (II-5).

As a final remark, we mention that the words stationa-
rizable and stationarizability are somewhat awkward,
however, they are grammatically valid and easier to use in
this paper than equivalent phrases such as “that can be
made stationary.”

II. ALMOST CYCLOSTATIONARY PROCESSES

Almost cyclostationary processes are defined in terms
of almost periodic functions with values in a Banach space.
Since almost periodic functions are uncommon in the lit-
erature on random processes, they are defined and briefly
described in the Appendix.

Definition II-1: A zero-mean second-order real con-
tinuous-parameter random process X is almost cyclosta-
tionary in the wide sense (WSACS) if and only if, for every
€ > 0, there exists a natural number N, and a trigonometric
polynomial of order N, in L= (R) that uniformly approxi-
mates the autocorrelation function for X to within e,
ie.,

Ne
sup [Ix(t,7) — > cnp(7) exp (Jopt)| <¢ forallt € R.
7€R

n=—N,
(6)
Thus a WSACS process has an autocorrelation {x (¢, 7)
that is almost periodic in the location variable t with values
in L=(R). The nth Fourier coefficient ¢, in the Fourier
series

i Cn(T) exp (jwnt) (7)

n=—ow

associated with [x(t,7) is given by the limit (in sup-
norm)

1
cp(r) = lim —

Ix(t —jopt) dt. (8
Jim o L (e exp (Sjent) di ()
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The Fourier coefficients {c,} in the Fourier series associ-
ated with a WSACS process can be characterized as the
time-averaged cross-correlations between the frequency-
translated processes Y,, and Y_,; i.e.,

cp(7) = lim 1

E -
Y op Y gy BYn(E+ 7/2Y2 (0 = 7/2)) dt

9)
Yo(t) £ X(t) exp (—jwnt/2). (10)

If X is WSCS, then (8)-(10) reduce to (1-6)—(1-8) in [1].

The following subclasses of WSACS processes are of
particular interest because all such processes are sta-
tionarizable (Section III).

Definition II-2: The subclass WSACS, of the class
WSACS is composed of all WSACS processes for which
zero is not a limited point of the Fourier exponents {w,}.
The subclass WSACS, of the class WSACS, is composed
of all WSACS, processes for which the associated Fourier
series converges in L *(R) norm uniformly in ¢.

The terminology used in the next definition is based on
Bohl’s and Esclangon’s term “quasi-periodic” [9, p. 49].

Definition II-3: A process is quasi-cyclostationary in
the wide-sense (WSQCS) with fundamental frequencies
{v;}9if and only if it is WSACS and has Fourier exponents
{wn} each of which is an integer multiple of one of the
fundamental frequencies {v;}{ which are finite in number
and incommensurable.

The class of all WSQCS processes is a proper subclass
of the class WSACS,.

The terminology in the next definition is borrowed from
Muckenhoupt’s work on functions with values in an L2
space that are almost periodic in the mean (square) [9, p.
58]. In this definition, the {¢’,} are second-order random
variables, Q is the sample space for X, and v € Q is the
sample space variable.

Definition I1-4: A zero-mean second-order real con-
tinuous-parameter random process X is almost periodic
in mean square (APM) if and only if, for every e > 0, there
exists a natural number N, and a trigonometric polynomial
of order N, in L2(Q) that uniformly approximates the
process X to within!:i:e, ie.,

N .
Eaf[ X = ¥ e exp Garat

2
}<e,

forallt e R. (11)

Thus, an APM process is the limit in mean square of
processes with sample paths all of which are almost peri-
odic. The nth Fourier coefficient ¢’,, in the Fourier se-
ries

@

2 c/n(y) exp (o'nt) (12)

n=-—w

associated with X (¢,v) is given by the limit (in L2 norm)

'W(y) = lim —

c
T—w 2T J[-T.T

: X(t,y)exp (—jw',t)dt. (13)

11

The following subclass of APM processes is of particular
interest because all such processes are stationarizable
(Section III).

Definition I1-5: The subclass APM, of the class APM
is composed of all APM processes for which the Fourier
exponents {’,} possess no limit points in K. ‘

Since an APM process with Fourier exponents {w',; n
e I} is WSACS with Fourier exponents {w,; n € I} = {w’,
— w'm;n e Im e I}, it follows that zero is not a limit point
of {wy,} if and only if {v’,} possesses no limit points in K.
This result is summarized by the following lemma which
is an extension of the result that all mean square periodic
processes are WSCS. This lemma and Theorem (III-1)
establish the stationarizability of APM, processes.

Lemma II-1: The class APM, is a proper subclass of the
class WSACS,.

Filtered Poisson processes, and other processes with
finite starting time, cannot be WSACS; however, as illus-
trated with example (II-6), such processes can be asymp-
totically WSACS [7].

Definition II-6: Processes that are asymptotically
WSACS (WSACSA) and asymptotically APM (APMA)
are defined by supposing the existence of a positive real
number T'. and replacing the condition “for allt € R” with
the condition “for all t = T',,”” and by replacing “sup over
7€ R” with “sup over |7| < T.” in Definitions (II-1) and
(I1-4). (See Definition (A-7) for an alternative way of de-
fining WSACSA and APMA processes.) ’

In MMSE filtering problems, the concept of joint sta-
tionarizability arises (Section V). Processes that are jointly
WSACS, are jointly stationarizable. Definitions (II-1) and
(I1-2) for single random processes can be extended to
multiplicities of random processes by incorporating
cross-correlation functions as well as autocorrelation
functions in the definitions. An example follows.

Definition II-7: Two zero-mean second-order random
processes X and Y are jointly WSACS if and only if, for
every e > 0, there exist a natural number N, and three
trigonometric polynomials of order N, in L=(R) that
uniformly approximate the autocorrelation functions [x
and ly, and the cross-correlation function [ xy to within +e
(as in (6)).

An alternative but equivalent definition is that X and
Y are jointly WSACS if and only if aX + bY is WSACS for
all real numbers a,b. Jointly APM processes are similarly
defined.

The following six examples illustrate the practical utility
of WSACS models for physical phenomena.

Example II-1: Any linear combination of uncorrelated
WSCS processes, at least two of which have incommen-
surable periods, is WSACS,, (and WSQCS) but not WSCS.

For example, the frequency-division-multiplexed signal

X(t) = 3 Xi(t) cos (wit + 6;), (14)

q
=1

where ¢ is any natural number greater than one, is
WSACS. (but not WSCS in general) if the baseband sig-
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nals {X;} are jointly WSS, the {w;} are incommensurable,
and the {6;} are deterministic or random and independent
of the {X;} and each other.

Example I1-2: Any finite product of statistically inde-
pendent WSCS processes, at least two of which have in-
commensurable periods, is WSACS, but not WSCS. For
example the amplitude modulated synchronous data sig-
nal

> st =iT,A;) cos (wt + )

[=—c

X() = (15)
1s WSACS,, (but not WSCS in general) if the periods 7" and
27/w, are incommensurable, {4;} is a stationary-of-
order-two-random sequence, s(-,4;) is a deterministic
L2(R) function for all samples of A;, and # is deterministic
or random and independent of {4,}.

Example II-3: A deterministic memoryless periodic
transformation of a cyclostationary process can be
WSACS. For example, the phase-modulated synchronous
data signal

X(t) = cos [w(,t + > s(t—iTA)+ H] (16)

i=—e .
1s WSACS, (but not WSCS in general) if the periods T and
27/w, are incommensurable, {4;] is a stationary-of-
order-two sequence, s(-,4;) is a deterministic L2(R)
function for all samples of A;, and ¢ is deterministic or
random and independent of {4;}.

Example II-4: A deterministic, almost periodic, linear
transformation of a WSS process is WSACS. For example,
the output of a linear system with WSS input and with
impulse-response function

h(t,s)=g([t +s]/2,t —s) (17)

is WSACS if g(t,7) is almost periodic in t on L1(R). Also,
an almost periodic time-scale transforming linear system
with WSS input Y and with impulse response function

h(t,s) = é[s —t — f(t)], (18)

where f is almost periodic and é is the Dirac delta function,
has an output

X(t)=Y[t+ /)]

that is WSACS. Such time-scale transformations can result
from radiation or reflection of a signal from a body in al-
most periodic motion.

Example II-5: Any finite set of uncorrelated WSCS
processes, at least two of which have incommensurable
periods, are jointly WSACS, but not jointly WSCS.

Example II-6: As an example of a class of processes that
are asymptotically WSACS, we consider the marked and
filtered Poisson point process (cf. [10, Section 4.1])

(19)

X(@t)= 3 Aot = T)), (20)
i=1

where ¢(-) is a deterministic L2(R) function, and {4;} is a

second-order sequence of independent identically dis-

tributed random variables that are independent of the

random occurrence times {T}} of an inhomogeneous Pois-
son counting process that starts at t = 0, and has rate pa-
rameter A. The autocorrelation function for X is known to
be

Ix(t, 1)

= E|A?) J:m Bt +1/2 = )bt — 7/2 — )\ (o) do

+ (ElA))? j:m ot + 7/2 — o)\(0) do

f #(t — 7/2 — W)\(a) da, (21)
()R
and the mean function is known to be
mx(t) = ElA] f ot — ONo) do.  (22)
(+)R

Thus, if A is asymptotically periodic with period T, X is
asymptotically WSCS with period T, and if \ is asympto-
tically almost periodic (see Definition (A-7)), X is
asymptotically WSACS. Furthermore, if \ is a second-
order stochastic process so that the point process is doubly
stochastic, the autocorrelation and mean are known to

be
Ix(t,7) = E|A?) j(‘m bt + 1/2 — o)
<ot = 7/2 = 0)EN(0)} do

2 _
+ (ElA}) J:+)R j;ﬂR d(t+ 7/2 - 0)

<t — 7/2 = @) EN(0)M)} d o de (23)

and

mx(t) = E{A] f( g O BN do. (20)

Thus, if X\ is WSCSA with period T, X is WSCSA with
period T', and if X\ is WSACSA, X is WSACSA. These
models are appropriate for various signal formats em-
ployed in optical communication systems (cf. [11]).

Definitions of WSACS and APM discrete-parameter
processes are analogous to Definitions (II-1) and (I1-4).
Uniformly time-sampled continuous-parameter WSACS
and APM processes provide examples. (See the last remark
in the Appendix.)

III. STATIONARIZABLE PROCESSES

Let X be a second-order real continuous-parameter
random process with autocorrelation function I x (defined
in Section I), and for which the following limits exist uni-
formly in 7 for all 7 € R:

1
lim — 1%(t,7) dt 25
Tgll oT Jiry x(t,7) (25)
. 1
k £ lim — Ix(t,7)dt. )
x(0) = lim o e (26)




GARDNER: STATIONARIZABLE RANDOM PROCESSES

Definition III-1: The limit function & x is defined to be
the stationary component (on R) of [x, and the difference
function

nx(t,7) 2 Ix(t,7) = kx(7) (27)

is defined to be the nonstationary component (on R) of
Ix.

Existence of the limit (25) guarantees existence of the
generalized Fourier transform of [x(-,7), for all 7 € R.
However, for simplicity of presentation, the usual Fourier
transform which is the derivative (when it exists) of the
generalized transform is used in this paper. In order not
to be overly restrictive, the usual transform, the conjugate
of which is defined by

Lyx(f,r) & f Ix(t,7) exp (j2ft) dt (28)
R
is allowed to contain Dirac delta functions (corresponding

to step discontinuities in the generalized transform). For
example, if X is WSS,

Lx(f,7) = kx(1)5(f).

The following characterization of Ly is basic to the
problem of characterizing correlations that can be made
stationary by random translation.

Lemma I1I-1: The Fourier transform L(-,7) of the
autocorrelation function lx(-,7) contains a Dirac delta
function of area kx (7) at the origin f = 0, and the Fourier
transform Nx(-,7) of the nonstationary component
nx (- ,7) does not contain a Dirac delta function at f = 0.

In order to derive the relationship between the compo-
nents of the autocorrelation of a process X and the com-
ponents of the autocorrelation of its randomly translated
version

(29)

X(t)2 X(t+90), (30)

where 6 is statistically independent of X, the fact that [ x
and [g are related by convolution with the reversed
probability density function py(— -) for 6 is used, i.e.,
x(tr) = [ Ix(t+ o r)polo) do (31)
R
Application of the convolution theorem for Fourier
transforms to (31) yields the relationship

Lz (f,7) = Lx(f,7)Py(f),

where Py is the conjugate characteristic function? for . The
following characterization of the components of Ly is basic
to the problem of determining conditions for the station-
arity of X.

Lemma I11-2: For every random translation that is in-
dependent of X, the stationary component (on R) of I ¢ is
equal to the stationary component (on R) of Ix

kx(r) = kx(7),

(32)

(33)

2 The notation Py(-) emphasizes the interpretation of the conjugate
characteristic function as the Fourier transform of py(-).
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and the conjugate Fourier transforms of the nonstationary
components (on R) are related by

Nx(f,m) = Nx(f,7)Py(f). (34)

Thus random translation affects the frequency content
of the nonstationary component in a simple way, and has
no effect on the stationary component. In contrast to this,
linear time-invariant filtering or smoothing of a process
affects the frequency content of both components, and the
effect on the nonstationary component is not so simple.
Specifically, if we denote the transfer function of the filter
by H(-), and if X is the input to the filter and Y is the
output, then

Ky(v) = |[HW)|2K x (v)
=H(v — f/2)H*(v + f/2)Nx(f,»),

(35)

Ny(f,») (36)

where K x is the Fourier transform of £y, and Ny is the
double Fourier transform of nx

Nx(f,v) = j; J}; nx(t,7) exp [j27(ft — v7)] dt dr.

(37)

Relationship (35) is well known, since K x is identical to
Rice’s time-averaged power spectral density for a non-
stationary process.

The following lemma on characterization and existence
of characteristic functions is well known, but is essential
to the proof of the theorems on stationarizability and is
therefore given here so that proofs can be brief.

Lemma III-3: Let Py be any conjugate characteristic
function. For every arbitrarily small positive number ¢,
there exists a positive number b such that

|Po(f) — 1| <e,  forall |f| <b. (38)

Also, for every arbitrarily small positive number B, there
exist characteristic functions for finite mean-square ran-
dom variables 6 such that

Py(f) =0 for all |f| > B. (39)
For completeness, the following definition is given for
processes with mean functions that are nonzero in general,
but the following characterization theorem is given for
zero-mean processes only. This simplifies the presentation
without appreciable loss of generality. The specific loss of
generality is discussed at the end of this section.
Definition I11-2: X is stationarizable in the wide sense

(WSS..) if and only if there exist

1) afinite mean-square random variable 6 that is sta-
tistically independent of X,
ii) an L= (R) function k(-) that is not identically zero,
and
iii) areal number m

such that the randomly translated process X (t) 2 X (¢t +
0) is WSS with autocorrelation function k, and mean m,
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Le.,

Ix(t,7) = k(1)

mxz(t) =m.

(40)
(41)

Theorem III-1: A zero-mean process X is stationari-
zable in the wide sense if and only if the stationary com-
ponent ky of its autocorrelation function is not identically
zero, and there exists a neighborhood [—B,B] of the origin
on which the Fourier transform N%(-,7) of the nonsta-
tionary component of the autocorrelation has zero L!
norm

f . INx(fnldr=o, (42)
(-B,B] .
Furthermore, the stationarized autocorrelation k is unique
and equal to the stationary component k.

Proof: Employment of Lemma (III-2) yields the
following expression for the autocorrelation function for
the randomly translated process X:

Ix(t,r) = fR Nx(f,7)Py(f) exp (—j2rft) df + hx (7).

(43)

Lemma (III-1) guarantees that Ny (-,7) does not contain
a Dirac delta function at the origin f = 0. Therefore the
integral in (43) is independent of ¢, and the entire right
member of (43) is not identically zero (and therefore X is
stationary) if and only if

L INx(n)Patf] df =0 (44

and

kx(1)=0. (45)

But Lemma (III-3) and (44) require that N x satisfy (42)
for some positive number B, and if Ny satisfies (42),
Lemma (III-3) guarantees the existence of a Py (viz., (39))
that satisfies (44). Furthermore, it follows from (43) and
the necessary and sufficient conditions (44) and (45) that
k = kx is the unique stationarized autocorrelation.

The following characterization of characteristic func-
tions of random translations that induce stationarity fol-
lows immediately from (44).

Corollary I1I-1: A random translation with character-
istic function P; stationarizes a process with nonstationary
component Ny, and with stationary component that is not
identically zero, if and only if Py annihilates the product
Nx (34) in L1 norm:

L INx (£, 7 Pa(f)] df = 0.

Since Py(f) = 0 implies that Re {Py(f)} = 0, and since Re
{Py(f)} is a valid characteristic function (corresponding to
the probability density function [py(t) + ps(—t)]/2), then
every WSS process can be stationarized with a zero-mean

(46)

random translation # having an cveu probability density
function.

Many processes that satisfy the band-limiting constraint
(42) are nonphysical as illustrated in the example in the
following paragraph. Some physical insight into the reason
that (42) is necessary for stationarizability can be gained
by interpreting Py(-) as the transfer function of a linear
time-invariant filter with input signal having Fourier
transform Lx (-,7), where 7 is a parameter. Then, in order
to stationarize [x (-, 7), the filter must pass the zero-fre-
quency component of [x (-,7) and reject components at all
other frequencies. It can do so if and only if there are no
components at frequencies that are infinitesimally close
to zero (except the component at zero).

Let X be the process generated by WSS white noise W
by multiplication with the deterministic function m(-) and
convolution with the deterministic function h(-), i.e.,

X(t) = J};h(t — $)m(s)W(s) ds, (47)

where

[m@®))2=1+at)=0
1 pT
lim ﬁf_Ta(t)dt—o

.
Tliflin_TTa%)dt <. (48)

Equations (35) and (36) yield
| Rx() = |HW)? (49)
Nx(f,v) = A(HH(v — f/2)H*(v + f/2). (50)

Thus Nx satisfies (42) if and only if A satisfies the band-
limiting constraint

§, JAnidr=o
[B.B]
for some B > 0.

Evidently, the only type of nonstationary process that
is stationarizable without some form of strict band-limiting
in the process model (e.g., (51)) is that type with autocor-
relation function that has a Fourier transform L x(- ,7) that
contains no continuous component; i.e., contains only
Dirac delta functions; for example,

(51)

S en(n)of = fo).

n=-—wo

Lx(f,7) = (52)

Comparison of (52) with (7) (let w,, = 27f,) shows that such
processes are WSACS. Furthermore, all WSACS, pro-
cesses are stationarizable. However, WSACS processes
that are not WSACS,, because the Fourier exponents {w,}
have zero as a limit point are not stationarizable because
(42) is violated.

Corollary (III-1) yields the following necessary and
sufficient condition on the characteristic function of every
random translation that induces stationarity into a
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WSACS, process:
Py(f,) =0, for all n # 0 such thatc,(-) =0. (53)

If the WSACS, process is WSQCS with fundamental
frequencies {v;}{(v; = 27g;), a Py satisfying (53) can be
constructed as follows:
q
Py(f) = 11 sin (xf/g;)/(xf/g;). (54)
j=1
In this case, the stationarizing random translation 6 can
be decomposed as follows:

(55)

where {0;} are independent and 6; is uniformly distributed
on [—1/(2g;),1/(2g;)] for all j. Furthermore, the annihila-
tion of all frequency components in the autocorrelation
with frequencies that are harmonics of g; can be attributed
to 0;. .

More generally, for every WSQCS process, there exist
stationarizing random translations # that admit the de-
composition (55), where {6} are independent and 6; has any
probability density function p;(-) satisfying Beutler’s
trigonometric moment condition which can be expressed
(by using the Poisson sum formula together with [2, (33)
and (34)]) as

1 =
— X pit—-m/g)=1.

8 m=—o

(56)

This result is an extension and generalization of Hurd’s
result [2] from WSCS processes to WSQCS processes.

If a WSACS, process is not WSQCS, but the Fourier
exponents {f,} are square summable, the mean-square limit
(g — =) of (55) (with p; satisfying (56) with {g;} = {f;})
exists, and the limiting random translation § stationarizes
the process. On the other hand, if {f,,} are not square-
summable, the series (55) does not converge (¢ — «) to a
finite variance random variable. But if B is the infimum
of {|fn]; n # 0}, there exists a stationarizing § with variance
not exceeding the bound

Eo_ﬁ = 3/(xB) (57)

This follows by construction; i.e., let Py be the triple self-
convolution of the rectangle function

o [(12/B3)YVA forall |f| < B/4
0, for all |f| > B/4.

It should be mentioned that some, but not all, processes
that are stationarizable with a random translation having
a continuous distribution are stationarizable with a ran-
dom translation having a discrete distribution. Sufficient
conditions for a WSACS, process to be stationarizable
with a random translation having a discrete distribution
with uniformly spaced support points is that the Fourier
exponents be bounded (|f,| < F < « forall n). Then, for
example, a discrete probability density of the form

Pa(t)=a[M]4 S 8t —iA)
Tt

=

2(f) (58)

(59)
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with appropriate values for «, 38, A, will stationarize the
process.

Definition (III-2) and Theorem (III-1) for single random
processes can be extended to multiplicities of random
processes by incorporating cross-correlation functions as
well as autocorrelation functions in the definition and
theorem. This extension is necessary for applications to
linear MMSE filtering (Section V).

Definition I11-3: Two zero mean processes X and Y are
jointly stationarizable (in the wide sense) if and only if
there exist

i) a finite mean square random variable 6 that is sta-
tistically independent of X and Y, and
i1) three L= (R) functions kx(-), ky(-), kxy(+),

such that ~the randomly translated processes X (t) = X (¢
+0) and Y(¢) £ Y(¢t + 0) are jointly WSS with autocorre-
lation functions and crosscorrelation function given by

Ix(t,7) = kx(7)

ly(t,7) = ky(7)
Izy(t,7) = kxy(7). (60)
Similarly, the extension of Theorem (I1I-1) is that X and
Y are jointly WSS if and only if (42) is satisfied by Ny,
Ny, and Nxy. For example, all jointly WSACS, processes
are jointly WSS... It should be noted, however, that if x
stationarizes X and 0y stationarizes Y, it does not follow
that any of the random translations fx, 0y, or 0x + 0y
jointly stationarize X and Y. This is a result of the fact that
the support of Nxy(-,7) need not be the same as the sup-

port of Nx(-,7), Ny(-,7), or nx (- ,7)Ny(-,7).

Consider, as a simple example, the two zero-mean jointly

WSACS., processes
X(t) £ Z(t) cos (27f1t)
Y(t) = Z(t) cos (2nfat), (61)

where Z is WSS. These processes are jointly stationarized
by 0 xy if and only if

Poyxyl£(f1 £ fo)] = Poyy(£2f1) = Pyy, (£2f2) = 0;

whereas X and Y are individually stationarized by 8y and
fy, respectively, if and only if

Py (£2f1) =0
Py, (£2f5) = 0.

(62)

(63)

It should be mentioned for reference in Section V that,
as an extension of Lemma (III-2), the stationary compo-
nent (on R) kxy of the cross-correlation of X and Y,

kxy(r) £ lim 1 (64)

[ t,7)dt,
ey xy(t,7)

is identical to the stationary component (on R) of the
cross-correlation of every pair of jointly translated versions

X(t) 2X(t+0),Y1t)2Y(+0).

As a fiual remark, it is pointed out that the problem of
characterizing the behavior of the mean function mx of a
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randomly translated process X is a special case of the same
problem for the correlation function /. The preceding
presentation has therefore been simplified by treating only
the latter characterization problem. However, although
the problems associated with stationarization of the mean
by random translation are a special case of the problems
associated with stationarization of the autocorrelation, it
is not necessarily true that a random translation 6 that
stationarizes the autocorrelation also stationarizes the
mean (or vice versa). But it is true that if two statistically
independent random translations, ,, and 6y, that sta-
tionarize the mean and autocorrelation (respectively) exist,
then a single random translation that stationarizes both,
namely the sum of 6,, and 6y, exists. The sum, however, is
not the only such translation. For example, the mean of the
WSCS process (61) (assuming Z has nonzero mean) with
w; = 27/T is periodic with minimum period 7, and its
autocorrelation is periodic with minimum period 7/2.
Hence, a random translation that is uniformly distributed
on [—T/4,T/4] stationarizes the autocorrelation but not
the mean; a random translation that is uniform on [—7/
2,T/2] stationarizes both.

IV. ASYMPTOTICALLY STATIONARIZABLE
PROCESSES

It is intuitively obvious that no process with a finite
starting time ¢, can be stationarized for all time ¢ by ran-
dom translation. This is easily illustrated with the process
(+)X generated from any zero-mean WSS process X by
truncation at ¢, = 0. The autocorrelation for (+)X is (from
(70))

l(+)X(t,T) = Ex(T)u(t - |T|/2) (65)

Thus the stationary and nonstationary components (on
R) are

kyx (1) = Ykx(7) (66)
Nx(f,7) = kx(7) exp (of| 7|)/(=j2xf).  (67)

Hence, N(4)x(-,7) is unbounded in every neighborhood
of the origin f = 0, and the necessary and sufficient con-
dition for stationarizability (42) is not satisfied. On the
other hand, (+)X is WSS on (+)R by construction. Simi-
larly, many processes with finite starting times are WSS
except for an initial nonstationary transient. Stationarity
of this type is an important property and is commonly
referred to as asymptotic stationarity. Paralleling the class
of stationarizable processes characterized in Section III,
there exists a class of processes that are asymptotically
stationarizable by random translation.

As a simple example, any process that is WSCS, but not
WSS, for all t > 0is not asymptotically stationary, but can
be made so by introducing a uniformly distributed random
translation. In this section, the property of wide sense
asymptotic stationarizability is defined, and the class of
processes that are asymptotically stationarizable in the
wide sense is characterized.

Let X be a second-order real continuous-parameter

random process with autocorrelation function [x (defined
in Section I), and for which the limit (25) and the following
limits exist uniformly in 7 for all 7 € R:

(1) = lim — Ix(t,7)dt
T—w T [|T]/2,T+|‘r|/2]
- 1
kx(r) £ lim — Ix(t,7)dt. (68)
T—o T J[=|r|/2-T,—|7|/2]
The limit functions (26) and (68) are related by
kx(r) = hlk%(r) + Ex(1)]. (69)

Let (+)X be the one-sided process obtained by truncation
of X

(H)X(t) = X (t)u(t)
1, t=>0
0, t <0

then the autocorrelation for (+)X is a truncated version
of the autocorrelation for X

u(t) &

t—|r]/2) £ I%(t, ‘r) (70)

k¥ is defined to be the sta-
) of {%, and the truncated

l(+)X(t,T) = Ix(t,7)

u(
Parallel to Deﬁnltlon (I1-1),
tionary component (on (+)
difference function

(1%t 7) = R%(D]ult — |7]/2)

is defined to be the nonstationary component (on (+)R)
of I%. The appropriateness of this definition follows from
the fact that n% = 0 if and only if X is WSS on (+)R.
Since

nk(t,r) = (71)

E(ﬁr)x = /53?
n(++)x = ”L}L<
Ithx = 1%, (72)

the process X is assumed (without loss of generality) to be
zero for all ¢ < 0 in the remainder of this section.

The components k% and n% play a role in the theory of
asymptotic stationarizability that is similar to the role
played by kx and ny in the theory of stationarizability
(Section III). For example, if Lx,Ny,kx in Lemma (III-1)
are replaced by L%,N%, %k, respectively, then the lemma
is still valid and reidentified as Lemma (IV-1). Further-
more, let X denote the randomly translated process X(t)
2X(t+0)(X#)=X®u(), X and 0 statistically inde-
pendent); then parallel to the first part of Lemma (I11-2),
the stationary components of [% and [} are equal for every
random translation 6

k% =k%. (73)

In contrast to the second part of Lemma (III-2), the non-
stationary components are related by

nt(tr) = [ [Quf0ER) + NP
R
-exp (=j2nft) df u(t — |7]/2)

Qo(f,7) = (Py(f) = 1) exp (xt| 7))/ (=j2xf).  (74)
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However, it follows from (74) that
nk(en) = [ N&(.r)Po(f) exp (~j2nft) df| = 0.

(75)

Thus, parallel to the second part of Lemma (III-2), the
asymptotic properties of n¥ depend on only N%(f,7)Ps(f).
Equations (73)-(75) are referred to as Lemma (IV-2).

lim

t-—>o

Definition IV-1: A zero-mean process X is asymptot-
tcally WSS~(WSSA) on (+)R if and only if the stationary
component k% is not identically zero and the nonstationary
component n% vanishes asymptotically,? i.e.,

lim nk(t,7) =0

t—
for every finite value of 7.

Definition IV-2: A process X is asymptotically sta-
tionarizable in the wide sense (WSSA..) on (+)R if and
only if there exists a finite mean-square random transla-
tion variable 8 that is independent of X and that renders
the randomly translated version X of X asymptotically
stationary in the wide sense on (+)R. The following theo-
rem is obviously a parallel to Theorem III-1.

Theorem IV-1: A zero-mean process X is asymptotically
stationarizable in the wide sense if and only if the sta-
tionary component k% of its autocorrelation function is not
identically zero, and there exists a neighborhood [—B,B]
of the origin on which the conjugate Fourier transform
N%(-,7) of the nonstationary component of the autocor-
relation vanishes asymptotically

lim ? N%(f,7) exp (—j2xft) df = 0. (76)

t—w -B
Furthermore, the asymptote of the asymptotically sta-
tionarized autocorrelation is unique and equal to the sta-
tionary component k %.

The proof of Theorem IV-1 parallels the proof of The-
orem III-1, with Lemmas IV-1 and IV-2 used in place of
Lemmas ITI-1 and III-2. Similarly, it follows directly from
the proof that, parallel to Corollary ITI-1, a characterization
of the characteristic function P; for any asymptotically
stationarizing random translation for X is

lim

. N%(f, 7)Po(f) exp (—j2rft) df = 0.
t—>o

Paralleling the role described in Section III of WSACS,
processes as practical examples of stationarizable pro-
cesses, WSACSA, processes provide practical examples
of asymptotically stationarizable processes. For example,
if X is WSACSA', there exists a function r(- ,7) with con-
jugate Fourier transform R(-,7) such that

L) = T enln) (Yhd(f = f)

n=0
+exp (r(f = f) |7/ [=i2x (f = f)l} + R(f,7)

3 Some authors (cf. [12, pp. 90, 96]) refer to all processes for which the
limit (68) exists and is not identically zero as asymptotically stationary,
independent of the validity of (76).

(17

17

and

lim r(¢,7) = 0, forall 7 € R.

t—>o

Thus, if Py satisfies (53), it follows from (75) that

lim n¥(t,7) = lim r(¢,7) = 0, forall7e R

t—wo t—> oo

and X is WSSA.

Paralleling the extension in Section III from the prop-
erty of stationarizability of a single process to the property
of joint stationarizability of two processes, it is mentioned
here for reference in Section V that the obvious extensions
of Definitions (IV-1) and (IV-2), and Theorem (IV-1) for
joint asymptotic stationarizability are valid, and all
jointly WSACSA, processes are jointly WSSA...

V. TIME-INVARIANT FILTERING

Let X be a second-order process that is to be estimated,
and let Y be an observed process from which the estimate
of X is to be obtained. Let the optimum (defined in the
following paragraph), linear, time-invariant estimate of
X be denoted by X:

X(t) = J;h(T)Y(t — 1) dr, (78)
where the integral is assumed to be quadratic mean con-
vergent. The deterministic function h is the impulse re-
sponse function of the linear, time-invariant, estimating
system. The memory interval S determines the memory
of the system, and thereby determines whether the system
is a filter (S = [0,%)), a smoother (S = [-A,»),A > 0), or
a predictor (S = [A,®),A > 0). More generally, S can be an
arbitrary finite collection of intervals, provided that it is
independent of t. For convenience, the system is hereafter
referred to as a filter regardless of S. Finite starting times
are incorporated in the models of X and Y rather than in
S;e.g., X(t)=Y(t)=0,forallt <O0.

The criterion of optimality to be considered is minimum
time-averaged mean-squared error (MTAMSE), and the
objective is to show that the MTAMSE filter for a pair of
jointly WSS nonstationary processes X and Y is identical
to the MMSE (not time-averaged) filter for the jointly
stationarized versions X and Y, and also to show that the
MTAMSE filter for a pair of jointly asymptotically WSS~
nonstationary processes is identical to the steady-state
MMSE filter for the jointly asymptotically stationarized
versions. As discussed in Section I, the motivation for using
time-invariant filters for nonstationary processes is sim-
plicity of implementation and efficiency of computa-
tion.

A. Stationarizable Processes

The objective is to characterize the solution to the
MTAMSE filtering problem:

min {(e)}, (79)
h
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where
PR ’
(e) & Thfi o Jiormy e(t) dt (80)
e(t) = E{[X(t) — X (1)]2, (81)

in terms of the solution to the MMSE filtering problem:

(82)

min {é},
h

where

&= E|[X(t) - X(t)]2, (83)

and X is given by (78) with Y replaced by ¥, and X and Y
are any jointly stationarized versions of X and Y. However,
before proceeding, we should mention that the MTAMSE
time-invariant filter by definition yields a time-averaged
MSE that is no larger than that resulting from the time-
invariant filter obtained by time-averaging the MMSE
time-varying filter. But the latter is considerably more
difficult to solve for.

The following theorem is an extension and generaliza-
tion of Theorem 1 in [1] from smoothing (A = «) for WSCS
processes to smoothing, filtering, and prediction for arbi-
trary WSS processes (e.g., WSACS, processes).

Theorem V-1: The solution to the MTAMSE filtering
problem (79) is identical to the solution to the MMSE
filtering problem (82), and the unique (implicit) solution
is

fsh(r)iéy(t — 1) dr=Fkxy(t), forallie S, (84)
and
min (e) = kx (0 f Kxy(r)h(r) dr. (85)
Proof: Let the error process be denoted by ¢
at) 2 X(t) - fs h(D)Y(t - 1) dr, (86)

and let its randomly translated version be denoted by ¢
it) = et +6). (87)
Then

wt) = X(t) - j;h(T)Y(t ~ ) dr (88)
and the joint stationarity of X and Y guarantees the sta-
tionarity of €. Furthermore, it can easily be shown that

E{e2(t)ldt 2 k(0), (89)

[=T.T]

1
= lim —
(e) TI—IEDZT

and
(90)

Efe2(t)) & = k:(0).

Thus the uniqueness part of Theorem (III-1) (with X re-

placed by ¢) yields
(e) =é. ’ 91)
Hence, (e) and € clearly are minimized by the same filter.

That the solution to (82) is implicity given by (84) and (85)
is well known.

B. Asymptotically Stationarizable Processes

Parallel to the objective in Subsection (V-A), the ob-
jective here is to characterize the solution to the MTAMSE
filtering problem:

min {(e).], (92)

where
(e)+ # lim ?f e(t) dt (93)
e(t) = E{[X(t) — X()]3, (94)

in terms of the solution to the MMSE steady-state filtering
problem:

min (2., (95)
where
« = lim &(¢) (96)
t-—>o
5(t) 2 E|[X(t) — X(0)]2), (97)

and X is given by (78) with Y replaced by ¥, and X and ¥
are jointly asymptotically stationarized versions of X and
Y. Parallel to the remark in Section (V-A), the MTAMSE
time-invariant steady-state filter by definition yields a
time-averaged MSE that is no larger than that resulting
from the time-invariant, steady-state filter obtained by
time-averaging the MMSE time-varying filter. But the
latter is considerably more difficult to solve for.

Theorem V-2: The solution to the MTAMSE filtering
problem (92) is identical to the solution to the MMSE
steady-state filtering problem (95), and the unique (im-
plicit) solution is
forallt € S,

fh Vet — 1) dr = Bhy(t), (98)

f k%

Proof: Parallel to the proof of Theorem (V-1), let ¢
and ¢ be defined by (86) and (87). Then the joint asymp-
totic stationarity of X and Y guarantees the asymptotic

stationarity of ¢ (assuming h(t) — 0 as t — »). Further-
more, it can be shown that

min (e) 4 7)h(7) dr. (99)

(e)+ = lim ?f Ele(t)) dt 2 EH0),  (100)

T—w
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and

é. = lim E[e2(t)} £ lim [#(¢,0) = k7 (0). (101)

t—>oo t—w

Thus the uniqueness part of Theorem (IV-1) with X re-
placed by ¢ yields

(102)

Hence, (e)+ and é.. clearly are minimized by the same
filter. That the solution to (95) is implicitly given by (98)
and (99) is well known.

()t = €a.

C. Periodically Time-Varying Steady-State Filtering

The common notion of steady-state time-invariant fil-
ters for asymptotically stationary processes dealt with in
Section (V-B) can be extended to the notion of steady-
state periodically time-varying filters for asymptotically
cyclostationary processes; e.g., Example (II-6). This ex-
tended notion has recently been employed in the deriva-
tion of linear MMSE steady-state receivers for fiber-optic
data channels [11].

D. Nonlinear Filtering

Theorems (V-1) and (V-2) extend from linear filtering
to nonlinear filtering. That is, if the hypothesis of (as-
ymptotic) stationarizability in the wide sense is replaced
with (asymptotic) stationarizability in the strict sense
(Section VI), then the MTAMSE nonlinear timeé-invariant
filter for X and Y is identical to the (steady-state) MMSE
nonlinear filter for any (asymptotically) stationarized
versions X and Y. This extension is valid for constrained
nonlinear filtering (e.g., quadratic filtering) as well as
unconstrained nonlinear filtering. The proofs of these
extended theorems directly parallel the proofs of Theo-
rems (V-1) and (V-2).

VI. EXTENSIONS AND GENERALIZATIONS
A. Stationarizability of Order n

The technique of making a process wide sense stationary
by introducing a rAndom translation can be extended to
the technique of making a process stationary of order n as
f llows. Let the joint probability distribution function for
the random variables {X (¢t + 7;);i = 1,2, - - - ,n} evaluated
at{x;;i=1,2,---,n} be denoted by

Fx (5 {775 {1 (103)

forallt € R, {;}T € R™,{x;}! € R". Parallel to Definition
(III-1), the stationary component of Fx (also a valid dis-
tribution function when the limit exists and is not identi-
cally zero) is defined by

Fx(tr}% {30

4 lim—l—

T—w 2T J[-T.7] Fx (&5 {riff; bri?) dt,

(104)
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and the nonstationary component (not a valid distribution
function in general) is defined by

Gx (t; ()7 {xidD) )

2 Fx (t; {r)7; belt — Fx (i} {xdD). (105)
Parallel to (31), the distribution function for the randomly
translated version X (t) = X (¢ + 0) is given by

Fx(t; {7:}7; (x3D)

= j; Fx(t + o {7} lxi}D)po(o) do.  (106)

The obvious extensions of Lemmas (III-1) and (ITI-2) are
valid. Therefore extensions of characterization Theorems
(ITI-1) and (IV-1) can be developed. As an example, con-
sider a random process X that is almost cyclostationary
of order n (i.e., for which (103) is an almost periodic
function of t) for all positive integers n, and is therefore
almost cyclostationary in the strict sense. More specifi-
cally, consider a WSACS, Gaussian process X for which
the positive Fourier exponents possess B as an infimum.
Then the randomly translated process X is stationary in
the strict sense if Py satisfies (39). The class of processes
that are almost cyclostationary in the strict sense include
as a proper subclass the class of strict-sense cyclostationary
processes. Strict-sense cyclostationary discrete-parameter
processes (called M-stationary if the period is M) play an
important role in coding theory [13, p. 529], [16].

B. Other Related Notions

Also of interest is the notion of a process that can almost
be made stationary in the sense that, for every arbitrarily
small positive number ¢, there exists a random translation
that makes the norm of the nonstationary component of
the autocorrelation less than e. If the L1-sup norm

INx[2 2 sug . |INx(f,7)| df (107)

is used, then the necessary and sufficient condition for a
process to be almost stationarizable (AWSS..) is that there

exist a neighborhood of the origin f = 0 on which Nx (- ,7)
is bounded for all 7 € R.

v A nonstationary process for which the fluctuation of
Ix (- ,7) in the location variable ¢t over an interval S is slow
relative to the average (over t € S) decay of Ix(t,-) is
commonly referred to as locally stationary on S. However,
the definition of local stationarity given.in [14] appears to
be overly restrictive and not in full agreement with this
physical meaning (cf. [15]). For example, the property
defined there is always destroyed by linear time-invariant
filtering except in the special case when the process (or its
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filtered version) is actually stationary.4 The problem is that
the definition should not classify all processes as being
either locally stationary or not. Rather, the definition
should rank processes according to their degree of local
stationarity, which can be taken to be the ratio of the
bandwidths of stationary and nonstationary components.
It then follows from Lemma (III-2), since random trans-
lation tends to reduce the bandwidth of the nonstationary
component nx(-,7) but has no effect on the stationary
component kx(-), that random translation tends to in-
crease the degree of local stationarity.

C. Stationarizable Discrete-Parameter Processes

The definitions of the stationary and nonstationary
components of the autocorrelation function of a continu-
ous-parameter process (Definition (III-1)) extend in a
natural way to discrete-parameter processes defined on the
integers I by replacing (26) with5

~ N ’
kx(m) £ lim — Y Ix(nm), forallm e I.
N

N—w 2N p2=
(108)

Similarly, Lemmas (III-1)—(III-3) extend to discrete-
parameter processes, by replacing the Fourier transform
(28) with the discrete Fourier transform

Lx(fm) £ ZI Ix(n,m) exp (j27nf),

forall f € [~ %]. (109)

Only random translations with discrete distributions are
considered for inducing stationarity into discrete-pa-
rameter processes. Thus only characteristic functions of
the form

Py(f) = ZI Pn exp (—j27nf) (110)

Pn =0, foralln e I

are considered. It is easily shown that the characterization
Theorems (III-1) and (IV-1) are valid for discrete-pa-
rameter processes as well as continuous-parameter pro-
cesses. Furthermore, practical examples of stationarizable
discrete-parameter processes are provided by discrete-
parameter WSACS processes obtained by uniformly
time-sampling continuous-parameter WSACS processes
(see the last paragraph in Section II). It should be men-
tioned, however, that not every discrete-parameter process
X’ obtained by uniformly time-sampling a stationarizable
continuous-parameter process X is stationarizable, since

* The property of local stationarity defined in [14] is approximately
preserved by time-invariant filtering if and only if the filter transfer
function is sufficiently smooth; i.e., approximately constant over fre-
quency intervals of the order of the bandwidth of the nonstationary factor
in the covariance.

5The primes in (108)-(111) distinguish the discrete-parameter
quantities from their continuous-parameter counterparts. The primes
on X and 6 have been omitted for convenience of notation.

s ]

PM(A)

APM(A) |[APM(A),

WSCS(a)

WSQcs(a)
WSACS(A),

WSACS(A)

WSS(A)

FT

Fig. 1. Venn diagrams of classes of random processes that are sta-
tionarizable in the wide sense, and that are asymptotically stationar-
izable in the wide sense. Two separate diagrams are shown superim-
posed: one with an A (which stands for asymptotically) in parentheses
included, and the other without. FT is an abbreviation for Fourier
transformable autocorrelation, and denotes the class of process for
which the limit (25) exists.

stationarizability of X’ requires that there exist neigh-
borhoods of every point in the set {n/A; for all n € I} on
which Nx (- ,7) has zero L-norm (where A is the sampling
increment); whereas stationarizability of X requires only
that there exist a neighborhood of the origin on which
Nx(-,7) has zero Ll-norm. This follows from the rela-
tionship

Nix(fm) =+ £ Nx(f-nl/ama). (1

VII. CONCLUSIONS

It has been shown that a useful alternative to the usual
dichotomy between stationary and nonstationary pro-
cesses is to use a simple decomposition of autocorrelation
functions (and probability distribution functions) into
stationary and nonstationary components,® and then to
classify processes according to the behavior of the non-
stationary component (see Fig. 1, and Table I). Since the
introduction of a random translation has no effect on the
stationary component, but has a filtering effect on the
nonstationary component, it follows that a random
translation can be used to alter the nonstationarity of a
process in various ways, including (asymptotic) annihila-
tion, in which case the random translation induces (as-
ymptotic) stationarity.

As discussed in Section I, the technique of introducing
arandom translation to induce stationarity can be used to
simplify the implementation of estimators and detectors
(e.g., no time-varying components nor synchronization
requirements), and to increase the efficiency of compu-
tation associated with these (e.g., inversion of Toeplitz and
convolution operators). This technique will, in general,
result in a degradation in performance of the estimator or
detector, which in some applications is modest but in
others is not. Thus a numerical measure of the degree of
stationarity of a nonstationary process that is computa-

6 This decompositiqn does not necessarily correspond to a decompo-
sition of the process into independent stationary and nonstationary
components [18].
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tionally convenient and that can be used to estimate or
bound performance degradation is needed.

As a final remark, it is mentioned that the work of Ja-
cobs [16] on almost periodic channels (which transform
stationary signals into almost cyclostationary signals) is
related to the work reported herein. Jacobs shows that the
capacity of an almost periodic, memoryless finite-alphabet
discrete-time channel is given by

~ 1 N )
C=lim = 3 Cy, (112)

N—o N n=1

where C, is the capacity of a stationary channel with
transition probability matrix (for all values of discrete
time) equal to the transition probability matrix of the al-
most periodic channel at time n. Since {Cy} is an almost
periodic sequence, C can be referred to as the stationary
component of {C,}. Jacobs also discusses the capacity of
averaged channels and translation-randomized channels.
For more recent work on related topics, see [17].
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APPENDIX

Almost Periodic Functions with Values in a Banach
Space (cf. [9], [19]).

Let 8 be a Banach space with the norm of a vector b € 8 de-
noted. by ||b]l. (In Section II, two Banach spaces are considered:
(1) that with vectors which are complex functions of a real vari-
able, and with L= norm, and (2) that with vectors which are
complex random variables, and with L2 norm.) Let f: R — 3 be
a function that maps real numbers ¢ € R into vectors f(t) € 8.

Definition (A-1): A function p: R —  that is of the form

N
p(t) = Z Cn €Xp (jwnt)y (A-1)

n=-—

forallt € R,

wherec, =c-, € 8,wp, = —w_, € R,and N is a natural number,
is defined to be a real trigonometric polynomial on .

Definition (A-2) (Uniform Approximation): A function f:R
— B 1is defined to be almost periodic (AP) on g if, for every e >
0, there exists a trigonometric polynomial on 8, say p.(t), such
that

If@&) = p®)ll < e, forallt € R. (A-2)

Equivalent Definition (A-3) (Bohr—Bochner): A function f:R
— B1is defined to be almost periodic on B if, for every e > 0, there
exists a real number A\, > 0 such that every interval of length X,
on the real line contains at least one point 7. (called an e-tran-
slation number of f) such that

lF(t+ 70 —FO)] <e,

Definition (A-4): Let f:R — (8 be AP, and let w be any real
number. The mean value ¢, € 8 of the function f(t) exp (—jwt)

forallt € R. (A-3)
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is defined to be the limit in norm

- f(t) exp (—jowt) dt (A-4)

2
T—e 2T JI[-T,
.
=cl,.

Theorem (A-1): If f:R — Bis AP, and if {c,,} denotes the set of
mean values of f, there are at most countably many values of w
for which |lc,,|| = 0.

Definition (A-5): Let {wxn}§ be the sequence (in no particular
order except w, = —w—,) of values of w for which lleull 5 0and
let c.,, be abbreviated to c,. The series ’

Y cn exp (jwnt) (A-5)

n=—e
is defined to be the Fourier series associated with f, and {w,} and
{c,) are termed the Fourier exponents and Fourier coefficients,
respectively, of f. i

Remark: There is, as would be expected, a connection between
e-translation numbers 7, (also called e-periods) and Fourier ex-
ponents (cf. [19], p. 38]). There exist AP functions with arbitrarily
specified Fourier exponents; e.g., {w,} can have arbitrary limit
points in R (cf. [9, p. 31]).

Theorem (A-2): If the Fourier series associated with f is uni-
formly (in ) convergent in norm, the sum of the series is the
function f.

Remark: Some results on the difficult problem of establishing
conditions for convergence of the Fourier series (A-5) are pre-
sented in [9, pp. 31-38].

Definition (A-6): A function f:R —  is defined to be quasi-
periodic with fundamental frequencies {y;}{ if it is AP and has
Fourier exponents {w,} each of which is an integer multiple of one
of {»;}{, and ¢ is finite and {»;}{ are incommensurable.”

Definition (A-7): A function f:R — B is defined to be
asymiptotically almost periodic (APA) if there exist two func-
tions p:R — B and r:R — $, such that their pointwise sum equals
f, p is AP, and r is asymptotically (¢ — =) zero in norm.

Remark: If f:R — (8 is AP, and T is any real number, then
(f(nT); n = 0,£1,£2, - - -} is an AP sequence (cf. [9, p. 47]).

REFERENCES

[1] W. A. Gardner and L. E. Franks, “Characterization of cyclosta-
tionary random signal processes,” IEEE Trans. Inform. Theory,
vol. IT-21, pp. 4-14, Jan. 1975.

[2] H. L. Hurd, “Stationarizing properties of random shifts,” STAM J.
Appl. Math, vol. 26, pp. 203-212, Jan. 1975.

[3] T. Kailath, B. Levy, L. Ljung, and M. Morf, “Time-invariant im-
plementation of Gaussian signal detectors,” Information Systems
Laboratory, Stanford University, Stanford, CA, to be published.

[4] T.Kailath, L. Ljung, and M. Morf, “A new approach to the deter-
mination of Fredholm resolvents of nondisplacement kernels,”
Information Systems Laboratory, Stanford University, Stanford,
CA, to be published.

[5] R. A. Wiggins and E. A. Robinson, “Recursive solution to the mul-
tichannel filtering problem,” J. Geophys. Res., vol. 70, no. 8, pp.
1885-1981, Apr. 1965.

[6] E. G. Gladyshev, “Periodically and almost periodically correlated

7 The real numbers in a finite set {y;}{ are incommensurable if and only
if the only set of ¢ integers that satisfies

i aiv; =0
=1

isag=ag=--=aqg =0.
q




22

(7]
(8]

(9]
(10]
(11]
(12]

(13]

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-24, NO. 1, JANUARY 1978

random processes with continuous time parameter,” Theory Prob.
Appl., (USSR), pp. 173-177, 1963.

K. Jacobs, “Fastperiodische Markoffsche Prozesse,” Mathematische
Annalen, vol. 134, pp. 408-427, 1958.

M. Ohta and T. Koizumi, “Digital simulation of a white noise model
formed of uniformly almost periodic functions,” Information and
Control, vol. 17, pp. 340-358, Nov. 1970.

C. Corduneanu, Almost Periodic Functions.
1961.

D. L. Snyder, Random Point Processes. New York: Wiley, 1975.
W. A. Gardner, “An equivalent linear model for marked and filtered
doubly stochastic Poisson processes with application to MMSE
estimation for synchronous M-ary optical data signals,” IEEE
Trans. Commun. Technol., vol. COM-24, pp. 917-921, Aug.
1976.

E. Parzen, “Spectral analysis of asymptotically stationary time se-
ries,” Bull. Inst. Internat. Statist., vol. 39, livraison 2, pp. 87-103,
1962.

R. M. Gray, D. L. Neuhoff, and J. K. Omura, “Process definitions

New York: Wiley,

(14]

[15]

(16]

(17]

(18]

(19]

of distortion-rate functions and source coding theorems,” IEEE
Trans. Inform. Theory, vol. IT-21, pp. 524-532, Sept. 1975.

R. A. Silverman, “Locally stationary random processes,” IEEE
Trans. Inform. Theory, vol. IT-3, pp. 182-187, Sept. 1957.

R. L. Snyder, “A partial spectrum approach to the analysis of
quasi-stationary time series,” IEEE Trans. Inform. Theory, vol.
IT-3, pp. 579-587, Oct. 1967.

K. Jacobs, “Almost periodic channels,” Colloguium.on Combina-
torial Methods in Probability Theory, Matematisk Inst., Aarhus
Univ., Danmark, Aug., 1962, pp. 118-126.

W. L. Root, “Nonprobabilistic and partly probabilistic channel
coding and time varying channels,” Communication Systems and
Random Process Theory, to be published by Noordhoff-Leyden,
Netherlands (Nato Advanced Study Institute Series).

J. Kampé De Fériet, “Correlation and spectrum of asymptotically
stationary random functions,” The Mathematics Student, vol.
XXX, no. 1, pp. 55-67, Jan. 1962.

L. Amerio and G. Prouse, Almost-Periodic Functions and Func-
tional Equations. New York: Van Nostrand Reinhold, 1971.




